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Abstract

The Pi Chamber is a cloud chamber at Michigan Technological University, which utilizes moist turbulent

Rayleigh-Bénard flow between two temperature-controlled, saturated plates to create cloud conditions in

a controlled laboratory setting. This experimental apparatus has been the source of numerous scientific

studies, but also offers an advantageous platform with which to test numerical modeling approaches. In

this study, the primary goal is to use direct numerical simulation (DNS) with Lagrangian aerosol/droplet

microphysics to recreate, as realistically as possible, the conditions inside the Pi Chamber. The biggest

discrepancies between the DNS and laboratory setups are the Rayleigh number (Ra = 7.9×106 in the DNS)

and the use of periodic lateral boundary conditions. Nonetheless, numerical experiments are conducted for

two published Pi Chamber cases: steady aerosol injection and the resulting statistically steady-state cloud,

and transient conditions when aerosol injection is shut off. Generally speaking, the DNS is able to capture

many of the salient features observed in the Pi Chamber experiments, both qualitatively and quantitatively,

including microphysical details and influences on the fluctuating ambient saturation in the chamber. From

the DNS, Lagrangian statistics are interrogated which are otherwise inaccessible from the experimental view.

In particular, the supersaturation fluctuations seen by droplets are observed to deviate from a Gaussian

distribution — a common assumption in stochastic modeling — and the probability distribution of droplet

lifetime does not adhere to the expected behavior assuming solid particles settling in a quiescent medium.

I. INTRODUCTION

The importance of atmospheric clouds on weather and climate can hardly be overstated, and yet

it is widely recognized how difficult it is to study their microphysical details. This is partly due to

the multiscale nature of clouds [1, 2], but is also, in part, due the difficulties inherent in measuring

processes occurring at scales of centimeters to micrometers at distances kilometers above the Earth’s

surface, while traveling at speeds of approximately 100 m s−1 (most measurements of clouds are

from airplanes). There are also practical difficulties associated with making in situ measurements

of inherently transient events such as cloud formation and dissipation. To help combat this, the

Pi Chamber (named because of the 3.14 m3 volume with the cylinder in place) was created at

Michigan Technological University to study turbulent cloud properties at the laboratory scale [3].

The key element of the chamber is that cloud conditions can be created and sustained for long time

periods (hours) in steady state, which allows for statistical convergence of averages and observation

of relatively rare events.

The chamber has been described elsewhere [3]. Here we outline key aspects which are pertinent
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for the current investigation. Central to the operation of the chamber are temperature-controlled

top and bottom surfaces, from which Rayleigh-Bénard flow can be generated. In addition, these

upper and lower surfaces can be kept saturated, which, owing to the nonlinearity of the Clausius-

Clapeyron relationship, can naturally generate supersaturated conditions (relative humidity ex-

ceeding 100%) in the chamber interior. In the context of real clouds, the Pi Chamber temperature

gradient is a mechanism for driving a flux of water vapor into the system, and can therefore be

taken as analogous to the strength of an updraft in the atmosphere (as opposed, for example, to

suggesting that there are 10 degree differences of the span of one meter in the atmosphere). The

flow in the chamber is turbulent (Ra ≈ 108 - 109), though a large scale circulation develops as

expected [4, 5]. This turbulent experimental environment is applicable to better understanding

fundamental processes in the atmosphere where a supersaturation (or subsaturation) is created by

mixing. For example, in many stratocumulus clouds mixing at the cloud top plays an important

role. In cumulus clouds, mixing at cloud edge (entrainment) is thought to be key to the evolution

of the cloud droplet size distribution. In either case, fluctuations in the scalar fields (temperature

and water vapor concentration) and therefore the saturation ratio and the resulting responses of

cloud droplets are of interest. When aerosol particles are injected into the supersaturated chamber

at known rates, they serve as cloud condensation nuclei (CCN) upon which droplets are formed;

the details of this process and the resulting drop size distribution can be studied in unprecedented

detail.

In steady state conditions, the injection of aerosol particles is balanced primarily by droplet

removal by settling. Other loss mechanisms of droplets and aerosol particles are of secondary

importance [6]. Investigations of stochastic condensation [7, 8], relative dispersion [6, 9], activation

[10, 11], cloud glaciation [12], and radiative transfer [13] have been based upon the resulting drop

size distributions in such conditions.

Experimental limitations, however, are always present, and certain quantities of interest are

inaccessible to direct observation. For example, numerical simulations can provide time-resolved,

three-dimensional information over the full flow domain, whereas experimental measurements are

typically limited to point measurements. For the Pi Chamber specifically, this could potentially

mask potential statistical inhomogeneities due to persistent circulation patterns or the effect of

boundary layers which cannot be resolved with current instrumentation in the chamber.

More importantly, perhaps, is the ability of a numerical simulation to provide Lagrangian

information — something that is not currently possible in the Pi Chamber experiments (or field

observations for that matter). The cloud droplet size distribution is a result of the time history of
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the environment experienced locally by individual droplets: specifically, the fields of temperature

and water vapor yield a scalar supersaturation field that determines the growth of cloud droplets,

and in turn responds to that growth. As a result, there is a great need for establishing Lagrangian

models of aerosol activation and growth. For example, Paoli and Shariff [14], Sardina et al. [15],

Siewert et al. [16] developed stochastic models in order to explore the broadening of the droplet

size distribution (DSD) due to turbulent fluctuations, which requires knowledge of the fluctuating

supersaturation field felt by the droplets as they are advected throughout the domain. These

recent contributions can be considered extensions of the concept of stochastic condensation, e.g.,

see Cooper [17] and the discussion and references therein. In this investigation we treat droplets

from a Lagrangian point of view while resolving the fluid turbulence, which has been used numerous

times to gain insight into droplet dynamics in idealized turbulent flows [18–21]. We consider the

full physics of droplet growth, including the possibility of activation and deactivation of aerosols,

which is also inherently related to the Lagrangian sampling of the supersaturation field [10, 11].

Finally, we note that the droplet removal problem is an under-explored aspect that is fundamental

to the water and heat budgets within the convective flow; here also a Lagrangian perspective can

provide unique insights.

Finally, it is worth putting this study into context among the previous comparisons to the Pi

Chamber. Thomas et al. [22] perform large eddy simulation (LES) of the full Pi Chamber domain

using the System for Atmospheric Modeling (SAM), including the sidewalls. While much of the

discussion was focused on the sidewall treatment, the microphysical evolution, as well as its effects

on the humidity and turbulence levels in the air, were found to be similar to the experimental

observations. The work of Grabowski [23] focused on comparing a Lagrangian cloud model (LCM)

versus a bin microphysical scheme, again seeing general agreement with the experimental observa-

tions. Other DNS studies, such as Saito et al. [24] and Thomas et al. [25], idealize the domain to

consider isotropic, homogeneous turbulence, in an effort to focus on the core region of the cham-

ber. An even simpler representation of the chamber dynamics, that of Krueger [26] which does not

resolve turbulence but instead analyzes a model for the evolution of the DSD, explores the role of

mean supersaturation in defining the DSD. Presently, we perform DNS of the entire Pi Chamber,

focusing in particular on the frequency of activation and deactivation, the regimes of supersatura-

tion fluctuation, the transient evolution of cloud cleaning, and the processes controlling the DSD.

