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Abstract

We formulate a data-driven, physics-constrained closure method for coarse-scale numerical
simulations of turbulent fluid flows. Our approach involves a closure scheme that is non-local both
in space and time, i.e. the closure terms are parametrized in terms of the spatial neighborhood
of the resolved quantities but also their history. The data-driven scheme is complemented with
a physical constraint expressing the energy conservation property of the nonlinear advection
terms. We show that the adoption of this physical constraint not only increases the accuracy
of the closure scheme but also improves the stability properties of the formulated coarse-scale
model. We demonstrate the presented scheme in fluid flows consisting of an incompressible
two-dimensional turbulent jet. Specifically, we first develop one-dimensional coarse-scale models
describing the spatial profile of the jet. We then proceed to the computation of turbulent
closures appropriate for two-dimensional coarse-scale models. Training data are obtained through
high-fidelity direct numerical simulations (DNS). We also showcase how the developed scheme
captures the coarse-scale features of the concentration fields associated with inertial tracers, such
as bubbles and particles, carried by the flow but not following the flow. We thoroughly examine
the generalizability properties of the trained closure models for different Reynolds numbers, as
well as, radically different jet profiles from the ones used in the training phase. We also examine
the robustness of the derived closures with respect to the grid size. Overall the adoption of the
constraint results in an average improvement of 26% for one-dimensional closures and 29% for
two-dimensional closures, being notably larger for flows that were not used for training.

1 Introduction
Turbulent fluid flows in nature and engineering are characterized by a wide range of spatial and
temporal scales with nonlinear interactions making their reduced order modeling a challenging task.
Over the last decades several ideas have emerged that successfully model turbulent fluid flows, such
as Large Eddy Simulations [25, 31]. However, these methods still require very high resolution in
order to satisfactory model the large scale dynamics, as well as features associated with those. This is
an important computational obstacle especially for applications involving uncertainty quantification,
optimization, and risk analysis where there is a need for a large number of accurate simulations.

The recent machine-learning advances have sparked a new interest in utilizing deep neural networks
to develop reduced order models for turbulent flows. The machine-learning closures abandon the path
of a closed-form expression for the closure terms into utilizing experimental or costly high-fidelity
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computations to train a neural network and predict the nonlinear energy transfers between resolved
and unresolved scales. One of the first such efforts of deep neural networks to turbulent flows
appeared in [24], where nonlinear autoencoders were utilized to reconstruct the near wall field in a
turbulent flow. Since then there has been a plethora of efforts focusing on machine-learning closures
using different data-driven schemes, such as artificial neural networks in fluid flows [11, 37, 22, 48]
and multiphase flows [19, 20], random forest regressions [47], spatially nonlocal schemes such as
convolutional neural networks [51], stochastic data-driven representations using generative adversarial
networks [38], reinforcement learning [26] and with applications ranging from engineering turbulence
to geophysics and beyond (see [7] for a recent review).

One of the great advantages of machine-learning closures is their capability to seamlessly model
non-locality in time. In this work, a non-local but causal modeling of the closure terms, implies that
for the prediction of the closure terms at a particular time, only present and past information is
used. Indeed, there is no a priori reason to expect that the closure terms of a complex system will
behave in a Markovian manner, i.e. depend only on the current reduced-order state of the system. In
the contrary, Takens embedding theorem [39] states that if we observe only a limited number of the
state variables of a system, in principle, we can still obtain the attractor of the full system by using
delay embedding of the observed state variables. Therefore, it is essential to incorporate memory
effects when we model closure terms for turbulent fluid flows. This approach has found success in a
number of physical applications involving bubble motion and multiphase flows [44, 8], as well as the
reduced-order modeling of chaotic dynamical systems [41, 46, 43].

On the other hand, machine-learning schemes allows us to parametrize the closure terms using a
large number of input variables opening the possibility for non-local models in space (see [51] for an
application to the advaction of a passive scalar). Spatially, non-local models have been advocated for
turbulent closures and there is a plethora of related ideas ranging from scale-dependent closures [27],
non-local Reynolds Stress models [15], and fractional-operators closures [32]. Several ideas related to
functional neural networks or operator neural networks have shown great promise on this direction
[9, 10], and have recently been of great interest in the context of turbulent closure models [49, 50, 1].

Beyond local closures deep neural networks have also been used successfully in combination
with the underlying governing equations for reconstructing complex fluid flows and identifying flow
parameters. Specifically, physics-informed neural networks [28] identify the optimal solution (either
the flow itself or parameters associated with it) by minimizing an objective function that contains
the Navier-Stokes equations, as well as scattered data in space and time. Inclusion of the governing
equations significantly improves the behavior of the data-driven scheme, while the representation of
the solution in terms of a neural networks circumvents the need for a grid or spatial discritization
scheme. The method has shown great promise for reconstructing fluid flows given spatio-termporal
measurements [30], as well as recovering macroscopic quantities such as lift or drag for vortex-induced
vibration problems [29]. Previous efforts along this line include the embedding of symmetries such as
Galilean invariance to the neural net predictions for an anisotropic Reynolds stress tensor [18, 17].

Our aim in this work is to formulate energy-preserving spatio-temporally non-local turbulent
closures which are a priori consistent with the conservation properties of the advection term in
Navier-Stokes equations. Specifically, we utilize machine learning schemes which represent the effect
of the small scales at each spatial location, using as input the large scale features of the flow in
a spatial neighborhood of this location. Past values of the large scale features are also employed
as inputs for the turbulent closures in a causal manner. These data-driven schemes are enforced
to be consistent with physical constraints expressing the energy exchanges between resolved and
unresolved scales. These constraints follow from the energy-conserving properties of the nonlinear
advection operator in Navier-Stokes and have been utilized previously in the context of uncertainty
quantification and stochastic closure models [33, 34, 35, 21]. In contrast to previous efforts where

2



the full system equation is used as a constraint, assuming perfect knowledge of the equation form
and/or parameters (e.g. [30]), the formulated constraint in this work expresses a universal property
of the advection terms, i.e. that they do no create or destroy kinetic energy of the flow. To improve
the stability properties of the computed closures we also employ imitation learning [2]. This method
is then tested as a proof of concept in turbulent 2-dimensional multiphase fluid flows, where an
underlying incompressible carrier fluid advects inertial particles.

