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We quantify and model the airfoil response to its pitching flap using a comprehensive
experimentally-acquired database at chord-based Reynolds number 1.8 · 106. This quantification
relies on two newly proposed metrics that characterize the dynamic lift hysteresis and allow describ-
ing its evolution under different pitching conditions. The analysis reveals a saturation of the relative
lift hysteresis that is independent of the angle of attack. Moreover, the hysteresis loop is shown to
reach phase opposition at the same reduced frequency as when its tilt slope begins to change direc-
tion. The two-pronged characterization of the lift hysteresis a promising new approach to quantify
the unsteady aerodynamic behavior beyond the reported conditions and of other immersed bodies.
The modeling strategy yields one nonlinear model and a set of linear models. The models’ perfor-
mance is examined under a range of flow and pitching conditions. Despite their reduced accuracy
compared to the nonlinear model, the linear models are chosen to be incorporated in the closed-loop
control strategy that we detail in Part II of this series.

I. INTRODUCTION

Gust mitigation is relevant to a range of engineering applications, such as passenger aircraft, wind turbines, and
micro-air vehicles. Without counter-measures, gust encounters can lead to extreme loads on the structure and to
possible loss of control. Due to its relevance, various actuation concepts have been investigated to counter gust effects.
These include blown jets [1], synthetic jets [2], and control surfaces [3] among others. In this project, we employ a
trailing edge flap for active control with the objective of regulating lift during a gust encounter. This is implemented
using a model-based closed-loop control strategy. A first step in achieving this objective is the quantification and the
modeling of the lift response to the pitching flap, which we present in this first paper of the series.

The foundations of the classical theory of unsteady aerodynamics can be traced back to Prandtl [4] and Birnbaum [5]
in 1924. Their formulation was expanded by Wagner [6] in 1925 to solve the indicial problem, representing the
aerodynamic response to an arbitrary wing motion as the convolution of the motion with the aerodynamic response
to an impulsive motion. A solution to the frequency response problem was presented in 1935 by Theodorsen [7], which
was subsequently generalized by Von Karman and Sears [8] in 1938. Since these seminal works, multiple expansions
and approximations in the time [9] and in frequency [10] space have been introduced. As long as the flow over an airfoil
remains attached, these ‘classical’ models have been shown to deliver good load predictions [11]. However, for large
angle of attack variations, where dynamic stall might occur, these models become increasingly less accurate [12]. This
is mainly caused by the neglected viscous effects that manifest themselves through local separations and leading-edge
vortex [13]; vortex modeling approaches provide a flexible approach to capture many of these effects [14–16].

To address these shortcomings, many studies adopted data-driven modeling approaches. Some maintained the
same Theodorsen’s model structure and identified an empirical Theodorsen function using either experimental [11]
or numerical [17, 18] data. Alternative data-driven modeling approaches abandon Theodorsen’s model structure for
a heuristic one. These include the Snel [19], the Goman-Khrabrov [20–22], the ONERA [23], and other heuristic [24]
models. Despite their broader applicability range in comparison to the classical methods, many of these data-driven
models are not well-generalizable to different airfoil geometries or different operating conditions, unless parameter
variations are specifically accounted for [25]. Moreover, the majority of unsteady aerodynamic models have been
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FIG. 1. The DLR-F15 research airfoil inside the MUB wind tunnel. Also shown is the incident flow U∞, the angular traversing
mechanism of the airfoil angle of attack α, and the flap angle δ.

constructed and validated at relatively low Reynolds numbers on the order of Re = 5 · 104 or lower [26–28], which
is representative of the fluid dynamics for micro-air vehicles. With few exceptions (e.g., [29]), high Reynolds number
studies, which are particularly relevant to passenger aircraft, are largely absent from the literature.

One defining attribute of unsteady aerodynamics is the lift hysteresis, whose characteristics depend on the pitch
settings. Lift hysteresis results from the phase lead of noncirculatory flow effects and the phase lag due to vorticity
convection into the wake. While non-circulatory effects are negligible at low reduced frequencies, they become progres-
sively larger with increasing pitch rate until they become dominant at sufficiently high reduced frequency. The reduced
frequency is the non-dimensional pitching frequency scaled with the free-stream velocity and the airfoil half-chord.
Panda and Zaman [30] reported the shape similarity of the hysteresis loop at varying oscillation amplitude for a given
frequency. They claimed that only the size of the loop varied proportionally to the amplitude. The Mach number
effects on the lift hysteresis were investigated in Hariharan and Leishman [31], where an increase in circulatory lag was
observed with increasing Mach number. Recent findings by Williams et al. [32] indicate that dynamic hysteresis in
separated flows depends primarily on the pitch motion, α(t), the pitch rate, α̇(t), and the amount of flow attachment
on the airfoil. The authors report dynamic hysteresis even at relatively small pitch rates, which suggests that the
concentrated dynamic stall vortex observed at high reduced frequency is not a requirement for dynamic hysteresis.
These aforementioned studies and others have shed light on the dynamic lift hysteresis phenomenon. However, no
known attempt has been reported on quantifying it over a range of conditions, particularly at high Reynolds numbers.

In this study, we aim to address this gap in the literature by performing a comprehensive experimental study at a
chord Reynolds number Rec = 1.8 ·106 on an airfoil with a pitching flap. The acquired dataset is used to quantify and
analyze the lift hysteresis over a broad range of pitching conditions. Two models of the unsteady lift coefficient are
constructed, compared, and assessed for their suitability for gust mitigation within a model-based closed-loop control
strategy, which is presented in Part II of this series.

