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Shear thickening of suspensions is studied by discrete-particle simulation, accounting for

hydrodynamic, repulsive, and contact forces. The contact forces, including friction, are

activated when the imposed shear stress σ is able to overcome the repulsive force. The

simulation method captures strong continuous and discontinuous shear thickening (CST

and DST) in the range of solid volume fraction 0.54 ≤ φ ≤ 0.56 studied here. This work

presents characteristics of the contact force network developed in the suspension under

shear. The number of frictional contacts per particle Z is shown to have a one-to-one rela-

tionship with the suspension stress, and the conditions for simple percolation of frictional

contacts are found to deviate strongly from those of a random network model. The stress

is shown to have important correlations with topological invariant metrics of the contact

network known as k-cores; the k-cores are maximal subgraphs (‘clusters’) in which all

member particles have k or more frictional contacts to other members of the same sub-

graph. Only k ≤ 3 is found in this work at solid volume fractions φ ≤ 0.56. Distinct

relationships between the suspension rheology and the k-cores are found. One is that the

stress susceptibility, defined as ∂σ/∂ γ̇ where γ̇ is the shear rate, is found to peak at the

condition of onset of the 3-core, regardless of whether the system exhibits CST or DST.

A second is that the stress per particle within cores of different k increases sharply with

increase of k at the onset of DST; in CST, the difference is mild.
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I. INTRODUCTION

Complex fluids exhibit flow properties, such as apparent viscosity, that vary with the applied

forcing. This includes the fluid-solid transition seen in toothpaste or wet cement mortar, which

flow only above a threshold, or yield, stress. The need for a finite yield stress to impose flow arises

from the organization of suspended particles, and more precisely to the network of forces between

the particles. While flow is associated with destroying the force network resulting in a yield stress,

flow can also bring particles closer together, thus generating a force network where one did not

exist. This is seen in shear thickening and jamming of suspensions, as hydrodynamic forces in-

crease with shear rate and drive particles into a different state of interaction with more constrained

relative motions, which has been generically termed contact.1 The network of contact forces is

closely correlated with shear thickening,2 a behavior that has been related to shear jamming.3–5 In

this work, we consider the relationship between the network of forces between particles and the

rheological properties of a shear-thickening suspension using k-core analysis.6

The network description is at an intermediate scale, between a macroscopic continuum ap-

proach and a fully-detailed microscopic particle interaction description. For granular systems,

network science approaches have yielded insights into mesoscale phenomena, with particular

success in providing quantitative support toward understanding of experimentally observed force

chains.7–9 The mathematical object that describes complex networks is a graph, and we use the

words graph and network interchangeably. As documented in a comprehensive review by Pa-

padopoulos et al.,10 granular systems may be represented using different types of graphs, since

the choice of the graph is not unique and is generally made based on convenience for describing

the physics and geometry of the problem under investigation. The most prevalent representations

are adjacency graphs,11 which are descriptions of the contact state of the grains, and weighted

graphs,12 in which the magnitude of tangential and/or normal components of the force between

contacting grains is accounted for, representing what are known as edge weights. The network

can be characterized by certain metrics, including but not limited to the average network degree,

the degree distribution, clustering coefficients and centrality measures.13 Beyond these metrics,

investigations of the community structure,14,15 or topological properties like k-simplices16 and

Betti numbers17 of these networks have proven useful in uncovering the mesoscopic dynamics of

granular materials.

Jamming, a phenomenon that has been a subject of intense investigation by various methods
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over the last couple of decades,18,19 has also been studied by network analysis. Jamming here

means the transition of a material from a flowing to a rigid state, but maintained in the rigid state

by the imposed stress. In jamming, unlike in crystallization, the material preserves its disordered

structure in this solid state. The initial theoretical framework to understand this transition used Z,

the average number of contacts a particle has with its neighbors, as the order parameter to explain

the transition. The critical value of this order parameter was identified as the isostatic point,

defined as the minimum possible number of contacts required for mechanical stability based on

the Maxwell criteria for rigidity. For granular packings of frictionless spheres, this number is twice

the number of dimensions, Ziso = 2d, and this mean-field scalar quantity was shown to be a good

predictor of the jamming point.20,21

For frictional systems, jamming has been observed at conditions ranging from d+1< Ziso < 2d

in simulations and experiments,22,23 with the value of Ziso decreasing as the interparticle friction

coefficient increases. Given the lack of a clear isostatic point, several approaches to jamming

of frictional packings have been applied. Initially, a generalization of isostaticity to include the

effect of friction was proposed.24,25 A number of further investigations focused on the emergence,

propagation, and percolation of structural rigidity within the contact network.26 It was discovered

in studies of tree-like networks that connectivity percolation and rigidity percolation were not

the same. Connectivity percolation was a necessary but not a sufficient condition for rigidity

percolation27 as shown for granular materials by Feng,28 where contact connectivity percolation

was realized at Z values below the isostatic condition.

In order to identify rigid clusters, a ‘pebble game’ algorithm which keeps track of the con-

straints based on Laman’s theorem was used for two-dimensional packings of particles.29 Schwarz

and co-workers30 extended the pebble game beyond Laman’s minimal rigidity criterion and ex-

plored local versus global rigidity in a network, the size distribution of rigid clusters, and the role

of spatial correlations for frictionless granular packings.31–33 Henkes et al.34 applied an extended

pebble game algorithm to frictional jamming, successfully identifying floppy and rigid clusters

and demonstrating the percolation of rigid structures at the jamming transition for simulations of

two-dimensional packings. Rigidity percolation has been shown to occur in colloidal gels as well,

by Zhang et al.35 using molecular dynamics simulations. Extension of this algorithm to rigid-

ity percolation in three dimensions for frictional packings has not been developed, although the

recently introduced rigid graph compression algorithm appears to be a promising method.36

Beyond two dimensions, rigidity percolation has been considered on Cayley trees by Mourkazel
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et al.37 These authors established an equivalence between rigidity percolation and what was then

termed bootstrap percolation,38 and currently known as k-core percolation.39 The k-core is a topo-

logical invariant of a graph defined40 as the maximal subgraph where each site (or node) has at

least degree k. Similarity to rigid clusters is seen in k-core clusters for k≥ 3, as these display non-

local effects: removal of a bond may trigger the collapse of a single cluster to a large number of

smaller clusters39,41 involving sites far from the removal site. For simple connectivity percolation,

removal of a bond would at most split a large cluster into two at the location of the bond removal.