We first formulate the objective function used in the training phase. This step also includes
the physical constraint and its derivation using Gauss theorem. We subsequently consider a forced
two-dimensional jet flow. We first take into account the invariance of the flow in one direction to
derive one-dimensional machine-learned closures using DNS information. As a next step, we apply
the method on the computation of two-dimensional turbulent closures that do not rely on this special
symmetry. We compare the obtained coarse-scale model with DNS and assess its generalizability
properties for different Reynolds numbers, as well as different jet profiles which have not been used
in the training phase. We thoroughly examine the role of the physical constraint on the stability
properties and accuracy of the coarse-scale equations. In addition, we assess our closure scheme on
capturing the evolution of concentration for inertial tracers, such as bubbles and aerosols.

2 Formulation of energy-preserving closure schemes
Our aim is to derive Eulerian, data-driven closure schemes for turbulent fluid flows, as well as for
inertial tracers advected by those. These closure schemes will not only rely on DNS training data,
but also on the physical constraint that follows from the energy conservation principles that the
nonlinear advection terms satisfy [33, 21]. The effectiveness of the closure schemes is assessed by how
well the coarse-scale equations can reproduce the mean flow characteristics for problems that reach a
statistical equilibrium. Higher order closures may be utilized to improve predictions for higher order
statistics such as the flow spectrum. However, in this work we will focus on closures that aim to
model the mean flow characteristics.

First, we introduce a spatial-averaging operator that will define the coarse scale version of the
quantities of interest and their evolution equations. Specifically, we decompose any field of interest f
as

f = f + f ′, (1)

where f corresponds to the large-scale component of the quantity and f ′ corresponds to the small-scale
component. As a result we always have f ′ = 0.

2.1 Averaged Navier-Stokes equations
We consider the Navier-Stokes equations in dimensionless form:

Du
Dt

= −∇p+
1

Re
∆u + ν∇−4u + F, (2)

∇ · u = 0, (3)

where u is the velocity field of the fluid, p its pressure, Re is the Reynolds number of the flow,
D
Dt is the material derivative operator and F denotes an external forcing term. Parameter ν is
a hypoviscosity coefficient aiming to remove energy from large scales and maintain the flow in a
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turbulent regime. Using the decomposition (1) into the fluid flow eqs. (2) and applying the averaging
operator we obtain:

∂tu = −u · ∇u− u′ · ∇u′ −∇p+
1

Re
∆u + ν∇−4u + F, (4)

∇ · u = 0. (5)

Clearly, the averaged evolution equations do not comprise a closed system anymore due to the
nonlinearity of the advection term. As a result, the term u′ · ∇u′ is not defined by the evolution
equations and needs to be parametrized.

2.2 Averaged advection equation for inertial tracers
One can follow a similar process for the advection equation governing the motion of small inertial
tracers. In particular for small inertia particles their Lagrangian velocity, v, is a small perturbation
of the underlying fluid velocity field [13, 14]:

v = u + ε

(
3R

2
− 1

)
Du
Dt

+O(ε2), ε =
St

R
� 1, R =

2ρf
ρf + 2ρp

, (6)

where ε = St
R � 1 is a parameter representing the importance of inertial effects, St is the particle or

bubble Stokes number, and R =
2%f

%f+2%p
is a density ratio with %p and %f being the density of the

particle or bubble and the flow respectively. Eq. (6), arises from geometric singular perturbation
theory in the limit of small particle inertia [13]. For this asymptotic limit the presented manifold
is always attracting trajectories exponentially fast [14]. However, errors due to the finite order
truncation of the asymptotic expansion will result in inaccuracies for time scales larger than O(ε−2).

By introducing ρ as the concentration of tracers at a particular point, we can write the following
transport equation

∂tρ+∇ · (vρ) = ν2∆4ρ. (7)

The right-hand-side of the transport equation represents a hyperviscosity term. Introducing the
decomposition of eq. (1) in the evolution eqs. (6) and (7), we obtain

v = u + ε

(
3R

2
− 1

)(
∂tu + u · ∇u + u′ · ∇u′

)
, (8)

∂tρ+∇ · (vρ) +∇ · (v′ρ′) = ν2∆4ρ. (9)

Once again, the closure term ∇ · (v′ρ′) appears, which requires parametrization. Note that the
evolution equations of the carrier fluid (eq. (4) and (5) and the transported inertial particles (eq. (8)
and (9)) are both in dimensionless form.

2.3 Data-driven parametrization of the closure terms
While the full Navier-Stokes equations and the associated advection equations are Markovian and
spatially-local, i.e. the evolution of the flow or concentration field in a specific location and time
instant depends only on the current time instant and the current neighborhood, this is not necessarily
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the case for the averaged version of these equations. In particular, for the averaged equations we
typically do not have access to the full-state information, required to fully describe the evolution of
the system. In this case the missing information is the small-scale dynamics.

To overcome this limitation we recall Takens embedding theorem [39], which states that if we
observe only a limited number of the state variables of a system, in principle, we can still obtain the
attractor of the full system by using delay embeddings of the observed state variables. In other words,
under appropriate conditions there is a map between the delays of the observed state variables and
the full state system. Although the theorem itself is several decades old, we can now rely on recently
developed data-driven schemes that can implement such mapping as part of their training process,
enhancing the accuracy of predictions (see e.g. [42, 45]). To this end, we parametrize the closure
terms with non-local in time (but still causal) representations, based on Long-Short-Term Memory
(LSTM) recurrent neural networks (RNN) and Temporal Convolutional Networks (TCN) [16]. The
specific RNN implementation was picked based on its tested ability to incorporate long-term memory
effects of hundreds of time-delays, while simpler RNN models suffer from vanishing or exploding
gradients [3].

Beyond non-locality in time we also choose to employ non-locality in space. That is, given a
point in space x, we use information from points that lie in a small neighborhood of x. Clearly,
incorporating information from the entirety of the domain is not only computationally infeasible but
also redundant and can lead to stability issues. For this reason we use convolutions in space to make
sure that we incorporate information only from a region around each point and not from the entire
domain. The parameterization is based on a stacked LSTM architecture [12], which utilizes LSTM
layers with the detail that all input and recurrent transformations are convolutional.

As a result, the closure terms are modeled in the following form:

u′ · ∇u′(x, t) = Du
[
θ1; ξ[α(x), χ(t)]

]
,

∇ · (v′ρ′)(x, t) = Dρ
[
θ2; ζ[α(x), χ(t)]

]
,

(10)

where ξ and ζ are (averaged) flow features to be selected, α(x) denotes a pre-selected neighborhood of
points around x over which the averaged state is considered, i.e. α(x) = {x,x+x1,x+x2, ...,x+xN},
and χ(t) denotes the history of the averaged state backwards from time t, i.e. χ(t) = {t, t− τ1, ..., t−
τ2, ..., t− τN} . The vectors θ1 and θ2 denote the hyperparameters of the neural networks and their
optimization is performed empirically. The spatial neighborhood, α(x), is selected such that if we
further increase it, the training error does not significantly reduce any more. Note however, that the
number of points in space that have to be considered in α(x) is dependent on the discretization of
the domain, i.e., if we increase the resolution of our model the number of neighborhood points in
α(x) should increase respectively so that the input information used as input in the closure always
corresponds to the same spatial neighborhood. In the application section we study the effect of
spatial discretization. We use a similar approach for the temporal history, χ(t).