Computational expenses prevent the full range of turbulent scales to be matched between the DNS

and the experiments, but this first attempt at a fully-resolved simulation of cloud droplet acti-

vation and growth in turbulent Rayleigh-Bénard flow stands to move forward our understanding
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of turbulence-microphysics interactions in a similar way to other DNS simulations of atmospheric

processes [27].

The goal of the present work is to establish a DNS model which aims to capture the salient

features of the Pi Chamber as accurately as possible, despite not being able to achieve the Rayleigh

number of the experimental flow due to computational expense. We follow the experimental proto-

cols of Chandrakar et al. [7] and Chandrakar et al. [6], which provide information on steady-state

and decaying clouds, respectively. After establishing a comparison of measured quantities between

the DNS and the experiments, including droplet number concentrations and DSDs as a function of

aerosol injection rate, we use the DNS to calculate quantities which are inaccessible to the observa-

tions. This includes lifetime and activation histories of the aerosols, as well as the supersaturation

fields they experience during their lifetimes. As will be seen, both of these quantities deviate from

their often-assumed forms, suggesting potential differences between turbulent Rayleigh-Bénard flow

and idealized isotropic, homogeneous turbulence.

II. NUMERICAL FRAMEWORK

In this study we employ direct numerical simulation (DNS) for the air phase at a reduced

Rayleigh number, which explicitly resolves all scales of turbulent motion. These motions are

coupled to Lagrangian droplets, using the “superdroplet” or LCM framework developed and used

elsewhere [28–30], where a single computational particle represents an ensemble of aerosols/droplets

and evolves in a Lagrangian frame of reference according to the local air properties. The computa-

tional model used here is the same as that used by Richter et al. [31] for studying the evolution of

marine fog, except configured to replicate the conditions in the Pi Chamber. Below, we provide a

brief overview of the model; additional details can be found in Richter et al. [31], Park et al. [32],

or Helgans and Richter [33].

For the air phase, turbulent Rayleigh-Bénard flow is developed in a horizontally periodic domain

with solid walls at the top and bottom (see figure 1). The top and bottom wall temperature and

relative humidities are prescribed as Ttop, Tbot and RHtop, RHbot, respectively, while the air velocity

is governed by a no-slip condition. Following Chandrakar et al. [7] and Chandrakar et al. [6], we

set Tbot = 299 K and Ttop = 280 K, with RHbot = RHtop = 100% (i.e. saturated). The numerical

setup is similar to that of Park et al. [32], except with moist droplet microphysics included.

The domain size is [Lx, Ly, Lz] = [2m, 2m, 1m], a similar aspect ratio as the Pi Chamber,

although the numerical model is horizontally periodic and thus does not have sidewalls (x and y
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FIG. 1. Representative snapshot of Pi Chamber DNS. Colored isosurfaces are the qv = 12.5 g kg−1 and

qv = 17.5 g kg−1 surfaces, and black dots represent the computational droplets.

are the horizontal directions, z is the wall-normal direction). As discussed in detail in Thomas et al.

[22], without sidewalls the supersaturation levels in the domain interior would approach 20% in the

absence of aerosols, and in their presence the droplet growth would be unrealistic. This is due to the

fact that in the Pi Chamber, the sidewalls act as a sink of moisture since their temperature is set to

be the average temperature of the upper and lower walls, and saturation is not maintained at their

surface. To mimic this effect in the present simulations, a volumetric sink term is included in the

water vapor conservation equation, whose strength is chosen by meeting a target volume-averaged

supersaturation level in the simulation — in this case chosen to be SStarget = 3.3%, although this

could be set to any desired value. Note that this is a different strategy than that of Thomas et al.

[22] or Grabowski [23], who attempt to represent the sidewalls more directly using a flux model

and a penalty relaxation method, respectively.

Thus in the present model, the equations governing mass, momentum, and energy conservation

in the air phase under the Boussinesq approximation are:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇π + k̂

g

T0
T ′v + ν∇2u + Sm, (2)

∂T

∂t
+ u · ∇T = α∇2T + ST , (3)
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∂qv
∂t

+ u · ∇qv = Γ∇2qv + Sv + Sside, (4)

where u is the fluid velocity vector, T is the temperature, qv is the water vapor mixing ratio,

and π is a pressure variable which enforces the divergence-free condition of equation 1. Buoyancy

is driven in the vertical direction k̂ by the acceleration of gravity g, a reference temperature

T0 = 300 K, and the perturbation to the virtual temperature Tv = (1 + 0.61qv)T . The diffusivities

of momentum, temperature, and water vapor are ν, α, and Γ, respectively. The terms Sm, ST ,

and Sv are the sources of momentum, temperature, and vapor due to the droplets, and their full

expressions can be found in Richter et al. [31]. Note that the buoyancy term in equation 2 does

not explicitly include the effects of the suspended droplets, as is sometimes done for simplicity

[34], since the momentum exchange term Sm naturally incorporates this tendency. Finally, the

term Sside in equation 4 is the water vapor source/sink term which, as discussed above, allows us

to meet a target mean volume supersaturation in the domain, thus mimicking the effects of the

sidewalls in the Pi Chamber. Sside is constant and uniform in time and throughout the volume,

and the determiniation of its value is described in detail below. Equations 1 – 4 governing the air

phase are solved using a pseudospectral discretization in the horizontal directions, and second-order

finite differences in the vertical direction. The [Lx, Ly, Lz] = [2m, 2m, 1m] domain is discretized

using [Nx, Ny, Nz] = [128, 128, 128] grid points. Time integration is performed using a third-order

Runge-Kutta scheme and a constant time step of ∆t = 0.05 s.

Aerosols and water droplets are tracked from a Lagrangian frame of reference:

dxip
dt

= vip, (5)

dvip
dt

=
c1
τp

(
uf − vip

)
− gpk̂, (6)

ddi

dt
= c2 (qf − q∗) , (7)

dT ip
dt

= c3
(
T ip − Tf

)
+ c4

ddi

dt
, (8)

where the coefficients c1, c2, c3, and c4 are used to simplify the equations down to their fundamental

form. The full equations, which include the droplet and solute material properties, are provided

in the Appendix. The droplet equations 5 – 8 are integrated using an implicit, backward Euler

scheme with the same ∆t as used for the surrounding air. The evolution of the ith particle’s
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position xip, velocity vip, diameter di, and temperature T ip depend on the local fluid velocity uf ,

humidity qf , and temperature Tf interpolated to the droplet location using sixth-order Lagrange

interpolation. The water vapor mixing ratio at the droplet surface, q∗, is based on Köhler theory,

including both droplet curvature and solute effects (a full expression can be found in Richter et al.

