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The success of spectroscopy to characterise equilibrium fluids, for example the heat capacity ratio,
suggests a parallel approach for active fluids. Here, we start from a hydrodynamic description of chi-
ral active fluids composed of spinning constituents and derive their low-frequency, long-wavelength
response functions using the Kadanoff-Martin formalism. We find that the presence of odd (equiva-
lently, Hall) viscosity leads to mixed density-vorticity response even at linear order. Such response,
prohibited in time-reversal-invariant fluids, is a large-scale manifestation of the microscopic break-
ing of time-reversal symmetry. Our work suggests possible experimental probes that can measure
anomalous transport coefficients in active fluids through dynamic light scattering.

I. INTRODUCTION

Spectroscopy of a fluid involves measuring linear re-
sponse using scattering probes in order to characterize
macroscopic modes and microscopic constituents. For ex-
ample, scattering by electromagnetic waves directly mea-
sures the density-density response, via a quantity called
the dynamic structure factor (DSF). The large-frequency,
large-wavevector parts of the DSF (i.e., the scattering
function obtained using either neutron or X-ray scatter-
ing) measure the inter-molecular correlations and interac-
tions on the smallest scales. On the other hand, scatter-
ing by visible or near-visible light can measure the low-
frequency, low-wavevector properties of simple fluids—
precisely the properties captured by the equations of fluid
hydrodynamics. This subtle relationship between the hy-
drodynamics and DSF was first derived by Landau and
Placzek [1] for simple fluids and explored in generality in
Ref. [2] (see also Ref. [3]).

The dynamic structure factor contains information
about macroscopic thermodynamic quantities (e.g., spe-
cific heat and compressibility) as well as response co-
efficients (e.g., diffusivity). Inertial density waves (i.e.,
acoustics) are well characterized by a region of DSF called
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the Brillouin peak—the peak location captures wave dis-
persion, and the peak width and height capture wave
attenuation. On the other hand, the purely dissipative
thermal response is contained in the Rayleigh peak of
the DSF. These two peaks allow for the measurement of
the ratio of isobaric (CP ) to isochoric (CV ) specific heats
(equivalently, ratio of isothermal to adiadatic compress-
ibilities) via the ratio of the peak heights, also called the
Landau-Placzek ratio [1].

The success of correlations and response to character-
ize equilibrium fluids suggests a parallel approach for
the hydrodynamics of active fluids [4]. To implement
this idea, we characterize how the anomalous coefficients
of active-fluid hydrodynamics enter the fluid’s response.
For example, chiral active fluids possess an anomalous
transport coefficient called odd viscosity [5, 6]. Such ac-
tive fluids are composed of self-rotating particles, with
examples including biological [7–11], colloidal [12–15],
granular [16], polymer [17], and liquid-crystalline [18]
constituents. For isotropic spheres or disks, it may be dif-
ficult to measure single-particle rotations, but anomalous
hydrodynamic coefficients can nevertheless reveal the ac-
tive nature of fluid mechanics. These coarse-grained co-
efficients are present due to the effect of active rotations
on the large-scale motion of the particles. Recent experi-
mental advances have led to measurements of odd (Hall)
viscosity in graphene’s electron fluid [19] and in chiral ac-
tive fluids composed of spinning colloids [20, 21]. In addi-
tion to odd viscosity [5, 22], such anomalous coefficients
can include an anti-symmetric component to the fluid
stress [23, 24]. Anti-symmetric stress appears in various
fluids where local angular momentum couples to flow, in-
cluding the hydrodynamics of liquid crystals. However in
systems of active rotors, the anti-symmetric stress arises
not because of elastic interactions, but because of the
coupling of intrinsic rotation of the constituents to the
fluid vorticity.
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How can one use scattering to distill the effects of odd
viscosity from those of other viscosity coefficients and
anti-symmetric stress? We answer this question using an
analysis that parallels Refs. [2, 3], but for chiral active
hydrodynamics. Significantly, we find that odd viscosity
leads to an anomalous dynamic response <[ω(q, z)/ρ(q)]
of vorticity ω(q, z) in terms of wavenumber q and fre-
quency z due to density excitations ρ(q) and vice versa.
When the fluctuation-dissipation theorem is valid, the
vorticity-density dynamical correlations Sρ,ω(q, z) is pro-
portional to the odd viscosity νo. We compute this off-
diagonal correlation and show how it distinguishes the
effects of odd viscosity not only from equilibrium hydro-
dynamic coefficients, but also from the effects of anti-
symmetric stress present in chiral active fluids.

II. HYDRODYNAMIC EQUATIONS OF
ACTIVE ROTOR FLUIDS

The emergent physics in systems of active rotors has
recently been explored using a variety of theoretical and
numerical techniques [25–32]. The presence of torques
in such chiral active fluids distinguishes these systems
from the more commonly studied class of active mate-
rials: those composed of (polar) self-propelled particles.
The presence of activity breaks time-reversal symmetry,
whereas the presence of active rotation breaks parity in
two-dimensional systems [5]. This breaking of symme-
tries leads to the breakdown of Onsager reciprocal rela-
tions that restrict fluid response. Specifically, the pres-
ence of anti-symmetric stress [23, 24] and odd viscos-
ity [5, 22] in the hydrodynamic limit distinguishes active-
rotor fluids from their polar active counterparts.

The presence of active rotation makes the system of
chiral active rotors similar to a two-dimensional quan-
tum system of charges in a magnetic field. As shown in
Ref. [5], one can find an emergent odd viscosity in these
systems analogous to the Hall viscosity [33, 34] predicted
in electronic quantum Hall fluids [35] and measured in
graphene [19]. The addition of Hall viscosity to hydro-
dynamic stress [22, 36] results in the phenomenology dis-
cussed in Refs. [22, 37–41]. We examine the presence of
odd viscosity and anti-symmetric stresses in chiral active
fluids in which these terms emerge as a consequence of
the coupling between intrinsic angular momentum and
fluid velocity. Both odd viscosity and anti-symmetric
stress show up in the transverse response of the fluid.
However, these effects can be distinguished by the fact
that odd viscosity depends on the mean intrinsic rotation
rate whereas hydrodynamic terms due to anti-symmetric
stress only enter in proportion to spatial gradients of the
intrinsic rotation rate.