Correspondence of the geometric nature of dynamical arrest with k-core percolation was shown

by Selitto et al.42 in study of glassy dynamics in the Fredrickson-Andersen model43 on Bethe lat-

tices. Following this work, Schwarz et al.30 argued that the jamming transition is analogous to a

k-core transition, emphasizing that the Bethe lattice k-core percolation is a critical phenomenon.

They demonstrated a susceptibility and a correlation length of the k-core transition and found

agreement of their critical exponents with those of simulations of particle packings near the jam-

ming transition. The authors noted, however, that k-core models lack the mechanical constraints

associated with jamming.

More recently, Morone et al.44 determined k-cores of the contact networks in sheared three

dimensional simulations of dry frictional packings near their jamming point. In addition to a

discontinuous jump of shear stress near the isostatic point, they found a precursor increase in

shear stress as the isostatic point is approached; this increase was found to be roughly coincident

with the appearance of the 3-core. Furthermore, they demonstrated that the appearance and size

of the k-cores in the contact network corresponded to the values predicted in random graph theory

by Pittel et al.45

Here, we consider shear-thickening suspensions. Even simple suspensions, composed of near-

hard spheres in a Newtonian liquid, exhibit what is known as discontinuous shear thickening (DST)

at sufficiently high solid fraction, φ . In DST, the viscosity rises discontinuously with an increase

in the imposed shear rate. At lower φ , the same suspension undergoes a weaker or continuous

shear thickening (CST), while at higher φ it may undergo shear jamming.5 This behavior has been

related to the development of stress-induced contact frictional interactions; the threshold stress

for onset of these contacts is assumed to scale with a repulsive force between particles.1,46–48

Thus, beyond the potential relation to the jamming transition and to rigidity, a further motivation

to investigate the k-core structure of contact networks in suspensions is that a threshold stress is

required to drive a change in the microscopic interactions. The physical basis for the scaling of

4



this threshold stress has received attention.49,50 Morone et al.6 analyzed the collapse of mutualistic

ecosystems, demonstrating that a sigmoidal interaction with a threshold and saturation parameter

would lead to a k-core ‘tipping point.’ They supported this claim by considering models of neural

and gene regulatory networks with such interactions, and found similar relations between the k-

cores and the tipping points of these dynamical systems.

In models of dense suspensions that exhibit shear thickening, such a sigmoidal form of in-

teraction with a threshold has been applied. This models the transition (with increasing applied

stress) in dominant stress generation mechanism from hydrodynamic forces to frictional interpar-

ticle forces. This is able to rationalize the salient features of the rheology5,46,47,51,52. This prompts

an investigation of whether the fixed points associated with this shear thickening transition also

relate to k-core development in the frictional contact network.

For dense suspensions, study of the contact network due to the formation of enduring contacts

created during the shear-thickening transition has been limited. Mari et al.47 showed qualitatively

that frictional contacts percolate in all directions in the thickened state while they are very sparse

prior to shear-thickening. Boromand et al.53 analyzed the contact network of shear thickening

suspensions simulated by the dissipative particle dynamics method, allowing frictional interac-

tions between particles. This study described size and radius of gyration of clusters of particles

connected by frictional contacts, and the authors argued that the formation of a giant connected

component led to DST, although some of us have argued this relationship is not completely accu-

rate in more recent work54. In a recent study applying a different network analysis, Gameiro et

al.2 extracted topological features of the contact networks of suspensions near the shear-thickening

transition by methods of persistent homology, a force-thresholding analysis. They concluded that

the loop structure growth within the contact network has the clearest correlation with the stress-

induced viscosity increase.

Here, we seek a more thorough understanding of the shear-induced contact force network and

its relation to the shear-thickening transition, by which we mean the transition from dominance

of lubrication hydrodynamics to frictional contact forces at the microscale that is associated with

sharp increases in the viscosity and normal stress of the bulk suspension.1 We begin in the fol-

lowing section by describing briefly the simulation method, which involves a stress-induced tran-

sition from lubricated to frictional interactions, as developed by Mari et al.47 We follow with the

characterization of the network through time averages and temporal distributions of number of

frictionally-interacting particles and the degree distributions of the stress-induced frictional con-
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tact network (FCN). We proceed to consider the growth of the FCN, and determine the conditions

resulting in formation of a giant connected component (GCC), i.e. a percolated structure with

connections defined here by frictional contacts. Next, we investigate the k-core organization, re-

lating the network structure to the bulk rheological properties. An essential finding is that the

condition of maximum variation of stress with shear rate for a given solid fraction corresponds

to the emergence of the 3-core in the FCN. Finally, we investigate the distribution of stress on

the k-core structures, showing a direct relationship between the stress borne by 3-cores and the

shear-thickened state under DST.

II. SIMULATIONS

We use the lubricated flow-discrete element method (LF-DEM)47,55 to simulate dense noncol-

loidal suspensions in a narrow range of φ , considering φ = 0.54,0.55,0.555 and 0.56. For the

interparticle forces and bidispersity simulated here, this range of φ spans the shear thickening

transition, with φ = 0.54 and 0.56 clearly exhibiting CST and DST, respectively.

The simulation method considers spherical particles immersed in a Newtonian liquid that lu-

bricates the particle surfaces; we neglect long-range hydrodynamic interactions. Motivated by the

concept of ‘lubrication breakdown,’ i.e. the failure of hydrodynamic lubrication to maintain finite

surface separation in sheared dense suspensions, as shown by Ball and Melrose,56 a key feature

is that the method allows for frictional contact interactions between particles when the imposed

shearing force overwhelms a repulsive inter-particle force.

The particles are bidisperse, with radii a1 = a and a2 = 1.4a, to avoid ordering observed in

dense monodisperse suspensions.57,58 Half of the total solid volume is contributed by particles of

each radius. The N = 500 particles are confined to a cubic unit cell of volume V fixed by the desired

value of φ . The unit cell is periodically replicated in all three directions and sheared according

to Lees-Edwards boundary conditions. The simulations reported were performed at an imposed

shear rate, γ̇ , with the shear stress, σ(t), fluctuating as the suspension samples configurations. The

shear flow is ux = γ̇z implying flow, gradient, and vorticity directions are x, z, and y, respectively.

We consider over-damped motion (conditions of zero inertia), so that each particle satisfies

a force balance between finite-range hydrodynamic (FH) and conservative forces (FR), as well

as contact forces (FC). Here, we use what is termed the critical load model47 to capture the

influence of the repulsive forces: in this case we do not have finite-range repulsion, but instead
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impose a threshold compressive contact normal force of magnitude denoted FR to indicate its role

in replacing the repulsion, above which friction is activated in the contact force; for normal forces

less than FR, a frictionless contact is modeled. The particles thus obey the simple force balance

0 = FH +FC, (1)

along with a similar balance of hydrodynamic and contact frictional torques.