[31] and in the Appendix). Here we consider a solute of pure NaCl, and the aerosols have a

critical activation radius and supersaturation of 0.94 µm and 0.076%, respectively. The timescale

τp = ρpd
2/18νρf is the Stokes acceleration timescale, indicating how quickly a droplet with density

ρp can be accelerated in a fluid with density ρf .

In addition to these properties, according to the superdroplet framework [29], each particle also

has a multiplicity ξi which represents the total number of real droplets represented by the particle.

While the code has the capability of representing collision/coalescence, the primary mechanism

by which the multiplicity can change, we do not consider this here and thus the multiplicity for

an particular particle stays constant throughout the entire simulation. The multiplicities in the

current simulations range from 10 at an injection rate of ṅ = 1 cm−3 min−1 to 10,000 at an

injection rate of ṅ = 100 cm−3 min−1. These choices ensure that there are, on average, at least 3

particles per computational grid cell in all simulations [29]. We have also conducted convergence

tests to verify that droplet and supersaturation statistics are robust to this choice of multiplicity

(not shown here).

In the Pi Chamber experiments, the dimensionless Rayleigh number Ra = g∆TL3
z/(T0να) is on

the order of Ra ∼ 109, where ∆T is the difference Tbot − Ttop. Due to computational constraints,

however, the DNS in the current simulations is restricted to Ra = 7.9×106, which is accomplished

by setting the gravity felt by the fluid to g = 0.043 m s−2. This is as opposed to changing the

material properties ν or α or the temperature difference ∆T , since these parameters are essential

for establishing the proper supersaturation levels, thus maintaining the proper interaction between

the humidity fields and the suspended droplets (note that other related studies take the former

approach of modifying the viscosity, for example Thomas et al. [25] and Grabowski and Thomas

[35]). With this lower value of Ra, however, we seek to ensure that the dimensionless settling

velocity of the droplets matches that of the experiments so that the droplet fall speeds relative

to the turbulence strength remains the same. In this regard, we take as a characteristic droplet

settling velocity ws = τ1µmp gp, which is the Stokes settling velocity of a one-micron diameter droplet

in air. As a characteristic fluid velocity scale, we take the buoyancy velocity Ubuoy =
√
g∆TLz/T0,

and hold the ratio ws/Ubuoy = 4.4 × 10−5 as the same as what it would be in the experimental

chamber. This requires setting the gravity felt by droplets to be different than that felt by the flow
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(gp = 0.65 m s−2), but achieves dynamic similarity between the experiments and DNS in regards to

droplet sedimentation. The corresponding free-fall buoyancy timescale τbuoy = Lz/Ubuoy is roughly

19 s.

With these flow and droplet parameters, the dissipation rate near the domain centerline is

O(10−6 m2 s−3), which corresponds to a droplet Stokes number St = τp/τK = O(10−6) where τK

is the centerline Kolmogorov time scale, thus suggesting that droplet dynamics in these simulations

are dominated by activation/growth and settling rather than inertial effects. It is worth noting

that the grid size required to achieve the experimental value of Ra ∼ 109 would require upwards

of O(10003) grid points to resolve both the turbulent mixing in the domain interior, as well as the

details of the thermal boundary layer at both the top and bottom wall [36]. The primary effect of

reducing to Ra = 7.9× 106 is that the large-scale circulation is weaker than it would be in the ex-

perimental chamber. Thus the turbulence kinetic energy, and correspondingly the dissipation rate,

are much lower (in a dimensional sense) in the DNS than would be expected in the experiments.

Accordingly, as noted above, we modify the droplet sedimentation rate so that ws/Ubuoy matches

the experimental values, and focus in this study primarily on the microphysical properties since we

do not necessarily expect certain turbulence statistics (e.g., spectra) to quantitatively match the

experimental values. Instead, the hypothesis here is that the supersaturation fluctuations drive the

microphysical processes of interest, and the Rayleigh number is sufficiently high that the droplet

and aerosol behavior matches that of the experiments. Indeed, the results shown below suggest

that we have generated a fluctuating environment sufficient for recreating observed microphysics,

and that the details of the turbulence statistics are not as important as the process of droplets

responding to realistic supersaturation fluctuations.

Initially, the domain is spun up in the absence of any aerosols or droplets, until the turbulent

Rayleigh-Bénard flow reaches a statistically steady state. As this is occurring, the spatially uniform

vapor sink Sside is actively controlled until the desired volume-mean supersaturation SStarget is

achieved. This precursor simulation is performed prior to any of the aerosol simulations reported

below, and the resulting constant value of Sside is tested in an unladen run to ensure that it

provides the desired SStarget. Once this value of Sside corresponding to SStarget is determined,

it is held constant for all future aerosol loadings since it is meant to represent the assumed-

unchanged sidewall sink. For the simulations presented in this work, a value of Sside = −2.15 ×

10−6 (kg/kg) s−1 m−3 is used.

Once the statistically steady flow has been developed, we inject aerosols in order to reach the

steady state cloud conditions analyzed by Chandrakar et al. [7], and the aerosol injection rate
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is the primary parameter we vary across the simulations. See figure 2 for a demonstration of

the adjustment in relative humidity towards a statistically steady state as aerosols are injected

at different rates. Lagrangian particles are continually initialized at random locations along the

domain centerplane at a specified rate, with monodisperse, dry diameters of di = 100 nm and

uniform hygroscopicites associated with NaCl salt (see Richter et al. [31]); once injected into the

chamber, they grow to their hydrated size which is close to 1 µm. Since full Köhler physics

is considered, the process of activation and condensational growth is naturally handled by the

Lagrangian microphysical model — this is in contrast to both Thomas et al. [22] and Grabowski

[23], who make approximations as to the process of both injection and activation. In the case

of Thomas et al. [22], which uses spectral bin microphysics, injection is mimicked by imposing a

droplet number concentration in the domain interior. Grabowski [23], on the other hand, uses

a modified Twomey activation scheme where supersaturation fluctuations dictate the number of

new, activated droplets to initiate.

From an ensemble of Lagrangian time series of tracers in the unladen flow, multiple timescales

can be calculated. First, to describe the quasi-periodic, recirculating trajectories exhibited by

Rayleigh-Bénard flow, a frequency spectrum is constructed of the Lagrangian vertical velocity time

series, and the peak period is calculated to be τrecirc ≈ 3.7 min. This is a characteristic timescale

associated with how long it takes a tracer to complete a circuit from one wall to the other and

back, and will be used to interpret particle lifetimes in a later section. Second, an integral timescale

τI of the flow is calculated by computing the autocorrelation of the Lagrangian supersaturation

seen by tracers in the unladen case. As table I shows, this can be compared to the cloud or phase

relaxation time τc = (2π 〈nd〉 〈d〉Γ)−1 to create a Damköhler number Da ≡ τI/τc, where the limit

of Da � 1 corresponds to systems where inhomogeneous droplet properties can be expected due

to their rapid response as compared to the turbulence [20]. From table I, it is clear that the

injection rates considered here begin around Da = O(1), then increase into this inhomogeneous

range. Here, 〈nd〉 is the mean droplet number concentration after a statistically steady state has

been achieved, and 〈d〉 is the mean droplet diameter. Throughout this study, volumetric averages

over the full domain are denoted with angle brackets 〈·〉, while horizontal averages are denoted with

overlines ·. We also note that much of the subsequent analysis is done in dimensional units, since

one primary goal is to compare to specific experimental measurements; however we recognize the

insight gained by considering nondimensional quantities and relate features to the above timescales

as appropriate.