II. EXPERIMENTAL SETUP

A. Wind tunnel facility and experimental model

The experiment is conducted in the Modell-Unterschallkanal Braunschweig (MUB) wind tunnel at the Institute of
Fluid Mechanics of the Technische Universität Braunschweig. The MUB is a low-speed closed-circuit wind tunnel
with a 1.3 m × 1.3 m × 5.7 m test section. Flow speeds of up to 60 m/s can be achieved in the test section. In the
current experiment, the incident flow is maintained at a constant velocity of U∞ = 50 m/s and a constant temperature
of ≈ 36 °C. The airfoil in the wind tunnel test section is shown in Fig. 1, whereas Fig. 2 illustrates the setup and
presents the relevant geometric variables. The DLR-F15 airfoil has a span of 1.3 m and a chord length of c = 600 mm,
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FIG. 2. Schematics of the DLR-F15 research airfoil with the pitching flap. The airfoil angle of attack α and flap angle δ are
defined positive in the clockwise direction with incident flow from the left.

FIG. 3. Pressure sensor distribution over the DLR-F15 airfoil midspan. Blue circles indicate steady pressure taps, whereas red
dots represent time-resolved pressure measurement locations.

resulting in a chord Reynolds number Rec ≈ 1.8 · 106. The model leading edge is gradually drooped near the two
sidewalls for a span length of 130 mm to minimize wind tunnel boundary layer effects along the midsection at high
angles of attack. The airfoil is equipped with a trailing edge flap adapted from the clean airfoil configuration with a
chord length of cF = 0.1 · c = 60 mm. A gap of approximately 1 mm between the main airfoil trailing edge and the
flap leading edge allows free rotation. No sealing is applied across the gap. While the main body is made of a glass
fiber composite (GFC) shell glued to an aluminum frame, the flap is constructed from carbon fiber composite (CFC)
with several stiffening elements to withstand the actuation torque and unsteady loads. Two ESR Pollmeier MH4251
servo motors with a nominal torque of 14 N m each and an electric time constant τel = 1.12 ms are used to deflect the
flap by up to δ = ±25 °. Both motors are connected to the flap’s integrated drive elements with safety clutches to
prevent overload. Additional mechanical safety stoppers are built-in to help avoid collisions between the flap and the
airfoil main body. The servo controllers are commanded by the main data acquisition and control system through a
NI cRIO-9039 FPGA controller.

One part of the experimental setup, which is relevant in Part II of the series, is the gust generator mechanism that
is situated ≈ 2.5 m upstream of the DLR-F15 research airfoil. Details on the gust generator setup are not presented
in this paper. We only note that for the ‘parked’ position at zero angle of attack, the gust generator airfoil wake
generates small flow disturbances on the research airfoil. These small disturbances are likely to affect the flow response.
However, it is beneficial to include them in the model-training phase for a more robust model and subsequently a
more robust closed-loop control. Details on the gust generator setup and its effects on the research airfoil are provided
in Part II.

B. Acquisition and control systems

In this study, we investigate the unsteady lift of the pitching flap under various conditions. This requires real-time
determination of the lift force, which we achieve using a mapping technique [33, 34] based on 16 time-resolved and
84 steady pressure sensors located along the airfoil midspan (c.f. Fig. 3). This mapping is necessary to correct for
the relatively coarse pressure distribution obtained from the time-resolved pressure sensors (red dots in Fig. 3). The
mapping relies on piecewise correction of the unsteady surface pressure to the closest steady curve segment from a
large library of distributions.

The steady pressure taps with 0.3 mm diameter are connected to a DTC Initium system with calibrated ESP-HD
type pressure scanners with ±0.05 % full-scale accuracy. The Honeywell SDX05D4 fast pressure sensors acquire the
surface pressure through 50 – 150 mm long and 0.8 mm diameter tubes. In-situ step response tests of the Honeywell
sensors have shown negligible time delay and signal distortion in the frequency range of interest. The transducers
feature passive temperature compensation, and a live offset adjustment ensures matching pressures between the time-
resolved and the steady pressure sensors.

The second type of measured data is the flap angular position, which is acquired by two Sick DFS60 differential
position encoders with a 20” resolution installed on the two flap driveshafts so that the flap position can be acquired
directly without the need to account for twist in the safety clutches.
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FIG. 4. Visual summary of the test cases for α = 0 °. Similar parametric coverage is achieved for α = 5 ° and 8 °.

All acquisition and control processes are centrally managed by a LabVIEW code running on the FPGA of the cRIO-
9039 at a rate of 100 kHz, which ensures that all data and tasks are processed in real-time. The code controls all data
acquisition, initial processing, and control tasks autonomously on the FPGA. The live sampled data is transmitted
to a host PC for monitoring and recording.

C. Test cases

The flow response to the pitching flap is quantified through a parametric study of harmonic oscillation, which is
defined as:

δ(t∗) = δ0 + δ1 sin(k t∗), (1)

where δ0 = (δmax + δmin)/2 represents the mean pitch angle, δ1 = (δmax − δmin)/2 represents the pitch amplitude,
k = ω c/2 U∞ is the reduced frequency of oscillation, and t∗ = 2t U∞/c is the convective time. The minimum
and maximum flap angle are varied between δmin, δmax ∈ [−25 °, 25 °] in steps of 5 °, yielding a good coverage of the
parameter space. Similarly, the reduced frequency is varied in the range k ∈ [0, 1.131] in intervals of 0.038. This yields
a total of 1650 test cases at each angle of attack. Measurements are acquired at three angles of attack α = 0, 5, 8 °.
To reduce the measurement uncertainty, each test case is sampled over 60 cycles and phase-averaged over the middle
50 periods [35]. In other words, the first and last 5 periods are neglected to exclude possible transient effects between
test cases.