The hydrodynamic force FH accounts for single-particle Stokes drag and pair-particle lubri-

cation, which is associated with the fluid in the zone of closest approach of neighboring particle

surfaces and is the dominant pair hydrodynamic interaction for large solid fraction.47 We write the

lubrication in terms of the velocities of two particles, U1 and U2, as FH = −R2(h) · (U2−U1),

with the pair resistance tensor R2 ∼ (h+ δ )−1 for the motion along line of centers, where h =

r− (a1 +a2), r is the center separation of the pair, and here δ = 10−3. Including δ yields a finite

lubrication resistance at contact (h = 0), and can be considered as representative of a roughness

lengthscale, but with no further physical modeling of roughness. When contact occurs, the contact

force, FC, comes into play. When the interparticle normal force exceeds the ‘critical load’ value

FR, friction is activated, and satisfies the Coulomb criterion, FC,t ≤ µFC,n, relating tangential (FC,t)

and normal (FC,n) components. Here, we study only µ = 1. Prior work has shown that varying µ

alters the frictional jamming fraction and the volume fraction for DST,47,48 but does not change

the qualitative physics.

Each simulation was run to a strain of 20. The simulation quantities of interest for this study

are the individual force moment contributions to the stress (often called stresslets), the network of

interactions, and the bulk rheological properties of viscosity and normal stresses. These outputs

are sampled at strain intervals of 0.01, yielding T = 2000 samples per simulation.

III. NETWORK REPRESENTATION OF FRICTIONAL CONTACTS

We represent the frictional contact state of the suspension using a network (or a graph), where

the particle centers are the nodes (vertices) and the frictional contacts form the edges. The adja-

cency matrix corresponding to this undirected network, A, is N×N and symmetric, where N is

the number of particles in the simulation; Ai j = 1 if there is a frictional contact between particles

i and j, and otherwise Ai j = 0. The degree or coordination number of a particle is defined as

Zi = ∑
N
j=1 Ai j and it gives the number of frictional contacts in which particle i participates; this is
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evaluated at each sampling and statistics are determined from all samples. The average coordina-

tion number, or equivalently the mean degree of the network, can also be directly calculated from

the adjacency matrix by Z = (1/N)∑
N
i=1 Zi = (1/N)∑

N
i=1 ∑

N
j=1 Ai j. It is important to note that the

FCN, and hence the adjacency matrix corresponding to this network, is not static, meaning we

have an evolving network as frictional contacts are formed or broken as the material flows.

At each sampling point, we record the bulk rheological properties, the individual particle contri-

butions to these properties, and the corresponding adjacency matrix. This simultaneously gathered

information allows us to map the frictional network properties to the rheological state of the sus-

pension. We are interested in the long-time average, represented by 〈〉 and assumed to equate to an

ensemble average, as well as the temporal distribution of network metrics discussed in subsequent

sections.

A. Degree Distribution and Average Network Size

We consider first the degree distribution of the frictional contact network. We calculate P(Zi),

the probability of particle i having degree Zi, by considering all the samplings of the simulations

at each shear rate. We construct a histogram of particles of degree Zi, then normalize the counts

by N×T , the product of the number of particles N and samplings T . In all further work here, Z

refers to a number of frictional contacts and does not account for frictionless contacts.

The resulting degree distributions are shown in Fig. 1 for φ = 0.54 and φ = 0.56, corresponding

to CST and DST, respectively. Note that the shear rate is normalized by FR/(6πηa2). For both

volume fractions, at the distributions corresponding to the lower shear rates the particles have few

frictional contacts, and thus there are high probability values for Zi = 0. For φ = 0.54 at the lowest

dimensionless shear rate displayed, γ̇ = 0.03, approximately 10% of the particles have either one

or two contacts, and for φ = 0.56 particles with frictional contacts are less than 5% of the total for

the lowest shear rate, γ̇ = 0.015. With increasing shear rate, P(Zi = 0) decreases and the contact

network grows as P(Zi > 0) values become nonzero. The value of Zi with the highest probability,

i.e. the mode of the distribution for the values of Zi > 0, shifts to higher values of Zi at elevated

shear rate. Fig. 2 shows that at the largest shear rates shown both the mean frictional contact

number and relative viscosity have largely saturated, but in data not shown, we do find that the

peak shifts to Zi = 4 at γ̇ > 0.12 for φ = 0.54. The distribution of Zi values higher than the mode

resembles an exponential decay towards Zi = 8, which is the largest value observed for all γ̇ and
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φ considered in this study.
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FIG. 1: Degree distributions P(Zi) for (a) φ = 0.54 and (b) φ = 0.56, showing the distribution of

frictional contacts per particle, Zi, for different γ̇ .

The growth of the FCN as a function of the shear rate can be readily quantified by considering

the fraction of total particles in frictional contact with one or more other particles, n. In the top

panel of Fig. 2, the fraction of particles in frictional contact, determined by summing the number

of particles with degree Zi > 0 and dividing by the number of particles N, is shown as its time

average 〈n〉 as a function of γ̇ . Comparing 〈n〉 to the development of suspension relative viscosity

(i.e., apparent viscosity normalized by the suspending fluid viscosity) in the bottom panel reveals

the correlation of contact network growth with the rheological transition. Note that particles enter

and leave the network as the shearing takes place, and that 〈n〉 < 1 even at the largest γ̇ studied.

Thus, there are always particles that are not a part of the frictional contact network.

The time average of the mean degree, 〈Z〉, is shown as a function of shear rate in the middle

panel of Fig. 2. Similar to 〈n〉, the growth of 〈Z〉 follows that of the viscosity, and saturates as

γ̇ → ∞, with increasing saturation values for larger φ .

We see that the FCN is an emergent object. For the low-stress state or γ̇ → 0, the viscosity is

non-zero and increases with φ , whereas the frictional contact network is non-existent regardless

of the value of φ as γ̇→ 0, since 〈n〉= 0 and 〈Z〉= 0 at sufficiently small stress. The formation of

the network begins when the suspension is sheared sufficiently rapidly, thus generating sufficient

stress to drive particles into the frictional state. This is in contrast with dry granular materials,

where a FCN may exist under static, zero deformation conditions.

