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Abstract

We theoretically investigate the effect of random fluctuations on the motion of elongated mi-

croswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on

the two-dimensional hyperbolic flow, we consider the effects of translational and rotational diffusion

as well as tumbling, i.e. sudden jumps in the swimmer orientation. Regardless of whether diffusion

or tumbling are the primary source of fluctuations, we find that noise significantly increases the

probability that a swimmer crosses one-way barriers in the flow, which block the swimmer from

returning to its initial position. We employ an asymptotic method for calculating the probability

density of noisy swimmer trajectories in a given fluid flow, which produces solutions to the time-

dependent Fokker-Planck equation in the weak-noise limit. This procedure mirrors the semiclassical

approximation in quantum mechanics and similarly involves calculating the least-action paths of a

Hamiltonian system derived from the swimmer’s Fokker-Planck equation. Using the semiclassical

technique, we compute (i) the steady-state orientation distribution of swimmers with rotational

diffusion and tumbling and (ii) the probability that a diffusive swimmer crosses a one-way barrier.

The semiclassical results compare favorably with Monte Carlo calculations.
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I. INTRODUCTION

The advection of self-propelled particles in externally-driven fluid flows presents many

surprises when compared to passive advection. Perhaps the biggest surprise is that the

transport efficiency of swimmers does not simply increase as swimming speed increases.

For example, when swimmers are placed in a two-dimensional (2D) oscillating vortex array

exhibiting chaotic mixing, faster swimming does not always lead to faster transport [1, 2].

Even in a steady 2D vortex array, swimmer trapping inside vortices may be enhanced when

the particles swim faster, depending on the shape of the particle [3]. Similarly, transport

efficiency does not simply increase as a swimmer’s rotational diffusivity increases, either. In

fact, the opposite occurs in the 2D oscillating vortex array [2, 4]. It is reasonable to expect

that the more a swimmer’s propulsion direction fluctuates, the smaller its net displacement

in a fixed amount of time, and hence the lower the transport efficiency. Unexpectedly

however, the presence of both rotational noise and shear flow can effectively trap swimmers in

certain regions, as has been experimentally observed for swimming bacteria [5] and swimming

phytoplankton [6] in a channel flow. While numerous studies have investigated the spatial

distributions of noisy swimmers in a variety of flows [7–11], a basic understanding of how

rotational noise alters swimmer trajectories is lacking. Our objective in this paper is to

develop a theory that quantifies the effect of noise on swimmer dynamics in externally

driven fluid flows, especially near transport barriers.

Recently, transport barriers analogous to separatrices—and the related invariant manifolds—

of passive advection were identified for self-propelled particles in fluid flows [12]. Perfectly

smooth-swimming particles are blocked by so-called swimming invariant manifolds (SwIMs)

in position-orientation space. The SwIMs project to one-way barriers, called SwIM edges, to

swimmer motion in position space. Swimmers with orientational noise, on the other hand,

can cross SwIM edges, but they are still blocked by one-way barriers known as burning

invariant manifolds (BIMs), which were originally introduced as barriers for propagating

chemical reaction fronts in fluid flows [13, 14]. By one-way barriers, we mean that swimmers

can pass through a BIM or SwIM edge in one direction, but not the other.

This theory was applied to analyze the experimental trajectories of smooth-swimming and

run-and-tumble Bacillus subtilis bacteria in a microfluidic cross-channel featuring a hyper-

bolic fluid flow, illustrated in Fig. 1a. Whereas the run-and-tumble bacteria exhibit strong
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FIG. 1. Experimental data of swimming B. subtilis bacteria trajectories in a microfluidic hyperbolic

flow, u = (Bx,−By), from Ref. [12]. B = 0.44s−1. (a) Streamlines of the hyperbolic fluid flow. (b)

Smooth-swimming bacteria. (c) Run-and-tumble bacteria. The vertical blue lines are SwIM edges

blocking inward swimming particles. The horizontal red lines are SwIM edges blocking outward

swimming particles. In (b) and (c), each trajectory is plotted in units of v0/B, where v0 is the

individual bacterium’s measured swimming speed. Every experimentally recorded trajectory is

plotted, and the x 7→ −x and y 7→ −y symmetries have been used to rectify the trajectories so

they all appear to enter from above and exit right.

rotational noise in the form of sporadic, abrupt changes in swimming direction (Fig. 1c),

the smooth-swimming bacteria tend to swim straight in the absence of a flow, with minimal

rotational noise (Fig. 1b). The vertical lines in Figs. 1b and 1c are the SwIM edges blocking

inward swimming particles, while the horizontal lines are the SwIM edges blocking outward

swimming particles. In the hyperbolic flow, the BIMs coincide exactly with the SwIM edges,

and hence these curves are one-way barriers for both the smooth swimming and run-and-

tumble bacteria. Here, all experimentally recorded trajectories are rectified so they appear

to enter the flow from above and exit to the right. Therefore, there can be no trajectories

to the left of the SwIM edge x = −1, beyond which any trajectory would be swept to the

left, as is evident from Figs. 1b and 1c. However, we observe a gap between the left SwIM

edge and the measured trajectories of run-and-tumble bacteria in Fig. 1c, compared to the

smooth-swimmers in Fig. 1b that can just graze the left SwIM edge before swimming off

to the right. Because the gap represents a depletion of the density of trajectories near the

SwIM edge relative to the smooth swimmer case, we refer to it as the depletion effect. The

depletion effect is caused by the orientation fluctuations of the run-and-tumble bacteria. A

run-and-tumble swimmer near this SwIM edge and initially swimming to the right is very

likely to tumble and end up crossing the left SwIM edge, forcing it to escape to the left. At
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the same time, we observe that the run-and-tumble bacteria swim much closer to the lower

SwIM edge than their smooth-swimming counterparts. This again is due to tumbling. While

smooth swimmers get aligned with the extensional x direction of the flow and thus cannot

swim very far below the line y = 0, run-and-tumble swimmers can tumble out of alignment

and swim towards the lower SwIM edge. These stark differences between the trajectories of

smooth versus run-and-tumble swimmers have motivated the present work.

In this paper, we show how to calculate the probability of particular noisy swimmer

trajectories in a given fluid flow, taking the hyperbolic flow as a case study. Our approach

focuses on computing solutions to the time-dependent Fokker-Planck equation of a swimmer

(alternately known as a master equation or Smoluchowski equation) in the weak-noise limit

[15–19]. This differs from traditional approaches to the swimmer Fokker-Planck equation,

which are focused on the stationary (time-independent) solution and are in the Eulerian

frame-of-reference [5, 8–10]. In contrast, we construct a time-dependent swimmer proba-

bility density function by following the Lagrangian paths of a swimmer. This procedure is

derived from the weak-noise limit in a manner that is nearly identical to the semiclassical

approximation in quantum mechanics [20], so we refer to it as the semiclassical approxima-

tion to the Fokker-Planck equation. We use this approach to quantify the depletion of noisy

swimmers near a BIM, and compare the results of our semiclassical calculations with Monte

Carlo calculations, i.e. direct numerical simulations of the swimmer equations of motion.

The paper is organized as follows. In Sec. II, we provide background information on the

model for swimmer motion employed here and the semiclassical approximation to the Fokker-

Planck equation. In Sec. III, we review the dynamics of a deterministic smooth swimmer in

the hyperbolic flow, in particular the role of the SwIMs and BIMs. In Sec. IV, we compute the

position-independent orientation distributions of a swimmer in the hyperbolic flow, obtaining

results analogous to the orientation distributions of magnetotactic and viscotactic swimmers

in external fields [21–23], and we apply the semiclassical approximation to calculate the

orientation distribution of swimmers with both rotational diffusion and run-and-tumble

dynamics. In Sec. V, we compare Monte Carlo and semiclassical calculations of the depletion

effect. Concluding remarks are in Sec. VI. In the appendix, we present a complete derivation

of the semiclassical approximation to the Fokker-Planck equation.
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II. NOISY SWIMMER DYNAMICS

We consider the motion of an ellipsoidal swimmer in two dimensions, with position r =

(x, y) and orientation n̂ = (cos θ, sin θ). The stochastic differential equations describing a

noisy swimmer in a fluid flow u(r) are [2, 4]

dr = [u(r) + v0n̂] dt+
√

2DT dwr, (1a)

dθ =

[
ω(r)

2
+ αn̂⊥ · E(r)n̂

]
dt+

√
2DR dwθ + dL(ν), (1b)

where ω = ẑ · (∇× u) is the vorticity, n̂⊥ = (− sin θ, cos θ), and E = (∇u +∇uT)/2 is the

symmetric rate-of-strain tensor. The shape parameter α equals (a2 − 1)/(a2 + 1), where a

is the aspect ratio of the ellipse; α varies from −1 to 1, where α = 0 is a circle, and |α| = 1

is an infinitely thin rod. Positive (negative) values of α correspond to swimming parallel

(perpendicular) to the major axis. Each equation of (1) contains a deterministic drift term,

proportional to dt, and noise terms. In Eq. (1a), the noise terms are the independent Wiener

processes wr = (wx, wy) and account for translational diffusion with diffusivity DT . Note

that for certain swimmers, the strength of the translational diffusivity along the particle’s

major axis may differ from the translational diffusivity along the minor axis, and their may

be additional correlations between translational and rotational noise [24]. We ignore these

issues here for simplicity.

Equation (1b), on the other hand, contains two stochastic terms describing fluctuations

in the swimming direction. We distinguish between two types of rotational noise: rotational

diffusion and tumbling. Rotational diffusion refers to continual random perturbations in the

swimmer orientation, such that in the absence of a flow, the orientation θ would exhibit

free diffusion (given by the Wiener process wθ) with a rotational diffusivity DR. This can

arise due to random fluctuations in the propulsion force of the swimmer [24, 25] or from

the thermal fluctuations of the surrounding fluid. In the former case, the noise mechanism

would lead to correlations between translational and rotational diffusion, but here we neglect

those for simplicity. Tumbling refers to the sudden resetting of θ to a random orientation,

independent of its present value, which occurs sporadically as a Poisson process L(ν) with

frequency ν. This kind of sudden, random reorientation is seen in swimming bacteria in the

“run-and-tumble” mode of swimming. In practice, the distribution of new orientations may

depend on the previous value, as is the case for wild-type strains of the swimming bacteria
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E. coli [26], but we neglect this here for simplicity. Hence, the new angle after a tumble is

uniformly and randomly distributed between 0 and 2π.

Our goal in this paper is to estimate the probability of various swimmer trajectories of

Eq. (1). This can certainly be accomplished by Monte Carlo simulations, i.e. direct nu-

merical simulations of Eq. (1), but we also develop an analytical approach to calculating

such probabilities, which is less computationally costly and provides deeper theoretical in-

sight into the swimmer dynamics. To study the probability of swimmer trajectories, we

investigate the Fokker-Planck equation for the probability density of the particle P (r, θ, t)

[27],

∂P

∂t
= −∇ · (FP ) +

ε

2

[
γ

(
∂2P

∂x2
+
∂2P

∂y2

)
+
∂2P

∂θ2

]
+ λ

[
−P +

1

2π

∫ 2π

0

P (r, θ′, t)dθ′
]
, (2)

where we have abbreviated the deterministic drift terms from Eq. (1) as F, with

F =
(
ux + v0 cos θ, uy + v0 sin θ,

ω

2
+ αn̂⊥ · En̂

)
. (3)

Here, ∇ = (∂/∂x, ∂/∂y, ∂/∂θ). We have non-dimensionalized the coordinates using a length

scale L and velocity scale U , so that

ε =
2DRL
U

(4)

is the strength of rotational diffusion, γ = DT/(L2DR) is the ratio of translational diffusion

to rotational diffusion (usually γ < 1), and λ = νL/U is the non-dimensional tumbling rate.