Due to electromechanical limitations in the flap acceleration rate, not all desired pitch amplitudes are attained.
The measured test cases at α = 0 ° are summarized in Fig. 4. As the figure shows, there is a clear decrease in the
achieved pitch amplitude with increasing frequency. Also observed is the ‘saturation front’ of the servo motor, where
certain δ1 − k combinations remain out of reach. Similar parametric coverage and behavior is achieved for α = 5 °
and 8 °.

III. MODELING OF THE UNSTEADY AIRFOIL LIFT

An important component of our overall active gust mitigation strategy is the flow response model. Specifically,
we seek an accurate and simple model of the lift coefficient response to flap deflections. Besides better interpretabil-
ity, simplicity is motivated by the desire to employ low-latency control. In this section, we present two modeling
approaches. The first nonlinear model is developed in the time domain and is based on a simplified version of the
ONERA model. The second set of linear models is directly identified from a data subset in the frequency domain.
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TABLE I. List of the model coefficients identified from the measurement data.
ξ0 ξ1 ξ2 C0

L a1 d1 d2 d3 d4

-1.967 1.615 0.159 0.200 6.487 1.610 -1.382 -1.422 3.851

A. Nonlinear model

The ONERA model [23] constitutes the starting point of our first modeling strategy. The model considers two lift
coefficient components

CL = CL,1 + CL,2 , (2)

where the evolution of CL,1 and CL,2 is determined by two differential equations,

ĊL,1 + λCL,1 = λCL,L + (λζ + σ) δ̇ + ζδ̈ (3)

C̈L,2 + aĊL,2 + rCL,2 = −
(
r∆ + e∆̇

)
, (4)

where the variable CL,L is a linear extrapolation of the static lift Cs
L, and ∆ = CL,L − Cs

L is the difference between
this extrapolation and the actual static curve. The coefficients λ, σ, and ζ are constants that depend on the airfoil
geometry and the Reynolds number. This means that a separate set of these coefficients is required for different airfoil
and flow conditions, which limits the generalizability of the model. a, r and e are functions of ∆, as follows

r =
[
r0 + r2 (∆)

2
]2
, a = a0 + a2 (∆)

2
, e = e2 (∆)

2
. (5)

The coefficients a0, a2, r0, r2 and e2 are identified from wind tunnel measurements.
The structure of the two differential equations, Eq. (3) and Eq. (4), is not arbitrary. When pitching below the onset

of stall, the unsteady lift can be described by the first-order differential equation, Eq. (3), having a single real and
negative pole. On the other hand, in the presence of stall, description of the lift evolution also requires the second-
order differential equation, Eq. (4), adding two complex conjugate poles. This explains the two lift components in
Eq. (2), where one is governed by the first-order equation and the other by the second-order equation.

The ONERA model yields a good prediction accuracy and is often the method of choice for modeling unsteady
aerodynamic loads [36, 37]. However, our closed-loop control strategy favors simple models. As such, the ONERA
model is simplified by assuming negligible dynamic stall and hence eliminating Eq. (4) entirely. The validity of this
assumption is verified a posteriori in the results, where the relatively small flap is shown to generate no or small
dynamic stall at α / 12 °. The retained ONERA model given by Eq. (3) can be expressed as

ξ0ĊL + CL = Cs
L + ξ1δ̇ + ξ2δ̈ , (6)

where the dot represents differentiation with respect to the convective time (˙) = d( )/dt∗, and ξi are the model
coefficients. We emphasize that only the structure of Eq. (3) is retained and the model coefficients are identified from
the measurement data. The steady lift coefficient Cs

L is modeled separately as a fourth-order polynomial:

Cs
L(α, δ) = C0

L + a1α+ d1δ + d2δ
2 + d3δ

3 + d4δ
4 . (7)

The model coefficients for Eq. (6) and Eq. (7) are identified from the data using a least-squares fit. The coefficients
are listed in table I.

The model’s accuracy is quantified using the root-mean-square error between the model predictions and the mea-
sured reference data,

Erms =

√√√√ 1

N

N∑
i=1

(∆CL,i)2 , (8)

where N is the total number of samples for one test case, and ∆CL,i denotes the difference between the model and
the reference lift coefficient. The averaged root mean square error over all test cases amounts to 0.025 for the static
Eq. (7) and 0.011 for the dynamic Eq. (6) model components, indicating a good prediction accuracy. A detailed
assessment of the model prediction capabilities is provided in section IV C.
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TABLE II. Identified coefficients for the linear models given by Eq. (12) at various airfoil angles of attack α.