Figure 3 displays the distributions for the fraction of particles in the frictional network, n. In

Fig. 3a and 3b, observed values of n at several shear rates are plotted for φ = 0.54 and φ = 0.56.
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FIG. 2: The growth of the frictional contact network as a function of the shear rate, in comparison

with suspension viscosity. (top) Time averaged fraction of particles that are part of the frictional

network, n; (middle) time averaged network degree, 〈Z〉; and (bottom) suspension relative

viscosity, η .
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FIG. 3: Temporal distribution of the fraction of particles in the frictional network (i.e., in

frictional contact with one or more other particles), n, for φ = 0.54 (a, c) and φ = 0.56 (b, d). In

(a, b), evolution of n with γ̇ is, where P(n) of each value of n is represented by its color. In (c, d)

distributions P(n) are shown for selected values of shear rate γ̇ .

Fig. 3c and Fig. 3d display distributions of the same quantities for selected shear rates, in P(n)

format. We see a difference in the form of the distributions in the transition region for CST and

DST. For φ = 0.54, under CST conditions, the distribution has a single maximum value for every

γ̇ . By contrast, for φ = 0.56, under DST conditions, P(n) is bimodal in the transitional region

0.02 < γ̇ < 0.033, as seen at γ̇ = 0.024 and 0.026 in Fig. 4. Similar bimodal stress distributions

are seen in prior work.54
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FIG. 4: Temporal distribution of the frictional contact network degree, Z, as a function of shear

rate, γ̇ for φ = 0.54 and φ = 0.56. The top plots (a, b) display the evolution of Z as a function of

γ̇ , where P(Z) of each value of Z is represented by its color. The bottom plots (c, d) show some of

the Z distributions P(Z) for different values of γ̇ .

In Fig. 4 we present the temporal distribution of the degree, averaged at each sampling instant

over all particles in the simulation unit cell, and denoted as Z. The DST condition again displays

temporal coexistence of two values. A striking feature is that at φ = 0.56, a jump from Z ≈ 0.5

to Z ≈ 3 occurs over a narrow range of 0.022≤ γ̇ ≤ 0.028 where DST takes place, indicating the

suspension may have a wide range of instantaneous mean contact states at the same shear rate.

The implication of Fig. 4 is that structures of higher connectivity can form and collapse under
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the same shear rate in a short time or small strain. These distributions reflect the temporal stress

distributions discussed in Sedes et al.,54 and show a correspondence between the stress exerted

by the suspension and the number of particles in the contact force network. When Z is plotted

against the instantaneous suspension shear stress, σ̄ , in Fig. 5, it is clear that the frictional contact

number is a monotonically increasing function of σ̄ for any φ , with only modest variation for

the φ values studied here, despite the fact that these span the CST-DST boundary. This one-to-

one correspondence of mean contact number and bulk shear stress is significant, as it provides a

mapping between a fundamental property of the FCN and the rheology of the suspension, enabling

us to connect the transitions in the topology of the network to changes in suspension rheology.

Note that monotonic Z(σ̄) implies that divergence of ∂σ/∂ γ̇ or discontinuity of σ at DST also

applies to ∂Z/∂ γ̇ .

We further characterize the network by the net degree, i.e., the number of contacts per parti-

cle restricted to those particles in the FCN. This measure removes the unconnected particles, or

‘rattlers.’ For this purpose, it is only necessary to determine the number of edges Z normalized

by the fraction of nodes n, and the quantity 〈Znet〉 is shown in Fig. 6. While 〈n〉 and 〈Z〉 follow

simple sigmoidal trends, 〈Znet〉 exhibits more distinct regimes. The 〈Znet〉 curves for all φ values

studied nearly overlap up to γ̇ ≈ 0.02 where 〈Znet〉 ≈ 1. At this point, the various φ curves sepa-

rate, with 〈Znet〉 ≈ 2 reached at smaller γ̇ with increasing φ . The rate of growth, ∂ 〈Znet〉/∂ γ̇ , for

0 < 〈Znet〉 < 1 is higher than the rate of growth in the range 1 < 〈Znet〉 < 2 for all φ . In the third

regime, from 〈Znet〉 ≈ 2 to its saturation value, the disparity between different volume fractions is

more pronounced, and ∂ 〈Znet〉/∂ γ̇ is larger in this regime compared to the second, and is similar

to the first where 0 < 〈Znet〉< 1. The intermediate regime, where the rate of contact growth with

increase of shear rate slows, appears to end coincident with onset of the most rapid rise in the

viscosity.

B. Percolation and the Emergence of a Giant Connected Component

It is of interest in study of networks to identify whether a giant component exists, and if so

under what conditions59,60. Mendes et al.61 note that the discovery and the description of this

structural transition initiated the study of random networks. In random networks, there exists a

critical probability, pc, where a percolation transition occurs; p is the probability that two nodes

selected at random have an edge between them. For p > pc, a giant cluster that spans the entire
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FIG. 5: Frictional contact network degree Z, as a function of suspension shear stress, σ̄ for

φ = 0.54, 0.55, 0.555 and 0.56. Each point represents a time sample, and the full range of shear

rate γ̇ is represented. The change in slope at Z ≈ 0.28 is shown later to correspond to contact

percolation.

network exists, whereas for p < pc, there exist many isolated, smaller clusters.62

For the FCN of shear thickening suspensions simulated here, we seek to determine if a topolog-

ical transition related to the birth of giant (or percolating) connected component (as noted, a GCC)

exists. To do so, we identify the largest connected component (LCC) of the frictional contact

network at every sampling instant.

In Fig. 7a, we plot the time-averaged fraction of the system total number of particles in the

LCC, 〈 f 〉, as a function of γ̇ . This is displayed for φ = 0.54,0.55 and 0.56, and in each case, the

mean LCC size follows a sigmoidal curve from zero for low shear rates to a saturation value of

〈 f 〉 ≈ 0.9 at large γ̇ . Normalizing the size of the LCC by the number of frictional particles, and

defining fnet = (N/n) f , we show in Fig. 7b that the saturation value of 〈 fnet〉 approaches unity,
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FIG. 6: Time averaged net degree (top), 〈Znet〉, and corresponding suspension relative viscosity

(bottom), both as a function of shear rate, γ̇ , for φ = 0.54, 0.55, 0.555 and 0.56.

meaning that essentially all of the frictional particles become a part of the LCC, i.e. at saturation

a single GCC typically spans the FCN. Interestingly, the emergence of this giant component is not

a criterion that delineates between DST and CST, since it is observed to occur for φ that are in
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each of these shear-thickening regimes. We conclude that the emergence of a GCC does not have

a clear connection to the rheological transition of the suspension.
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FIG. 7: The fraction of total particles in the largest connected component, as a function of shear

rate, γ̇ , for φ = 0.54 (black), φ = 0.55 (blue), φ = 0.56 (red), (a) normalized by total number of

particles, N, (b) normalized by the number of particles participating in frictional contacts.