Note that the rotational Péclet number is Pe = 2/ε [9]. The first two terms on the right-

hand side of Eq. (2) are the usual drift and diffusion terms. The third term proportional to

λ accounts for tumbling, with the first term in brackets describing the loss of probability due

to tumbling out of the present angle, and the second term describing the gain of probability

from the swimmers at all other angles that have tumbled into the present angle. Equation

(2) is difficult to attack in general, so we focus on special cases where exact or approximate

analytical (or semi-analytical) solutions may be found.

Of particular interest is the λ = 0 case, describing non-tumbling swimmers or, alterna-

tively, the evolution of the probability density in between tumble events. In this case we

seek asymptotic solutions in the weak diffusion (ε� 1) limit, which have the WKB form

P (r, θ, t) ≈ A(r, θ, t) exp

[
−W (r, θ, t)

ε

]
. (5)
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Equation (5) has the same form as the semiclassical approximation to the wave function in

quantum mechanics, and hence we refer to it as the semiclassical approximation. Substitut-

ing this approximation into Eq. (2) with λ = 0 leads to a Hamilton-Jacobi equation for W

and a related transport equation for A.

Here, we briefly describe the mathematical theory of approximation (5), while a detailed

derivation and discussion are contained in Appendix A. The solution W to the Hamilton-

Jacobi equation (A11) is related to the classical action accumulated along the trajectories

of a particular Hamiltonian system associated with Eq. (2). The Hamiltonian is given by

H(q,p) =
1

2

[
γ(p2x + p2y) + p2θ

]
+ p · F(q), (6)

where q = (x, y, θ) and p = (px, py, pθ). Equation (6) follows from the Hamiltonian (A12)

for a general Fokker-Planck equation (A2), of which Eq. (2) (with λ = 0) is a special case.

The function W is equivalent to the Onsager-Machlup-Freidlin-Wentzell action function

[17, 28, 29] which arises in nonequilibrium statistical mechanics [15, 16] and rare event

modeling [30]. At each point (r, θ), the action W (r, θ, t) can be expressed as an integral

along the trajectory of the Hamiltonian system with Hamiltonian (6) that arrives at that

point at time t. This makes Eq. (5) a Lagrangian, as opposed to Eulerian, description of the

probability density. The trajectories associated with the minima of W , i.e. the minimum-

action paths, correspond to the most likely trajectories of a noisy swimmer, because at

lowest order in ε, the probability density (5) is peaked at these points. Hence, finding the

minimum-action paths is the main focus of most works involving the Onsager-Machlup-

Freidlin-Wentzell action function, including recent work on escape paths of active particles

in potential wells [19]. In contrast, we consider all possible paths, in order to get a global

approximation to the probability density (5).

Throughout the paper, we focus on the hyperbolic flow u = (Bx,−By). Therefore,

Eq. (1) becomes

dx = (x+ cos θ)dt+
√
εγdwx, (7a)

dy = (−y + sin θ)dt+
√
εγdwy (7b)

dθ = −α sin(2θ)dt+
√
εdwθ + dL(λ). (7c)

We have taken the velocity scale U = v0 and the length scale L = v0/B in the non-

dimensional equation (7). The typical values of ε, γ, λ, and α depend on the system
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being considered. In the hyperbolic flow experiments leading to Fig. 1, B = 0.44 s−1 [12].

The measured rotational diffusivity for several species of swimming phytoplankton is DR =

0.15–0.27 rad2/s [6], which in the hyperbolic flow would yield ε = 0.68–1.2. For wild-type

E. coli, which exhibit run-and-tumble behavior, the rotational diffusivity during runs is

DR = 0.06 rad2/s [31] and the tumbling frequency is approximately ν = 1 s−1 [26], which

in the hyperbolic flow would yield ε = 0.27 and λ = 2.3. Assuming that the translational

diffusion for wild-type E. coli is due only to thermal fluctuations so that DT = 0.2 µm2/s

[8] and a swimming speed v0 = 14 µm/s [26], the translational-to-rotational diffusion ratio

would be γ = 0.003. Note that in the hyperbolic flow, ε and λ can always be made smaller

and γ larger by increasing B, the flow strength parameter. We take α = 1 in all numerical

computations, corresponding to the elongated shape of swimming bacteria like E. coli and

B. subtilis. Numerical solutions of Eq. (7) are obtained using the Euler-Maruyama method.

Before investigating the dynamics of noisy swimmers in the hyperbolic flow, we study the

deterministic dynamics of Eq. (7) with ε = 0 and λ = 0.

III. DETERMINISTIC DYNAMICS IN THE HYPERBOLIC FLOW

The deterministic dynamics of Eq. (7) is best understood through the system’s fixed

points and invariant manifolds, previously studied in Ref. [12]. The system possesses four

fixed points, which we refer to as swimming fixed points (SFPs) to distinguish them from

the passive fixed points of the fluid flow. Denoting the phase-space coordinate q = (x, y, θ),

the fixed points are

qout
± =

(
0,±1,±π

2

)
, qin

+ = (1, 0, π), qin
− = (−1, 0, 0), (8)

illustrated in Fig. 2. Each of the SFPs is a saddle. When α > 0, and in particular when

α = 1, the qout
± fixed points have stable-unstable-unstable (SUU) linear stability, and the qin

±

fixed points have stable-stable-unstable (SSU) linear stability. Hence, the qout
± SFPs possess

2D unstable manifolds, while the qin
± fixed points possess 2D stable manifolds. We refer to

these 2D manifolds as swimming invariant manifolds (SwIMs), to distinguish them from the

invariant manifolds of passive advection [12].

Taken as a whole, the stable and unstable SwIMs consist of two interlocking S-shaped

sheets, plotted in Fig. 2a. The stable SwIMs (the blue surface) attached to qin
+ and qin

− share
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FIG. 2. Phase space structure of a swimmer in the hyperbolic flow, for α = 1. (a) Swimming fixed

points (SFPs) and their invariant manifolds (SwIMs). The red surfaces are the unstable SwIMs

of qout
± , and the blue surfaces are the stable SwIMs of qin

± . The dark blue lines are the 1D stable

SwIMs of qout
± . The dark and light grey planes are constant-θ invariant surfaces which are displayed

for visualization purposes. (b) Projection of swimming fixed points and SwIMs into the xy plane.

The black curves are the streamlines of the hyperbolic flow. The red (blue) lines are the unstable

(stable) SwIM edges. The small arrows perpendicular to the SwIM edges point in the swimming

direction.

common boundaries along the lines {(x, y, θ) | x = 0, θ = ±π} which are the 1D stable

manifolds of qout
± (dark blue lines). Hence, the union of the 2D stable SwIMs with the 1D

stable manifolds of qout
± is a surface (blue surface in Fig. 2a) which separates phase space

into two pieces. By symmetry, the same geometric shape can be constructed by taking the

union of the unstable SwIMs of qout
± with the 1D unstable manifolds of qin

±, leading to the red

surface in Fig. 2a. The shape of the stable SwIMs is independent of the y coordinate and,

similarly, the shape of the unstable SwIMs is independent of the x coordinate. This occurs

because in the hyperbolic flow, the xθ equations Eq. (7a) and (7c) are decoupled from y and

similarly the yθ equations Eq. (7b) and (7c) are decoupled from x. The stable and unstable

SwIMs intersect along heteroclinic orbits going from one fixed point to another, indicated

by the yellow curves in Fig. 2a.

Cross-sections of the SwIMs are shown in Fig. 3, along with the phase portraits of the

xθ dynamics and the yθ dynamics. Figure 3a shows that swimmers on the left of the stable
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SwIM ultimately exit the flow to the left, while swimmers on the right ultimately exit right.

Similarly, the unstable SwIM (Fig. 3b) separates swimmers that entered the flow from the

top from those which entered from the bottom. The SwIMs are therefore transport barriers

to swimmers in the hyperbolic flow, because they carve out the xyθ phase space into distinct,

qualitatively different families of trajectories. Importantly, these barriers are nonporous in

phase space, meaning no swimmer trajectory can cross them (in the absence of noise).

On the other hand, in position space, the SwIMs project to one-way barriers, allowing

swimmers to cross in one direction but not the other. Figure 2b shows the singularities of the

projection of the SwIMs into the xy plane—that is, the folds of the S-shapes which bound

the projection of the 2D surfaces into the plane. We refer to these curves as SwIM edges

[12]. The stable SwIM edges at x = ±1 (blue curves in Fig. 2b) block inward swimming

particles, while allowing outward swimming particles through. To see this, note that for

x = −1, ẋ ≤ 0 for all θ, and for x = 1, ẋ ≥ 0 for all θ, as shown in Fig. 3a. Along the

stable SwIM edges, the outward fluid flow overpowers the swimmers and they are swept

away from the center of the flow. Similarly, the unstable SwIM edges (red curves in Fig. 2b)

block outward swimming particles, while inward swimming particles can pass through them.

Here, for y = 1, ẏ ≤ 0, and for y = −1, ẏ ≥ 0. On the unstable SwIM edges, it is the inward

flow which overpowers the swimmers and pushes them towards the center of the flow.

The SwIM edges in the hyperbolic flow coincide exactly with the BIMs—the 1D invariant

manifolds of the SFPs when α = −1 [12, 32]. This is important because SwIM edges are only

guaranteed to be one-way barriers for purely deterministic swimmers. BIMs, on the other

hand, have stronger barrier properties, in that they are also one-way barriers for swimmers

with rotational diffusion or run-and-tumble dynamics in the limit of negligible translational

diffusion [12]. Thus, in the hyperbolic flow, the SwIM edges also act as one-way barriers

for swimmers with rotational noise. This explains why the run-and-tumble bacteria in

the hyperbolic flow experiment remain bounded by the unstable SwIM edge at y = −1 in

Fig. 1b. Similarly, the stable SwIM edges act as points of no return for all swimmers. Once a

swimmer swims over a stable SwIM edge, it is unable to swim back to the center of the flow.

This is the origin of the depletion effect we observe when comparing the smooth swimming

bacteria data (Fig. 1a) to the run-and-tumble data (Fig. 1b). The orientation fluctuations

of tumbling bacteria make it very likely that a bacterium near the SwIM edge at x = −1,

for example, swims across it, precluding the possibility that it subsequently exits the flow to
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FIG. 3. Phase portraits of swimmer dynamics in the hyperbolic flow, for α = 1. (a) xθ cross-section

of the dynamics. The blue curve is the cross-section of the stable SwIM of qin
± . (b) yθ cross-section

of the dynamics. The red curve is the cross-section of the unstable SwIM of qout
± . In both panels,

the solid and dotted grey lines are cross-sections of the stable and unstable constant-θ invariant

surfaces, respectively.

the right. Hence, we expect to observe much fewer trajectories of run-and-tumble swimmers

initially near the left SwIM edge and exiting right relative to smooth swimmers, consistent

with the experimental data.