In two dimensions, the hydrodynamic equations of chi-
ral active rotors [5] governing the evolution of the slowly
varying fields, namely mass density ρ, momentum den-
sity ρv, and intrinsic angular momentum density IΩ, are

Time evolution
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FIG. 1. (a) A schematic representation of a chiral active fluid
composed of granular rotors. The red arrows indicate the in-
trinsic rotation field for each of the fluid’s constituents around
their own center of mass, and the black arrow represents the
linear velocity of the centre of mass for each particle. The fric-
tional coupling between rotors is represented by the gear-like
shape. (b) Schematic illustration of the mechanism that cou-
ples intrinsic rotation and fluid vorticity. When two particles
collide, the frictional coupling is responsible for the genera-
tion of an angular momentum in the fluid (in terms of the
center-of-mass velocities) due to intrinsic rotation.

given by:

Dtρ = −ρ∇ · v, (1)

ρDtvi = ∂j
(
σaij + σsij

)
− Γvvi, (2)

IDtΩ = τ +DΩ∇2Ω− ΓΩΩ− εijσaij , (3)

where Dt ≡ ∂t + vk∂k is the convective derivative (Here
we neglect the effect of corotational stress discussed in
Ref. [42] since the effect of rotations is obtained by
liner terms in the anti-symmetric stress discussed be-
low). Equation (1) arises from the conservation of mass
in the flow whereas Eq. (2) arises from the combination
of linear momentum conservation and friction, where v
is the velocity, Γv is a friction term that dissipates linear
momentum, and σij ≡

(
σsij + σaij

)
is the hydrodynamic

stress term written in terms of the symmetric part σsij
and the antisymmetric part σaij . In two dimensions, the
antisymmetric part of a two-component tensor is propor-
tional to the Levi-Civita symbol εij = −εji, with εxy = 1.
Equation (3) describes the evolution of intrinsic angular
momentum of the particles constituting the fluid. This
angular momentum is not conserved and can be acquired
from an external torque, converted to fluid vorticity, or
dissipated by friction. Here, ΓΩ is the rotational friction,
DΩ is the rotational diffusion, Γ is the dissipative cou-
pling coefficient between Ω and ω, and τ is the active
torque. In the above equations, the components of the
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hydrodynamic stress σij can be written as:

σaij ≡
Γ

2
εij(Ω− ω/2)

σsij ≡ −pδij + ηijklvkl + ηoijklvkl, (4)

where p is the hydrostatic pressure, vkl ≡ (∂lvk + ∂kvl) /2
is the strain-rate tensor, and the odd viscosity tensor ηoijkl
is given by the pseudo-scalar ηo that we derive below [5].
The vorticity of the flow is given by ω = ∇∗ ·v ≡ εij∂ivj .

III. RELATION BETWEEN LOCAL
ROTATIONS AND ODD VISCOSITY

One of the central assumptions of chiral active hydro-
dynamics in Eqs. (2–3) is that the coefficient Γ (and the
entire expression for the anti-symmetric stress σaij) are
the same in both equations. Although this assumptions
could be violated far from equilibrium, we instead focus
on chiral active fluids in which the active drive is not
so strong as to violate this assumption. In this case,
the equilibrium limit τ → 0 remains well defined and
in this limit thermodynamic relations, including Onsager
reciprocal relations, still hold. Furthermore, in the limit
τ → 0, the sum of fluid angular momentum and local an-
gular momentum of particles is conserved. We use these
assumptions below to develop a variational-functional ap-
proach to derive the terms containing odd viscosity.

In this section, we develop a variational approach for
the derivation of odd viscosity from dissipative coeffi-
cients. To this end, we begin with an energy functional
analogous to the Rayleigh dissipation function, but which
includes coupling of intrinsic rotation to flow velocity.
Note that in the previous section the coupling term be-
tween Eq. (2) and Eq. (3) can be generated using an
energy functional which has the form:

F0 =
Γ

2

∫
dx (Ω− ω/2)

2
. (5)

The simplest way to augment this functional such that
it includes coupling between linear momentum and in-
trinsic rotation is:

F =
Γ

2

∫
dx [Ω− ω/2 + α∇ · (Ωv)]

2
, (6)

where −α∇·(Ωv) ≡ ωind/2 is an induced vorticity. Using
the product rule, the above expression becomes

F =
Γ

2

∫
dx (Ω− ω/2 + αΩ∇ · v + α(v · ∇)Ω)

2
. (7)

Substituting this expression into the equation describing
dynamics of the local rotation field and evaluating the
Euler-Lagrange equation, we obtain

ρDtΩ =− δF

δΩ
= − ∂f

∂Ω
+∇i

∂f

∂(∇iΩ)
(8)

=− Γ(1 + α∇ · v) [Ω− ω/2 + αΩ∇ · v]

+ αΓ(v · ∇) [ω/2− αΩ∇ · v − α(v · ∇)Ω] , (9)

where f = Γ/2[Ω− ω/2 + α∇ · (Ωv)]2. Note that in the
final expression in Eq. (9), the first term is identical to the
last term in Eq. (3), whereas the second term is higher
order in either the gradients of v or in α. Therefore,
Eq. (3) describes the large-scale dynamics of the local
rotation field.