We plot in Fig. 8 the linear extent of the cluster in all three directions normalized by the

simulation box size, along with f , the fraction of particles in the LCC. For all φ studied here, the

length of the cluster reaches the box length first along the gradient direction (z), followed closely

by the flow (x), and finally the vorticity (y) direction. At the shear rate of initial percolation of the

LCC in all directions, 〈 f 〉 ≈ 0.6, well below its saturation value. Thus, the GCC continues to grow

in number of particles for γ̇ increasing above the value associated with cluster percolation.

In random networks, the emergence of a giant component is a function of Z, and there exists

a Zc that marks the emergence of the giant component.63 In section III A, we showed that the

FCN degree Z can be directly mapped to the stress. We now probe how the mean degree and

the size of the LCC are correlated, specifically seeking to identify Zc for the onset of a GCC in

the FCN. We plot in Fig. 9 f and γ̇ as a function of network degree, Z, for all φ studied here.

Considering the size of the LCC, at all volume fractions we observe a brief linear regime in the

range of Z between 0 and 0.3, followed by a sharp increase which in fact marks the emergence

of the GCC. A precise method to identify Zc in uncorrelated networks is provided by the Molloy-

Reed criterion64 that the emergence of the giant component occurs when the mean number of

next-nearest neighbors, ∑Z2
i − Z, exceeds the mean number of nearest neighbors, Z. Based on

this, a susceptibility measure for the network can be defined as s ≡ 1+∑Z2
i /(2Z−∑Z2

i ), such

that the divergence of s corresponds to the emergence of the GCC in the suspension. We plot s as
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FIG. 8: The mean size of the largest connected component, as a function of shear rate, in number

of particles (black), its length in x (blue), y (red) and z (green) dimensions (plotted as the fraction

of the unit cell side length), for (a) φ = 0.54, (b) φ = 0.55, (c) φ = 0.555, and (d) φ = 0.56.

a function of the network degree Z in Fig. 9. Identifying Zc as the point of divergence of s, we find

this corresponds to the transition to a steeper slope in the curve that shows the size of LCC, f (Z).

It is significant that the mean degree at this transition point is the same across the volume fractions

studied here, and is identified as Zc ≈ 0.28.

From a network theory perspective, a noteworthy result from this section is that the FCN devi-

ates significantly from a random graph. The Erdos-Renyi random graph model predicts63 the birth

of a giant connected component at mean Zc,random = 1, whereas we find Zc ≈ 0.28 for the FCN in

a sheared suspension. This difference is strikingly large. We further note that divergence of the

Molloy-Reed susceptibility, s, does not correspond to the maximum or divergence (when singular)

of either ∂Z/∂ γ̇ or ∂σ/∂ γ̇ . The emergence of a GCC is found instead to roughly correspond to

the onset (with respect to γ̇) of the shear thickening transition.

We find that neither local measures such as the mean degree (contact number) nor the simple
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FIG. 9: The size of the largest connected component, f , the Molloy-Reed susceptibility, s, and

the shear rate, γ̇ (open symbols), as a function of the network degree, Z, for all simulated volume

fractions. Note that the curves of f and s collapse for all φ , with f showing a change of slope at

the divergence of s for Z ≈ 0.28.

long-range connectivity of percolation is a clear indicator of the mechanical property changes seen

in the DST transition. Structural transitions of higher connectivity than simple contact percola-

tion must be investigated to link the topological changes in the frictional network directly to the

mechanical basis for onset of DST, and for this we turn to k-core analysis.

18



IV. k-CORES OF THE FRICTIONAL CONTACT NETWORK

A k-core of a graph is defined65 as a maximal subgraph where each vertex of this subgraph has

degree at least k. This implies any member of the set of particles associated with this sub-network

has at least k contacts with other members of the same set.

We determine the k-core by a pruning process. First, we remove all nodes (the vertices) of a

network (a graph) with degree less than k, and also remove the edges connected to these nodes.

Now, we repeat this step until no nodes with degree less than k remain. At the end, we are left

with a graph where the degree of each node is greater than or equal to k. We note that, in general,

this graph can be disconnected.

Cores and shells: Upon completion of this procedure for all k ≤ kmax, one is left with a nested

structure of cores, such that particles that belong to a specific k-core also belong to all the cores

with smaller k, from k−1 to 0. This can be reasoned upon considering an example in which k = 3,

where all the particles belonging to this core all have Zi ≥ 3; therefore each particle automatically

satisfies the condition of having a minimum degree of 2 or 1, making all the 3-core particles also

members of the 2 and 1-cores. If one considers the reverse statement, whether a particle belonging

to k-core belongs to the (k + 1)-core, this is not true for every particle in the k-core, and the

particles that belong to the k-core but not to the (k+ 1)-core form the k-shells of the connected

component.

For random graphs, the emergence of k-cores with k ≥ 3 was studied by Pittel et al.,45 who

showed that a giant k-core for k ≥ 3 appears suddenly when the mean network degree reaches a

threshold, Zc,k. For k = 3, they showed that the emergence of a 3-core is at Zc,3
.
= 3.35. The size

of the 3-core in the random network emerges, as a fraction of number of vertices, at f3,c
.
= 0.27

and grows with further increase of Z.

For a packing of monodisperse frictionless disks in two dimensions,30 the maximum degree

is given by Zmax = 6, and for monodisperse spheres in three dimensions, Zmax = 12. Our system

has slight bidispersity so the maximum Z value differs slightly and is not precisely known, but

nonetheless is expected to be similar to the value of 12 for 3D. In section III A, we saw that for

shear-thickening suspensions, the maximum mean degree found was significantly lower at Z = 8.

We turn now to the k-core analysis.

We begin our investigation of the k-core and k-shell structure of the frictional contact networks

by a decomposition of the largest component. The sizes of the k-core and k-shell structures belong-
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FIG. 10: A snapshot of the simulation for φ = 0.55, γ̇ = 0.025. All particles visualized in (a, d),

1-shell (dark gray shading) and 2-core particles are visualized in (b, e), and only 2-core particles

(blue shading) are visualized in (c,f). Unshaded particles are not in the frictional network.

ing to the LCC, identified at each sampling instant, are determined and then related to the rheology.

This is done for both CST and DST conditions. Following this, the largest k-core to which a par-

ticle belongs within the LCC (the particle’s ‘coreness’ or k-shell) is determined. Figs. 10 and 11

provide visualizations of the clusters that are found.

The number Nk of particles for each coreness k was normalized as fk = Nk/N, with N the total

number of particles. These operations yield the size of each k-shell as a fraction of the system size.

The fk values for all φ as a function of shear rate are shown in Fig. 12.