α a0 a1 a2 b0 b1 b2
0 deg 1.93485 5.13803 1.41021 1.107 5.793 1.000
5 deg 3.29235 7.65731 1.59824 2.029 8.652 1.000
8 deg 0.53078 1.34597 1.00432 0.369 1.451 1.000

B. Linear models

A second modeling strategy generates a set of linear models that are amenable to closed-loop control. The models’
structure is inspired by Theodorsen’s solution. Following Leishman [38, 39], the unsteady lift on an airfoil with a
harmonically pitching flap in incompressible flow is given by

CL(k) = 2πα+ c1δ̇ + c2δ̈ +
(
c3δ + c4δ̇

)
C(k), (9)

where C(k) is the Theodorsen’s transfer function that accounts for attenuation of the circulatory lift by the wake
vorticity, given by

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (10)

where H
(2)
ν are Hankel functions of the second kind. The coefficients ci in Eq. (9) depend only on the distance between

the flap hinge and the mid-chord, e, as follows

c1 = cos−1(e)− e
√

1− e2, (11a)

c2 = 1
3 (2 + e2)

√
1− e2 − e cos−1(e), (11b)

c3 = 2
√

1− e2 + 2 cos−1(e), (11c)

c4 = (1− 2e) cos−1(e) + (2− e)
√

(1− e2), (11d)

where e is measured in semi-chords. In our experimental setup with e = 0.8, the contribution of the terms multiplying
c1, c2, and c4 is therefore small relative to the c3 term for the range of frequencies studied. More specifically, these
terms are an order of magnitude smaller than c3k for frequencies of k ∼ O(1). Consequently, a transfer function with
δ as the input and CL − 2πα as the output will yield the same structure as C(k). Theodorsen’s transfer function has
been historically approximated by rational functions with the same number of poles and zeros to preserve the constant
value asymptotes that C(k) exhibits for both low and high frequencies [17, 18]. Therefore, we expect a proper, rather
than strictly proper, transfer function to be able to explain the experimental data for reduced frequencies k < 1 and
small pitching amplitudes. For an empirical model based on data at higher frequencies, we would not expect the
high-frequency asymptote of C(k) to be respected since it describes an instantaneous change in the circulatory lift
in response to changes in δ, which is nonphysical [40, 41]. Moreover, the added mass terms contribution becomes

significant at higher frequencies. Therefore, modeling would require considering the flap pitch rate δ̇ or acceleration
δ̈ as the input rather than the pitch angle δ to produce a strictly proper transfer function for the unsteady lift.

In addition to enabling a direct comparison with thin airfoil theory, working in the frequency domain is motivated
by the characteristics of our harmonic forcing, which we convert to the frequency domain via a Fourier transform.
For each of the three models at the three angles of attack, training is performed on a data subset at a single mean
pitch angle δ0 = 0◦, and a range of pitching amplitudes δ1 < 10◦, and reduced frequencies k < 0.75. This range is
well within the requirements to mitigate the largest vortex gusts generated by the facility. Transfer function models
are fit to the frequency response data for every angle of attack using MATLAB’s tfest command [42]. Different
combinations of the number of poles and zeros are tested and the least complex models that accurately fit the data
are transfer functions with two poles and two zeros with the following structure

G(s) =
a2s

2 + a1s+ a0
b2s2 + b1s+ b0

, (12)

where s = k/(2π) is in reduced frequency units. The identified coefficients in Eq. (12) are listed in Table II for the
three angles of attack. The mean square error between data and models is below 5 · 10−4 for all three models.

The frequency response of the linear models, as well as that from the theory using Eq. (9), are compared to the
experimental data in Fig. 5. The linear models not only accurately fit the data, but also share the structure of
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FIG. 5. Frequency response of the linear models given by Eq. (12) at airfoil angles of attack α ∈ {0◦, 5◦, 8◦}, along with
experimental data for δ1 < 10◦ and predictions from thin airfoil theory according to Eq. (9): (a) Phase. (b) Magnitude. The
symbols denote the three angles of attack for the experimental distributions.

theoretical approximations by having the same number of poles as zeros. Because of this structure, the models have
constant value asymptotes at low and high frequencies given by a0/b0 and a2/b2, respectively. The low-frequency
asymptote corresponds to the dc gain, representing the increment in the static lift in response to an increment in
the flap deflection angle. The dc gain is found to decrease when increasing the airfoil angle of attack, as shown in
Fig. 5(b), which we ascribe to the reduction in the control authority of the flap with increasing flow separation. The
high-frequency gains represent an instantaneous increment in the unsteady lift when increasing δ, as predicted by the
thin-airfoil theory. Since our models are identified using data for k < 0.75, the produced high-frequency gains might
be misleading, and we refrain from interpreting them. An assessment of the predictive performance of the models is
presented in section IV C. Note that it is possible to combine several linear models at different operating conditions
into a parameter-varying model that is suitable for control and accurate over a larger envelope [25, 43].

IV. RESULTS AND DISCUSSION

A. Steady lift

In this section, we examine the steady lift behavior of the research airfoil measured at various angles of attack and
flap deflection angles. The steady airfoil lift coefficient distribution Cs

L is shown in Fig. 6(a) for an angle of attack
α range at a constant flap angle of δ = 0◦. The linear region closely approximates the potential flow solution and
extends with a 2π slope from the lower end of the measured range at α = −6◦ up to α = 8◦. For higher angles of
attack, separation effects begin to take hold over the airfoil suction side, leading to a decrease in the lift slope dCs

L/ dα
and a resulting maximum lift coefficient Cmax

L = 1.55 at α = 20◦.
The steady airfoil lift distributions for varying flap deflection angle δ ∈ [−25◦, 25◦] are presented in Fig. 6(b) for the

three angles of attack. All three distributions exhibit a similar trend. They are shifted with respect to one another
by a constant over the entire range of flap deflection angles. This similarity is expected, as all three angles of attack
reside in the linear range below static stall. Also shown in the figure are the corresponding static fit models given
by Eq. (7), which match the reference distributions accurately. Using the surface pressure measurements over the
flap, we divide the flow into three states. A quasi-linear behavior is observed between δ−sep = −20◦ and δ+sep = 5◦,
which delimits the attached flow region over the flap pressure and suction side, respectively. The asymmetry in the
separation range with respect to zero is simply due to the asymmetry of the airfoil geometry. For δ < −20◦, the
flow over the flap pressure side starts to separate, resulting in a decreasing gradient dCs

L/ dδ. Similarly, for δ > 15◦,
dCs

L/ dδ decreases due to the onset of flow separation over the flap suction side. No separation of the main element
is observed across the measured angle of attack range α ∈ [0◦, 8◦].