2.3.1 Temporal integration

We point out that our numerical goal is inline prediction. This means that the neural nets described
by eq. (10) must be coupled with the evolution eqs. (4)-(9). For a simple forward Euler scheme for
temporal integration, this would imply that by knowing the values of u, ρ at time t we can predict the
closure terms at time t using eq. (10) and use their values to integrate eqs. (4)-(9) by one time-step
δt so that we compute u1, ρ at time t+ δt. However, if we want to use a higher-order integration
scheme like a 4th-order explicit Runge-Kutta, we need to evaluate the closure terms at time t+ δt/2
as well. Since, we do not have access to the required time-history for such a prediction, we instead
integrate in time not by δt but by 2δt and thus get a time-integration error of the for O[(2δt)4].
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2.4 Physical constraints
An important feature of our data-driven closure schemes is the requirement to satisfy certain physical
principles. Specifically, we utilize the energy flux constraint that the advection term does not alter the
total kinetic energy of the model [33, 34]. This constraint, follows from Gauss identity. Specifically,
for any scalar fielsd, ψ, β, and divergence-free field, Φ, we have from Gauss identity:∫

Ω

∂ψ

∂xj
βΦjdx = −

∫
Ω

∂β

∂xj
ψΦjdx +

∫
∂Ω

ψβΦjnjdx, (11)

where nj is the unit vector on the boundary, ∂Ω. Applying the above for ψ = β = uk and Φj = uj ,
we obtain the general three-dimensional constraint:∫

Ω

u · (u · ∇)udx =

∫
∂Ω

E u · n dx, E =
1

2
u · u (12)

where Ω is the domain in which the fluid flow is defined. The above constraint essentially expresses
the fact that the nonlinear advection terms do not change the total kinetic energy of the system. In
what follows we will consider the case of periodic boundary conditions, where the right hand side in
(12) vanishes. However, the same ideas are applicable for arbitrary boundary conditions. We apply
the decomposition (1) and the spatial averaging operator to this equation and obtain:∫

Ω

u · (u · ∇)udx +

∫
Ω

u · (u′ · ∇)u′dx +

∫
Ω

u′ · (u · ∇)u′dx

+

∫
Ω

u′ · (u′ · ∇)udx +

∫
Ω

u′ · (u′ · ∇)u′dx = 0,

(13)

From the last equation we have the physical constraint that the closure term Du must satisfy∫
Ω

u · Du
[
θ1; ξ[α(x), χ(t)]

]
dx = A[u] , −

∫
Ω

u · (u · ∇)udx−
∫

Ω

u′ · (u · ∇)u′dx

−
∫

Ω

u′ · (u′ · ∇)udx−
∫

Ω

u′ · (u′ · ∇)u′dx,
(14)

where A[u] is a function that depends on the training data and the discretization. Such a constraint
can be added to the training process in a straightforward manner through the objective function. We
emphasize that one could formulate a physical constraint based e.g. on the Navier-Stokes equations
directly. However, this assumes exact knowledge of the flow-specifics. This is not the case here since
the above constraint expresses a universal property, i.e. that advection terms do not create or destroy
energy.

2.5 Objective function for training
In terms of the training process itself, we normalize the input and output data as usually suggested
(see e.g. [36]). The loss function for this problem is chosen to be the single-step prediction mean
square error superimposed with the physical constraint. This can be formulated as

L(θ1) =

∫
Ω×T

∣∣∣∣∣
∣∣∣∣∣Du

[
θ1; ξ

]
− (u′ · ∇)u′

∣∣∣∣∣
∣∣∣∣∣
2

dxdt+λ

∫
T

∣∣∣∣∣
∫

Ω

u · Du
[
θ1; ξ

]
dx−A[u]

∣∣∣∣∣dt, (15)

where λ is a hyperparameter which is chosen so the two terms of the loss function are of the same
order of magnitude. More specifically, λ = λ∗ = 101. It also reported that if λ = λ∗/10 is chosen,
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then the results are almost identical to the case where the constraint is not used. Furthermore, if
λ = 10λ∗ then the generated closure is unstable both for unimodal and bimodal jets. On the other
hand, for the advection equation we have the objective function:

L(θ2) =

∫
Ω×T

∣∣∣∣∣∣Dρ [θ2; ζ[α(x), χ(t)]
]
−∇ ·

(
v′ρ′

)∣∣∣∣∣∣2dxdt. (16)

Note that a similar constraint with the one in eq. (15) can be formulated for the mass conservation
property of the tracers. However, this approach is not pursued here. An important question is which
flow features are important as input for each of the two models. We examine this issue in detail in
the following sections.

2.6 Imitation learning
While the single-step prediction-error is used for training, the aim this work aims to use these
models for multi-step prediction. Any such predictor introduces errors and these compounding errors
change the input distribution for future prediction steps, breaking the train-test i.i.d assumption
that is common in supervised learning. Under these circumstances, the error can be shown to grow
exponentially [40]. This effect was observed in the current setup as well, with the averaged equations
becoming unstable. To alleviate this problem a version of the imitation learning presented in [40], the
Data as Demonstrator (DAD) method, is used. It is also noted that since in the current setup, the
evolution equation of the carrier fluid is independent of the evolution of the transported particles, the
process can be showcased for only the carrier fluid closure. This process is shown in an algorithmic
manner in Algorithm 1.

Expanding on what Algorithm 1 presents, the algorithm first computes the reference flow features
µRef and reference closure terms values DRef

u from DNS simulations. Then, the neural network for the
carrier fluid closure-term DRef

u is trained. For the next step, define a fixed number of time-steps MT

and an error tolerance δ1. The goal of this stage is, for all time-instances that are included in the
training set as the fluid flow is evolved for MT time-steps forward in time, the L2-error at the final
time-step is smaller than δ1. This condition has to be satisfied for all flows that are included in the
training set. If this condition is satisfied, the closure is assumed to be stable and thus the training
process is rendered complete. If not, for each initial training point, mark as Ms the time-step forward
in time at which the condition was first violated. The imitation algorithm requires that an artificial
data point (µ∗|t=t+Ms

,D∗u(t+Ms)) is created, which corresponds to the value of the closure term
that is required, so that the flow features return to their appropriate reference value µDNS(t+Ms + 1)
at the Ms + 1 time-step forward. These new data-points are not physical solutions of some DNS
solver. Their are artificially introducing stability to the closure scheme so as to allow the model to
return close to the training data when it deviates. This extra amount of data are introduced to the
previous set of training data. and steps 1 and 2 of Algorithm 1 are repeated.