From Fig. 12, we see that the maximum coreness observed is k = 3. This is significantly less

than the upper limit established by the largest value in the degree distributions, i.e. Zi = 8 as shown

in Fig. 1: within the 3-cores lie particles that have substantially more than three frictional contacts.

A further observation is that for all φ , 1- and 2-cores emerge in a continuous fashion. The 1-cores

emerge first, and as the shear rate becomes larger, 2-cores emerge, relegating the particles with

coreness 1 to 1-shell status. By contrast, the 3-cores emerge discontinuously, suddenly jumping at

a specific shear rate from 0 to a finite fraction of the particles, in agreement with the theoretical

results of Pittel et al.45 for the sudden emergence of the 3-core in a random graph.

For all φ , there are shear rates for which both k = 2 and k = 3 structures are observed, with f2
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FIG. 11: A snapshot of the simulation for φ = 0.55, γ̇ = 0.0375. All particles visualized in (a, d),

1 (black shading) and 2-shell particles (blue shading) along with 3-core particles (red shading)

are visualized in (b, e), and only 3-core particles are visualized in (c, f). Unshaded particles in

(a,d) are not in the frictional network.

and f3 values fluctuating. Under these conditions, the f3 values are either near 0 or distributed in a

range between 0.2 and 0.8. The f2 values also display a bi-modal distribution around a high and a

low value; the center of this lower set of values for k = 2 is significantly greater than 0. In the first

or ‘2-core dominant’ state, k = 2 is the largest core, making up the greatest fraction of particles,

surrounded by 1-shell particles, with no 3-core particles present.

In the ‘3-core dominant’ state, the 3-core emerges within the LCC and consists of the greatest

fraction of the particles, surrounded by a smaller fraction of 2-shell particles, and an even smaller

fraction of 1-shell particles. With increasing γ̇ , the percentage of time the 3-core state is dominant

increases, while the frequency of the 2-core dominant state decreases. At large γ̇ , where the stress

response has saturated, there is a notable difference in the k-core and k-shell statistics between

CST and DST. In CST for φ = 0.54, the 2-core dominant state is observed even at the highest γ̇

simulated. On the other hand, for DST at φ ≥ 0.55, the 2-core dominant state is no longer observed

at the highest shear rate; for any φ that exhibits DST, we find that there exists a value of γ̇ above

which the 2-core dominant state is not observed. To make this point clearly, in Fig. 13 the temporal

distribution of k-core particles is displayed for φ = 0.54 and φ = 0.55 at the highest shear rates

21



(a) (b)

(c) (d)

FIG. 12: The fraction of total particles in k-cores and k-shells of the largest connected component

of the frictional contact network as a function of shear rate, γ plotted along with suspension

viscosity for φ = 0.54,0.55,0.555 and 0.56.
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studied, γ̇ = 0.13 and γ̇ = 0.09, respectively. For φ = 0.54 at γ̇ = 0.13, Fig. 13a shows k = 2 to be

bimodally distributed. The peak with the highest f2 indicates the presence of the 2-core dominant

state, whereas the lower f2 or the 2-shell peak combined with the 3-core distribution represents

the 3-core dominant state. In Fig. 13b, for φ = 0.55 at γ̇ = 0.09, the k = 2 distribution is no

longer bimodal, and the 3-cores are dominant, i.e. have the larger fk. This rather striking change

associated with a slight variation of φ is roughly coincident with the boundary between CST and

DST.

(a) (b)

FIG. 13: The temporal distribution of fk values for k = 2 and k = 3, (a) for φ = 0.54 , γ̇ = 0.13,

and (b) φ = 0.55 , γ̇ = 0.09. These are the highest shear rate values simulated for each of these

volume fractions, as can be seen in Fig. 12.

Recall that Fig. 5 showed that the instantaneous mean degree, Z, is a monotonic function of

suspension stress at each φ . Earlier, in section III B, we established that the emergence of the GCC

is associated with Zc
.
= 0.28. It is natural to extend this line of investigation to the relationship of Z

to the emergence and size of the k-cores with k≥ 2. To this end, we plot the fk values as a function

of Z in Fig. 14. In order to reduce the noise and to differentiate more clearly between the different

volume fractions, the fk values corresponding to the same value of Z were averaged. Similar to

the random graph theory, 1-cores emerge continuously and reach their maximum value roughly

coincident with the continuous emergence of 2-cores, which rapidly become the maximum core.

While f1 decreases, f2 increases until mean degree Z > 3.

For Z ≈ 3, but with some dependence on φ , we observe the emergence of the 3-cores, with this

occurring almost discontinuously. We observe a rapid jump from zero to f3 ≥ 0.3 for the large

majority of samples, with just a few smaller values of f3 seen. This finding is quite similar to the
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predictions for emergence of the 3-core in a random graph.45 Note also that at the emergence of

the 3-core, f2 drops sharply, as a result of 3-cores emerging from existing 2-cores.

The emergence values of the mean contact number for each k are denoted as Zc,k. The f1 curve

begins at Zc,1 = 0, as the first frictional contact established immediately gives birth to a 1-core.

The 2-core emergence at Zc,2 ≈ 0.28 can be seen to correspond closely to the maximum of f1,

indicating that 2-cores grow by the coalescence of 1-cores. The value of Zc,2 is equivalent to the

value of Zc established in section III B, since the birth of the 2-core is found to correspond to the

birth of a giant connected component. This indicates that the first 2-cores are large, and in fact

most are percolated across the simulated domain, thus connecting one image of the simulation unit

cell to the next.

Fig. 14 shows that f1 and f2 collapse on the same curve regardless of the volume fraction for

mean degree below the value for the emergence of the 3-core at Zc,3. For Zc,3, significant differ-

ences based on the volume fraction are seen, with Zc,3 decreasing as φ increases. It is observed

that with increase of Z, driven by the increase of shear rate, 1-cores develop and increase in both

number and size; this is akin to nucleation and growth, but since it is with respect to shear rate,

not time, this should not be taken as the actual dynamics, as the objects form and disappear in

O(1) strain. Once the density of these 1-cores is large enough, they begin to merge or ‘coalesce’

into 2-cores. By contrast, a 3-core forms suddenly as a giant component from a system-spanning

2-core.

Following this set of observations, we seek to determine whether there is a signature of the

emergence of the 3-core in the stress response. We calculate the Z-averaged values of both the

fraction of 3-cores ( f3) and the shear rate (γ̇), using the fact that Z is a single-valued mono-

tonic function of σ̄ . The plots of f Z
3 and γ̇Z as functions of Z in Fig. 15 suggest that for each

φ , f Z
3 becomes non-zero at a value of Z corresponding to the inflection point of γ̇Z , i.e. where

∂ 2γ̇Z/∂Z2 = 0. The data are rather scattered at φ = 0.56, a condition well into the DST regime,

where the suspension is able to exhibit two widely-separated stresses (and hence widely-separated

Z) at a given shear rate, as shown in Fig. 4.