IV. STEADY-STATE ORIENTATION DISTRIBUTIONS IN THE HYPERBOLIC

FLOW

Because the θ̇ equation (7c) is independent of x and y, we begin by looking at the effect of

noise on the orientation dynamics alone in the hyperbolic flow. The Fokker-Planck equation

for the probability density P (θ, t) restricted to the orientation degree-of-freedom is

∂P

∂t
= − ∂

∂θ
[−α sin(2θ)P ] +

ε

2

∂2P

∂θ2
+ λ

(
−P +

1

2π

)
. (9)

We focus on the stationary distributions of the θ variable, which are the stationary solutions

(∂P/∂t = 0) of Eq. (9). We first treat the two limiting cases (i) no tumbling (λ = 0),

and (ii) no rotational diffusion (ε = 0), before proceeding to the case where there is both

tumbling and rotational diffusion. Note that the orientation dynamics of a noisy swimmer

in the hyperbolic flow is very similar to the orientation dynamics of swimmers in other types
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external fields, such as magnetotactic swimmers in external magnetic fields [21, 22] and

swimmers in viscocity gradients [23]. The main difference here compared to the preceding

examples, aside from the source of the torque on the swimmer, is that Eq. (9) is invariant

under the symmetry θ 7→ θ + π.

A. Orientation dynamics with rotational diffusion only (λ = 0)

Without tumbling, the θ dynamics is governed by

dθ = −α sin(2θ)dt+
√
εdwθ. (10)

The deterministic part of the equation has the form of the gradient of a potential V (θ),

meaning we can write dθ = −(∂V/∂θ)dt +
√
εdwθ, with V (θ) = −α cos(2θ)/2. Hence, the

dynamics is equivalent to that of an overdamped particle in the potential V (θ) with noisy

driving. In this case, the long-time probability distribution of θ evolves towards a stationary

state which is peaked at the potential wells at θ = 0 and θ = π (for α > 0). This probability

distribution P ε(θ) can be found by solving for the stationary state of Eq. (9) with λ = 0. For

gradient systems, the solution is simply P ε(θ) ∝ exp[−2V (θ)/ε], which is simple to verify,

and hence we have

P ε(θ) ∝ exp
[α
ε

cos 2θ
]
. (11)

Clearly, the distribution depends on a single dimensionless parameter,

α

ε
=

Aα

2DR

, (12)

which is the ratio of the rate of alignment with the extensional direction of the flow, Aα, to

the intensity of the noise. Normalizing the probability distribution, we obtain

P ε(θ) =
[
2πI0

(α
ε

)]−1
exp

[α
ε

cos 2θ
]
, (13)

where I0(x) is a modified Bessel function of the first kind. The stationary distribution

(13) is invariant under the shift symmetry θ 7→ θ + π, as is the underlying stochastic

process (10). Equation (13) is plotted in Figs. 4a and 4b, along with histograms from Monte

Carlo simulations of Eq. (10). In Fig. 4, we map the Monte Carlo data onto the interval

θ ∈ (−π/2, π/2) using symmetry and only plot Eq. (13) in this range. Similar results were

previously obtained for magnetotactic swimmers in an external magnetic field with rotational

diffusion [22].
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FIG. 4. Stationary θ distributions with α = 1, with no tumbling (a), (b), and no rotational diffusion

(c), (d). Histograms are Monte Carlo simulations of Eq. (7c), and red curves are the theoretically

predicted distributions given by Eq. (13) for the no-tumbling case and Eq. (19) for the no-diffusion

case. Distributions are plotted in the range θ ∈ (−π/2, π/2). (a) λ = 0, ε = 0.1. (b) λ = 0, ε = 1.

(c) ε = 0, λ = 1.6. (d) ε = 0, λ = 5.

B. Orientation dynamics with tumbling only (ε = 0)

Here we consider the case of the stationary θ distribution under tumbling only. Every

time a swimmer tumbles, its orientation is drawn from the uniform distribution. If it tumbles

at time τ = 0, then until the next tumble, its probability density P (θ, τ) evolves according

to the Liouville equation

∂P

∂τ
=

∂

∂θ
[α sin(2θ)P ] , (14)

with the initial condition P (θ, 0) = P0(θ) = 1/2π. Intuitively, we thus expect that the

steady-state distribution under tumbling only, Pλ(θ), should consist of the superposition of

probability distributions P (θ, τ) describing the relaxation of θ in between tumbles, weighted
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by the probability λe−λτdτ that the last tumble occurred a time τ in the past. In other

words, the stationary probability distribution must be [33]

Pλ(θ) = λ

∫ ∞
0

P (θ, τ)e−λτdτ. (15)

It is straightforward to verify that Eq. (15) is a stationary solution of Eq. (9) with ε = 0.

An explicit solution to Eq. (14) can be obtained using the method of characteristics, be-

cause the θ equation of motion (10) in the absence of noise (ε = 0) can be solved analytically.

The expression for the deterministic trajectory θ∗(t) is

θ∗(t) = tan−1
(
e−2αt tan θ0

)
. (16)

where θ0 = θ(0) is the initial condition, and here it is assumed θ0 ∈ [−π/2, π/2]. This

condition arises due to the use of the tan−1 function; when θ0 is outside this range, this

solution needs to be shifted either up or down by π, depending on θ0. Then, the solution to

Eq. (14) is

P (θ, τ) = P0

(
tan−1

(
e2ατ tan θ

)) e2ατ

cos2 θ + e4ατ sin2 θ
, (17)

where P0(θ) = P (θ, 0) is an arbitrary initial orientation distribution (see Appendix B for

the derivation). Again, this form of the solution is valid for θ ∈ [−π/2, π/2], and a shift by

π in the argument of P0 in Eq. (17) adapts the solution to the excluded range of θ.

Next, we obtain the stationary θ distribution Pλ(θ) under tumbling with rate λ by sub-

stituting Eq. (17) into Eq. (15), with P0 = 1/2π. Rescaling the time in Eq. (15) by the

tumbling rate λ, we obtain a complicated integral that depends on a single dimensionless

parameter that we call the tumbling number Tu,

Tu =
λ

2α
=

ν

2Aα
. (18)

This is essentially the ratio of the tumbling rate to the relaxation rate of a swimmer’s

orientation to its equilibrium (parallel to the extensional x-direction) in the hyperbolic

flow. Note, the latter relaxation rate is distinct from the relaxation rate of the orientation

distribution of a swimmer with rotational diffusion to the stationary state given by Eq. (13).

It is conceivable that this is the more relevant time scale for defining Tu in the case where we

have both tumbling and rotational diffusion. The stationary distribution Pλ can be shown

to be equal to

Pλ(θ) =
Tu

2π
2F1(1, (1 + Tu)/2; (3 + Tu)/2;− cot2 θ)

(1 + Tu) sin2 θ
, (19)
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where 2F1(a, b; c; z) is the ordinary hypergeometric function. Like P ε(θ) (Eq. (13)), Eq. (19)

is invariant under the shift symmetry θ 7→ θ + π. To be sure, the hypergeometric function

makes the expression (19) of the tumbling swimmer’s stationary distribution more opaque

than its counterpart for rotational diffusion.

In Figs. 4c and 4d, we plot Eq. (19), superimposed over histograms from numerical

simulations of tumbling swimmers in the hyperbolic flow, to obtain a basic intuition for how

the distribution depends on the parameters. We see an excellent agreement between the

theory and simulations. For sufficiently small tumbling rates such that Tu ≤ 1 in Eq. (18)

(Fig. 4c), it can be shown that Pλ is singular at the orientation equilibrium θ = 0 and

relatively flat for all other orientations. On the other hand, for Tu > 1 (Fig. 4d), the peak

at the equilibrium becomes finite, and the difference between the probabilities near the stable

and unstable equilbria becomes more modest. Again, our results mirror those obtained for

magnetotactic run-and-tumble bacteria in Ref. [22].

C. Orientation distribution with rotational diffusion and tumbling

Having treated the limiting cases of one type of noise versus another, we now seek the

stationary θ distribution of a run-and-tumble swimmer with rotational diffusion, which we

denote P ε
λ(θ). This requires slightly modifying the approach of Sec. IV B, where the sta-

tionary distribution is the weighted time average of the probability distributions describing

relaxation to equilibrium, P (θ, τ) [see Eq. (15)]. Namely, when we have both tumbling and

rotational diffusion, we need to obtain P (θ, τ) by solving the time-dependent Fokker-Planck

equation
∂P

∂τ
=

∂

∂θ
[α sin(2θ)P ] +

ε

2

∂2P

∂θ2
, (20)

with initial condition P0(θ) = 1/2π, instead of the Liouville equation (14). An exact ana-

lytical solution of Eq. (20) is unavailable, so we resort to a short-time, small ε asymptotic

approximation based on the semiclassical techniques detailed in Sec. A 5.

1. Approximation of the Fokker-Planck propagator for small ε

P (θ, τ) is the probability density of reaching θ at time τ under Eq. (10) with a random

initial condition drawn from a uniform distribution. We approximate P (θ, τ) by making use
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FIG. 5. Time evolution of the propagatorK(θ, θ0, t) for θ0 = 1.07, α = 1, and ε = 0.25. Histograms:

numerical simulations of Eq. (10) with 104 trajectories. Red curves: theoretical prediction given

by Eq. (22).

of the semiclassical approximation to the Fokker-Planck equation (20). We note that this

distribution can be expressed as an integral over the propagator K(θ, θ0, τ), which is the

probability distribution of reaching θ in time τ from a fixed initial condition θ0, as

P (θ, τ) =
1

2π

∫
K(θ, θ0, τ) dθ0. (21)

Our strategy is to approximate P (θ, τ) by approximating K analytically and performing the

integral (21) numerically.

The propagator K can be approximated in the small ε limit using the semiclassical

approach described in Appendix A. In particular, we are satisfied with an approximation

valid for short times, because the long-time behavior of P (θ, τ) is suppressed in the integral

(15) for the steady-state distribution. Therefore, we make use of the Gaussian approximation

of K about a deterministic trajectory, derived for a general 1D Fokker-Planck equation of

the form (20) in Sec. A 5. In this case, K is peaked around the trajectory θ∗(τ) initiated at

θ0, given by Eq. (16). The final expression for K follows from Eqs. (A64) and (A65), which

after lengthy but straightforward calculations yields

K(θ, θ0, τ) ≈
√

1

2πε

∂2R

∂θ2
exp

[
− 1

2ε

∂2R

∂θ2
(θ − θ∗(τ))2

]
, (22)

where
∂2R

∂θ2
=

4α (e2ατ + e−2ατ tan2 θ0)
2

e4ατ + 8ατ tan2 θ0 − e−4ατ tan4 θ0 − 1 + tan4 θ0
. (23)

We illustrate the validity of the approximate probability distribution (22) by comparing

the prediction to numerical simulations of Eq. (10). One comparison is shown in Fig. 5,

where at t = 0 we initialized the swimmers with the orientation θ0 = 1.07, not terribly far
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from the turning point θ = π/2 ≈ 1.57, with a modest noise strength of ε = 0.25. These

parameters were selected to push the limits of our approximations; not only do we assume

ε is small, but our calculation of K(θ, θ0, τ) neglects entirely the contributions of paths that

cross the turning point at θ = π/2 ≈ 1.57 and relax to the equilibrium at θ = π instead of

θ = 0. Despite these limitations, we see that the approximate K(θ, θ0, τ) given by Eq. (22)

does a good job both of tracking the center of the distribution of trajectories and accounting

for their spread as a function of time. After some time, the variance of the approximate

distribution (∂2R/∂θ2)−1 saturates and the centroid converges onto θ = 0, yielding a steady-

state. This distribution is reasonably close to the numerical one at t = 4. However, we

know that if we continue the numerical simulations for very long times, then eventually the

distribution should approach the exact steady-state given by Eq. (13) (Figs. 4a and 4b). In

contrast to our approximate distribution, which only has one peak that eventually converges

to θ = 0, the true steady-state distribution is symmetrically peaked about θ = 0 and θ = π.