This process is repeated until the closure is stable and displays good predictive accuracy in all
training cases. A more rigorous display of this condition is seen in Algorithm 1. For the present
setup, this was achieved after 20 iterations. The same process is followed for the closure scheme of
the transported particles, Dρ = ∇ · (v′ρ′). Note that noise, in the form of some artificial colored or
white noise, is not added to the training data. However, the use of the DAD algorithm increases the
training size by generated new training data that have noise, as a result of the error in the predictions
of the neural network as it is propagated as the flow evolves.
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Algorithm 1: Training of closure scheme
Input: Reference closure terms { DDNS

i (t0), ...,DDNS
i (tp)} i = u, ρ, computed from DNS

Data: NN architecture, averaging-operator, discretization, δt and input flow features µ
Result: Predicted closure terms { DML

i (t0), ...,DML
i (tp)} i = u, ρ.

1 Set µRef = µDNS and DRef
u = DDNS

u ;
2 Train DML

u using DRef
u ;

3 for i = 1, ..., 20 do
4 for t = 0, δt, ..., T δt do
5 s→ t;

6 while
∣∣∣∣∣∣DML

u (s)− DDNS
u (s)

∣∣∣∣∣∣ > δ1 do
7 Predict uML(s+ δt);
8 Predict DML

u (s+ δt);
9 s→ s+ δt;

10 end
11 Compute D∗u(s) so that uML(s+ δt) = uDNS(s+ δt);
12 Set (µRef,DRef

u ) = (µDNS,DML
u ) ∪ (µ∗|s,D∗u(s));

13 end
14 Train DML

u using DRef
u ;

15 end

3 Fluid flow setup
For the validation and assessment of the formulated closures we consider a two-dimensional turbulent
jet where bubbles are also advected as passive inertial tracers. Specifically, the velocity field governing
the bubbles is different from that of the underlying fluid flow (due to inertia effects), but the bubbles
do not affect in any way the underlying fluid flow.

We setup a turbulent jet that fluctuates around a steady-state jet solution, ujet. In its dimen-
sionless form this system of equations can be written as

Du
Dt

= −∇p+
1

Re
∆u + ν∇−4(u− ujet) + F, (17)

∇ · u = 0, (18)

where u = (u1, u2) and Re = O(103). The domain is assumed rectangular, doubly periodic, i.e.
x = (x, y) ∈ S2 = [0, 2π]× [0, 2π]. For initial conditions, since we desire anisotropy in our flow, we
use Gaussian jet structures of the general form

u1,jet =
∑
i

Ai exp
[
− ci(y − βi)2

]
, u2,jet = 0, (19)

where Ai, ci, βi are parameters. The role of the external forcing term, F, is twofold: i) it contains a
large-scale component to maintain the jet structure, by balancing the dissipation term, and ii) it has
a small-scale and small-amplitude component to perturb the flow and trigger instabilities so that
the we enter a turbulent regime. To achieve turbulence we choose a forcing term that acts only on
a specific waveband with 6 ≤ ‖k‖ ≤ 7. Exciting a flow with a forcing localized only in a narrow
wavenumber interval is common practice in the turbulence literature [6, 4, 23, 5].
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Therefore, we adopt a form F = − 1
R∆uuujet + f , with f being

f(x, t) =
∑
i

Ai(t) cos(k · x + ωi), (20)

where 6 ≤ |k| ≤ 7, Ai(t) are random vectors that follow a Gaussian white noise distribution (each one
independent from the other) and ωi are phases sampled from a uniform distribution over [0, 2π]. The
standard deviation for these amplitudes is set to 0.03. This ensures that the energy and enstrophy
inputs are localized in Fourier space and only a limited range of scales around the forcing is affected
by the details of the forcing statistics. Furthermore, such a forcing ensures that the system reaches a
jet-like statistical steady state after a transient phase. Due to the small-scale forcing being essentially
homogeneous in space we can deduce that the statistical steady state profile is only dependent on y
(since our large-scale forcing and initial conditions depend only on y). We solve this flow using a
spectral method and 2562 modes.

For the bubbles we use the perturbed advection field (eq. (6)) and the corresponding advection
equation (7). For the simulations presented we use the inertial parameters, ε = 0.05 and R = 2,
which correspond to small bubbles. A typical snapshot of the described flow can be seen in Figure
1. During training, unimodal jets of different Reynolds number are used with parameter values
A1 = 1, c1 = 2, β1 = π. Furthermore, for testing purposes, bimodal jets are considered with the
Reynolds number varying and parameters A1 = 1, β1 = 0.8π, c1 = 3 and A2 = 1, β2 = 1.2π, c2 = 3.

Figure 1: Snapshot of vorticity (left) and bubble density field (right) for a bimodal turbulent jet for
Re = 1000, and bubble parameters ε = 0.05 and R = 2.

4 Training of the closures
We study the effectiveness of the proposed closure scheme in two different setups. In the first setup,
we take advantage of the translational invariance of the flow in the x−direction. This allows us to
obtain a closed averaged equation for the y−profile of the jet. In the second case we do not rely
on this symmetry and obtain closures directly for the two-dimensional flow. We will compare the
adopted architectures for both the case of utilizing the energy constraint presented above and not.
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4.1 One-dimensional closures for the jet profile
We take advantage of the translational invariance of the flow in the x−direction and select the
spatial-averaging operator to be integration along the full x-direction and local spatial averaging
along the y-direction:

f̄(y) =
1

2π

∫∫
S2

wl(y
′ − y)f(x, y′)dxdy′ (21)

where, wl(y′ − y) = 1
2l [H(y′ − y − l)−H(y′ − y + l)] is the piece-wise constant averaging window of

length 2l; here l = 2π
20 . Applying the averaging operator to the governing equations we obtain the

equation for the y−profile of the jet. Note that based on our averaging operator for this case, we
have ū2 = 0 and ū1 is only a function of y. To this end, we have:

∂tu1 = −Du1
+

1

Re
∂2
yu1 + ν∇−4(u1 − u1,jet) + F 1, (22)