Similarly, we derive the dynamics of the velocity field,

Dtvi =− δF

δvi
= − ∂f

∂vi
+∇j

∂f

∂(∇jvi)

≈Γ

2
∇∗i [Ω− ω/2 + α∇ · (Ωv)] + αΓΩ∇i [Ω− ω/2] ,

(10)

where we discard all terms of order α2Ω2 to get to
Eq. (10)—these terms only contribute as corrections to
the existing terms in the stress. Note that whereas the
first term in Eq. (10) provides the expected correction to
the antisymmetric component of the stress, the second
term in this equation couples local rotation to the flow
velocity within the symmetric component of the stress.
To show that this equation includes a contribution from
odd (or Hall) viscosity, we rearrange Eq. (10) to find the
expression

ρDtvi =
Γ

2
∇∗i [Ω− ω/2 + α(v · ∇)Ω] +

αΓ

2
(∇∗iΩ)(∇ · v)

− αΓΩ∇iΩ−
1

2
αΓΩ [∇iω +∇∗i (∇ · v)] , (11)

where the first term is the new antisymmetric stress
term, the second term couples compressible flow to the
gradients in the local rotation, and third term may be
rewritten in terms of ∇(Ω2) and, therefore, contributes
to the symmetric stress σs. Significantly, the last term
may be reexpressed using the two-dimensional identity
−∇2v∗ = ∇(∇∗ · v) + ∇∗(∇ · v) as 1

2αΓΩ∇2v∗. Com-
paring this term to the odd viscosity contribution to the
flow, ηo∇2v∗, we conclude that in the active-rotor liquid,
the effective odd viscosity can be written in terms of the
local rotation field and the coupling parameters as

ηo =
1

2
αΓΩ. (12)

This equality relates the dissipationless odd viscosity ηo

to the dissipative coefficient Γ of anti-symmetric stress.
Although the precise form of Eq. (11) depends on the

form for the effective free energy in Eq. (6), odd viscosity
arises only as a consequence of the single cross-term in
F of the form αΓΩω(∇ · v). There are many forms of F
that can generate this cross-term, including alternative
ways of writing down a complete square. For example, if
we instead had taken

F2 =
Γ

2

∫
dx [Ω− ω − α2∇ · (ωv)]

2
, (13)

then the cross-term α2ΓΩω(∇ · v) appears, leading to a
similar expression for ηo in terms of α2.
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A. Density-dependent coefficients

In this subsection, we present an additional way to de-
rive odd viscosity. Starting from the energy functional
F = Γ

2

∫
dx(Ω − ω)2, we consider the functional depen-

dence of Γ on density ρ. Next we consider slow variations
of density in time and expand Γ(ρ(t)). We obtain

Γ(ρ) = Γ0 + Γ1(∂tρ) + . . . ,

= Γ0 − Γ1(∇ · (ρv)). (14)

The term in the energy functional of the form Γ1Ω∇·(ρv)
can be reexpressed as

Γ1Ω∇ · (ρv)

= Γ1ρ∇ · (Ωv) + Γ1Ω(v · ∇)ρ− Γ1ρ(v · ∇)Ω. (15)

The first term in the last line has been shown in the
previous section to result in odd viscosity. The relevant
term in the expression for F has the form Γ1ρ∇ · (Ωv)
or, equivalently, the form of the α term in Eq. (6), with
α = Γ1ρ/Γ0.

From the form of the stress in Eq. (4), we focus on two
contributions that distinguish active-rotor liquids from
those that are well described by the Navier-Stokes equa-
tions: (1) the antisymmetric stress σa that corresponds
to a local torque on the center-of-mass motion of the ro-
tors and (2) the odd viscosity ηo that results from the
breaking of time-reversal symmetry. These expressions
allow us to establish the conditions in which the odd vis-
cosity dominates over the antisymmetric stress [5]. We
can estimate both σa and ηo in terms of the angular fre-
quency Ω0 ≡ τ/ΓΩ corresponding to the average of the
local rotation field. Then, σa ∼ ΓΩ0 and ηo ∼ αΓΩ0/2
scale similarly with the applied torque τ . However, note
that only gradients of σa enter Eq. (2). By contrast, ηo

enters as a factor multiplying a strain rate. Therefore, in
a liquid in which the gradients of Ω are much smaller than
Ω0, the odd viscosity contribution will be of a lower or-
der in hydrodynamic variables than the odd stress terms.
In such a liquid, we can consider those phenomena asso-
ciated with odd viscosity without considering the odd
stress.

IV. EQUATIONS OF MOTION

To analyse the linear hydrodynamic response for chi-
ral active fluids, we start out with a nonlinear set of
equations, Eq. (1–3). In this section, we write out all
of the terms explicitly and then linearize these equations
around the state with constant density and no flow. We
then relate these linearized equations of motion to the
correlations and response functions at long timescales
and at large lengthscales.

The full nonlinear hydrodynamics (including contribu-
tions from odd viscosity and antisymmetric stress) is de-

scribed by

∂t%+∇ · (%v) = 0 (16)

∂t(%v) +∇ · (%vv) = −c2∇%− Γvv + η∇2v

+ζ∇(∇ · v) + ηo∇2v∗ +
Γ′

2
∇∗(Ω′ − ω/2) (17)

∂t(IΩ′) + α∇ · (vIΩ′) = τ ′ +DΩ′∇2Ω′

− ΓΩ′Ω′ − Γ′(Ω′ − ω/2) (18)

where %(x, t) is the fluid-density field, v(x, t) is the veloc-
ity field, c is the speed of sound in the fluid, α is a coeffi-
cient that measures how far the system is from Galileans
invariance (α = 1 is Galilean invariant), and, as before,
Γv is a coefficient of substrate friction, η is the (dynamic)
dissipative viscosity, ζ is the bulk viscosity, ηo is the odd
viscosity, Γ′ is the “gear factor” which enters as the co-
efficient of antisymmetric stress, Ω′ is the local rotation
rate for particles in the fluid, I is the moment of inertia
of each particle, τ ′ is the active torque that each par-
ticle experiences, DΩ′ is the diffusivity of intrinsic rota-
tion, and ΓΩ′ is the coefficient of single-particle rotational
friction. Here, we have introduced the prime symbol to
distinguish these ‘dynamic’ response coefficients from the
‘kinematic’ coefficients per unit density or unit moment
of inertia, introduced below. Here, we set Γv = 0 and
α = 1.