Over long times, this is achieved as the noise drives some swimmers’ orientations over the

potential barriers at θ = ±π/2, causing them to settle down around θ = π for long times.

This process is reflected by the growing peak in the density of simulated trajectories at

θ = π in Fig. 5c and 5d. Our approximate distribution manifestly neglects this process,

because the action associated with such trajectories is larger than for trajectories near the

deterministic path, which are the only trajectories accounted for in our approximation.

2. Approximation of the stationary state

We can now compute the stationary orientation distributions of swimmers with both

tumbling and rotational diffusion. To recap, we have an explicit approximation (22) of

K(θ, θ0, τ), the time-dependent probability distribution of θ for a rotationally-diffusing swim-

mer with orientation θ0 at time t = 0 (which also requires Eqs. (23) and (16) to evaluate).

Thus, we are able to numerically evaluate our expression (21) for the time-dependent proba-

bility distribution P (θ, τ) of θ for a rotationally-diffusing swimmer with an initially uniform

orientation distribution. This initial state corresponds to the swimmer’s orientation distri-

bution after a tumble. Therefore, we can finally evaluate Eq. (15) for P ∗λ (θ), the stationary

θ distribution of a tumbling and rotationally-diffusing swimmer.

We proceed by evaluating Eqs. (21) and (15) numerically, and we compare the results
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FIG. 6. Stationary θ distributions with α = 1, with both tumbling and rotational diffusion.

Histograms are Monte Carlo simulations of Eq. (7c), and red curves are the theoretically predicted

distributions given by the numerical evaluation of Eq. (15) using Eqs. (21) and (22). Distributions

are plotted in the range θ ∈ (−π/2, π/2). (a) ε = 0.1, λ = 1.6. (b) ε = 0.1, λ = 5. (c) ε = 1,

λ = 1.6. (d) ε = 1, λ = 5.

with numerical simulations of tumbling and rotationally-diffusing swimmers, i.e. simulations

of Eq. (7c). The results are shown in Fig. 6, with all four possible combinations of ε and λ

used in Fig. 4. Without rotational diffusion (Figs. 4c and 4d), the distribution peak at θ = 0

is very sharp. Comparing with the distributions in Fig. 6, we conclude rotational diffusion

smooths out these peaks. We observe good agreement between the stochastic simulations

and the semiclassical theory in all cases. Thus, our semiclassical method for evaluating

P ε
λ(θ) can in principle be used to fit experimental data, allowing the determination of the

effective rotational diffusivity and tumbling rate of swimmers in the hyperbolic flow.
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V. DEPLETION EFFECT

Here, we present Monte Carlo and semiclassical calculations quantifying the depletion

effect. We quantify the depletion effect by calculating the probability Pr(x0) that a swimmer

ultimately exits right with a given initial position −1 < x0 < 1 and a given intensity of the

noise. For an x0 near the BIM x = −1, the signature of the depletion effect is a decreasing

Pr(x0) for increasing noise intensity. A low probability of right-exiting swimmer trajectories

initialized near x = −1 would be consistent with the absence of such trajectories for run-

and-tumble bacteria in the experimental data shown in Fig. 1. Conversely, for an x0 near

the BIM x = 1, Pr(x0) should increase with increasing noise intensity. This is simply due

to the symmetry of the hyperbolic flow, which requires that

Pr(−x0) = 1− Pr(x0). (24)

We focus solely on the dynamics in the xθ plane, because it is independent of the y variable,

as discussed in Sec. III. Hence, Eq. (2) becomes

∂P

∂t
= −∇ · (fP ) +

ε

2

(
γ
∂2P

∂x2
+
∂2P

∂θ2

)
+ λ

[
−P +

1

2π

∫ 2π

0

P (x, θ′, t)dθ′
]
, (25)

where

f = (x+ cos θ,−α sin(2θ)) (26)

is the drift restricted to the xθ plane. In Eq. (25) and throughout this section, we also take

∇ = (∂/∂x, ∂/∂θ).

We restrict our attention to the case where rotational diffusion dominates translational

diffusion, i.e. γ � 1, and we fix γ = 0.1. When γ = 0, all swimmers which cross the line

x = 1 must ultimately exit right, due to the BIM at x = 1 blocking inward swimming

particles. Therefore, the probability to exit right may be calculated by integrating the

probability current through x = 1. We assume this remains approximately true for small γ.

Defining Pr(x0, t) as the probability that a swimmer has exited right by time t, we have

Pr(x0, t) =

∫
x>1

P (x, θ, t)dxdθ. (27)

Differentiating Eq. (27) with respect to time and using Eq. (25), we obtain the probability
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current

∂ Pr

∂t
=

∫
x>1

{
−∇ · (fP ) +

ε

2

(
γ
∂2P

∂x2
+
∂2P

∂θ2

)
+ λ

[
−P +

1

2π

∫ 2π

0

P (x, θ′, t)dθ′
]}

dxdθ

= −
∫
x>1

∇ · Jdxdθ, (28)

where

J =
[
f − ε

2
D∇(lnP )

]
P (29)

is the probability current density excluding tumbling, with

D =

γ 0

0 1

 . (30)

The tumbling contribution in Eq. (28) vanishes upon integration over θ. Using the divergence

theorem, the probability current (28) becomes

∂ Pr

∂t
=

∫ 2π

0

J(1, θ, t) · x̂dθ, (31)

and thus the probability to exit right is given by

Pr(x0) =

∫ ∞
0

dt

∫ 2π

0

dθ

[
1 + cos θ − εγ

2

∂

∂x
(lnP (1, θ, t))

]
P (1, θ, t). (32)

For γ = 0, Eq. (32) is exact. For small γ > 0, Eq. (32) is an approximation, because

swimmers close to the righthand side of the BIM may fluctuate over to the lefthand side

due to translational diffusion.

A. Monte Carlo calculations with diffusion or tumbling

Monte Carlo calculations of the swimmer probability to exit right as a function of x0

confirm that the depletion effect is caused by noise. For each x0, we computed Pr(x0) by

integrating Eq. (7) for 50,000 initial conditions with randomly selected initial orientations

θ0 from t = 0 to t = 6. The probability to exit right, according to Eq. (27), is then the

fraction of trajectories for which x > 1 at the end of the simulation. Figure 7 shows the

results for Pr(x0) for swimmers with diffusion only (λ = 0, Fig. 7a) and swimmers with

tumbling only (ε = 0, Fig. 7b). For the λ = 0 swimmers, θ0 was drawn from the stationary

distribution P ε(θ0) given by Eq. (13). For the ε = 0 swimmers, θ0 was drawn from the
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FIG. 7. Monte Carlo calculations of swimmer probability to exit right Pr(x0), for α = 1 swimmers

in the hyperbolic flow. (a) λ = 0, γ = 0.1, and ε = 0.1 (©), ε = 0.3 (∗), ε = 0.5 (×), ε = 0.7 (�),

and ε = 0.9 (5). (b) ε = 0 and λ = 0.167 (©), λ = 0.5 (∗), λ = 1 (×), and λ = 2 (�). (c)

ε = λ = 0.

stationary distribution Pλ(θ0) given by Eq. (19). We also show Pr(x0) for deterministic

swimmers (ε = λ = 0) initialized with a uniform distribution of θ0 in Fig. 7c. Here, Pr(x0)

is obtained by calculating the fraction of trajectories on the right side of the SwIM at a

given x0 (see Fig. 3a).

Figure 7 shows that as the intensity of noise increases, Pr(x0) increases for x0 > 0 and

decreases for x0 < 0. This occurs both for swimmers with diffusion only (Fig. 7a) and for

swimmers with tumbling only (Fig. 7b), where the intensity of noise effectively increases

when the tumbling frequency λ increases. The reduction of Pr(x0) for x0 < 0 for noisier

swimmers is consistent with the depletion effect observed in the experimental data shown

in Fig. 1. For smooth swimming bacteria (Fig. 1a), which behave like swimmers with weak

diffusion, the exit-right probability Pr(x0) is substantial for most values of x0, even those

relatively close to the BIM at x = −1 (Fig. 7a). Therefore, it is not unlikely to observe

bacteria trajectories which graze the BIM at x = −1, as we indeed see in Fig. 1a. For

run-and-tumble bacteria on the other hand (Fig. 1b), Pr(x0) is very small near x0 = −1 for

sufficiently large λ (Fig. 7b). Therefore, it is very unlikely to observe bacteria trajectories

that pass near x = −1 and subsequently exit right, explaining the paucity of trajectories

near x = −1 in Fig. 1b. Because fluctuations can cause the swimmers to cross one-way

barriers in the flow, fluctuations can dramatically impact a swimmer’s ability to navigate a

fluid flow.
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FIG. 8. Comparison between the minimum-action paths and noisy trajectories (λ = 0, γ = 0.1,

ε = 0.0625) of a swimmer exiting right with an initial condition (x0, θ0) = (0.5, 2) (black circle).

The black curve is the deterministic trajectory, which exits left. The solid jagged curves are

representative noisy trajectories hitting x = 1 in time t ≈ 1 (green) and t ≈ 2 (yellow). The

dotted curves are the minimum-action paths hitting x = 1 at t = 1 (green) and t = 2 (yellow).

They are projections into the xθ plane of solutions to the boundary value problem seeking the

trajectories (x(t), θ(t), px(t), pθ(t)) of Hamiltonian (33) with the specified initial condition (x0, θ0),

final position x(t) = 1, and final momentum pθ(t) = 0. The blue curve is the stable SwIM of the

swimming fixed point (blue dot).

B. Semiclassical approximation for diffusion

We use the semiclassical approximation to compute Pr(x0) when λ = 0 and investi-

gate how accurately it matches the Monte Carlo calculations. For the xθ dynamics in the

hyperbolic flow, Hamiltonian (6) becomes

H(x, θ, px, pθ) = γ
p2x
2

+
p2θ
2

+ px(x+ cos θ)− pθα sin(2θ). (33)

We evaluate Eq. (32) for Pr(x0) using our semiclassical approximation for P (x, θ, t). This

essentially requires integrating over a subset of trajectories of Eq. (33), which begin at x0

at t = 0 and hit x = 1 at a later time. One advantage of the semiclassical approximation
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is that this set of trajectories is independent of ε, so once these trajectories are computed,

Eq. (32) can be evaluated for any arbitrary value of ε. Another advantage is that this set

of trajectories provides insight into the actual paths in xθ space that noisy swimmers take

on their way to exiting right.

To illustrate the relationship between the trajectories of Hamiltonian (33) and the noisy

trajectories, we first consider the semiclassical evolution of a probability density initially

concentrated at a single point (x0, θ0). This corresponds to an initial condition

P0(x, θ) = δ(x− x0)δ(θ − θ0), (34)

which is the initial condition for the propagator of the Fokker-Planck equation (Eq. (A6)).

The semiclassical solution for such an initial condition (Eq. (A39)) requires one to integrate

all trajectories of Hamiltonian (33) beginning at (x0, θ0), which means considering all possible

initial momenta (px0, pθ0) at that point (Appendix A 1). This 2D surface of initial conditions

of the Hamiltonian system is called a Lagrangian manifold [20]. Along the way, one keeps

track of the accumulated actionR(x, θ, x0, θ0, t) along each trajectory (Eqs. (A16) and(A19)).

For Hamiltonian (33), the accumulated action is

R(x, θ, x0, θ0, t) =
1

2

∫ t

0

[
γpx(τ)2 + pθ(τ)2

]
dτ, (35)

where the integral is along the trajectory connecting (x0, θ0) to (x, θ) in time t. In the case of

the propagator initial condition, the function W of the semiclassical probability density (5)

is simply equal to the accumulated action, W (x, θ, t) = R(x, θ, x0, θ0, t). The exponential

dependence of the semiclassical probability density on W makes the probability density

peaked around the local minima and valleys of W . The Hamiltonian trajectories reaching

these minima or valleys can be thought of as prototypical noisy trajectories.