∂tρ+ ∂y(v2 ρ) + Dρ = ν2∂
4
yρ. (23)

Therefore, the objective function used for training of the flow closure takes the form:

L(θ1) =

∫
Ω×T

∣∣∣∣∣
∣∣∣∣∣Du1

[
θ1; ξ

]
− (u′ · ∇)u′

∣∣∣∣∣
∣∣∣∣∣
2

dxdt+λ

∫
T

∣∣∣∣∣
∫

Ω

u1 · Du1

[
θ1; ξ

]
dx−A[u]

∣∣∣∣∣dt, (24)

where A[u] = −
∫

Ω
u′ · (u′ · ∇)u′dx. On the other hand, the objective function for the density field

closure takes the form:

L(θ2) =

∫
Ω×T

∣∣∣∣∣∣Dρ [θ2; ζ[α(x), χ(t)]
]
−∇ ·

(
v′ρ′

)∣∣∣∣∣∣2dxdt. (25)

The neighborhood α(y) is selected to have five nodes in total:

α(y) = {y +mδy}, δy = 2π/80, m = −2,−1, ..., 2,

while the temporal horizon in the past is selected as

χ(t) = {t−mδτ}, δτ = 10−2, m = 1, 2, ..., 12.

Both the spatial extent of the neighborhood and the memory are chosen as the threshold values
above which any further increase does not result significant difference in the training and validation
errors.

4.1.1 Neural network architecture

We assess two different architectures for our closure scheme. In the first case, we represent the flow
closure with 3 convolutional-LSTM layers and the density closure with 4 convolutional-LSTM layers
(16 time-delays). Further increase of the number of layers does not offer any significant improvement
in the training and validation errors. The adopted architectures are presented in Figure 2 (a-b).
For the second machine learning architecture we use 4-layer temporal convolutions to model the
memory terms of our closure for both the flow and the density fields. The architecture in this case
is depicted in Figure 3(a-b). An important difference between the two architectures that is worth
emphasizing is associated with their computational cost. Specifically, in the LSTM architecture we
have a memory term that is updated at each time-step and to this end, LSTM needs to only operate
on the flow features at each time-step. On the other hand, TCN layers operate on the entire included
time-history making them more computationally expensive.
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4.1.2 Feature selection

The selection of the flow features that are used as inputs for the data-driven closures is done
numerically by testing different combinations of basic flow features. We eventually choose the
combination that minimizes the training and the validation error. It is important to emphasize
that if we rely only on the training error we run the risk of over-fitting. We carry out this process
individually for each of the closure terms for the Navier-Stokes equation and the transport equation.

For the closure term Du we select as possible flow features the quantities: u1, ∂tu1, ∂y(u′1u
′
2).

All input flow features are separately normalized to have variance equal to 1. Table 1 summarizes
performance for different combinations over 100 periods for the TCN and LSTM architectures with
the physical constraint. It is observed that while {∂tu1, ∂y(u′1u

′
2)} drastically decreases training error,

the inclusion of the mean flow profile u1 strongly improves validation error. Since the best validation
error is achieved in this case, all considered flow features are employed.

For the implementation of the presented closure scheme the input features are not imposed to
be Galilean invariant. Requiring the input features to be Galilean invariant can be justified when
the closure scheme is intended to model drastically different flows (different boundary conditions,
flow geometry or significantly different Reynolds number). Machine learning universal closures for
turbulence is beyond the scope of this effort. This is because this task is associated with extreme
obstacles, such as selection of training data which are representative of essentially every possible
dynamical regime and geometry, and the assumption that there is a machine learning architecture
that can generalize well over such a vast range of conditions. Instead, the goal here is to develop
closures that can generalize well over a family of flows with common topology and dynamics. To this
end, the need for the features to be Galilean is not necessary, since the frame of reference for all the
produced jet flows is the same and the magnitude of the examined jets is very similar.

Table 1: Feature selection for the one-dimensional closure of the Navier-Stokes.

ξ feature selection
cTCN cLSTM

Features Dim Train-MSE Val-MSE Train-MSE Val-MSE
u1 1 0.094 1.712 0.102 1.501
∂tu1 1 0.037 0.535 0.041 0.501

∂y(u′1u
′
2) 1 0.028 0.144 0.033 0.139

u1, ∂tu1 2 0.042 0.418 0.056 0.511
u1, ∂y(u′1u

′
2) 2 0.023 0.159 0.028 0.157

∂tu1, ∂y(u′1u
′
2) 2 0.021 0.092 0.026 0.085

u1, ∂tu1, ∂y(u′1u
′
2) 3 0.021 0.029 0.025 0.032

For the closure of the transport equation we carry out the same process in Table 2, where
we present the training and validation error over 100 periods. We observe that the single most
important feature is ρ. Based on the mean-square error (both training and validation) we choose the
combination of u, ρ, ∂tu, ∂y(ρ′v′). In Figure 2 we present the value of both validation and training
error with respect to the number of epochs. These are quite similar, hinting towards generalizability
of the predictions. It is worth mentioning that when spatial derivatives are added to the selected
feature sets shown previously, training and validation error didn’t improve. This could be a result of
non-local information of the (averaged) fluid flow profile and density profile used as input, allowing
the convolutions to combine these values in a finite-difference sense to derive spatial derivative
information that is needed. However, in the case of trying to test this model to drastically different
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flow set-ups, the Galilean invariant partial spatial derivatives are probably appropriate to replace the
non-Galilean averaged features, i.e. the fluid flow profile and density profile.

Table 2: Feature selection for closure of bubble transport equation.

ζ feature selection
cTCN cLSTM

Features Dim Train-MSE Val-MSE Train-MSE Val-MSE
ρ 1 0.109 0.150 0.123 0.171
vvv 2 0.603 0.673 0.592 0.625
vvv, ρ 3 0.081 0.090 0.094 0.101

vvv, ρ, ∂tvvv, ∂tρ 6 0.058 0.060 0.061 0.064
vvv, ρ, ∂tvvv, ∂y(ρ′v′2) 6 0.028 0.039 0.042 0.088
vvv, ρ, ∂tρ, ∂y(ρ′v′2) 5 0.027 0.036 0.035 0.049
vvv, ρ.∂tvvv, ∂tρ, ∂y(ρ′v′2) 7 0.025 0.031 0.033 0.044
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(a) (b)

(c) (d)

Figure 2: (a) Architecture of the LSTM neural network for parametrizing the term Dt = ∂y(u′1u
′
2). (b)

Architecture of the LSTM neural network for parametrizing the term Dt = ∂y(v′2ρ
′). (c) Mean square

training-error (solid line) and validation error (dashed line) for Du. (d) Mean square training-error
(solid line) and validation error (dashed line) for Dρ.
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(a) (b)

(c) (d)

Figure 3: (a) Architecture of the TCN neural network for parametrizing the term ∂y(u′1u
′
2) and

∂y(v′2ρ
′). (b) Inner architecture of a residual block. (d) Mean square training-error (solid line) and

validation error (dashed line) for Du. (e) Mean square training-error (solid line) and validation error
(dashed line) for Dρ.