A. Linearized equations of motion

We now linearize Eqs. (16-18) around the state
(%,v,Ω′) = (ρ0 + ρ, 0 + v,Ω0 + Ω) in ρ, v, and Ω, where
Ω0 ≡ τ ′/(ΓΩ′ + Γ′). We find

∂tρ = −ρ0∇ · v (19)

∂tv = −c2∇ρ/ρ0 + ν∇2v + νo∇2v∗ +
Γ

2
∇∗(Ω− ω/2)

(20)

∂tΩ = DΩ∇2Ω− ΓΩΩ− Γr(Ω− ω/2), (21)

where Γ ≡ Γ′/ρ0, ν[≡ η/ρ0] (νo[≡ ηo/ρ0]) is the kine-
matic dissipative (odd) viscosity, Γr ≡ Γ′/I, ΓΩ ≡ ΓΩ′/I,
and DΩ ≡ DΩ′/I.

Using Helmholtz decomposition, it is convenient to ex-
press v in terms of longitudinal and transverse compo-
nents, v = v` + vt, where ∇ × v` = 0 and ∇ · vt = 0.
Then, the vorticity ω = ∇ × vt and the compression
∇ · v = ∇ · v` determine the flow up to a choice of
inertial reference frame. Using this decomposition, we
rewrite Eqs. (19-21),

∂tρ = −ρ0∇ · v (22)

∂t(∇ · v) = −c2∇2ρ/ρ0 + ν′∇2(∇ · v) + νo∇2ω (23)

∂tω = (ν + Γ/4)∇2ω − νo∇2(∇ · v)− Γ

2
∇2Ω

(24)

∂tΩ = DΩ∇2Ω− ΓΩΩ− Γr(Ω− ω/2), (25)
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where we define ν′ ≡ ν + ζ/ρ0.
To further distinguish between the different terms, it

is useful to combine Eqs. (22,23) into a single equation
for the density ρ. In addition, we have the fields vorticity
ω and instrinsic rotation Ω for a total of three hydrody-
namic equations:

∂2
t ρ = c2∇2ρ+ ν′∇2(∂tρ)− ρ0ν

o∇2ω, (26)

∂tω = (ν + Γ/4)∇2ω − νo

ρ0
∇2(∂tρ)− Γ

2
∇2Ω, (27)

∂tΩ = DΩ∇2Ω− (ΓΩ + Γr)Ω + Γrω/2. (28)

Note that Eqs. (26-28) highlight the main difference be-
tween the anomalous coupling due to odd viscosity and
antisymmetric stress. Whereas odd viscosity couples the
transverse velocity ω (i.e., the vorticity ∇ × v) to the
density field ρ, the antisymmetric stress couples ω to the
intrinsic rotation Ω.

V. FROM HYDRODYNAMICS TO
STRUCTURE AND RESPONSE

The hydrodynamic equations provide information
about the response at large length- and time-scales. For
the density field, information about this response is en-
coded in a different form in the (complex) response func-
tion ρ(q, z)/ρ(q) (i.e., response in frequency z due to an
initial density configuration ρ(q) in terms of the wavevec-
tor q), and in the dynamic structure factor S(q, z) where
q = |q| is the wavenumber and z is the angular frequency.
In equilibrium, the fluctuation-dissipation theorem states
that the response <[ρ(q, z)/ρ(q)] is proportional to the
dynamic structure factor S(q, z). Kadanoff and Mar-
tin [2] showed how to derive such structure and response
functions from (generalized) hydrodynamic equations in
an equilibrium fluid.

Here we perform this analysis for a chiral active fluid,
which does not obey the conditions of equilibrium and
can therefore have additional response functions. For
example, in equilibrium, the response ω(q, z)/ρ(q) (re-
lating the transverse component of velocity to the den-
sity) is zero. We show that in a chiral active fluid, this
response function is nonzero and proportional to odd vis-
cosity. The response ρ(q, z)/ω(q) obeys the generalized
Onsager relation ω(q, z)/ρ(q) ∝ −ρ(q, z)/ω(q) appropri-
ate for fluids with broken time-reversal symmetry. Fur-
thermore, the intrinsic rotational response Ω(q, z)/ω(q)
is proportional to the antisymmetric stress, and the cou-
pling ρ(q, z)/Ω(q) requires both odd viscosity and anti-
symmetric stress. In addition to these off-diagonal re-
sponses, chiral active fluids have signatures of activity
in the usual diagonal response functions ρ(q, z)/ρ(q),
ω(q, z)/ω(q), and Ω(q, z)/Ω(q). We derive analytical
expressions for various responses, in a variety of physical
limits. Beforehand, we review the Kadanoff and Martin
approach for the Navier-Stokes equations.

A. Review: from Navier-Stokes equations to the
dynamic structure factor

Ref. [2] analyses Eqs. (26-28) for the case Γ = νo = 0.
In this case, these equations are identical to the linearized
Navier-Stokes equations in the compressible regime,

∂2
t ρ = c2∇2ρ+ ν′∇2(∂tρ), (29)

∂tω = ν∇2ω. (30)

(We have ignored the field Ω because it is not a hydro-
dynamic variable for an equilibrium fluid.)