The growth of the droplets, the resulting cloud, as well as the response of the background air
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TABLE I. Simulation parameters. Ra is the Rayleigh, held the same across the simulations. τbuoy is the free

fall buoyancy timescale, τrecirc is a characteristic recirculation timescale calculated by peak of the frequency

spectrum of Lagrangian tracers, τc is the phase relaxation time, τI is the Lagrangian integral timescale of the

flow, calculated from Lagrangian tracer trajectories of supersaturation in the unladen flow, and Da = τI/τc

is the Damköhler number

Simulation # ṅ [cm−3 min−1] Ra τbuoy [s] τrecirc [s] τc [s] τI [s] Da

1 0 7.9× 106 19 222 – 60 –

2 1 7.9× 106 19 222 41 60 1.5

3 3 7.9× 106 19 222 14 60 4.3

4 10 7.9× 106 19 222 4 60 17

5 30 7.9× 106 19 222 1 60 56

6 100 7.9× 106 19 222 0.4 60 153

flow are monitored until a statistically steady state is achieved for each injection rate. Then, in

section III B, we abruptly shut off the constant aerosol injection rate to investigate the transient,

cloud-cleaning conditions explored in Chandrakar et al. [6]. Table I provides an overview of the

simulations considered presently.

III. RESULTS

A. Steady state

1. Humidity fluctuations

We begin by characterizing the changes to the relative humidity in the chamber as a result

of aerosol injection. Shown in figure 2 are time series of the volumetric mean and variance of

relative humidity in the domain. As expected, the unladen 〈RH〉 fluctuates around the desired

103.3%, and also exhibits the highest standard deviation σVRH . Once aerosols are introduced, the

volume mean 〈RH〉 quickly approaches saturation, and figure 2(b) shows that the fluctuations

in 〈RH〉 are suppressed with increasing injection rate. This behavior is similar that observed in

the Pi Chamber, and reflects the ability of large numbers of aerosol particles to quickly extract

excess moisture — otherwise understood as a decrease in the cloud (or phase) relaxation time τc

with increasing aerosol number concentration [20]. As the aerosol injection rate is increased, figure

2(b) shows that the volume-based relative humidity fluctuations are suppressed to near-zero at the
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FIG. 2. (a) Volume-averaged relative humidity 〈RH〉 and (b) standard deviation σVRH of volume-averaged

relative humidity as a function of time for all aerosol injection rates.

highest injection rates, and that their temporal variability is diminished as well. It will be shown

later that although σVRH is small, the fluctuations still facilitate aerosol deactivation/reactivation

throughout the droplet lifetimes.

Once at the statistically steady state, defined herein as t > 50 min, figure 3 shows the temporally-

and horizontally-averaged profiles of several thermodynamic quantities at the different aerosol

injection rates. While the volume-mean relative humidity target is set to SStarget = 3.3%, figure

3(a) shows that the horizontally-averaged RH varies considerably with height for the unladen case.

With aerosol injection, the mean centerline RH drops close to saturation levels, and even below for

the case of the lowest injection rates. The presence of subsaturated conditions reflects the combined

presence of the sidewall water vapor sink along with an insufficient number of droplets to replenish

the water vapor field. At higher injection rates the profile of RH becomes more uniform with

height as the fluctuations are systematically reduced at the centerline (figure 3(b)).

Near the upper and lower boundaries, peaks of both RH and σRH are seen, and result from the

different molecular diffusivities of temperature and water vapor (see discussion in Chandrakar et al.

[37]). In turbulent Rayleigh-Bénard flow, these peaks roughly correspond to the upper limit of the

boundary layer (approximately 10 cm in the present simulations), and their vertical extent would

be expected to decrease with increasing Ra. As already seen in figure 2(b), figure 3(b) shows

that the variance of the relative humidity fluctuations are significantly damped throughout the

entire domain, even near the walls. While the presence of aerosols pushes RH towards saturation
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FIG. 3. Temporally and horizontally-averaged profiles of (a) relative humidity RH, (b) its standard deviation

σRH , (c) water vapor mixing ratio qv, and (d) temperature T as a function of height across the domain.

Line colors are the same as in figure 2(a).

throughout the entire domain, especially at the highest injection rates, figures 3(c) and 3(d) show

that these result from somewhat subtle modifications to the temperature and water vapor mixing

ratios, in part because the boundary values of these quantities are held fixed in all cases.

Since the fluctuations of supersaturation are critical for developing stochastic models of droplets

which can capture realistic evolution of the droplet size distribution [15, 17], it is worth examining

their statistics in the present calculations. It is shown in Chandrakar et al. [7] that the fluctuations

of supersaturation in the unladen flow are very nearly Gaussian. This is also commonly imple-

mented in simulations of homogeneous, isotropic turbulence that include droplet growth [e.g., 24].
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It has recently been shown, however, that in Rayleigh-Bénard convection with adiabatic sidewalls

the supersaturation distribution is negatively skewed [37, 38]. The simulations of Thomas et al.

[22], meanwhile, see a slight non-Gaussianity, with preference for supersaturation events, presum-

ably due to the influence of unsaturated sidewalls. Here, figure 4(a) shows in the solid blue line that

the supersaturation fluctuations at the centerplane are slightly non-Gaussian as well, exhibiting a

modest skewness towards positive supersaturation events. The skewness of the unladen distribu-

tion in figure 4(a) is 0.54, and the kurtosis is 2.9; the Gaussian fit is plotted in a dashed line. These

deviations from a normal distribution highlight potential differences between centerline statistics

of Rayleigh-Bénard turbulence and homogeneous isotropic turbulence, but we suspect that these

statistics might become more Gaussian with increasing Ra, as the turbulence becomes stronger in

the interior. When comparing to the PDF provided by Chandrakar et al. [7], the small amount

of skewness in the experiments appears to be on the subsaturation side, qualitatively opposite to

what is seen in the present simulations although the deviations are small.

When aerosols are added, figures 4(b-f) demonstrate the narrowing of the s′ PDF, as already

implied by figures 2 and 3. As the injection rate is increased, the tails of the distribution rapidly

collapse, and certain non-Gaussian features are enhanced, especially in the tails on the right side

of the distributions. These apparent skewnesses indicate that even in the presence of aerosols and

cloud droplet growth, it is more likely to have extreme supersaturation fluctuations than it is to

have extreme subsaturation fluctuations. In contrast, both the bin and Lagragian microphysics

results of Grabowski [23] display significant non-Gaussianity, with heavier tails on the left side of

the PDF, although both the injection scheme as well as treatment of activation is quite different

in their study.