B. Unsteady lift and hysteresis quantification

The unsteady lift response under harmonic pitching of the trailing-edge flap is investigated in this section. We first
examine the surface pressure distributions, which are presented in Fig. 7 for three reduced frequencies k during the
flap upstroke (denoted by [−] in Figs. 7(a)-(c)) and downstroke (denoted by [+] in Figs. 7(d)-(f )) at δ = 0◦. The
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FIG. 6. (a) Steady lift coefficient distribution over an angle of attack range α at δ0 = 0◦. (b) Steady lift coefficient distributions
for flap deflection angle variations δ at three angles of attack. The dashed lines denote the corresponding polynomial model
given by Eq. (7).

FIG. 7. Instantaneous (red) and static (blue) pressure coefficient Cp distributions at α = 0◦ along the airfoil midsection over
the pressure side (�) and suction side (•). The [−] and [+] symbols in the legend denote the moment at δ = 0◦ during the
flap upstroke ((a) − (c)) and downstroke ((d) − (f)), respectively. The results are presented for three reduced frequencies
k = 0.038, 0.075, 0.188 with the same mean pitch angle δ0 = 0◦ and pitch amplitude δ1 = 25◦.

presented test cases have the same mean pitch angle δ0 = 0◦ and pitch amplitude δ1 ≈ 25◦. The static pressure
distribution, shown in blue, differs from the instantaneous ones in red at both the upstroke and the downstroke.
The instantaneous pressure fluctuations are larger in magnitude towards the leading edge. On the upstroke, when
the flap pitches from positive to negative angles, the time-lag effect leads to a fuller Cp distribution and thus higher
∆Cp, and subsequently CL, compared to the steady case. The opposite effect is present on the downstroke, where a
reduced ∆Cp (and thus CL) compared to the steady case is observed. At high reduced frequencies, as in Fig. 7(f )
with k = 0.188, the time lag even causes cross-over in the pressure distribution and thus, an increase in the airfoil
pitching moment Cm. These observations are consistent with previously reported results in the literature.
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(a) (b)

FIG. 8. Cross correlation coefficient ρδ−p distributions of the flap angle and the surface pressures at α = 0◦ with δ0 = 0◦,
δ1 = 25◦ for (a) k = 0.038 and (b) k = 0.188. The green solid line denotes the perfect correlation (anti-correlation) between
the flap motion and the surface pressures.

To better understand the time-lag, we examine the cross-correlation coefficient between the flap deflection angle
and the local surface pressure, defined as

ρδ−p(τ) =

1
T

∫ T
0

(
δ(t∗)− δ

)(
Cp(t

∗ + τ)− Cp
)
dt∗

σ(δ)σ(Cp)
, (13)

where τ is the time-delay, T is the pitching period, σ is the standard deviation, and denotes the time averaging
operator. The cross-correlation coefficient ρδ−p distributions are presented in Fig. 8 for two reduced frequencies
k = 0.038 and k = 0.188, respectively. The results are presented as a function of the phase-delay φ = 2π τT . PS and
SS denote the pressure side and the suction side of the airfoil, respectively. From the definition of ρδ−p and as can be
seen in Fig. 8, ρδ−p is in-phase with the flap motion (φ = 0◦) at the trailing edge pressure side and is in opposite phase
with the flap (φ = 180◦) on the trailing edge suction side. This perfect correlation (anti-correlation) gradually shifts
away from the flap trailing edge towards the airfoil leading edge. The shift is marked with a solid green line across
both the pressure and suction sides. It illustrates the phase (or time) lag, which increases with distance upstream as
the information requires more time to reach further distances upstream of the flap. Evidently, the phase-lag increases
with increasing reduced frequency, as observed when comparing Fig. 8(a) and (b). Quantifying the phase-lag at the
airfoil leading edge with φlag yields an increase from φlag ≈ 8◦ at k = 0.038 to φlag ≈ 42◦ at k = 0.188. Note that,
even though the maximum phase lag φlag appears to increase linearly with k for the two illustrated cases, this is not
the case in general. In fact, φlag behaves similarly to the airfoil lift, which is an integrated quantity of the surface
pressure and whose phase response is given in Fig. 5(a) for select experimental test cases.

A similar trend is observed in the differential pressure coefficient distributions ∆Cp, which is the pressure difference
between the airfoil suction side and the pressure side. Distributions of ∆Cp are shown in Fig. 9 for the same two test
cases as in Fig. 8 over one period of harmonic flap actuation. As with the flap angle–pressure correlation coefficient,
the same phase shift of 8◦ and 42◦ at the leading edge for k = 0.038 and k = 0.188, respectively, is observed.