Note that the equations for the density and the trans-
verse velocity can be analyzed independently. To arrive
at response functions, we take Fourier transforms in both
space and time, keeping both the dynamical terms that
depend on (q, z) and the terms stemming from initial
conditions that depend on q only. We first consider the
simpler case of the vorticity, which obeys the diffusion
equation. For the diffusion Eq. (30), the right-hand side
transforms to∫ ∞

0

dt

∫
dx e−iq·x+izt

[
ν∇2ω(x, t)

]
= −νq2ω(q, z)

(31)
and the left-hand side transforms to∫ ∞

0

dt

∫
dx e−iq·x+izt [∂tω(x, t)] = izω(q, z) + ω(q)

(32)
where ω(q) =

∫
dx e−iq·xω(x, 0) is the Fourier transform

of the vorticity field at time t = 0. This last term arises
due to integration by parts, and is essential in the analysis
of the response. The combined equation then reads

(−iz + νq2)ω(q, z) = ω(q). (33)

Comparing this expression with the definition of the re-
sponse function: ω(q, z)/ω(q), we obtain the expres-
sion ω(q, z)/ω(q) = (−iz + νq2)−1. The fluctuation-
dissipation theorem relates the vorticity-vorticity cor-
relation function Sω,ω ≡ 〈ω(q, z)ω(−q,−z)〉 to the
real part of the response ω(q, z)/ω(q) via Sω,ω =
χω<[ω(q, z)/ω(q)]. The proportionality coefficient χω is
the thermodynamic static susceptibility of the vorticity
due to an external torque density τ(q), χω = ω(q)/τ(q).
These thermodynamic prefactors depend on the details
of the system, and may be significantly affected by ac-
tivity. We will only write out the correlations up to such
prefactors. Therefore,

Sω,ω ∝
νq2

z2 + (νq2)2
. (34)

This result for the correlation function is the main con-
clusion of this analysis, and in equilibrium fluids it may
be possible to measure it directly via scattering. How-
ever, it is more common to focus on measuring the
density-density correlations Sρ,ρ ≡ 〈ρ(q, z)ρ(−q,−z)〉 =
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〈δ%(q, z)δ%(−q,−z)〉. This correlation can be obtained
using the Fourier transform of Eq. (29),

[−z2 + c2q2 − izν′q2]ρ(q, z) = [−iz + ν′q2]ρ(q). (35)

Solving the above equation, we find that the complex
response function is given by

ρ(q, z)

ρ(q)
=

−iz + ν′q2

−z2 + c2q2 − izν′q2
. (36)

The real part of this response, and the correspond-
ing density-density correlation function Sρ,ρ(q, z) can be
read off as

Sρ,ρ(q, z) ∝ <
ρ(q, z)

ρ(q)
=

c2q4ν′

(zν′q2)2 + (z2 − c2q2)2
. (37)

This is one of the terms in the expression first derived by
Landau and Placzek, corresponding to adiabatic sound
propagation. This term dominates away from the critical
point. The other part of the dynamic structure factor
corresponds to heat transport and results in corrections
to this expression near q = 0.

Alternatively, the same expressions can also be ob-
tained by using the method of fluctuating hydrodynam-
ics as described in Ref. [43]. We assume that the initial
conditions (ω(q), ρ(q)) form a statistical ensemble over
which we need to average to get deterministic dynamic
correlations (in both frequency- and wavevector-space).
For linear response, the correlations in initial conditions
and the dynamic correlations are proportional to each
other, and the fluctuation-dissipation theorem states that
this proportionality coefficient is related to the dissipa-
tive part of the response function. The explicit calcula-
tion gives us the following relations for vorticity correla-

tions:

<
[
〈ω(q, z)ω(−q,−z)〉
〈ω(q)ω(−q)〉

]
=

νq2

z2 + (νq2)2
(38)

and for density correlations:

<
[
〈ρ(q, z)ρ(−q,−z)〉
〈ρ(q)ρ(−q)〉

]
=

c2q4ν′

(c2q2 − z2)2 + (zν′q2)2
.

(39)

Comparing Eq. (38) to Eq. (34) and Eq. (39) to Eq. (37),
we recover the fluctuation dissipation theorem in the con-
text of classical fluids. As we expected, the response
functions obtained from continuum hydrodynamics and
the correlation functions obtained from fluctuating hy-
drodynamics are proportional to each other. Although
we focus on active systems, for thermal systems these
relations simplify further. In equilibrium, both static
correlation functions, 〈ω(q)ω(−q)〉 and 〈ρ(q)ρ(−q)〉, are
given by a white-noise spectrum independent of q and
are proportional to the temperature. Using these values,
one recovers the prefactors in the fluctuation-dissipation
relation.

We contrast this approach to the dynamical forcing
of a system with a time-dependent noise ζρ(q, z) for the
density field and ζω(q, z) for the vorticity field. With this
stochastic forcing, the hydrodynamic systems is given by
the following equations:

[−z2 + c2q2 − izν′q2]ρ(q, z) = ζρ(q, z)

[−iz + νq2]ω(q, z) = ζω(q, z). (40)

Here, the density response is distinct from both the re-
sponse to an initial condition and from the dynamic
structure factor. Calculating the response function for
the density field, we recover:

= ρ(q, z)

ζρ(q, z)
=

zν′q2

(z2 − c2q2)2 + (zν′q2)2
. (41)

This distinct expression could be potentially measured in
a simple fluid by driving it with a stochastic noise, but
it is not the response measured using light scattering.