4.2 Two-dimensional closures
In this case our averaging operator was chosen to be local in both dimensions, x and y:

f̄(x, y) =
1

2π

∫∫
S2

wlx(y′ − y)wly (y′ − y)f(x, y′)dxdy′, (26)

where lx = ly = 2π
12 are the averaging windows in the x and y directions respectively. As objective

functions we used equations (15) and (16). The spatial and temporal neighborhood used in the

14



closures are chosen as:

α(y) = {y +m1δx +m2δy}, δx = 2π/48, δy = 2π/48 and m1,m2 = −2,−1, ..., 2,

χ(t) = {t−mδτ}, δτ = 1/100, m = 1, 2, ..., 12.

Similarly with the one-dimensional closures, these numbers are based on the fact that further increase
did not result significant difference in the training and validation errors. We employ the same neural
network architectures that we used in the previous section.

4.2.1 Feature selection

For the closure term Du (corresponding to the fluid flow) we try as possible flow features the quantities
uuu, ∂tuuu,Du. Results are shown for the case where the constraint is adopted (cTCN and cLSTM) in
Table 3 in terms of training and validation errors. In this case, we observe that the single most
important feature is the history of the Reynolds stresses. Furthermore, we see that the optimal
combination consists of all the examined features.

For the closure of the transport equation we carry out the same process in Table 4. We observe
that the single most important features seems to be ρ, similarly with the one-dimensional case. For
the results that follow we choose the combination v, ρ, ∂tv, ∂tρ,Dρ, which results in the minimum
validation and testing errors.

Table 3: Feature selection for closure of Navier-Stokes.

ξ feature selection
cTCN cLSTM

Features Dim Train-MSE Val-MSE Train-MSE Val-MSE
uuu = (u1, u2) 2 0.235 0.521 0.258 0.572

∂tuuu = (∂tu1, ∂tu2) 2 0.098 0.480 0.112 0.388
Du 2 0.081 0.094 0.092 0.114
uuu, ∂tuuu 4 0.069 0.485 0.100 0.522
uuu,Du 4 0.048 0.082 0.067 0.094
∂tuuu,Du 4 0.027 0.048 0.034 0.063
uuu, ∂tuuu,Du 6 0.020 0.039 0.027 0.055

Table 4: Feature selection for closure of bubble transport equation.

ζ feature selection
cTCN cLSTM

Features Dim Train-MSE Val-MSE Train-MSE Val-MSE
ρ 1 0.199 0.398 0.228 0.451

vvv = (v1, v2) 2 0.320 0.591 0.318 0.515
vvv, ρ 3 0.141 0.386 0.162 0.404

vvv, ρ, ∂tvvv 5 0.085 0.176 0.087 0.192
vvv, ρ, ∂tρ,Dρ 5 0.051 0.091 0.061 0.125
vvv, ∂tρ, ∂tvvv,Dρ 6 0.030 0.049 0.038 0.068
vvv, ρ, ∂tρ, ∂tvvv,Dρ 7 0.016 0.032 0.031 0.047
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Figure 4: Normalized error (28) for one-dimensional closure models using TCN, LSTM and and their
constrained versions, cTCN and cLSTM for unimodal jets. Training data includes unimodal jets
with Re ∈ {650, 750, 850}.

5 Validation and generalizability for one-dimensional closures
To showcase the generalizability properties of the obtained closures we train on unimodal jets and we
test on bimodal ones. We mention again that the averaged model is one-dimensional and we use 80
points in space to simulate it. We compare the results of the averaged model with the predictions of
the two-dimensional reference solutions that we computed using a spectral method and 2562 modes.
Each training case contains data in the time-interval T = [200, 600].

5.1 Validation on unimodal jets
As seen in Section 3, the unperturbed jet profile is chosen as,

u1,jet = exp
[
− 2(y − π)2

]
, u2,jet = 0. (27)

We train four different models on unimodal jets of Re ∈ {650, 750, 850}. We use LSTM and TCN
architectures with and without enforcing the physical constraint of eq. (24). In Figure 4, we present
the time- and y− averaged mean-square error between the x−averaged profile of the DNS, ū∗ and
the coarse scale model, ū:

||ū∗ − ū||22 =
1

2πT

∫ 2π

0

∫ t0+T

t0

(ū∗(y, t)− ū(y, t))2dydt. (28)

We observe that the TCN models clearly outperform the LSTM based closures. Moreover, training
using the objective function that includes the physical constraint (eq. (24)) for the advective terms
(cTCN and cLSTM) improves significantly the testing results for the two architectures by 23% and
25%, respectively (Table 5). This improvement comes at no additional cost in terms of data, but
only using the physical constraint associated with the advection terms, which does not depend on
the knowledge of any physical quantity of the flow or any other system-specific information.

In Figure 5 we present additional results for the cTCN model (best performer). We showcase
results both for the time-averaged profile for the fluid velocity and for the bubble distribution for
Re = 1000. Comparisons are made between the time-averaged results that the one-dimensional
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(a) (b)

Figure 5: Time-averaged profile of u1 (left) and ρ̄ (right) for the one-dimensional cTCN closure model
(blue line) and the DNS (black line). The shape of the jet that is imposed by the large-scale forcing
is depicted with dashed line. The simulation corresponds to Re = 1000 while training included
Re ∈ {650, 750, 850}.

closure scheme produces and the time- and x− averaged results of the two-dimensional reference
solution. Specifically, the time-averaged jet-profile is computed as

〈u1〉(y) =
1

T

∫ t0+T

t0

u1(y, t)dt, (29)

where ū1 is the x−averaged reference solution and the temporal averaging parameters are chosen as
t0 = 200 and T = 400; note that we omit the first transient part of the simulation.