The time lag effects are reflected in the lift coefficient distributions as dynamic hysteresis. The instantaneous lift
coefficient CL over one phase-averaged pitching period is presented in Fig. 10. The lift hysteresis is shown in Fig. 10(a)
for increasing pitch amplitudes δ1 and a constant mean pitch angle δ0 = 0◦ and a constant reduced frequency k = 0.188,
whereas Fig. 10(b) compares the lift hysteresis of six different test cases: three within the linear region of the steady
airfoil lift (δ0 = −5◦), and three within the separated flap region (δ0 = 15◦) for quasi-constant pitch amplitude and
three reduced frequencies k = 0.075, 0.188, and 0.754. Expectedly, the increase in pitch amplitude δ1 is associated
with a growth of the hysteresis loops (c.f. Fig. 10(a)). We note the bend in the loops between δ = 5◦ and δ = 15◦ on
the downstroke, where the flap separates. The comparison of the lift hysteresis loops at similar pitch angle and pitch
amplitude for increasing reduced frequencies reveals a different aspect of the time lag effect. Lift hysteresis curves at
higher pitch frequencies exhibit a tilt with a reduced mean slope, as shown in Fig. 10(b). Hence, the pitching flap
yields a smaller lift gain ∆CL/δ1 with increasing reduced frequency, in agreement with the frequency response shown
in Fig. 5(b). This reduction translates into a decreased authority of the trailing edge flap for lift control. This effect
is also present for the δ0 = 15◦ cases, albeit to a smaller extent as the separated flap possesses a reduced influence
on the flow. It is worth noting the clockwise rotation direction of the hysteresis loop for the k = 0.754 case pitching
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(a) (b)

FIG. 9. Differential pressure coefficient distributions ∆Cp for one period of harmonic flap actuation at α = 0 ° with δ0 = 0 °,
δ1 = 25 ° for (a) k = 0.038 and (b) k = 0.188.

(a) (b)

FIG. 10. The instantaneous lift coefficient CL over one phase-averaged pitching period. (a) The lift hysteresis for an increasing
pitch amplitude δ1 and a constant mean pitch angle δ0 = 0◦ and a constant reduced frequency k = 0.188. (b) The lift hysteresis
of six different test cases: three within the linear region of the steady airfoil lift (δ0 = −5◦), and three within the separated
flap region (δ0 = 15◦) for quasi-constant pitch amplitude and three reduced frequencies k = 0.075, 0.188, and 0.754.

about δ0 = 15◦, which is in the opposite counterclockwise direction to the other presented cases.
Following these observations, we attempt to quantify the lift hysteresis characteristics (magnitude, tilt, rotation

direction) and their evolution over the range of conditions. Following McCroskey’s [44] definition for the pitching
moment, we first define the net lift hysteresis over one pitch cycle as

ζL =

∮
CL dδ . (14)

To isolate the relative hysteresis effects, we normalize ζL by the pitching amplitude 2δ1 and the corresponding steady
lift difference ∆Cs

L = Cs
L(δmax)− Cs

L(δmin) to obtain the net relative lift hysteresis

ζ∗L =
ζL

(2δ1 ·∆Cs
L)
, (15)

which is presented in Fig. 11 for all test cases at the three angles of attack. ζ∗L is thus a metric that quantifies the
relative hysteresis bulk and the loop rotation, where positive value denote counterclockwise rotation and negative
values clockwise rotation. The colors denote the degree of separation at steady conditions, which we quantify as

Ω = min

{
max {δmax − δ+sep, 0}+ max {δ−sep − δmin, 0}

δmax − δmin
, 1

}
(16)
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α = 0 deg(a) (b) (c)α = 5 deg α = 8 deg

Ω

FIG. 11. Relative net hysteresis ζ∗L distributions for a range of reduced frequencies k for (a) α = 0 °, (b) α = 5 °, and (c) α = 8 °.
Measurement points are color-coded by the respective degree of separation Ω, where green indicates a fully-attached flow on
both sides of the flap, and red indicates a fully-separated flow over one side of the flap.

where δ+sep and δ−sep delimit the attached flow region under steady conditions. Eq. (16) yields Ω = 1 for a fully
separated flow over one side of the flap over one pitching period, and Ω = 0 for a fully-attached flow over both sides.
We acknowledge the existence of other metrics to quantify the degree of separation (e.g., [45]). However, for the
current configuration with a relatively small flap and as confirmed by the results, Ω is deemed sufficiently accurate.
As Fig. 11 shows, ζ∗L saturates at ≈ 0.22 around 0.2 ≤ k ≤ 0.3 for all three angles of attack, and continuously decreases
thereafter until it becomes negative for sufficiently high reduced frequencies. Hence, the net relative lift hysteresis
exhibits an upper limit that is independent of the airfoil angle of attack, at least in the linear range. Except for a
few cases at α = 0◦ affected by the gust generator airfoil wake, larger relative net hysteresis ζ∗L is reached for more
attached flow conditions over the flap (lower Ω). We reiterate that these wake effects take place despite the gust
generator airfoil ‘parked’ at zero degree incidence angle throughout the current measurements. More details on the
gust generator wake are provided in Part II of this series.

With increasing pitching frequency, the relative net hysteresis eventually becomes negative indicating a reversal in
the hysteresis loop direction, as previously presented in Fig. 10(b) and as reported in some literature (e.g., [31]). This
reversal is simply phase opposition, which is attributed to the noncirculatory terms beginning to dominate the flow
response. The reversal takes place earlier with increasing level of separation, i.e., for larger Ω. For example, a test
case with Ω = 1 in Fig. 11(a) reaches phase lead at k ≈ 0.43, whereas a fully attached case with Ω = 0 does not show
phase opposition within the measured frequency range.