For example, we consider swimmers exiting right from (x0, θ0) = (0.5, 2), as shown in

Fig. 8. For this initial condition, a deterministic swimmer would exit left, because it is to

the left of the SwIM. Noise allows some of the swimmers to cross over the SwIM and exit

right, as illustrated by the two sample trajectories selected from a Monte Carlo simulation

in Fig. 8. We selected one trajectory that hits x = 1 at t ≈ 1, and a second trajectory

that hits at t ≈ 2; aside from these prescribed hitting times, the trajectories were selected

at random. We can calculate the trajectories of the system with Hamiltonian (33) which

hit x = 1 at those same times. There are infinitely many, each hitting with a different final
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θ. Out of this set of trajectories, we find the ones which minimize the action at x = 1,

equivalent to the condition
∂W (1, θ, t)

∂θ
= 0 = pθ(t), (36)

where the last equality follows from Eq. (A13). In other words, for a given t, the minimum-

action trajectory is the one which hits x = 1 with pθ(t) = 0. Equation (36) is the condition

for a valley of W (x, θ, t) because it is a local minimum of W with x (and t) held fixed. The

minimum-action trajectories corresponding to the two noisy trajectories are plotted as the

dotted curves in Fig. 8.

The resemblance between the noisy paths and the minimum-action paths in Fig. 8 demon-

strates the power of the semiclassical approximation to the Fokker-Planck equation. The

deterministic trajectories underlying the semiclassical approximation predict the paths taken

by the noisy system satisfying specific boundary conditions—in this case going from (x0, θ0)

at t = 0 to x = 1 at specified times t. In the asymptotic ε → 0 limit, the probability

density becomes increasingly concentrated along the minimum-action paths. However, for

any finite ε, the probability density has a finite width around these minimum-action paths,

so any actual noisy trajectory will deviate from the minimum-action path, as seen in Fig. 8.

The minimum-action paths are thus prototypical noisy paths with given boundary condi-

tions, in the sense that they are the peak of the distribution of noisy trajectories satisfying

those boundary conditions. Furthermore, by taking into account the full set of trajectories

of Hamiltonian (33) satisfying the boundary conditions (i.e. not only those in the valley of

the action), one can construct the full probability distribution of trajectories satisfying the

boundary conditions. This requires computing additional quantities along the Hamiltonian

trajectories that are needed to evaluate the probability density prefactor A in Eq. (5) (see

Eq. (A32) and Eq. (A39) for explicit expressions and Table I).

Next, we turn to the semiclassical calculation of Pr(x0), given that the swimmer’s initial

orientation θ0 is distributed according to Eq. (13) as in Sec. V A. This requires the solution

of the Fokker-Planck equation (A2) for P (x, θ, t) with initial condition

P0(x, θ) = δ(x− x0)
[
2πI0

(α
ε

)]−1
exp

[
α cos 2θ

ε

]
. (37)

This is a hybrid propagator-WKB initial condition of the form (A9), where, in the notation of

Appendix A, A0 =
[
2πI0

(
α
ε

)]−1
and U(θ) = −α cos 2θ. We use the semiclassical probability

density (A52) to evaluate Eq. (32). This means that for each x0, we must integrate over all
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Variable Meaning Appendix references

A prefactor of probability density (5) Eqs. (A21) and (A50)

q q = (x, θ) = q(z′, t), projection of Lagrangian manifold

into configuration space, as a function of initial Lagrangian

manifold coordinate z′ = (px0, θ0) and time

Eq. (A25a), A 4 b

∂q/∂z′ Jacobian matrix of the projection q(z′, t) Eqs. (A26a), (A27)∫ t
0 ∇ · fdτ ∇· f = 1−2α cos(2θ) for the xθ dynamics in the hyperbolic

flow; integral performed along the Hamiltonian trajectory

A 2

TABLE I. Summary of key quantities that appear in the formulas for the semiclassical probability

density.

Hamiltonian paths which hit x = 1, with initial conditions on the Lagrangian manifold{
(x0, θ0, px0, pθ0)

∣∣∣∣ ∀ θ0, px0, pθ0 such that pθ0 =
∂U

∂θ
(θ0)

}
. (38)

Therefore, the initial Lagrangian manifold may be parametrized by the coordinates z′ =

(px0, θ0). The probability current integral Eq. (32) becomes

Pr(x0) =
1√
2πε

[
2πI0

(α
ε

)]−1 ∫ ∞
0

dt

∫
x=1

dθ

[
1 + cos θ +

γ

2
px −

1

2
εγ

∂

∂x
(lnA(1, θ, t))

]
×∣∣∣∣det

∂q

∂z′

∣∣∣∣−1/2 exp

[
−(U(θ0) +R(1, θ, x0, θ0, t))

ε
− 1

2

∫ t

0

∇ · fdτ

]
, (39)

where A is given by Eq. (A50) and R is given by Eq. (35). Equation (39) must be integrated

over the set of θ and t values at which the trajectories of Hamiltonian (33) hit x = 1. The

meaning of the new variables introduced in Eq. (39), along with references to the appendix,

is summarized in Table I.

We make some modifications to Eq. (39) before evaluating it numerically. The integral

over final coordinates (θ, t) can be converted to an integral over the initial coordinates of

the Lagrangian manifold (px0, θ0) using the Jacobian determinant

dθdt =

∣∣∣∣∣ det( ∂q
∂z′

)

Fx + γpx

∣∣∣∣∣ dpx0dθ0 =

∣∣∣∣∣ det( ∂q
∂z′

)

x+ cos θ + γpx

∣∣∣∣∣ dpx0dθ0. (40)

This converts Eq. (39) into an initial value representation [34, 35]. We also neglect the

∂(lnA)/∂x term at the end of the first line of Eq. (39), because it is of order ε relative to
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FIG. 9. Integration domain for Eq. (41) for x0 = 0.5. The quantity px0 is the initial condition of

the canonically conjugate momentum to x, and θ0 is the initial orientation of the swimmer. The

initial conditions in the black region eventually hit x = 1, and hence Eq. (41) is integrated over

the black region only. Initial conditions in the white region hit x = −1 instead.

the other terms. This means it is of higher order in ε than we account for in our asymptotic

expression Eq. (5) (see also Eq. (A3)), and thus it may be neglected within the framework

of the semiclassical approximation. We must also truncate the range of px0 for numerical

evaluation, so we take |px0| < pmax. Lastly, Eq. (39) is even in θ0 by symmetry, so we can

restrict the domain θ0 ∈ [0, π] and double the result. Hence, the final expression that we

evaluate numerically is

Pr(x0) ≈
2√
2πε

[
2πI0

(α
ε

)]−1 ∫ pmax

−pmax

dpx0

∫ π

0

dθ0
1 + cos θ + γ

2
px

|1 + cos θ + γpx|
×∣∣∣∣det

∂q

∂z′

∣∣∣∣1/2 exp

[
−(U(θ0) +R(1, θ, x0, θ0, t))

ε
− 1

2

∫ t

0

∇ · fdτ

]
. (41)

The domain for the integral (41) is the set of initial conditions (px0, θ0) that eventually exit

right, i.e. those initial conditions that reach x = 1 at some time t. Figure 9 shows an example

integration domain for x0 = 0.5.

We evaluate Eq. (41) numerically using the trapezoidal rule. For each x0, we discretize

the set of initial conditions (px0, θ0) on the Lagrangian manifold (38) with a uniform grid.

We numerically integrate each trajectory until it hits x = 1, up to a maximum integration

time of t = 6, consistent with the corresponding Monte Carlo calculations in Fig. 7a. We
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FIG. 10. Comparison of Monte Carlo and semiclassical calculations of Pr(x0), for α = 1, γ = 0.1,

and λ = 0. The solid lines are the semiclassical predictions, while markers are the Monte Carlo

calculations. ε = 0.1 (©), ε = 0.3 (∗), ε = 0.5 (×), ε = 0.7 (�), and ε = 0.9 (5).

simultaneously calculate the accumulated action R (Eq. (35)), the integral
∫
∇ · fdτ , and

the Jacobian matrix ∂q/∂z′. This last step requires integrating the tangent flow along the

trajectories (Eq. (A27)). The integral (41) is then evaluated for a given ε by summing over

all the trajectories that hit x = 1, with all of the quantities in the integrand evaluated at

that moment. Note that once the set of trajectories and all auxiliary quantities are obtained

for a given x0, Eq. (41) can be evaluated for an arbitrary ε. This represents one of the chief

advantages of the semiclassical approximation. We take pmax = 60. Including higher values

of px0 has a negligible effect on the results, because trajectories with larger px have a larger

accumulated action R (Eq. (35)) and thus are exponentially suppressed in Eq. (41). Using

this approach, we calculate Pr(x0) for a discrete set of values x0 ∈ [0, 1), and we use the

symmetry (24) to get Pr(x0) for x0 ∈ (−1, 0). The results are plotted in Fig. 10.

C. Discussion

For |x0| near 1, we see in Fig. 10 an excellent agreement between the semiclassical predic-

tions for Pr(x0) and the Monte Carlo simulations. As ε increases from 0.1 to 0.9, we see the
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FIG. 11. Fraction of trajectories used in the semiclassical calculation that pass through at least

one caustic before hitting x = 1.

semiclassical predictions overlap with the Monte Carlo simulations for x0 near the BIMs.

This is particularly impressive, because in addition to the small-ε assumption manifest in

the semiclassical model, we have made a couple additional approximations in evaluating

Eq. (39). Therefore, by summing over all Hamiltonian trajectories that exit right, weighted

appropriately by the semiclassical probability density in Eq. (41), we can accurately calcu-

late exit-right probability Pr(x0). The integral (41) includes all trajectories with a given

x0 that exit right, including those which begin to the right side of the SwIM (Fig. 3a) and

would have exited right even without noise, as well as those which begin on the left side of

the SwIM and cross it due to fluctuations (Fig. 8).

As |x0| gets closer to 0, however, the semiclassical predictions begin to deviate from the

Monte Carlo calculations with increasing ε. In particular, Eq. (24) requires that Pr(0) = 0.5,

that is, a swimmer starting in the middle of the flow has an equal probability of going left or

right. While the semiclassical prediction appears consistent with this property for ε = 0.1,

as ε increases further, we see the semiclassical Pr(0) increase above 0.5 in the inset of Fig. 10.

This fact, combined with our use of Eq. (24) to obtain the semiclassical Pr(x0) for x0 < 0,

causes the apparent kink at x0 = 0 in our semiclassical predictions plotted in Fig. 10.
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We believe that at least part of the discrepancy between the semiclassical Pr(x0) and the

Monte Carlo calculations for x0 close to 0 is due to the presence of caustics, a technical issue

that we have ignored until now. Our semiclassical approximation assumes the uniqueness

of Hamiltonian trajectories that originate on the initial Lagrangian manifold and go from

(x0, θ0) to (x, θ) in time t. This means, for example, that when evaluating the accumulated

action R(x, θ, x0, θ0, t) in Eq. (35), there is a unique such trajectory. The uniqueness is the

critical property that makes R a well-defined function. However, uniqueness is guaranteed

only for sufficiently short times, meaning that once t is sufficiently large, there will be multi-

ple Hamiltonian trajectories connecting the two points. In this case, R becomes multi-valued

[36]. Geometrically, the uniqueness breaks down when the evolving Lagrangian manifold de-

velops fold singularities, such that when it is projected into q space, parts of the projection

overlap with each other. These overlap regions are the regions where multiple Hamiltonian

trajectories can arrive at a single point. In the context of the semiclassical approximation

in quantum mechanics, these fold singularities are called caustics, and they have been ex-

tensively studied (see [20] and references therein). The formulas for the semiclassical wave

function need to be corrected to account for the occurrence of caustics through the inclusion

of a Maslov index, a phase factor that essentially counts the number of caustics encountered

by each trajectory.