More interesting, however, is the Lagrangian behavior shown in the circles in figures 4(b-f),

namely, the PDFs of s′, but this time as seen by a large number of particles during their lifetime.

In each simulation with aerosol injection, at least 104 randomly chosen aerosols are tagged at

their initiation, and they output their properties (e.g., position, radius, temperature, ambient

conditions, etc.) at an interval of 0.5 s throughout their entire lifetime, including both activated

and unactivated states. From these full trajectories, the distribution shown in figure 4 is constructed

by taking all values of s′ experienced by these particles along their trajectories, where s′ is defined

by the local fluctuation of supersaturation from the horizontal mean at that height.

What is striking when comparing the solid lines and circle markers in figures 4(b-f) is the emer-

gence of heavy tails in the Lagrangian PDFs, revealing potentially large fluctuations of both sub-

and supersaturation when tracking individual droplets. These Lagrangian PDFs are clearly non-

14



FIG. 4. PDFs of supersaturation fluctuation s′, as defined by deviation from horizontal mean. (a)-(f) refers

to the increasing injection rates, starting from the unladen case in panel (a). Solid Lines: PDF computed

from the flow at the domain centerplane at multiple times; Dashed Lines: Gaussian fit to the centerplane

PDF; Circles: PDF constructed from the local values of s′ taken along at least 104 droplet trajectories.

Gaussian, and this observation has strong implications for the development of stochastic droplet

growth models, since those by for example Sardina et al. [15], Chandrakar et al. [7], Desai et al.

[8], and Saito et al. [24] (among others) assume Gaussian supersaturation statistics. The degree

to which this non-Gaussian behavior is a function of Rayleigh number and the sidewall treatment

(i.e., the volumetric water vapor loss term) is unclear, but nonetheless highlights the potential

differences between homogeneous isotropic turbulence and turbulent Rayleigh-Bénard flow.

2. Droplet properties

For the steady state cloud cases, aerosols are continuously injected until various statistics,

including the DSD, achieve stationarity. This state would also imply that a balance is found

between aerosol injection and aerosol/droplet removal, either through gravitational sedimentation

or deposition to the sidewalls. In the present simulations, the only removal mechanism is through

deposition to the lower boundary, so it is expected that aerosol numbers may be larger than in the
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experiments.

To test this, figure 5(a) contains time series for the droplet, aerosol, and total (droplet + aerosol)

number concentrations from the time when aerosol injection begins, as defined by their activation

state (radius larger than the critical radius). For the lower injection rates considered, the total

number concentration approaches a constant value, with the number of droplets exceeding that

of the aerosols. This indicates that a steady balance has been reached between aerosol injection,

aerosol activation, and droplet sedimentation out of the domain.

For the highest aerosol injection rate, however, the total droplet number concentration ap-

proaches a relatively constant value after ≈ 60 min, but the aerosol number concentration continues

to rise, even in exceedance of the number of droplets. Since the aerosols essentially have no other

removal mechanism except through activation, their population builds up, and owing to their very

low settling velocity, this increase in aerosol number would likely continue for a very long time.

See for example the discussion in Thomas et al. [22]. Another way of describing this behavior is by

referring to the activation fraction of the chamber, defined by the ratio of the number of activated

droplets to the total. In the limit of very low injection rate, one would expect an activation of 1

— i.e., all aerosols activate. As the injection rate increases, Shawon et al. [10] show clearly that

the activation fraction decreases in the Pi Chamber, down to roughly 0.5 at their highest injection

rate. In the current simulations, as can be seen in figure 5, the activation fraction transitions from

above 0.5 to a minimum of 0.4 for the highest injection rate. This reduction with injection rate

is qualitatively similar to the experimental findings, but the complex interplay between aerosol

injection and mean/fluctuating supersaturation has yet to be fully understood [10, 11].

Figures 5(b) and 5(c) plot the steady-state number concentration of aerosols (〈na〉) and droplets

(〈nd〉), respectively, against the aerosol injection rate (we take the final value of aerosol number

concentration for the highest injection rate since it is still increasing). Also included in this figure

are the measured values from Chandrakar et al. [7] (hollow symbols). The aerosol number concen-

trations are in good agreement with the measurements, while the droplet number concentrations

are mostly less than the experimental values. A levelling-off of the droplet number concentration

is seen in the experiments which is not observed in the simulations, likely due to the absence of

any removal mechanism other than sedimentation to the lower wall. Another possible explanation

is that in the experiments, small droplets go undetected if they fall below the d ≈ 7 µm threshold

of the phase Doppler interferometer instrumentation [9].

While figure 5 illustrates the aerosol and droplet populations approaching a steady state, figure
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FIG. 5. (a) Time series of number concentrations of aerosols (dotted), droplets (dashed), and total (solid), as

defined by the activation state. (b) Steady-state aerosol number concentration na as a function of injection

rate. For the highest two aerosol injection rates, na is the last recorded value (c) Steady-state droplet

number concentration nd as a function of injection rate. Hollow symbols are from Chandrakar et al. [7], and

colors refer to aerosol injection rates (see legend of figure 4(b)).

6 provides information about the stationarity of the droplet size statistics. Figures 6(a-c) show the

evolution of the mean droplet diameter 〈d〉, the droplet standard deviation σd, and the relative

dispersion σd/ 〈d〉 as a function of time for all injection rates. Only droplets which are activated

are included in these statistics, to be consistent with Chandrakar et al. [7]. Immediately after the

initiation of aerosol injection at t = 0, both 〈d〉 and σd overshoot their equilibrium value for all

injection rates, achieving statistically steady values around t ≈ 40 min. In preliminary experiments,
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FIG. 6. (a-c) The droplet mean diameter d, standard deviation σd, and relative dispersion σd/d as a function

of time for the various injection rates. (d-f) The steady-state d, σd, and σd/d versus ṅ. Hollow symbols are

the experimental measurements from Chandrakar et al. [7].

this time to achieve stationarity decreases with Ra. For the highest aerosol injection rates, the

time series of both 〈d〉 and σd exhibit clear stationarity, despite the fact that the aerosol and to

some degree the droplet number concentrations continue to rise (cf. 5(a)). Equilibrium of the

droplet size statistics are related to the phase relaxation time τc of the droplet collection, which in

the current simulation setup is a much shorter timescale than that associated with establishing a

balance between aerosol injection, activation, and gravitational sedimentation.