In the stress response of shear-thickening suspensions, there is a bifurcation46 that may be in-

terpreted as an apparent critical point that distinguishes between the CST and the DST regimes.54

This point is found on the flow curve of the lowest φ for which we observe ∂σ/∂ γ̇ → ∞ (see

Fig. 4). The quantity ∂σ/∂ γ̇ ≡ χσ may be considered as a stress susceptibility and the fluctua-

tions expected at a divergent susceptibility are addressed in recent work.54 A striking and important
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FIG. 14: The Z averaged k-shell occupancy, measured as a fraction of total number of particles,

fk, plotted as a function of the average frictional network degree, Z, for φ = 0.54,0.55, and 0.56,

across all applied shear rates.
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FIG. 15: The Z-averaged 3-core occupancy, f3, as a function of mean degree, plotted along with

Z-averaged shear rate, γ̇ , for φ = 0.54,0.55,0.555, and 0.56. Note that we do not introduce a new

symbol, but these are values of f3 and γ̇ conditioned on the instantaneous mean value of Z.

point is that the emergence of the 3-core is coincident with the maximum of this stress suscepti-

bility for each φ studied. This is illustrated in Fig. 16, where χσ and f3 are presented as functions

of γ̇ .

A. Stress Analysis by k-core

Our aim here is to establish a connection between the k-cores and the stress in the suspension.

The fraction of particles with coreness k, fk, is determined at each sampling point. We plot the

distribution of all the values of fk observed, P( fk), for every (φ , γ̇) pair. Next, we investigate the
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FIG. 16: Fraction of 3-cores (top) and stress susceptibility (bottom) as a function of shear rate,

for (a) φ = 0.54, (b) φ = 0.55 and (c) φ = 0.555. The red point in each stress susceptibility plot

at bottom corresponds to the first appearance of a 3-core.

relationship of the coreness of the particle to its stress contribution. For this purpose, we sum the

shear stress contribution of the total force moment (hydrodynamic and contact) of all the particles

with coreness k, and then normalize this quantity by the fraction of the particles with coreness k,

fk = Nk/N:

σ̄
k =

1
fk

Nk

∑
i=1

σ
k
i . (2)

This quantity is thus, dimensionally, stress times volume. For each k, we normalize this quantity

by the total strain units simulated. The distribution of σ̄ k, P(σ̄ k) at each γ̇ and φ studied is plotted

in Fig. 17. The integral of P( fk) gives the fraction of time a k-core is observed. If a certain core is

present throughout the simulation, the integral of P( fk) is unity.

For all φ , the core-averaged stress distributions as γ̇ → 0 are similar. Initially particles with

purely hydrodynamic interactions (k = 0) dominate the stress state, so that the total stress and

k = 0 contribution are nearly identical. The frictional contacts at this stage are infrequent. When

they exist they form small 1-core clusters, and hence the k = 1 distribution is noisy, with its integral

relatively small compared to the total and the k = 0 distributions. As expected, the mean of the

k = 1 distribution is higher, but within an order of magnitude of the total. As γ̇ increases, the k = 1

distribution becomes more definite as the frictional contacts become more frequent, with a wider
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FIG. 17: Core-averaged stress as a function of strain (left) and its distribution (right) at the onset

of shear thickening (a, b) φ = 0.54 and γ̇ = 0.0185, (c, d) φ = 0.55 and γ̇ = 0.015, (e, f) φ = 0.56

and γ̇ = 0.015. Legend in part (a) applies to all plots. Note that no 3-cores (red points) are

present, and only very few 2-cores (blue points).

distribution compared to both the hydrodynamic and the total distributions as seen in Fig. 17.

The k = 2 distribution is the next to appear. It is initially noisy, and yields a relatively small

integral. A more definite distribution and a larger integral is found as the shear rate increases and

the 2-cores become more frequent. Unlike k = 1, the evolution and the value of the mean stress
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for k = 2 is different for CST (φ = 0.54) and DST (φ ≥ 0.55) conditions. Specifically, under CST

conditions at φ = 0.54, the mean value of σ for k = 2 is similar to or slightly less than the mean

value of the k = 1 distribution, while for φ = 0.55 and φ = 0.56 (at onset and well into DST,

respectively), the k = 2 mean stress level is significantly larger than that for k < 2.

At shear rates just below that yielding the maximum stress susceptibility, i.e. just below the

appearance of the 3-core, hydrodynamic (k = 0), k = 1 and k = 2 distributions are all well-defined

and integrate to 1, since they are present at all times during the simulation; see Fig. 18. For φ =

0.54, the k = 1 and k = 2 distributions almost overlap, and even more remarkably, the distributions

for all k and hence the box-averaged stress distribution have the same form: this is asymmetric with

a positive skew, where the median is at the lower σ half of the distribution, and with a decaying

tail for large σ . In CST, the core-averaged stresses for 1- and 2-core particles are similar.

For φ ≥ 0.55, the situation is significantly different than just described for φ = 0.54. At shear

rates just below the appearance of the 3-core, the core-averaged distributions are different in form,

and their mean values are distinctly different, increasing from k = 0 to k = 1 to k = 2. The k = 0

and k = 1 distributions both have negative skew, whereas k = 2 has a positive skew. The system-

averaged stress, with a positive skew, has the widest distribution, covering the range of all the

core-averaged stress distributions. This demonstrates that for φ yielding DST, the stress state of

a particle and the core to which it belongs are meaningfully correlated and differ with k; particles

with coreness k = 2 are more likely to be found at a higher stress than particles with k = 1. As a

result, the suspension stress has a wider range of values; at a given instant, the stress assumes a

value closest to the core-averaged stress of the dominant core.

The emergence of the 3-core is found to occur at shear rate corresponding to the maximum

stress susceptibility for all φ . Recall that, unlike 1- and 2-cores, the 3-core transition is discontin-

uous, and the 3-core emerges as a single system-spanning cluster of a finite fraction of the system

size. Therefore, large temporal fluctuations in the formation of the 3-core cluster, such that it forms

and collapses rapidly, translate to stress fluctuations ∼ f3σ̄3. With this in mind, we consider σ̄3

in Fig. 19. For CST, at φ = 0.54 and γ̇ = 0.044, the σ̄3 distribution overlaps with other cores and

non-frictional particles. Thus, in CST, on average a particle with k = 3 contributes to the stress

at a level similar to that of a k = 2 or a k = 1 particle. As a result, even though we have large

fluctuations in the frictional network structure as particles form and break out of a 3-core, this

does not lead to large stress fluctuations. The system averaged stress distribution, P(σ̄), despite

developing a wide distribution during the shear-thickening transition, does not develop a two-peak
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FIG. 18: Core-averaged stress as a function of strain (left) and its distribution (right) at the

beginning of strong upturn in viscosity (a, b) φ = 0.54 and γ̇ = 0.035, (c, d) φ = 0.55 and

γ̇ = 0.03, (e, f) φ = 0.56 and γ̇ = 0.0212. Legend in part (a) applies to all plots. Note that no

3-cores (red points) are present.

distribution indicative of exchanging stress states.