We know of no general prescription for dealing with caustics in the semiclassical ap-

proximation to the Fokker-Planck equation, even though they commonly occur. Previously,

caustics have been investigated in the semiclassical formulation of the noise-driven dynamics

of a nonlinear oscillator in two dimensions [37]. When calculating the steady-state proba-

bility density of this system, one must account for switching lines in phase space, i.e. curves

on either side of which the least-action path changes discontinuously due to the presence of

multiple Hamiltonian trajectories arriving at those locations. Near the switching line, where

the distinct paths with coincident endpoints have nearly the same action, the semiclassical

probability density needs to account for each of the distinct paths; in fact, the signature

of multiple paths leading to the same point in phase space has been observed experimen-

tally in a noisy electronic oscillator [16]. Caustics also arise in the theoretical description of

noise-induced transitions in non-gradient dynamical systems with metastable fixed points

[38, 39]. Specifically, the quasi-stationary probability densities underlying escape from the

metastable fixed points may be approximated semiclassically, though one must go beyond
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the standard WKB approximation in the vicinity of the caustics. It is not obvious how to

generalize these previously obtained results to the noisy dynamics of the swimmer in the

hyperbolic flow, because the swimmer phase space does not possess stable fixed points and

is fundamentally transient, i.e. time-dependent.

Such a generalization is needed because caustics do indeed occur in the dynamics of noisy

swimmers in the hyperbolic flow. To demonstrate this, we track the number of caustics

encountered by the trajectories underlying our semiclassical calculation of Pr(x0) up until

the point that they hit x = 1. At points where caustics occur, the projection from the

Largrangian manifold into q space is not invertible, meaning the Jacobian determinant

det ∂q/∂z′ must be zero at that point. Thus, we count the number of caustics encountered

along a trajectory by tracking zero-crossings of det ∂q/∂z′. In Fig. 11, we plot the fraction

of trajectories used in our numerical semiclassical approximation that encounter at least

one caustic on the way to x = 1. While the fraction of caustic-crossing trajectories is

around 6% or smaller for x0 > 0.5, it rapidly rises to nearly 15% as x0 decreases from

0.5 to 0. This trend is reasonable, because caustics only begin to occur after a sufficiently

long time. Trajectories beginning closer to x = 1 will tend to reach it sooner, potentially

before many caustics have occurred. At the same time, in the x0 > 0.5 range, we see good

agreement between the semiclassical and Monte Carlo calculations in Fig. 10, while in the

x0 < 0.5 range we observe a discrepancy with increasing ε. This correlation is evidence that

the semiclassical approximation works well when few trajectories have encountered caustics,

while a discrepancy can be caused by improper treatment of the caustics, which is important

when considering sufficiently long-time processes.

VI. CONCLUSION

To summarize, we have quantified the effect of noise on swimmer dynamics in a steady,

two-dimensional hyperbolic fluid flow. In such a flow, swimmers are ultimately forced to

escape to the left or the right, with their transient dynamics near the passive unstable fixed

point determining which way they go. Without noise, a swimmer’s fate is sealed based on

its position relative to the SwIM in the xθ phase space. With noise, the swimmer’s motion

is a stochastic process. We calculated the steady-state orientation distributions of diffusive,

run-and-tumble, or mixed swimmers in the hyperbolic flow. The fluctuations give some
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swimmers greater opportunity to cross the SwIM and exit on the opposite side than they

would have without noise. There is however a maximal distance that swimmers can get on

either side of the passive fixed point and still be able to swim back to the other side—this

is where the stable BIMs block inward swimming particles.

Fluctuations make it increasingly likely that a swimmer close to one of these BIMs does

indeed end up crossing it, causing irreversible changes to the fluctuating swimmers’ trajecto-

ries (assuming negligible translational diffusion). We quantified this probability using Monte

Carlo calculations and a semiclassical approximation to the swimmer Fokker-Planck equa-

tion. The semiclassical approximation accurately predicts the probability Pr(x0) a swimmer

exits right given that it began at a position x0 relative to the passive fixed point, especially

for x0 close to the BIM. It also predicts the probability distribution of paths that fluctuating

swimmers take in phase space given specified boundary conditions. SwIMs and BIMs are

present in nonlinear flows as well, such as alternating vortex flows [12]. Thus, we expect the

depletion effect to occur in the vicinity of the BIMs of such flows as well.

This study demonstrates the utility of the semiclassical approximation for understanding

the noisy dynamics of a non-trivial active matter system. However, it also reveals a key

shortcoming of the existing semiclassical theory for Fokker-Planck dynamics. In particular,

a general approach is needed for taking into account the occurence of caustics, i.e. multiple

branches of Hamiltonian paths connecting points in configuration space. While this issue has

been examined in a few specific cases [16, 37–39], no general theory is currently available to

the best of our knowledge. A procedure for coherently summing the contributions of multiple

paths, similar to the Maslov theory in quantum mechanics [20, 40], would be highly desirable,

both for accurate numerical computations and for the theoretical analysis of most-likely noisy

paths of a dynamical system.

Finally, the semiclassical approximation may be a valuable tool for analyzing experimental

data of noisy swimmers in fluid flows. For example, with a sufficiently large number of

experimentally-recorded trajectories of the type shown in Fig. 1, it would be possible to test

the semiclassical predictions of the exit-right probability Pr(x0). It should also be possible

to investigate the distribution of experimentally-measured trajectories satisfying specific

boundary conditions [37, 41]. The semiclassically-predicted distributions may be used to fit

the experimental data in order to extract physical parameters, such as rotational diffusivity

and swimmer shape [42].
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Appendix A: Semiclassical approximation for the Fokker-Planck equation

We consider the stochastic process in a d-dimensional phase space

dq = [F(q) + εG(q)] dt+
√
εCdw (A1)

where w = (w1, w2, . . . , wn) is a set of uncorrelated Wiener processes and C is a d × n

matrix, assumed to be constant for simplicity. The G term is included in Eq. (A1) to

account for potential noise-induced drift [17]. The corresponding Fokker-Planck equation

for the probability density P (q, t) is

∂P

∂t
= −∇ · [(F + εG)P ] +

1

2
εD :

∂2P

∂q2
, (A2)

where D = CCT is the diffusion tensor (up to a factor of 2). The diffusion tensor is required

to be positive-definite.

Our goal is to find an approximate solution to Eq. (A2) in the weak-noise (ε� 1) limit.

We use an approach closely related to the semiclassical approximation of quantum mechanics

[20], and our derivation closely follows Ref. [17]. Similar techniques have been applied to

stochastic dynamics in a variety of settings [15, 16, 18, 29, 37–39, 43]. We consider an

asymptotic expansion of the solution

P (q, t) ≈ exp

[
−

N−1∑
n=0

Sn(q, t)εn−1

]
, (A3)

where N is the maximum number of terms in the expansion and the Sn are functions to be

determined. We restrict our attention to N = 2 and rewrite the solution as

P (q, t) ≈ A(q, t)e−W (q,t)/ε, (A4)

where W = S0 and A = e−S1 . Equation (A4) constitutes a WKB approximation to Eq. (A2).

It is in the same spirit as the semiclassical approximation to the Schrödinger equation; with

the substitution ε→ i~, the semiclassical wave function is expressed as ψ = AeiW/~. In that
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case, W is the action of the classical system associated to the quantum Hamiltonian, and

A2 = |ψ|2 is the probability density of the system. In the Fokker-Planck case, we shall see

that W also corresponds to the action of a particular classical Hamiltonian derived from the

Fokker-Planck equation, while A is essentially a normalization function.

The functions A and W (equivalently the Sn) are determined by substituting Eq. (A3)

into Eq. (A2). This yields the equation

−
N−1∑
n=0

∂Sn
∂t

εn =− (∇ · F) ε+ F ·
N−1∑
n=0

∇Snεn − (∇ ·G) ε2 + G ·
N−1∑
n=0

∇Snεn+1

+
1

2

[
−

N−1∑
n=0

D :
∂2Sn
∂q2

εn+1 +
N−1∑
n,m=0

∇Sm · D∇Snεn+m
]
. (A5)

The goal is to equate terms of equal order in ε in Eq. (A5), which leads to equations for the

Sn. We are only interested in the ε0 and the ε1 terms.

The solutions to Eq. (A5) depend on the initial condition P0(q) ≡ P (q, 0). We derive the

solutions for three types of initial conditions. The first is a Dirac δ function centered on an

arbitrary phase-space point q0, where we use the “0” subscript to refer to an initial condition

fixed at some particular value. In this case, the solution is denoted P = K(q,q0, t), where

K is called the propagator, with initial condition

K(q,q0, 0) = δ(q− q0). (A6)

The propagator encodes the probability for the system to make a transition from q0 to q

in time t. This fact, combined with the linearity of the Fokker-Planck equation, allows its

solution with any initial probability distribution P0 to be written as

P (q, t) =

∫
K(q,q0, t)P0(q0)d

dq0. (A7)

However, evaluating Eq. (A7) in practice is very computationally costly, which leads us to

consider initial conditions which vary smoothly over some or all of the q coordinates. In

particular, we consider an initial condition already in WKB form (A4) [43], i.e.

P0(q) = A0(q)e−W0(q)/ε. (A8)

Last, we consider initial conditions that are a hybrid between the WKB form (A8) and the

propagator form (A6), of the type

P0(q,qf0) = δ(qf − qf0)A0(qk)e
−U(qk)/ε. (A9)
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Here, the variables are split into two groups, q = (qf ,qk), where the qf variables are fixed

at a specific value qf0 at t = 0 by the δ function in Eq. (A9), while the qk variables are

distributed according to the WKB part of Eq. (A9). We are able to solve for W and A

for this hybrid initial condition in the special case that D is block-diagonal, with one block

corresponding to the qf variables and the other to the qk variables, i.e.

D =

 Df 0df×dk

0dk×df Dk

 , (A10)

where df is the size of qf and dk is the size of qk. The equations satisfied by W and A in

Eq. (A4) are the same in each of the three cases, but the solutions must be selected such that

the initial condition is satisfied. In Secs. A 1–A 3, we derive the solutions for the propagator

initial condition (A6), and in Sec. A 4, we derive the solutions for the WKB and hybrid

initial conditions.

1. Hamilton-Jacobi equation

From the zeroth order of Eq. (A5), we find W satisfies

∂W

∂t
= −H (q,∇W ) , (A11)

H(q,p) =
1

2
p · Dp + p · F(q). (A12)

Equation (A11) is the Hamilton-Jacobi equation for a Hamiltonian system in a phase space

of doubled dimension 2d, with coordinates (q,p) and Hamiltonian H given by Eq. (A12).