The results appear to be in very good agreement showcasing that our closure scheme is able to
predict the statistical steady state of the flow. We can also observe the Rayleigh instability that the
initial jet profile (dashed line) undergoes due to the excitation by the external forcing. We note that
the slight asymmetry that the velocity profile exhibits is due to a minor inhomogeneity of the forcing
term along the y direction. We apply the same operation described above to compute 〈ρ〉 from both
the reference solution and the data-based closure scheme (Figure 5(b)). Again, we obtain very good
agreement between the machine learning approach and the reference solution, which has a non-trivial
form, as the bubbles seem to cluster around the core of the jet and be repelled from the adjacent
areas of the jet core.

5.2 Testing generalizability on bimodal jets
Next we test the generalizability of the closure schemes presented in the previous section on bimodal
jets. Once again we state that we train on unimodal jets (as described previously) while we test
our scheme on bimodal jets with the unperturbed jet-structure of the fluid flow chosen (as seen in
Section 3) as

u1 = exp[−3(y − 0.8π)2] + exp[−3(y − 1.2π)2], Re ∈ [500, 1000]. (30)

In Figure 6 we present the normalized mean-square error (28) between the reference solution and the
one predicted by the closure model. As we can see, employing the physical constraint during training
significantly improves the results. Specifically, we note that the errors of the cTCN and cLSTM
remain to the same levels observed in the unimodal jet case (i.e. we have good generalizability
properties in different flows), while the unconstrained version has significantly worse performance
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Figure 6: Normalized error (28) for one-dimensional closure models error for one-dimensional closures
applied on bimodal jets. Training data includes unimodal jets with Re = {650, 750, 850}.

compared with the unimodal jet case. In addition, we observe much better behavior of the constrained
closures when we move to Reynolds numbers higher than the ones used for training. In fact, for
sufficiently large Reynolds the schemes based on the unconstrained closures become unstable.

Results regarding the time-averaged jet profile of u1 and ρ are depicted in Figure 7 for the cTCN
architecture, where we can observe the excellent agreement of the predicted profile with DNS. We
also apply the closure scheme on the transport equation (7) to compute the distribution of bubbles.
We present the comparison of the mean distribution of bubbles between the cTCN closure model and
DNS in Figure 7(b). We note that the error for this case is slightly more pronounced compared with
the one observed for the mean flow velocity in Figure 7(a). This can be attributed to two factors:
i) the predictions of the transport model rely on the predictions of the coarse-scale model for the
velocity field (hence error accumulates); and ii) the closure model for the bubbles relies only on data
since the energy-preserving constraint is not relevant.

(a) (b)

Figure 7: Time-averaged profile of u1 and ρ̄ for the one-dimensional cTCN closure model (blue line)
and the DNS (black line). The simulation corresponds to Re = 1000 and a bi-model background
jet, while training data for the closures correspond to unimodal jets with Re ∈ {650, 750, 850}. The
shape of the jet that is imposed by the large-scale forcing is depicted with dashed line.

A summary of the error improvement in the one-dimensional predictions due to the adoption
of the physical constraint is presented in Table 5. We present the improvement of the mean-square
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error for the mean flow, averaged over different Reynolds numbers. For all cases this percentage
ranges between 23% and 29% with the improvement being more pronounced for the bimodal setups,
i.e. the setup that was not used for training.

Table 5: Error decrease (Reynolds-averaged) due to the physical constraint for one-dimensional
closure schemes.

Architecture Jet-type Error decrease
TCN-1D Unimodal 23%
LSTM-1D Unimodal 25%
TCN-1D Bimodal 29%
LSTM-1D Bimodal 27%

6 Validation and generalizability for two-dimensional closures
Here we aim to showcase the application of our method on two-dimensional coarse-scale closures.
As previously, we consider two cases: (i) we train on unimodal jets for flows with Reynolds number
Re ∈ {650, 750, 850} and test on unimodal jets in the range Re ∈ [500, 1000] and not included in the
training set; (ii) we once again train on unimodal jets (same Reynolds as before) and test on bimodal
jets in the same Reynolds range as in case (i). For the coarse-scale model we employ a resolution of
48× 48, complemented with the ML-closure terms. We compare the energy spectra at the statistical
steady state of the flows between the coarse-scale predictions and the two-dimensional reference
solutions, i.e. for t ∈ [200, 600].

6.1 Testing on a unimodal jet
In Figure 8 we present the space-time-averaged mean-square error between the x− y locally averaged
DNS flow field (using eq. (26)), ū∗, and the coarse scale model, ū:

||ū∗ − ū||22 =
1

(2π)2T

∫ 2π

0

∫ 2π

0

∫ t0+T

t0

(ū∗(x, y, t)− ū(x, y, t))2dxdydt. (31)

The results are in full consistency with the one-dimensional closures, i.e. cTCN has the best
performance. We also present a detailed comparison for Re = 800 between the coarse-model and
the DNS simulation in terms of the energy spectrum and mean profile the flow (Figure 9). The
energy spectrum is computed by obtaining the spatial Fourier transform at each time instant and
then considering the variance of each Fourier coefficient over time. We plot the energy spectrum in
terms of the absolute wavenumber values. For both the flow field and bubble field the coarse-model
is able to accurately capture the mean profiles, as well as the large scale features of the spectrum.
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Figure 8: Normalized mean-square error (31) of each two-dimensional closure model using TCN,
LSTM and their constrained versions for unimodal jets. Training includes data for unimodal jets
with Re ∈ {650, 750, 850}.

Figure 9: Comparison of energy spectra and mean profiles for the flow velocity field (a, c) and
the bubble velocity field (b, d) for unimodal jets. Blue lines correspond to DNS simulations on a
256× 256 grid and the black circles correspond to the coarse model using two-dimensional closures
(cTCN) on a 48× 48 grid for Re = 800.
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6.2 Testing generalizability on bimodal-jets
We proceed to test the generalizability of the two-dimensional closure schemes on bimodal jets. The
setup is identical with the one adopted for one-dimensional closures. In Figure 10 we compare the
noormalized mean-square error between the locally averaged DNS solution and the one obtained
form the coarse model. Consistently with the previous results the cTCN has the best performance. It
is interesting to note that the performance is even better in the Reynolds regime outside the training
data, i.e. for Re > 850.

The energy spectrum of the fluid velocity and the bubble velocity field, as well as the corresponding
mean profiles are compared with DNS for Re = 800 in Figure 11. In this case, we note that while there
is good agreement between the mean profiles, there is some discrepancy between the approximate
and exact spectra. To understand better the source of this discrepancy we plot the energy spectrum
of the flow in the kx, ky space (Figure 12). As it can be seen the coarse model overestimates the
spread of the energy of the fluctuations only in the x−direction, which is consistent with the fact
that the mean y−profile of the flow is accurately modeled. This is not surprising given that the
developed closures in this paper are designed to capture well the mean flow characteristics and not
necessarily the energy spectrum. A closure approach based on second-order statistical equations (see
e.g. [34]) is beyond the scope of this work and will be considered elsewhere.