For φ = 0.55, the emergence of the 3-core at γ̇ = 0.0315 represents a large fraction of particles

( f3 = 0.3 to 0.7) when it is present but this is only a small fraction of the time initially, and

remarkably contributes a core-averaged stress an order of magnitude larger than the k = 2 particles.
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The σ̄3 distribution, unlike in CST conditions, is distinct, with relatively small range and a mean

stress larger by roughly one and two orders of magnitude than the k = 2 and k = 0 mean stress

levels, respectively. The implication is that the effect of the 3-core on the total stress state of

the suspension is large for φ = 0.55. The system-averaged stress distribution, P(σ̄), assumes a

much wider range, as the 3-core becomes more persistent and is present for a larger fraction of the

time. As shear rate increases to γ̇ = 0.033, we observe a second peak forming in the total stress

distribution, one peak between k = 0 and k = 1, representing the low stress state, and the other

between k = 2 and k = 3, representing the high stress state.

For φ = 0.56, at γ̇ = 0.0218 we have the k = 3 distribution entering. This is the lowest value

of the shear rate where we observe the system-average stress splitting into two sub-distributions,

representing the temporal exchange between the low- and high-stress states. The high-stress part

of the distribution is nearly overlapping with the 3-core stress distribution.

V. CONCLUDING REMARKS

We have investigated how the force network in shear-thickening suspensions develops with

increasing shear rate in the volume fraction region spanning the transition from continuous to

discontinuous shear thickening. This has been done starting with basic measures and progressing

to a specific type of sub-graphs, known as k-cores. The known correlation of the increase of bulk

stress with the development of the contact force network between frictional particles has been

elucidated, with k-core analysis providing both a clear correlation of these network structures

with the increase of the apparent viscosity of the suspension, and also showing a sharp distinction

between CST and DST.

The development of network structure is characterized at its most basic level by the mean

frictional contact number, Z, which is found to be a strictly increasing function of the stress at a

given φ . This one-to-one relationship between contact number and stress for a given suspension

provides a basis for describing the behavior through the network features; further, it indicates

that discontinuities in σ in DST or ∂σ/∂ γ̇ → ∞ at the lowest φ for DST (the critical volume

fraction of φC ≈ 0.55) are associated with discontinuities in the mean contact number. This is

clearly related to the ‘fraction of frictional contacts’ f (σ) (a local notation, not to be confused

with other meanings of f in this paper) from the work of Wyart & Cates,46 which also undergoes

a discontinuous change in DST when considered as a function of shear rate rather than stress.
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FIG. 19: Core-averaged stress as a function of strain (left) and its distribution (right) at peak in

stress susceptibility (a, b) φ = 0.54 and γ̇ = 0.044, (c, d) φ = 0.55 and (e, f) γ̇ = 0.0315,

φ = 0.56 and γ̇ = 0.0218. Legend in part (a) applies to all plots. Note that 3-cores are present and

particles in them have significantly larger stress than in other k-cores.

A more detailed consideration of the contacts through the degree distribution, i.e. the probabil-

ity distribution of the number of contacts a particle is expected to have for varying γ̇ and φ , is not

greatly informative in relation to the change from CST to DST, at least to the level considered here.

This shows the development of progressively more particles at nonzero contact numbers, with the
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distribution peaked at Zk = 3-4 contacts for large shear rate, with this peak at larger Zk for larger

φ . Perhaps more important is that the maximum encountered (only occasionally) is eight con-

tacts per particle; thus all Zk values are significantly below the maximum of 12 for dodecahedral

arrangement in a dense packing.

The need to consider longer range connectivity to explain the rheological transitions in shear

thickening brings percolation as a candidate. In fact, percolation has been suggested to be the

basis for onset of DST.53 However, we have applied the Molloy-Reed criterion64 to show that

percolation occurs in both CST and DST and thus is not a discriminating measure. An interesting

result that arises is that the mean contact number at percolation for φ = 0.54 (CST) and 0.56

(DST) is both the same within our sampling uncertainty, Zc ≈ 0.28, and strikingly below the value

of Zc,random = 1 for random graph percolation.

Measures of connectivity between the particles based on k-core analysis show quite clear rela-

tionships with three aspects of the suspension rheology. The k-cores are sub-graphs of the com-

plete frictionally contacting network, all nodes (particles) having k or more contacts with other

nodes in the sub-graph. The first relation with the rheological response we note is that the ap-

pearance of the 3-core for a given φ as γ̇ increases coincides (as shown by Fig. 15 and Fig. 16)

with the peak in the stress susceptibility defined54 as χσ = ∂σ/∂ γ̇; this is true under conditions

of both CST and DST in the range of φ studied here. Although the suspension connectivity is

certainly not random, the 3-core emerges as a giant connected component of a significant fraction

(≈ 0.3) of the total number of particles in the network, similar to expectations based on random

graph theory.45 A second feature that indicates the k-core’s relation to the mechanical response is

the difference in the stress contribution by particles in 3-cores at the onset of DST relative to CST

conditions, as detailed in section IV A. In CST, a particle in the 3-core makes a stress contribution

larger than but still comparable to that from a particle in the 2-core (with statistical distributions

of 2- and 3-cores overlapping), while for the DST condition, the 3-core particles at emergence of

this structure have much larger stress than smaller-k particles. A third relationship is that we find

under conditions of CST (here at φ = 0.54), considering the large-stress limit where the network

structure and rheological properties have saturated, the 2-core and 3-cores exchange with time (or

strain) as the dominant structures in the sense of containing the larger fraction of the total particles.

By contrast, even at the lowest φ displaying DST, φ = 0.55, the 3-core is always dominant in the

large-stress limit.

These investigations have shown that k-core analysis provides insight to features of the network
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formed by frictional contacts that define the stress response. The natural next stage of study is to

explore the mechanical basis for this influence, e.g. its potential relationship to slowly relaxing

regions or transient locally rigidified regions within the flowing suspension.
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