Here, q is the coordinate of the original stochastic dynamical system (A1), and p is the

momentum canonically conjugate to q. The solution of Eq. (A11) is obtained by using

the method of characteristics, which aims to find solutions of the form W (q(t), t) along

particular paths (the characteristics) q(t). For the case of Eq. (A11), the characteristics

turn out to be the projections of trajectories (q(t),p(t)) of the Hamiltonian system into

configuration space. The relationship between the canonical momentum and W is

p = ∇W (q, t). (A13)
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The characteristics obey the equations

q̇ =
∂H

∂p
= F(q) + Dp, (A14)

ṗ = −∂H
∂q

= −∂F

∂q
p, (A15)

Ẇ = p · q̇−H(q,p) =
1

2
p · Dp. (A16)

The overdots signify the total time-derivative d/dt along the characteristics q(t). In particu-

lar, Ẇ (q(t), t) = ∂W/∂t+ q̇ ·∂W/∂q. Equations (A14) and (A15) are Hamilton’s equations,

while Eq. (A16) is the differential equation satisfied by the classical action.

The Hamiltonian system Eq. (A14) and (A15) stems from a variational principle, which

sheds light on the physical meaning of the approximation (A3). We define the action func-

tional as the time integral of (A16) for arbitrary functions of time (q(τ),p(τ)),

I[q(τ),p(τ)] =

∫ t

0

[p · q̇−H(q,p)] dτ. (A17)

The critical points of this action functional are derived from the Euler-Lagrange equations

of (A17), which yield directly Eqs. (A14) and (A15). Therefore, W is simply the value of the

action functional I evaluated at its critical points, up to an additive constant. The phase-

space action functional (A17) can be converted into a configuration space action functional,

by going from the Hamiltonian formulation to the Lagrangian formulation. Assuming D is

positive-definite and thus invertible, Eq. (A14) can be solved for p, yielding p = D−1[q̇ −

F(q)]. Using the second equality of Eq. (A16), we can now eliminate p from Eq. (A17),

yielding the configuration space action

Ĩ[q(τ)] =
1

2

∫ t

0

(q̇− F(q)) · D−1 (q̇− F(q)) dτ. (A18)

Equation (A18) is alternately known as the Onsager-Machlup action functional [28] or the

Freidlin-Wentzell action functional [29]. Because D is positive-definite, Ĩ ≥ 0, with equality

only achieved along the deterministic trajectories satisfying q̇ = F(q). Hence, Ĩ is like a

cost functional which penalizes deviations from the deterministic trajectories. In the case

of the propagator initial condition (A6), the subsequent probability density (A4) is peaked

along the deterministic trajectory, and deviations away from the trajectory due to noise are

exponentially suppressed. Furthermore, we can now see that the approximation implied by

Eq. (A4) is that only the critical points of the functional (A18) contribute to the probability
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density; all other paths q(τ) are discarded in this approximation. This formulation also

highlights the link with the path-integral formulation of the Fokker-Planck equation [44, 45].

A useful concept for understanding the time evolution of the semiclassical probability

density (A4) is the Lagrangian manifold [20]. According to Eqs. (A14)–(A16), the action

W (q, t) is expressed in terms of families of solutions of a Hamiltonian system that, at any in-

stant of time, lie on the d-dimensional surface in phase space defined by Eq. (A13). Equation

(A13) defines a surface which is a Lagrangian manifold, i.e. a surface in phase space on which

the symplectic 2-form vanishes (for more details, see [20]). The time-evolution of W (and A,

as shown in Sec. A 2) is thus directly obtained from the time evolution of a properly selected

initial Lagrangian manifold under the Hamiltonian flow. The initial Lagrangian manifold,

i.e. a d-dimensional surface in phase space containing the initial conditions (q′,p′), must be

selected so that the initial condition is satisfied, i.e. limt→0A(q, t) exp[−W (q, t)/ε] = P0(q).

We use primed variables to refer to the space of initial conditions. Though Eq. (A13) ex-

plicitly gives the relationship between W and the Lagrangian manifold for times t 6= 0, it is

ill-defined for any P0(q) for which W is singular in the t → 0 limit. This occurs when the

projection of the initial Lagrangian manifold into configuration space is singular, which is

the case for the propagator and hybrid initial conditions.

For the propagator initial condition (A6), the initial Lagrangian manifold is the phase-

space surface q′ = q0. This means the Lagrangian manifold includes all possible initial

momenta p′ ∈ Rd. The projection of this Lagrangian manifold into q space is singular

because all points of the Lagrangian manifold project to the same configuration space point,

q0. The solution of Eq. (A11) in this case is W (q, t) = R(q,q0, t), where R is Hamilton’s

principal function, given by

R(q,q0, t) =

∫ t

0

[p(τ) · q̇(τ)−H(q(τ),p(τ))] dτ, (A19)

where (q(τ),p(τ)) is the Hamiltonian path [i.e. solution of Eqs. (A14) and (A15)] going from

q0 to q in time t. Equation (A19) clearly follows from Eq. (A16). Because this solution is

obtained by evolving the surface q′ = q0 forward in time, each path has a distinct initial

momentum p0. In fact, p0 may be expressed in terms of q0, q, and t as

p0 = − ∂R
∂q0

(q,q0, t). (A20)

To prove it, we consider the change in R as we make an infinitesimal change to the initial
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coordinate q0, while keeping the final coordinate q and transit time t fixed. We get

R(q,q0 + δq0, t)−R(q,q0, t) ≈
∫ t

0

[
δp · q̇ + p · δq̇− ∂H

∂q
· δq− ∂H

∂p
· δp

]
dτ

= p · δq
∣∣t
0
−
∫ t

0

[
ṗ · δq +

∂H

∂q
· δq
]

dτ

= −p0 · δq0.

In Sec. A 3, we show that Eq. (A19) indeed gives a probability density that satisfies the

initial condition (A6).

All of our arguments make the assumption that there is only one Hamiltonian path going

from q0 to q in time t, so that R is single-valued (for all times t > 0). In general, however, at

longer times there are multiple paths connecting q0 and q in the same time t, with distinct

initial momenta p0. Thus, the action becomes multi-valued. This situation also arises in

semiclassical quantum mechanics. In that case, the quantum propagator consists of a sum

of terms of the form of Eq. (A4), one for each branch of solutions, that are stitched together

in such a way that the propagator is continuous [20, 40]. We are not aware of a similar

procedure for the Fokker-Planck equation. Thus, we continue to assume that there is a

unique characteristic for any (q0,q, t) and hence, R is single-valued.

2. Transport equation

Next, we look at the equation arising from the first order terms of Eq. (A5). These lead

to a transport equation for S1, which can be rearranged into a transport equation for A.

This results in

Ȧ = −
(
∇ · F−G · ∇W +

1

2
D :

∂2W

∂q2

)
A, (A21)

where we recall Ȧ = dA/dt = ∂A/∂t+q̇·∇A, with q̇ given by Eq. (A14). We solve Eq. (A21)

by integrating along the characteristics q(t) defined be Eqs. (A14)–(A16). Rearranging, we

obtain

d(lnA)

dt
= −1

2
∇ · (F + D∇W )− 1

2
∇ · F + G · ∇W. (A22)

Equation (A22) gives the change of A as one moves along a characteristic path from a point

on the initial Lagrangian manifold, with configuration space coordinate q′, to the terminal
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coordinate q in time t. By integration, we obtain

ln

(
A(q, t)

A(q′, 0)

)
= −1

2

∫ t

0

∇ · (F + D∇W )dτ − 1

2

∫ t

0

∇ · Fdτ +

∫ t

0

G · ∇Wdτ, (A23)

where the integration on the right-hand side of Eq. (A23) is carried out along the charac-

teristic path. Equation (A23) applies to any initial Lagrangian manifold, but it must be

handled carefully for initial Lagrangian manifolds with a singular projection, such as the

propagator case for which q′ = q0. The propagator initial condition (A6) is itself singular

at q′ = q0, and it turns out that A is also singular at this point. We introduce the quantity

A0 ≡ A(q0, 0) as a placeholder for now, and it is properly accounted for in Sec. A 3.

To clarify the first term on the right-hand side of Eq. (A23), we introduce the phase

space functions (q(z′, t),p(z′, t)). The functions (q(z′, t),p(z′, t)) express the positions and

momenta (q,p) at time t of Eqs. (A14) and (A15) as a function of their initial coordinate

z′ on the Lagrangian manifold. We allow for an arbitrary parametrization z′ of the ini-

tial Lagrangian manifold, and we express the initial conditions as (q′(z′),p′(z′)). For the

propagator initial condition, the initial Lagrangian manifold can be simply parametrized as

(q′(z′),p′(z′)) = (q0, z
′). (A24)

The functions (q,p) can be expressed using the flow functions (Q(q′,p′, t),P(q′,p′, t)),

which map initial conditions (q′,p′) to their values Q and P at time t and satisfy Hamilton’s

equations (A14) and (A15). It is obvious that

q(z′, t) = Q(q′(z′),p′(z′), t), (A25a)

p(z′, t) = P(q′(z′),p′(z′), t) = ∇W (q(z′, t), t). (A25b)

From Eq. (A25), it follows

∂q

∂z′
=
∂Q

∂q′
∂q′

∂z′
+
∂Q

∂p′
∂p′

∂z′
, (A26a)

∂p

∂z′
=
∂P

∂q′
∂q′

∂z′
+
∂P

∂p′
∂p′

∂z′
. (A26b)

Hence, we can compute the time evolution of the Jacobian matrix ∂q/∂z′ by differenti-
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ating Eq. (A26a) with respect to time. This leads to

d

dt

∂q

∂z′
=

(
d

dt

∂Q

∂q′

)
∂q′

∂z′
+

(
d

dt

∂Q

∂p′

)
∂p′

∂z′

=

(
∂F

∂q

∂Q

∂q′
+ D

∂P

∂q′

)
∂q′

∂z′
+

(
∂F

∂q

∂Q

∂p′
+ D

∂P

∂p′

)
∂p′

∂z′

=
∂F

∂q

∂q

∂z′
+ D

∂p

∂z′

=

[
∂F

∂q
+ D

∂2W

∂q2

]
∂q

∂z′
. (A27)

We obtain the second line of Eq. (A27) by differentiating Eq. (A14) with respect to q′ and

p′ and the third line by applying Eq. (A26). In the fourth line of Eq. (A27), we use

∂p

∂z′
=
∂2W

∂q2

∂q

∂z′
, (A28)

which follows from Eq. (A25b). Next, we find the equation satisfied by D ≡ det ∂q/∂z′,

which is

d(ln |D|)
dt

= tr

[(
d

dt

∂q

∂z′

)(
∂q

∂z′

)−1]
= ∇ · (F + D∇W ), (A29)

where we have used Eq. (A27). From this it follows

ln

(
|D|
D0

)
=

∫ t

0

∇ · (F + D∇W )dτ. (A30)

The right-hand side of Eq. (A30) is the first term that appears in Eq. (A23) up to a factor

of −1/2. In Eq. (A30),

D0 = lim
t→0

∣∣∣∣det
∂q

∂z′

∣∣∣∣ . (A31)

For the case of the propagator initial condition, q → q0 as t → 0, independent of z′, and

therefore ∂q/∂z′ = 0 in the limit, implying D0 = 0. This is related to the divergence of A

as t → 0, so we keep D0 as a placeholder here and return to this point in Sec. A 3. Using

Eq. (A30), we may now solve Eq. (A23) for A, giving

A(q, t) = A0

√
D0

∣∣∣∣det
∂q

∂p′

∣∣∣∣−1/2 exp

[
−1

2

∫ t

0

∇ · Fdτ +

∫ t

0

G · p dτ

]
, (A32)

where we have replaced z′ by p′ by virtue of Eq. (A24).
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3. Normalization of the propagator

To fix the value of the constant A0

√
D0, we must consider the limit t → 0 and impose

the initial condition (A6). In this limit we have the estimates

q− q0

t
≈ F(q0) + Dp′, (A33)

R ≈ 1

2t
(q− q0) · D−1(q− q0). (A34)

Solving Eq. (A33) for q, we find

∂q

∂p′
= Dt, (A35)

det
∂q

∂p′
= td detD. (A36)

Hence, the semiclassical propagator in this limit becomes

K(q,q0, t→ 0) ≈ A0

√
D0 (detD)−1/2 t−d/2 exp

[
− 1

2εt
(q− q0) · D−1(q− q0)

]
. (A37)

Equation (A37) is a Gaussian approximation to the δ function initial condition (A6), which

approaches the δ function in the t → 0 limit. Therefore, the solutions for W and A satisfy

the initial condition, provided that

A0

√
D0 = (2πε)−d/2, (A38)

so that the Gaussian is properly normalized. The final semiclassical expression for the

propagator is

K(q,q0, t) ≈
1

(2πε)d/2

∣∣∣∣det
∂q

∂p′

∣∣∣∣−1/2 exp

[
−1

ε
R(q,q0, t)−

1

2

∫ t

0

∇ · Fdτ +

∫ t

0

G · p dτ

]
.