We reiterate that large negative ζ∗L values denote large net relative hysteresis with clockwise rotation. Hence, with
larger reduced frequencies, smaller ζ∗L values are reached, which in absolute terms, reach similar magnitude to the
positive maxima. Based on the observed trends, a possible smaller net relative hysteresis at higher k (beyond the
measured range) is likely.

The third hysteresis loop characteristic is tilting, which we quantify by the relative lift hysteresis tilt parameter

λ∗L =
(dCL/dδ)

∆CsL/(2δ1)
, (17)

where dCL/dδ is identified from the slope of a simple linear fit through the hysteresis loop. The relative tilt λ∗L
distributions for a range of reduced frequencies k for the three angles of attack are presented in Fig. 12. Similarly to
Fig. 11, the measurement points are color-coded by the respective degree of separation Ω, where green indicates a fully
attached flow on both sides of the flap, and red indicates a fully separated flow over one side of the flap. Except for
a few cases at α = 0 °, the evolution of λ∗L is similar among the three angles of attack. The few exceptions at α = 0 °
are caused by interference from the gust generator airfoil wake. This is confirmed by comparing the current results to
those of a previous measurement campaign [33] without the mechanism. As the figure shows, the relative tilt is also
dependent on the state of separation. Mostly attached test cases (Ω close to zero) exhibit a larger relative tilt than
the separated cases (Ω close to one) that continues to decrease over the entire measurement range. On the other hand,
the λ∗L distributions of the mostly separated cases initially decrease with higher k before they subsequently increase
at a slower rate. It is not possible to predict how the tilt further evolves beyond the current measurement range.
A possible return to initial tilt values can not be excluded. Interestingly, the onset of the slope reversal coincides
with the phase opposition frequency identified from the ζ∗L distributions in Fig. 11. In other words, the loop reversal
frequency is also the tilt inflection point.
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Ω

(c) α = 8 deg(b) α = 5 deg(a) α = 0 deg

FIG. 12. Relative tilt λ∗L distributions for the current range of reduced frequencies k for (a) α = 0 °, (b) α = 5 °, and (c) α = 8 °.
Measurement points are color-coded by the respective degree of separation Ω, where green indicates a fully-attached flow on
both sides of the flap, and red indicates a fully-separated flow over one side of the flap.

C. Unsteady lift models

The lift coefficient models presented in section III are now assessed and compared. This assessment is aimed to
evaluate the models’ robustness at different operating conditions, to shed light on the lift dynamics, and to evaluate
the models’ suitability for the control strategy detailed in Part II of this series. For brevity and clarity, we present
only results for α = 0 °. Similar conclusions can be drawn at the other two angles of attack.

The measured and modeled unsteady lift is presented in Fig. 13 for four test cases. We note that the linear model is
the one derived at α = 0 ° and linearized around δ = 0 °. Two test cases with the same mean pitch angle δ0 = 0◦ and
pitch amplitude δ1 ≈ 25◦ are compared at two different reduced frequencies, as shown in Figs. 13(a)-(b). Similarly,
Figs. 13(c)-(d) compares two test cases, but with the same reduced frequency k = 0.754 and pitching amplitude
δ1 ≈ 10◦ at mean pitch angles δ0 = 0◦ and 15◦. The four test cases are specifically selected to highlight the models’
accuracy as well as their limitations. The general lift distribution is well reproduced by both models, as shown in
Fig. 13(a). The overall hysteresis loop including the sharp turning at δ = 25◦ for this low pitch frequency case is
well reproduced by the nonlinear model. Unsurprisingly, the linear model is not capable of reproducing the nonlinear
dynamics at δ > δ+sep ≈ 5◦. This is also reflected in Fig. 13(b), where the lift distributions at k = 0.188 for the
measured data and the two model predictions are shown. Both models account for the increased net hysteresis loop
size with higher frequencies, and thus the increased phase delay of the flow. However, the linear model deviates from
the reference data, as nonlinear effects associated with the flap separation start to take effect.

This trend extends to higher reduced frequencies. Lift distributions of the two test cases already shown in Fig. 10(b)
with k = 0.754 is presented in Figs. 13(c)-(d). The performance of models at higher pitching frequencies without flap
separation is shown in Fig. 13(c). The hysteresis loop is well reproduced by both the nonlinear and the linear models,
which also correctly predict the tilt. In Fig. 13(d), the models are applied to a fully-separated test case. As can be
seen, the nonlinear model deviates from the reference lift on the upstroke when the flap is separated, and yields a
smaller ζ∗L compared to the reference measurements. Nonetheless, the model accurately predicts the hysteresis loop
reversal to a clockwise direction. The performance loss is an expected limitation of the model, since all components
simulating the dynamic stall have been simplified. On the other hand, the linear model fails to predict both the
steady as well as unsteady lift components. This is again expected since the model is linearized at δ = 0◦ in the linear
lift range and is deployed at δ = 15◦, where both static and dynamic stall is present. For the range of frequencies
studied, the linear model also fails to predict phase opposition, and hence hysteresis loop direction reversal.

A more general assessment of the models is achieved by examining the relative net hysteresis ζ∗L. The net relative
hysteresis distributions from measured data is compared to those predicted by the two models in Fig. 14. The results
for attached test cases with Ω = 0 are shown in Fig. 14(a). Here, the predicted ζ∗L by the nonlinear model matches
the reference distribution accurately, whereas the linear model slightly under-predicts for k > 0.2. Conversely, for test
cases with a separated flap (Ω = 1) shown in Fig. 14(b), both the linear and nonlinear models fail to accurately predict
the lift hysteresis. The nonlinear model still outperforms the linear model, which heavily over-predicts ζ∗L across the
frequency range. The inability to capture dynamic stall is expected since both model structure is specifically simplified
to ignore it.