B. Chiral active fluids

Now we extend the above analysis to chiral active fluids in a parallel approach. In the previous section, the response
functions were derived for an equilibrium fluid where the fluctuation-dissipation theorem is known to hold. We show
that assuming an effective temperature in a chiral active fluid also results in similar relations [44–46]. In addition,
we use fluctuating hydrodynamics to derive expressions for dynamical correlations that do not rely on a thermal
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ensemble. We start with the linearized equations of motion, Eqs. (26-28), whose Fourier transforms are:

[−z2 + c2q2 − izν′q2]ρ(q, z) = [−iz + ν′q2]ρ(q) + νoρ0q
2ω(q, z) (42)

[−iz + (ν + Γ/4)q2]ω(q, z) = ω(q)− izνoq2ρ(q, z)/ρ0 − νoq2ρ(q)/ρ0 +
1

2
Γq2Ω(q, z) (43)

[−iz + ΓΩ + Γr +DΩq2]Ω(q, z) = Ω(q) + Γrω(q, z)/2. (44)

The response functions that result from this set of equations are easiest to analyze in separate two limits: the limit in
which the fluid is dominated by antisymmetric stress (νo → 0), considered in the next section, and the limit in which
the fluid is dominated by odd viscosity (Γ→ 0), considered in the following section.

C. Structure in chiral active fluids dominated by antisymmetric stress

In a chiral active fluid in which the rotation rate is slow, gradients of the intrinsic rotation rate Ω and the resulting
antisymmetric stress dominate over the higher-order response that involves a product of Ω and strain rates ∂ivj . As
shown in the previous sections, the odd viscosity is a linearised version of this cross-coupling between Ω and ∂ivj .
In the limit of slow rotation rate, we can consider odd viscosity to be negligible, νo → 0, and focus on the effect of
antisymmetric stress only. Because the antisymmetric stress does not enter the density-density correlation function,
in this case the expression for the dynamic structure factor is the same as for an equilibrium fluid. The other response
functions can be calculated from the two equations for the transverse velocity and the intrinsic rotation rate Ω:

[−iz + (ν + Γ/4)q2]ω(q, z) = ω(q) +
1

2
Γq2Ω(q, z) (45)

[−iz + ΓΩ + Γr +DΩq2]Ω(q, z) = Ω(q) + Γrω(q, z)/2 (46)

In order to solve this linear system of equations, we represent it as a matrix equation and invert the matrix:(
ω(q, z)
Ω(q, z)

)
= P (q, z)

(
2(−iz + ΓΩ + Γr +DΩq2) −Γq2

−Γr −2iz + (2ν + Γ/2)q2

)(
ω(q)
Ω(q)

)
, (47)

where the prefactor P (q, z) is given by

P (q, z) ≡ 1

−ΓΓrq2/2 + 2(ΓΩ + Γr +DΩq2 − iz)((ν + Γ/4)q2 − iz)
. (48)

The entries in the inverted matrix equation are exactly the hydrodynamic response functions. Assuming that the
fluctuation-dissipation theorem holds, we then relate these response functions to dynamic correlations Sa,b, where
each of the entries a and b can be either the field Ω or ω. The correlation function is the ensemble average of the
product of these two fields in Fourier space. The resulting expressions are:

Sω,ω(q, z) ∝ <ω(q, z)

ω(q)
=

4q2(−ΓΓr(ΓΩ + Γr +DΩq2) + 4(ν + Γ/4)((ΓΩ + Γr +DΩq2)2 + z2))

Γ2Γr2q4 + 8ΓΓrq2(−(ν + Γ/4)q2(ΓΩ + Γr +DΩq2) + z2)
, (49)

SΩ,Ω(q, z) ∝ <Ω(q, z)

Ω(q)
=
−4ΓΓr(ν + Γ/4)q4 + 16(ΓΩ + Γr +DΩq2)((ν + Γ/4)q4 + z2)

Γ2Γr2q4 + 8ΓΓrq2(−(ν + Γ/4)q2(ΓΩ + Γr +DΩq2) + z2)
, (50)

Sω,Ω(q, z) ∝ <ω(q, z)

Ω(q)
=

2Γq4(ΓΓr + 4(ν + Γ/4)(ΓΩ + Γr +DΩq2))− 8Γq2z2

Γ2Γr2q4 + 8ΓΓrq2(−(ν + Γ/4)q2(ΓΩ + Γr +DΩq2) + z2)
. (51)

Note the Onsager relation Sω,Ω(q, z) ∝ ΓrSΩ,ω(q, z)/(Γq2) = ρ0SΩ,ω(q, z)/(Iq2).
In the trivial limit Γ→ 0, we find that the expression for Sω,ω reduces to Eq. (34) with corrections O(Γ). To lowest

order in Γ, the signatures of the antisymmetric stress are the correlation function Sω,Ω(q, z) and the response function

<ω(q,z)
Ω(q) , which are both linear in Γ:

Sω,Ω(q, z) ∝ <ω(q, z)

Ω(q)
∼ − Γq2((ΓΩ + Γr +DΩq2)νq2 − z2)

2(ν2q4 + z2)((ΓΩ + Γr)2 + (ΓΩ + Γr +DΩq2)2DΩq2 + z2)
+O(Γ2). (52)

For a scattering experiment for a chiral active fluid dominated by gradients in Ω and therefore by antisymmetric
stress, measuring the characteristic shape of the response in Eq. (52) would quantify the anomalous response of this
chiral active fluid.
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D. Structure in chiral active fluids dominated by odd viscosity

1. Structure factor using Kadanoff-Martin treatment

We show that the hydrodynamic responses allow one to differentiate between the phenomena associated with odd
viscosity and antisymmetric stress. The case dominated by odd viscosity corresponds to the parameters Γ = 0 and
νo 6= 0. This limit occurs in fluids in which gradients of Ω (and the associated antisymmetric stress) are much smaller
than the odd viscosity term proportional to both Ω (without gradients) and strain rates ∂ivj . In this section, we find
the effects of odd viscosity on the response and correlations in the active fluid. In the absence of the coupling Γ, the
equation for Ω decouples from the other equations and the signature of odd viscosity is in the remaining 2× 2 system
of equations for density and transverse velocity on which we now focus. In Fourier space, these two equations read:

[−z2 + c2q2 − izν′q2]ρ(q, z) = [−iz + ν′q2]ρ(q) + νoρ0q
2ω(q, z), (53)