Figures 6(d-f) then show the steady-state values of 〈d〉, σd, and σd/ 〈d〉 as a function of the

aerosol injection rate, compared to the experimental results of Chandrakar et al. [7]. While the

average droplet size is close in value to the experimental measurements, the standard deviation of

diameter is overpredicted in the current simulations, causing an overprediction of the relative dis-

persion as well. While the values of σd seen in the simulations of Thomas et al. [22] and Grabowski

[23] were similar to those of Chandrakar et al. [7], the relative dispersions of both were also much

higher than the current results and Chandrakar et al. [7], owing to an underestimate of the mean

droplet diameter. In the current case, the mean droplet diameter is similar to the experimental val-

ues, and the overprediction of σd may be caused by differences in the supersaturation fluctuations,
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FIG. 7. (a) Total number concentration nT (droplets and aerosols), horizontally and temporally averaged,

as a function of height; (b) Temporal and horizontal mean diameter as a function of height.

which we expect to be a function of Ra [37].

Another factor to consider when interpreting not only the current simulation results, but also the

experimental measurements, is the heterogeneity of droplet statistics. Grabowski [23] comments on

the potential of having differences in the DSD at different horizontal locations at a given time, but

figure 7 highlights that even the mean properties vary with wall-normal location in the chamber.

Figure 7(a) shows that the total number concentration nT , containing both aerosols and

droplets, peaks in the domain interior, decreasing near both boundaries. The exception to this

is for the highest two injection rates, where a slight increase in number concentration is found

near the lowest boundary, resulting from smaller droplet sizes which inhibit their gravitational

sedimentation out of the domain. Figure 7(b) then shows the corresponding mean droplet diameter

as a function of height, having a minimum in the domain center where RH is lowest. Near the

lower boundary, where peaks of RH are found (cf. figure 3), the droplet sizes are significantly

larger than in the domain interior. To a certain extent this behavior is expected, since aerosols are

injected at the centerline and those which activate would rapidly settle downwards. Furthermore,

the mean relative humidity near both boundaries is larger than the interior (cf. Fig. 3), leading

to a larger mean diameters in those locations relative to the center. As noted above, this effect

is expected to decrease with increasing Ra since the spatial extent of the boundary layer would

shrink, but in the present simulations it results in nearly all droplets increasing in size just before

sedimenting, hastening the process.
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FIG. 8. Droplet size distributions for all injection rates. The large spike centered at d < 1 µm represents

unactivated aerosols.

Figure 8 shows the steady-state DSDs for each of the injection rates, and is meant to be

compared to figure 2 of Chandrakar et al. [7]. Qualitatively, we see the spectral broadening process

identified by Chandrakar et al. [7], where a decrease in ṅ leads to a widening of the DSD. A similar

broadening of the DSD is also seen in the DNS of Saito et al. [24], although their DNS setup is

considerably different (homogeneous, isotropic turbulence with a prescribed droplet lifetime). It is

also seen in the model simulations of Grabowski [23].

For the lowest injection rate, the current simulations predict a wider distribution than the

experiments, already noted above regarding the values of σd, while the peak generally compares

well to the experiments (again, this is consistent with the favorable comparison of 〈d〉, discussed

above). Since the Lagrangian framework resolves the aerosol activation process, there is a sharp

peak for all cases which lies below 1 µm, reflecting the unactivated aerosols in the system. The

trough of the DSDs reflects the critical diameter, which is roughly 1.5 µm for all cases.

The true value, however, of the Lagrangian microphysical approach to simulating the Pi Cham-

ber lies in the numerous quantities which can be measured that are experimentally inaccessible.

Of particular importance is the distribution of droplet lifetime, which in stochastic models must be

specified (e.g. Saito et al. [24]) and can play a major role in determining the DSD shape [26]. As
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FIG. 9. (a) PDF of total aerosol residence time τl, from injection until removal from the domain; (b) PDF

of activation times τl,act, from when a droplet is first activated to when it either deactivates or is removed

from the domain; (c) PDF only of times between activation and removal τl,act−sed; (d) PDF of Nact, the

number of times aerosols have been activated during their lifetime in the domain.

such, figure 9 presents four important distributions related to the lifetime of the droplets. First,

figure 9(a) shows the PDF of total lifetime, τl, from the moment of aerosol injection until its set-

tling out at the lower boundary, regardless of its activation state. In the range of short lifetimes

(τl . 5 min), there is a notable oscillation of the PDF with residence time, which will be explained

below.

With increasing injection rate, consistent with the reduction in 〈d〉 and a narrowing of the DSD

seen previously, the PDF of total lifetime in figure 9(a) broadens significantly. A non-negligible
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FIG. 10. (a) Mean droplet lifetime 〈τl〉 as a function of mean droplet diameter 〈d〉 for each of the injection

rates ṅ. (b) Same, but for the time from activation until removal. The dashed black line is a power-law fit

〈τl〉 ∝ 〈d〉λ for a fitted value of λ given in the legends, and the dotted black line is the estimate given by

τStokes for each droplet diameter.

number of aerosols injected in the ṅ = 100 min−1cm−3 can live in excess of an hour (i.e. many

timescales τI , τbuoy, or τrecirc). From figure 9(a) we observe that aerosols routinely have lifetimes on

the order of tens of minutes, which is generally on the same order of simple estimates based on the

time it takes a droplet to settle through the domain through quiescent air at the Stokes terminal

velocity ws = τpgp. This timescale, τStokes ≡ Lz/ws, would scale as d−2 assuming solid particles

(i.e. no condensation/evaporation) and no turbulence, and a droplet of d = 10 µm corresponds

to τStokes ≈ 7 min using the values prescribed in the DNS (recall in particular the modified value

of gp used in the DNS). This indicates that a water droplet of this size, which is not changing in

size, would take roughly 7 min to settle in a completely still air environment over a distance of

Lz = 1 m.

Corresponding to the distribution of τl in figure 9(a), figure 10(a) plots the mean of these

distributions 〈τl〉 as a function of the mean droplet diameter 〈d〉 for each of the injection rates. In

the dotted black line, figure 10(a) also shows the estimate provided by τStokes. While the estimate

of τStokes provides values on the same order of the true mean lifetimes 〈τl〉, two important features

must be emphasized. First, the combination of turbulence and droplet growth lead to a distribution

that is in reality very wide (cf. figure 9(a)), suggesting that caution is required when prescribing

a single value of either 〈d〉 or 〈τl〉 for a given injection rate. Furthermore, the mean lifetime does
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not scale as d−2 as predicted by τStokes, but instead appears to be inversely proportional.

To further understand this, figure 9(b) presents instead the PDF of times during which the

droplets remain activated. This accounts for the fact that droplets in the DNS system routinely

deactivate and reactivate, and thus would complicate the prescription of a single settling time (or

characteristic size) to their entire lifetime. In figure 9(b), we see that the tails of this distribution

are nearly exponential, with many “activation lifetimes” being less than the total duration of 〈τl〉.

This is made clear by figure 9(d), which shows the distribution of the number of times an aerosol

is activated during its lifetime. Even for the low injection rates, there is a non-negligible chance

of being re-activated upwards of 10 times. The mode of this distribution is indeed unity, but it is

not uncommon to have droplets deactivating and reactivating multiple times during their lifetimes,

especially at the higher injection rates. In the atmosphere, this can have profound effects on the

CCN distributions as aerosols are cycled through nonprecipitating clouds [39, 40].