Figure 10: Normalized mean-square error (31) for two-dimensional coarse models applied on bimodal
jet flows. Training used data from unimodal flows with Re = {650, 750, 850}.

21



Figure 11: Comparison of energy spectra and mean profiles for the fluid velocity field (a, c) and
the bubble velocity field (b, d) for the case of a bimodal jet with Re = 800. Blue lines correspond
to DNS simulations on a 256 × 256 grid and the black circles correspond to a coarse-model with
two-dimensional cTCN closures on a 48× 48 grid.
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Figure 12: Energy spectrum of the fluid flow for the bimodal jet for Re = 800. Comparison between
the DNS simulation (left) and the coarse-model based on 2D cTCN closures (right).

The overall improvement in the two-dimensional predictions due to the adoption of the physical
constraint is summarized in Table 6, where we show the improvement of the mean-square error for
the mean flow, averaged over different Reynolds numbers. We note that for the TCN architecture the
improvement is more pronounced, close to 30%, and it is also robust for the case of a bimodal jet. A
quick comparison with the error-decrease values in Table 5 shows the L2-error improvement is slightly
better in the 1D (zonally-averaged) coarse-scale model than in the 2D coarse-scale model. This result
could be attributed to the fact that a 1D model will be less turbulent compared to a 2D coarse-scale
simulation, due to zonally-averaging the flow and thus essentially neglecting perturbations along the
x-axis, making the simulations more stable.

Table 6: Error decrease (Reynolds-averaged) due to the physical constraint for two-dimensional
closure schemes.

Architecture Jet-type Error decrease
TCN-2D Unimodal 30%
LSTM-2D Unimodal 20%
TCN-2D Bimodal 33%
LSTM-2D Bimodal 31%

6.3 Dependence on the coarse-model grid-size
Finally, we showcase a numerical investigation for the relationship between the chosen grid-size
for the coarse-scale simulations and the mean-square error of the velocity of the fluid flow. For all
the results presented below, training data was chosen as previously (unimodal jets) and results are
presented for bimodal jets. In Figure 13(a) we vary the size of a Nx × Ny grid with Nx = Ny ∈
{16, 24, 32, 40, 48, 64, 80, 96}. We notice that there is significant improvement in our predictions as
we refine the grid up to a grid-size of 64× 64 where the error saturates.

Since the variation of the mean profile of the flow is only along the y-direction, having a coarser
resolution along the less significant x-direction should not hinder the predictions. To validate this
property we maintain a constant discretization in the x− direction and vary the grid-size only in
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the y− direction. Results are demonstrated in Figure 13(b), showing clearly that by having a fine
resolution only in the y−direction is sufficient to achieve comparable performance with the fine
resolution case in both directions: Nx = Ny = 96.

(a) (b)

Figure 13: Root-mean-square error for different grid-sizes using two-dimensional cTCN closures on
bimodal jet.

6.4 Limitations
While the proposed method adequately predicts flows that are distinct from those of the training
set, it is important to state that the computed closure is not expected to be as effective in every
fluid flow. This is due to the fact depending on the specifics of a fluid flow, such as dimensionality,
boundary conditions, domain geometry, excitation terms, presence of additional dynamics such as
Coriolis terms, the nonlinear interactions between scales is different. Therefore, aiming to machine
learn universal closures that will work for every case is beyond the scope of this work. Instead,
our approach is to employ data from flows that have some common features with the flow we are
interested to model, and combine this data with a universal constraint, the energy conservation
by the nonlinear terms, in order to increase the accuracy of the computed closures. The optimal
choice of input features is also expected to vary depending on the specifics of the flow and therefore
a numerical examination of different combinations should be performed in order to achieve the most
effective closure.

7 Conclusions
We have demonstrated the application of the energy conservation property of the advection terms
on machine learning non-local closures for turbulent fluxes. We have adopted two neural network
architectures, based on LSTM and TCN, to further include memory effects in our analysis. Clearly,
the physical constraint is not restricted to these two frameworks and can be employed in other machine
learning architectures, as well as other fluid systems (e.g. environmental flows). We demonstrated the
computed closures in two-dimensional jets in an unstable regime and showed that closures obtained
from unimodal jets can be used for different jet geometries. The adoption of the physical constraint
significantly and consistently improved the accuracy of the mean-flow predictions obtained from the
corresponding coarse-scale models independently of the adopted architecture or the flow setup. This
improvement was in average 26% for one-dimensional closures and 29% for two-dimensional closures,
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being notably larger for flows that were not used for training. Moreover, the constraint improved the
numerical stability of the coarse-scale models especially in Reynolds numbers, which were higher than
the ones included in the training data sets. While the adopted examples are relatively simple, yet
unstable, fluid flows, the presented energy constraints do not depend on the complexity of the flow.
They are applicable for more complicated setups including boundary flows and transition phenomena,
directions that we plan to pursue in the future.
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A Comparison of a local closure-scheme approach with non-
local closure schemes.

To showcase the numerical benefits of using spatio-temporally nonlocal closure, it is first stated that
when using a local closure in tandem with the constraint, the L2 prediction error for a unimodal jet
of Re = 800 is 0.49. Furthermore, the computational cost to evolve the system by one time-step is
3 ·10−3 [sec], ran on a single-core of an Intel i9 2.3 GHz processor. In Table 7, prediction improvement
and computational cost increase compared to the local closure scheme are presented for closures that
are only nonlocal in time, only nonlocal in space and finally spatio-temporally nonlocal.

28



Table 7: Error improvement and increase of computational cost with respect to a local closure scheme
for a unimodal jet of Re = 800.

Architecture Error
decrease

Inline cost
increase

Training cost
increase

Spatially nonlocal closure 11% 285% 665%
Temporally nonlocal 1-layer LSTM 30% 120% 365%
Temporally nonlocal 3-layer LSTM 35% 250% 410%
Temporally nonlocal 2-layer TCN 21% 380% 620%
Temporally nonlocal 4-layer TCN 43% 610% 1100%
Spatio-temporally nonlocal 1-layer

LSTM
51% 700% 1830%

Spatio-temporally nonlocal 3-layer
LSTM

56% 1100% 3180%

Spatio-temporally nonlocal 2-layer
TCN

50% 950% 3410%

Spatio-temporally nonlocal 4-layer
TCN

80% 2820% 6840%
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