[−iz + νq2]ω(q, z) = ω(q)− izνoq2ρ(q, z)/ρ0 − νoq2ρ(q)/ρ0. (54)

We proceed as before, by transforming these two equations into a single matrix equation and inverting the matrix.
In matrix form, the above equations read:(

ρ(q, z)
ω(q, z)

)
= Q(q, z)

(
iq4(νν′ − [νo]2) + q2(ν + ν′)z − iz2 iq2νoρ0

−ic2q4νo/ρ0 zq2ν′ + ic2q2 − iz2

)(
ρ(q)
ω(q)

)
, (55)

where the prefactor Q(q, z) is defined via

Q(q, z) ≡ 1

c2q2(z + iq2ν)− z[q4([νo]2 − νν′) + iq2(ν + ν′)z + z2]
. (56)

Significantly, the form of the above matrix allows us to conclude that ρ(q,z)
ω(q) = − ρ20

c2q2
ω(q,z)
ρ(q) . This is a generalization

of Onsager reciprocity for the case in which the fluid has broken time-reversal symmetry and therefore time-reversal-
odd correlations can exist. These correlations are related, up to a prefactor, by the time-reversal operation and
therefore by a minus sign.

The fluid has therefore characteristic response functions for density-density, vorticity-vorticity and the off-diagonal
vorticity-density. The expressions for these (real) response functions are given by:

<ρ(q, z)

ρ(q)
=

c2q4(νq4(νν′ − νo2) + ν′z2)

c4q4(ν2q4 + z2)− 2c2q2z2(ν2q4 + νo2q4 + z2) + z2(νo4q8 + (ν2q4 + z2)(ν′2q4 + z2) + νo2(−2νν′q8 + 2q4z2))
, (57)

<ω(q, z)

ω(q)
=

(c4νq6 − 2c2νq4z4 + q2z2(−νo2ν′q4 + ν(ν′2q4 + z2)))

c4q4(ν2q4 + z2)− 2c2q2z2(ν2q4 + νo2q4 + z2) + z2(νo4q8 + (ν2q4 + z2)(ν′2q4 + z2) + νo2(−2νν′q8 + 2q4z2))
, (58)

<ρ(q, z)

ω(q)
=

νoq4ρ0(c2νq2 − (ν + ν′)z2)

c4q4(ν2q4 + z2)− 2c2q2z2(ν2q4 + νo2q4 + z2) + z2(νo4q8 + (ν2q4 + z2)(ν′2q4 + z2) + νo2(−2νν′q8 + 2q4z2))
. (59)

In the next subsection, we show that the correlations functions Sa,b for a fluid with odd viscosity have the same form,
provided that the noise driving the fluid is uncorrelated.

2. Correlation functions using fluctuating hydrodynamics

In this section, we re-derive these same expressions for the correlations using fluctuating hydrodynamics. Although
the results are the same, the advantage of this approach is that it does not rely on the fluctuation-dissipation theorem,
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FIG. 2. Contour plots of correlation functions Sa,b versus frequency of response z and wavenumber of response q (up to overall
prefactors). (a) The density-density correlation function Sρ,ρ from Eqs. (57,62) for νo = 0 and (b) νo = ν/10. Note that the
color bar uses logarithmic scale. (c) The vorticity-vorticity correlation function Sω,ω from Eqs. (58,63) for νo = 0 and (d)
νo = ν/10 (color bar is logarithmic). For these small values of odd viscosity νo, its effect is not evident from the above density-
density and vorticity-vorticity correlations. However, the effect of odd viscosity becomes apparent in the plots of off-diagonal
density-vorticity correlations Sρ,ω from Eqs. (59,64). (e) For νo = 0, the color bar is in linear scale, Sρ,ω = 0 everywhere while
for (f) νo = ν/10 there is a non-zero Sρ,ω correlation. In this figure, the parameters ρ0, ν, ν′, and c2 are all set to unity.

which might not hold for an active fluid far from equilibrium. Instead, comparing the expressions for correlations in
this section to the response in the previous section lets us find the conditions necessary for the fluctuation-dissipation
theorem to hold in chiral active fluids.

We follow the approach in Ref. [43]. Assuming that the initial conditions are given by a statistical ensemble, we
average over both the initial (ρ(q), ω(q)) and the frequency-dependent (ρ(q, z), ω(q, z)) to find the relations:

[−z2 + c2q2 − izν′q2]〈ρ(q, z)ρ(−q,−z)〉 = [−iz + ν′q2]〈ρ(q)ρ(−q)〉+ νoρ0q
2〈ω(q, z)ρ(−q,−z)〉, (60)

[−iz + νq2]〈ω(q, z)ω(−q,−z)〉 = 〈ω(q)ω(−q)〉 − izνoq2〈ρ(q, z)ω(−q,−z)〉/ρ0. (61)

The above equations can be solved to find expressions for the correlations, and the results have the same form
as the response functions obtained using the Kadanoff-Martin approach. In particular, we an expression using the

dynamic the correlation functions 〈a(q, z)b(−q,−z)〉 for two quantities a and b as < 〈b(q,z)a(−q,−z)〉
〈a(q)a(−q)〉 = <a(q,z)

b(q) . The

static correlation 〈b(q)b(−q)〉 is a real quantity that can be factored out. As a result, we find the following explicit
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relations for the correlation functions:

Sρ,ρ = <〈ρ(q, z)ρ(−q,−z)〉 = 〈ρ(q)ρ(−q)〉<ρ(q, z)

ρ(q)
, (62)

Sω,ω = <〈ω(q, z)ω(−q,−z)〉 = 〈ω(q)ω(−q)〉<ω(q, z)

ω(q)
, (63)

Sρ,ω = <〈ω(q, z)ρ(−q,−z)〉 = 〈ρ(q)ρ(−q)〉<ρ(q, z)

ω(q)
, (64)

in terms of the response expressions in Eqs. (57–59). The correlation functions 〈ρ(q, z)ω(−q,−z)〉 and
〈ω(q, z)ρ(−q,−z)〉 are related by the same Onsager reciprocity relation that relates the two corresponding response
functions.