Since many of the theories of stochastic condensation do not attempt to account for reactiva-

tion processes, figure 9(c) shows the PDF of times between droplet activation and gravitational

sedimentation, only for those intervals which are not interrupted by deactivation. Here again we

see a substantially different distribution from the total lifetime in figure 9(a), with exponential

tails and times which are shorter than 〈τl〉. Then, figure 10(b) shows the same relationship as

figure 10(a) but between the mean lifetime between activation and removal and the mean droplet

diameter. Here, we see a slight increase in the slope, with a fitted relationship going as d
−1.3
p ,

but now the values are substantially lower than the prediction given by τStokes. The gravitational

settling efficiency, and in particular this depends on droplet growth and boundary layer thickness

(i.e. Ra) are important topics which continue to be studied.

Finally, we comment on the shape of the τl distribution at low residence times, and highlight the

importance of a Lagrangian interpretation. Figure 11 shows the τl PDF for the ṅ = 1 cm−3min−1

case, but shows typical trajectories for certain positions along the distribution. On the left side

of the distribution, a peak emerges around τl ≈ 1 min. This is followed by a trough, and another

peak to the right (τl ≈ 3 min), beyond which an exponential distribution is established. This non-

monotonic distribution of τl is directly linked to the dynamics within the chamber. For the leftmost

peak, we plot trajectories of aerosols/droplets which only live between 0.8 and 1.2 minutes. Plotted

are time series of height (top), ambient RH (middle), and diameter d (bottom) for a randomly

chosen subset of trajectories which fall into this range of lifetimes. What is clear is that the droplets

in this range, which begin at the domain midplane, are those which are immediately driven to the

lower surface via turbulent downdrafts. Some of these droplets activate and grow immediately,
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FIG. 11. In the center is the PDF of total lifetime τl for the ṅ = 1 cm−3min−1 case from figure 9(a). For

each of the three lifetime ranges indicated by the arrows, sample trajectories are given showing the droplet

height, local relative humidity, and diameter. The non-monotonic PDF of τl at small lifetimes is clearly due

to the periodic circulations which exist in Rayleigh-Bénard turbulence.

while others do so at a delayed time, but all are pushed to the lower surface within a minute of

initiation.

For the second peak (and the maximum of the entire distribution), this is seen to be resulting

from a large number of droplets who instead are pushed upwards immediately upon initiation.

These spend some time near the upper boundary, before they are forced downwards by convective
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motions. This peak of ≈ 3 min is quite close to the timescale τrecirc, since this scale describes

the time taken by a tracer to recirculate through the flow. Beyond this global maximum in the τl

distribution, the exponential distribution of total residence times is resulting simply from a varying

number of excursions from the bottom to the top as aerosols/droplets ride the convective motions

associated with Rayleigh-Bénard turbulence — a potential strategy for developing stochastic mod-

els. Fitting an exponential to this portion of the distribution provides a characteristic timescale of

∼ 10 min, which is similar to the mean of the distribution and is larger than the characteristic flow

scales τbuoy and τrecirc. The supersaturation experienced by the aerosols is indeed highly variable,

while its lifetime is dictated by whether it falls into the boundary layer when nearing the lower

surface. Inside this layer, as shown in figure 3, the high values of RH near the lower surface cause

droplets to universally grow, hastening their removal process.

B. Transient

Following Chandrakar et al. [6], we now briefly examine the transient response of the turbulent

cloud to a sudden cessation of aerosol injection. This is done for all injection rates presented in the

previous section by stopping the aerosol injection at t = 125 min and running the simulations for

an additional 125 min. This transient “cleaning” is important for understanding cloud collapse,

rain formation, and pollution scavenging, and in particular we seek to observe the acceleration of

this process as aerosols (and therefore competition for excess moisture) become scarce, as seen in

Chandrakar et al. [6].

Figure 12 shows the response of the chamber humidity as it adjusts to stopping the aerosol

injection. Both the mean (〈RH〉; figure 12(a)) and fluctuating (σVRH ; figure 12(b)) relative humidity

approach the unladen values, and the response of σVRH appears to be underdamped, exhibiting an

overshoot before approaching the equilibrium value. More dramatically, the timing of when the

approach to equilibrium occurs is strongly dependent on the preceding injection rate. The reason

for this is the same as that observed in Chandrakar et al. [6]: at the higher injection rates, a

large reservoir of unactivated, interstitial aerosols builds up (see figure 5(a)), and this takes an

increasingly long time to deplete. The size of this unactivated reservoir is related to the activation

fraction, which, as argued above and in Shawon et al. [10], is a strong function of the level of

supersaturation fluctuations. Furthermore, the timing of the increase in RH back to unladen

conditions is directly related to the number concentration of interstitial aerosols, which as shown

in figure 5(b) are close to the experimental values.
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FIG. 12. Transient response of (a) the volume-mean RH and (b) relative humidity variance σ2
RH , as a

function of time after stopping aerosol injection.

Figure 13 shows the corresponding time series of various droplet statistics during the same

time intervals. In figure 13(a), the depletion of both aerosols and droplets, and how this varies

with the preceding injection rate, is evident. The primary mechanism for aerosol removal in the

current simulations is activation, since there are no sidewalls to deposit onto, and since settling is

negligible owing to the low gravitational settling speed. Figure 13(a) demonstrates this, in that

at late times the droplet number concentration 〈nd〉 approaches the total 〈nT 〉. As the droplet

number concentration falls, figure 13(b) then shows the corresponding value of Da as it changes in

time based on the current values of 〈nd〉 and 〈d〉. Each case begins above the Da = 1 threshold,

indicating a fast cloud droplet response as compared to the turbulence, but eventually transition to

a slow droplet response regime as time goes on. Similar to Chandrakar et al. [6], as time evolves, the

droplet number concentration decreases with a corresponding rise in the mean droplet diameter.

Figures 13(c) and 13(d) show the mean droplet diameter and standard deviation of droplet

diameter, respectively, and in both cases the accelerating cloud collapse is associated with a rise

in both the mean and fluctuation of droplet diameter. The sharp acceleration is consistent with

the crossing of the Da = 1 threshold, as the system adjusts from fast to slow microphysics relative

to the turbulence. The behavior of 〈d〉 and σVd is seen in Chang et al. [3] and Chandrakar et al.
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FIG. 13. Transient response of (a) number concentrations of droplets, aerosols, and their sum; (b) The

transient Damköhler number Da based on the current droplet number density and mean radius (dashed line

is Da = 1); (c) mean droplet diameter; and (d) standard deviation of droplet diameter σd, as a function of

time after stopping aerosol injection.

[6], and is explained by the decrease of competition for excess moisture. For some time interval

which depends on the built-up reservoir of aerosols, the droplet diameter and standard deviation

remain constant in time as the activation and settling processes remain in equilibrium. However

as fewer and fewer aerosols are available for activation, the remaining droplets grow larger owing
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to the reduced competition.