(A39)

4. Solutions for WKB and hybrid initial conditions

a. WKB initial condition

For the WKB initial condition (A8), the initial Lagrangian manifold is the surface defined

by

p′ =
∂W0

∂q′
(q′). (A40)
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We parametrize the Lagrangian manifold by

(q′(z′),p′(z′)) =

(
z′,
∂W0

∂q′
(z′)

)
, (A41)

and let the phase space functions be (q(z′, t),p(z′, t)). The position coordinate part of this

function is assumed to be invertible, so that the initial configuration space coordinate can

be expressed as q0 = q0(q, t). Then, the solution to Eq. (A11) is [20, 36]

W (q, t) = W0(q0(q, t)) +R(q,q0(q, t), t), (A42)

where R is evaluated along the Hamiltonian trajectory with initial coordinate q0(q, t) and

initial momentum given by Eq. (A40) evaluated at q0(q, t).

The solution to the transport equation (A21) is almost identical to the propagator initial

condition case. The main differences are the parametrization of the Lagrangian manifold

(A41) and the specific initial condition A(q, 0) = A0(q). Taking these into account, we

obtain

A(q, t) = A0(q0(q, t))

∣∣∣∣det
∂q

∂q′

∣∣∣∣−1/2 exp

[
−1

2

∫ t

0

∇ · Fdτ +

∫ t

0

G · p dτ

]
. (A43)

The final expression for the semiclassical probability density is

P (q, t) ≈ A0(q0)

∣∣∣∣det
∂q

∂q′

∣∣∣∣−1/2 exp

[
−(W0(q0) +R(q,q0, t))

ε
− 1

2

∫ t

0

∇ · Fdτ +

∫ t

0

G · p dτ

]
.

(A44)

b. Hybrid initial condition

For the hybrid initial condition (A9), the initial Lagrangian manifold is the surface defined

by

q′f = qf0, (A45)

p′k =
∂U

∂qk
(q′k). (A46)

We parametrize the Lagrangian manifold by the coordinates z′ ≡ (p′f ,q
′
k), and let the phase

space functions be (q(z′, t),p(z′, t)). We assume an inverse to q(z′, t) exists, which we denote

(pf0,qk0) = z0 = z0(q,qf0, t). Then, the solution to the Hamilton-Jacobi equation is

W (q, t) = U(qk0) +R(q,q0, t), (A47)
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where q0 = (qf0,qk0(q,qf0, t)), and the initial momentum of the trajectory terminating at

q at time t is

pf0(q,qf0, t) = − ∂R

∂qf0
(q,q0, t), (A48)

pk0(q,qf0, t) =
∂U

∂qk
(qk0). (A49)

Solving the transport equation is again similar to the propagator case. The quantity

det ∂q/∂z′ still satisfies Eq. (A29), while in Eq. (A23) we write A(q′, 0) = A0(q
′
k)A∗, where

A∗ is a placeholder constant. We therefore obtain

A(q, t) = A∗
√
D0A0(qk0(q,qf0, t))

∣∣∣∣det
∂q

∂z′

∣∣∣∣−1/2 exp

[
−1

2

∫
∇ · Fdτ +

∫ t

0

G · pdτ

]
.

(A50)

Taking the t→ 0 limit of the full solution and forcing it to satisfy the initial condition (A9)

leads to

A∗
√
D0 = (2πε)−df/2. (A51)

Thus, the full semiclassical probability density is

P (q, t) =
1

(2πε)df/2
A0(qk0)

∣∣∣∣det
∂q

∂z′

∣∣∣∣−1/2×
exp

[
−(U(qk0) +R(q,q0, t))

ε
− 1

2

∫
∇ · Fdτ +

∫ t

0

G · pdτ

]
. (A52)

5. Gaussian approximation to the semiclassical propagator: 1D case

For sufficiently small noise and times, it is useful to approximate the semiclassical propa-

gator as a Gaussian centered on the deterministic trajectory q∗(t). Because of the exponen-

tial form of Eq. (A39), for short times and small noise, the most important part to capture

is the part near the absolute minimum of the action R(q,q0, t) = 0, which due to Eq. (A18),

occurs at the deterministic solution q = q∗(t). We illustrate the approximation for the 1D

case for simplicity, so that q → q and F → F , and we let the diffusion tensor D → 1 and

G→ 0. Thus, Hamilton’s equations become

q̇ = F + p, (A53)

ṗ = −pdF
dq
. (A54)
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We expand K about q∗ as follows:

K(q, q0, t) ≈ A(q∗) exp

[
− 1

2ε

∂2R

∂q2
(q − q∗)2

]
, (A55)

where

A(q∗) =
1√
2πε

∣∣∣∣ ∂q∂p′
∣∣∣∣−1/2 exp

[
−1

2

∫ t

0

dF

dq
dτ

]
. (A56)

In Eq. (A56), the Jacobian matrix and integral are evaluated along the deterministic trajec-

tory q∗(t), so that A(q∗) is a function of time. Equation (A55) thus constitutes a Gaussian

approximation to the propagator, which would be properly normalized provided that√
∂2R

∂q2
=

∣∣∣∣ ∂q∂p′
∣∣∣∣−1/2 exp

[
−1

2

∫ t

0

dF

dq
dτ

]
. (A57)

Next, we show that this is indeed the case.

Recalling that p = ∂R/∂q, we have that

∂2R

∂q2
=
∂p

∂q
. (A58)

We now rewrite Eq. (A58) in terms of partial derivatives with respect to the initial conditions

(q′, p′), which we can then compute using the tangent flow equations of Eqs. (A53) and (A54).

Using the chain rule, we obtain
∂p

∂q
=
∂p

∂p′

(
∂q

∂p′

)−1
(A59)

The quantity ∂p/∂p′ satisfies

d

dt

∂p

∂p′
= −pd

2F

dq2
∂q

∂p′
− dF

dq

∂p

∂p′
, (A60)

with initial condition ∂p/∂p′(0) = 1. Along the deterministic trajectory however, p = 0 for

all time, so the first term of Eq. (A60) vanishes. Therefore, we obtain

∂p

∂p′
= exp

[
−
∫ t

0

dF

dq
dτ

]
. (A61)

Combining Eqs. (A58), (A59), and (A61), we see that Eq. (A57) is almost proved. We need

only verify that ∂q/∂p′ ≥ 0 for all time. This quantity satisfies

d

dt

∂q

∂p′
=
dF

dq

∂q

∂p′
+
∂p

∂p′
, (A62)

with initial condition ∂q/∂p′(0) = 0. Using Eq. (A61), we obtain

∂q

∂p′
= exp

[∫ t

0

dF

dq
dτ

] ∫ t

0

exp

[
−2

∫ τ ′

0

dF

dq
dτ ′′

]
dτ ′. (A63)
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Because Eq. (A63) consists of products and sums of exponentials, which are all positive, we

have ∂q/∂p′ ≥ 0. Thus, Eq. (A57) is proved.

Combining the results, we obtain the following expression for the Gaussian approximation

to the propagator:

K(q, q0, t) =

√
1

2πε

∂2R

∂q2
exp

[
− 1

2ε

∂2R

∂q2
(q − q∗)2

]
, (A64)

where

∂2R

∂q2
= exp

[
−2

∫ t

0

dF

dq
dτ

]{∫ t

0

exp

[
−2

∫ τ ′

0

dF

dq
dτ ′′

]
dτ ′

}−1
. (A65)

Appendix B: Solution to the Liouville equation

We derive the solution to Eq. (14), rewritten here as

∂P

∂τ
− α sin(2θ)

∂P

∂θ
= 2α cos(2θ)P. (B1)

The method of characteristics seeks a solution P (θ(τ), τ), where the characteristics θ(τ)

satisfy
dθ

dτ
= −α sin(2θ) (B2)

and are explicitly given by Eq. (16). Taking the total time derivative of P (θ(τ), τ) and using

Eq. (B1), we get
dP

dτ
= 2α cos(2θ(τ))P. (B3)

We use the identity cos 2θ = (1 − tan2 θ)/(1 + tan2 θ), substitute tan(θ(τ)) = e−2ατ tan θ0

[from Eq. (16)] and move P to the left-hand side of Eq. (B3), which yields

d(lnP )

dτ
= 2α

1− e−4ατ tan2 θ0
1 + e−4ατ tan2 θ0

. (B4)

Integrating both sides yields

ln
P (θ, τ)

P0(θ0)
=

1

2
ln

[
e4ατ + 2 tan2 θ0 + e−4ατ tan4 θ0

(1 + tan2 θ0)
2

]
. (B5)

Finally, we solve Eq. (16) for tan θ0 and θ0 in terms of θ and τ , substitute these into Eq. (B5),

and solve for P (θ, τ), which yields

P (θ, τ) = P0

(
tan−1

(
e2ατ tan θ

)) e2ατ

cos2 θ + e4ατ sin2 θ
. (B6)
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of active swimmers in a flow. Phys. Rev. E, 103:032608, 2021.

[43] T. Bonnemain and D. Ullmo. Mean field games in the weak noise limit : A WKB approach

to the Fokker–Planck equation. Phys. A (Amsterdam, Neth.), 523:310, 2019.

[44] F. Langouche, D. Roekaerts, and E. Tirapegui. On the most probable path for diffusion

processes. J. Phys. A: Math. Gen., 11:L263, 1978.

47



[45] F. Langouche, D. Roekaerts, and E. Tirapegui. Functional Integration and Semiclassical

Expansions. Springer Science+Business Media, Dordecht, 1982.

48


	Swimmer dynamics in externally-driven fluid flows: The role of noise
	Abstract
	Introduction
	Noisy swimmer dynamics
	Deterministic dynamics in the hyperbolic flow
	Steady-state orientation distributions in the hyperbolic flow
	Orientation dynamics with rotational diffusion only (= 0)
	Orientation dynamics with tumbling only (= 0)
	Orientation distribution with rotational diffusion and tumbling
	Approximation of the Fokker-Planck propagator for small 
	Approximation of the stationary state


	Depletion effect
	Monte Carlo calculations with diffusion or tumbling
	Semiclassical approximation for diffusion
	Discussion

	Conclusion
	Acknowledgments
	Semiclassical approximation for the Fokker-Planck equation
	Hamilton-Jacobi equation
	Transport equation
	Normalization of the propagator
	Solutions for WKB and hybrid initial conditions
	WKB initial condition
	Hybrid initial condition

	Gaussian approximation to the semiclassical propagator: 1D case

	Solution to the Liouville equation
	References