In the above expressions, the initial time-independent correlations, 〈ρ(q)ρ(−q)〉 and 〈ω(q)ω(−q)〉, play the role of
a thermodynamic prefactor in a fluctuation-dissipation relation: in equilibrium, these factors would be proportional
to the temperature. For active fluids, these prefactors instead depend on the active noise, and could have complicated
dependence on the wavevector q. Nevertheless, hydrodynamic theory predicts that expressions analogous to the
fluctuation-dissipation theorem and given by Eqs. (62–64) still hold at large lengthscale and slow timescales, even if
the fluid is active. Even in the absence of the equilibrium fluctuation-dissipation theorem, the dynamical correlations
can be obtained from the static correlation functions using the above expressions.

In Fig. 2, we plot these dynamic correlation functions for νo = 0 and small values of νo. In the figure, the parameters
ρ0, ν, and c2 are all set to unity and we consider the wavenumber q = 10. This figure is described well by considering
the case of small odd viscosity. In this case, νo → 0 and the expressions for Sρ,ρ and Sω,ω reduce to Eqs. (37) and
(34), respectively, with corrections O([νo]2). To lowest order in odd viscosity, O(νo), the only effect of activity is the
off-diagonal density-vorticity response and the density-vorticity correlation function Sρ,ω:

Sρ,ω ∝ <
ρ(q, z)

ω(q)
∼ q4νoρ0(νc2q2 − νz2 − ν′z2)

(ν2q4 + z2)[(zν′q2)2 + (z2 − c2q2)2]
+O(νo3). (65)

This functional form is the main result of our work, showing the lowest-order change in fluid response and correlations
due to the presence of odd viscosity. This result suggests that a potential experiment to measure the dynamic
correlation function in Eq. (65) could extract the value for odd viscosity.

3. Driven systems and fluctuation-dissipation theorem

In this subsection, we instead consider the response that can be obtained from the fluid equations with odd viscosity
in the presence of an external drive (ζρ(q, z), ζω(q, z)). These equations are:

[−z2 + c2q2 − izν′q2]ρ(q, z)− νoρ0q
2ω(q, z) = ζρ(q, z), (66)

[−iz + νq2]ω(q, z) + izνoq2ρ(q, z)/ρ0 = ζω(q, z). (67)

From the above equations, we obtain the two anomalous response functions:

= ω(q, z)

ζρ(q, z)
∝ −1

νoρ0q2
(68)

= ρ(q, z)

ζω(q, z)
∝ ρ0

izνoq2
(69)

We can contrast these relations with the correlations obtained in the previous subsection. Unlike the response to
initial conditions or the dynamic structure factor, these anomalous responses to dynamic driving depend on the odd
viscosity νo in a non-analytic way. These predictions could potentially be tested in an active fluid using an additional
external drive.

In the case both odd viscosity and antisymmetric stress
are present, the expressions become more complicated.
Although the separate limits considered above capture
most of the effect of odd viscosity and antisymmetric

stress, there can be additional effects due to the com-
bined effects of these two types of active stresses. In the
case both Γ 6= 0 and νo 6= 0, there exist nonzero correla-
tions between the intrinsic rotation rate Ω and density ρ,



11

SΩ,ρ(q, z) (and the corresponding off-diagonal response
function) proportional to νoΓ.

VI. CONCLUSIONS

In this work, we have shown how anomalous linear
transport coefficients arise in a fluid of spinning particles
by expanding nonlinear anti-symmetric stress terms. We
present several examples of this approach, using expan-
sions in either the intrinsic rotation field or the density.
These approaches all generate an anomalous transport
coefficient called odd viscosity, which has been recently
measured in both chiral active fluids [20] and electronic
fluids in a magnetic field [19].

Starting from equations of hydrodynamics, we have de-
rived the linearized response of chiral active fluids. We
show that antisymmetric stress leads to off-diagonal re-
sponse and correlations between the intrinsic spinning
rate and vorticity. By contrast, the presence of odd
viscosity leads to cross-correlations between density and
vorticity. This off-diagonal density-vorticity response re-
sults from the breaking of time-reversal symmetry and
distinguishes odd viscosity from other active hydrody-
namic terms. The quantification of wave propagation
in experimental active-fluid systems is rapidly develop-
ing. For example, Ref. [4] fully quantified sound propaga-
tion within a polar active fluid through direct imagining.
Ref. [20] measures odd viscosity for an experimental chi-
ral active fluid. A common feature between our approach
and Ref. [20] is that waves are characterized through re-
sponse in Fourier space.

Based on our results, we envision a general experimen-
tal approach for measuring odd viscosity using dynami-

cal scattering of light beams that carry orbital angular
momentum. Scattering measurements for both density
and vorticity are well developed in simple fluids. Vor-
ticity measurements form a crucial experimental probe
of turbulence, and various laser scattering techniques
can quantify vorticity components. For example, orbital
angular momentum of light couples directly to vortic-
ity and so designer laser beams can be used to measure
vorticity [49–54]. However, in simple fluids density and
vorticity are uncorrelated. We hypothesize two possi-
ble extensions to measure density-vorticity correlations
within chiral active fluids with odd viscosity: (1) mea-
suring both quantities simultaneously, in parallel, within
a single experimental set-up, or (2) extending the vor-
ticity light-scattering measurements to be density sensi-
tive. In future work, anomalous correlations in active
matter could be explored both theoretically and exper-
imentally in solids with odd elasticity [55], viscoelastic
fluids [56, 59], and anisotropic fluids with odd viscos-
ity [57, 58, 60].
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