Finally, figure 14 provides the evolution of the full DSD in the transient cases, where the rise

in both 〈d〉 and σVd are clear. The general features of these DSD evolutions are similar to those

observed by Chang et al. [3], and show a clear widening of the DSD with time as the aerosols are

depleted. For the lowest preceding injection rate, droplets are seen to grow to nearly 100 µm in

size towards the end of the cloud, although this likely exaggerated due to the large supersaturation

fluctuations present in the system at late times. With larger reservoirs of interstitial aerosols, the

evolution of the DSD is both quantitatively and qualitatively similar to figure 10 of Chang et al.

[3], although with different timing owing to the differing amounts of built-up aerosols.

IV. CONCLUSIONS

This work seeks to use DNS to simulate recent Pi Chamber experiments as closely as possible,

in order to shed light on processes and statistics which are unavailable to laboratory measurements.

The simulations are performed at a Rayleigh number of 7.9× 106, which is significantly lower than

the experimental value, and employ periodic lateral boundary conditions instead of solid walls

(the dimensionless settling velocity of the droplets are chosen to match experimental conditions).

Despite these differences, and the subtleties associated with mimicking water vapor removal at the

wall [22], salient features of the DSD, aerosol, and water vapor statistics are well reproduced by

the DNS. Certain qualitative features, such as the relationship between aerosol injection rate and

activation fraction, match those seen in experiments as well [10].

From this standpoint, several features are observed which extend our understanding of droplet

dynamics in the turbulent Rayleigh-Bénard flow. First, the supersaturation fluctuations seen by

the droplets, from a Lagrangian point of view, are not necessarily the same as those measured from

a stationary probe, and appear to have heavy, non-Gaussian tails. This has strong implications

on developing accurate stochastic models of cloud droplet microphysics, since it is the Lagrangian

quantity that is required. In particular, vertical gradients of mean supersaturation are strong near

the walls of the chamber, although the region where this is expected to influence bulk droplet

behavior would reduce with increasing Rayleigh number. In the domain interior, many of the

relevant environmental quantities are uniform, but perhaps non-Gaussian.

Another Lagrangian quantity observed in the DNS are the aerosol/droplet lifetimes. Somewhat

unexpectedly, aerosols can undergo upwards of O(10) activation/deactivation cycles during their

lifetime, confusing the notion of a single lifetime which can be used in models [24, 26]. Furthermore,
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FIG. 14. The cloud DSD as a function of time for each of the transient cases. Colors represent the logarithm

of the probability, and range between -5 to -1. The color scale is the same in all panels.

the scaling of mean droplet lifetime with mean droplet size does not behave as 〈τl〉 ∼ 〈d〉−2 as often

assumed; we instead find an inversely proportional relationship. How this relationship behaves with

Ra, and whether it is a fair assessment to take the mean lifetime and droplet diameter over all

droplets at all times, are important subjects of future research.
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Finally, in addition to the comparison of a variety of steady state statistics seen in Chandrakar

et al. [7], we also observe many of the same transient features which occur when abruptly stopping

the aerosol injection. These were explored experimentally in Chang et al. [3] and Chandrakar et al.

[6], and the rapid acceleration of cloud collapse as the interstitial aerosols are depleted is well-

represented in the DNS. Depending on the preceding aerosol injection rate (and therefore reservoir

size), the broadening of the DSD in time near total collapse can be quite dramatic, with a low

number of large droplets rapidly forming and settling out of the domain.

We conclude by stating that DNS of turbulent Rayleigh-Bénard flow is a powerful tool for un-

derstanding not only the Pi Chamber experiments, but also by extension the insights into cloud

microphysics which are accessible through such a setup. Processes associated with aerosol compo-

sition and size, as well as the refinement of Lagrangian properties needed by stochastic models are

now possible from a new perspective, and will be the subject of ongoing research.

APPENDIX

Above, equations 5 – 8 were simplified to highlight the basic structure of the droplet location,

velocity, size, and temperature evolution. Here, we provide the full equations, which can also be

found in Richter et al. [31]:

dxip
dt

= vip, (A.9)

dvip
dt

=
1

τp

(
uf − vip

)
− gpk̂, (A.10)

ddip
dt

=
1

9
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ρp
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dip
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dT ip
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1
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)
+ 3Lv

1

dipcL

ddip
dt
, (A.12)

where, as stated above, uf , qf , and Tf are the air velocity, water vapor mixing ratio, and tem-

perature interpolated to the droplet location using sixth-order Lagrange interpolation. The water

vapor mixing ratio at the droplet surface, q∗, includes modifications to the water vapor pressure

due to both curvature and salinity:

q∗ =
Mw

RuT ipρa
es exp

[
LvMw

Ru

(
1

Tf
− 1

T ip

)
+

Mwσ

RuρwdipT
i
p

− IΦsm
i
s (Mw/Ms)

ρwπdi
3

p /6

]
, (A.13)
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TABLE II. Droplet model parameters

Symbol Description Value/expression

νa Kinematic viscosity of air 1.57× 10−5 m2 s−1

ρa Density of dry air 1.2 kg m−3

ρw Density of pure water 1000 kg m−3

ρp Density of droplet (inc. solute) Variable

cp,a Sp. heat of air at const. press. 1006 J (kg K)−1

cp,v Sp. heat of water vapour at const. press. 1952 J (kg K)−1

cL Specific heat of liquid water 4179 J (kg K)−1

Lv Latent heat of vapourization 2.44× 106J kg
−1

Rd Gas constant of dry air 287 J (kg K)−1

Ru Universal gas constant 8.314 J (mol K)−1

Mw Molecular weight of water 0.018 kg mol−1

Ms Molecular weight of solute 0.0584 kg mol−1

σ Air–water surface tension 7.28× 10−2 N m−1

Sc Dimensionless Schmidt number 0.615

Pr Dimensionless Prandtl number 0.71

Shp Dimensionless Sherwood number Shp = 2 + 0.6Rep
1/2Sc1/3

Nup Dimensionless Nusselt number Nup = 2 + 0.6Rep
1/2Pr1/3

Rep Droplet Reynolds number Rep = 2rip|vip − uf |/νa

where Mw is the molecular weight of water, Ru is the universal gas constant, Lv is the latent heat

of vaporization, σ is the surface tension between water and air, I is the number of diassociated ions

in the solute (assumed NaCl), Φs is an osmotic coefficient, mi
s is the solute mass of the particle,

ρa is the density of air, and ρw is the density of pure water. The saturation vapor pressure es is

evaluated at the local air temperature Tf according to the modified Magnus relation of Alduchov

and Eskridge [41].

In addition to these parameters, equations A.9–A.13 also contain a number of material properties

and nondimensional parameters which are listed in Table II. In particular, Eqs. A.11 and A.12

include the Sherwood (Shp) and Nusselet (Nup) numbers, which account for ventilation effects in

droplet vapor and mass transfer from the droplet surface, as well as the Schmidt (Sc) and Prandtl

(Pr) numbers, which specify the vapour and temperature diffusivities.
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