In this project, we aim for gust mitigation at a single angle of attack α = 0 ° and at (mainly) a reference flap
angle δ = 0 °. As detailed in Part II of this series, the flap requirements to counter the largest generated gusts in the
facility are within the range of pitching conditions used to train the linear models, i.e., δ−sep = −20 ° ≤ δ ≤ δ+sep = 5 °
and k < 0.72, which demonstrated good predictive capabilities within this range. In addition, linear models are
well-suited for a multitude of powerful yet simple linear control techniques with low latency. Therefore, despite their
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(a) (b)

(c) (d)

FIG. 13. The measured (—) and the modeled (−− and ..) unsteady lift for four test cases. Two test cases have the same mean
pitch angle δ0 = 0 ° and pitch amplitude δ1 ≈ 25 ° at two different reduced frequencies (a) k = 0.075 and (b) k = 0.188. Two
test cases have the same reduced frequency k = 0.754 and pitching amplitude δ1 ≈ 10 ° at mean pitch angle (c) δ0 = 0 ° and
(d) δ0 = 15 °.

(a) (b)

FIG. 14. Relative net hysteresis ζ∗L distributions for a range of reduced frequencies k at α = 0◦ for (a) fully attached, and (b)
fully separated test cases over the flap. The symbol • denotes measured data, whereas (−−) and (..) mark the nonlinear and
linear models, respectively.

poorer performance over the entire range compared to the nonlinear model, we choose the linear models for the gust
mitigation strategy detailed in Part II.
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FIG. 15. Evolution of the hysteresis loop for the current range of reduced frequency k. The schematic illustrates the relative net
hysteresis initial increase followed by the subsequent continuous decrease with increasing pitching frequency. Also illustrated
is the relation between the hysteresis loop tilt and rotation direction, where phase opposition delimits the reversal of the slope
trend.

V. CONCLUSIONS

In this study, we perform a comprehensive experimental study on an airfoil with a pitching flap at a chord Reynolds
number Rec = 1.8 · 106. The measurements distinguish themselves from the current state of the art in the Reynolds
number used and the broad experimental pitching conditions tested. The data are employed to characterize the lift
hysteresis evolution and to identify a suitable model for a closed-loop control strategy.

We characterize the lift hysteresis by introducing and analyzing two metrics: the net relative lift hysteresis ζ∗L, and
the relative lift hysteresis tilt λ∗L. Evaluation of the ζ∗L distributions reveal a maximum at ≈ 0.22 around 0.2 ≤ k ≤ 0.3
for all three angles of attack. Larger relative net hysteresis ζ∗L is reached for more attached flow conditions over the
flap, reflecting higher authority to control the flow. With increasing pitching frequency, the relative net hysteresis
decreases and eventually becomes negative, corresponding to a reversal in the hysteresis loop direction. This phase
lead is attributed to the noncirculatory terms beginning to dominate the flow response. The phase-opposition takes
place earlier with increasing level of separation.

The second metric we introduce to quantify the hysteresis is the relative lift hysteresis tilt λ∗L. Similar to ζ∗L, the
λ∗L distributions at the three angles of attack show similar trends. The relative tilt is also dependent on the state
of separation. The attached cases exhibit a larger relative tilt than the separated ones with a steady decrease with
increasing reduced frequency within the measured range. For separated conditions over the flap, the λ∗L distributions
initially decrease with higher k before they increase although at a slower rate. The onset of this slope reversal coincides
with the phase opposition frequency identified from the ζ∗L distributions.

Based on the preceding conclusions, we schematically summarize the evolution of the hysteresis loop in Fig. 15.
The schematic shows the relative net hysteresis initial increase followed by the continuous decrease with increasing
pitching frequency. Also illustrated is the relation between the hysteresis loop tilt and its rotation direction, where
phase opposition delimits the reversal of the slope trend. Comparable behavior can be assumed for other pitching
flaps and even airfoils when they are operating below the large dynamic stall range. The two-pronged characterization
of the lift hysteresis constitute a new promising approach to quantify the unsteady aerodynamic behavior beyond the
reported conditions and of other immersed bodies.

One main objective of this study is to perform model-based closed-loop control to mitigate gust effects, which
requires an accurate and – preferably simple – model of the lift coefficient response to flap motion. Two different
modeling approaches are followed. The first builds on the ONERA model [23] with a discarded dynamic stall com-
ponent. Despite this simplification, the model is shown to accurately model the lift coefficient over broad pitching
conditions. Discrepancies are only observed at high mean pitch angles for cases with large dynamic stall. Despite its
accuracy, the nonlinear model is not ideal for a closed-loop control strategy.

The second modeling approach constructs three linear models with two poles and two zeros in the frequency domain
using a data subset at a single mean pitch angle δ0 = 0◦, and a range of pitching amplitudes δ1 < 10◦, and reduced
frequencies k < 0.72. This parameter range is within the requirements to counter the generated gusts. Within
this range, the models exhibit good performance similar to that of the nonlinear model. Considering its additional
amenability to closed-loop control, the linear models are selected for the gust-mitigation strategy. We conjecture that
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linear models could be useful for a range of similar applications, bypassing the complexity associated with nonlinear
models in the control loop.
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