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We present the extension of a modeling technique for Lagrangian tracer particles [B. Viggiano et
al., J. Fluid Mech.(2020), vol. 900, A27] which accounts for the effects of particle inertia. Thereby,
the particle velocity for several Stokes numbers is modeled directly by a multi-layered Ornstein-
Uhlenbeck process and a comparison of key statistical quantities (second-order velocity structure
function, acceleration correlation function, and root mean square acceleration) to expressions de-
rived from Batchelor’s model as well as to direct numerical simulations (DNS) is performed. In both
approaches, Stokes’ drag is treated by an approximate “linear filter” which replaces the particle posi-
tion entering the fluid velocity field by the corresponding ideal tracer position. Effects of preferential
concentration of inertial particles are taken into account indirectly in terms of an effective Stokes
number that is determined from the zero crossing of the acceleration correlation function from DNS.
This approximation thus allows the modeling of inertial particle statistics through stochastic meth-
ods and models for the Lagrangian velocity; the particle velocity is effectively decoupled from the
particle position. In contrast to the ordinary filtering technique [Cencini et al., J. Turbul. (2006),
7, N36], our method reproduces the empirically observed sharp decrease of acceleration variance for
increasing Stokes numbers. Furthermore, we discuss how our modeling approach could contribute
to a better experimental characterization of inertial particle dynamics.

I. INTRODUCTION

Transport processes of particles in turbulent flows play an important role in turbulence theory [1–3] and are inti-
mately related to the problems of turbulent mixing and turbulent diffusion. Recent advances in particle tracking [4, 5]
allow for the accurate quantification of single-particle statistics and yield important insights into the behavior of
marked fluid particles (so-called Lagrangian tracers) as well as heavier particles, i.e., particles with finite inertia [6, 7].
For such inertial particles, for instance, numerical and experimental evidence suggests the segregation of particles into
clusters [8–11]. This phenomenon, generally known as preferential concentration, is sometimes explained by particles
evading dominant vortical structures and accumulating in flow regions of high strain [12] although other mechanisms
have been proposed [13, 14]. A comprehensive understanding of these mechanisms, however, is complicated by the
random and multiscale structure of the turbulent velocity field. On the other hand, such particle-laden flows are com-
monly encountered in many industrial and environmental processes, which creates an abundance of research devoted
to characterizing their dynamical properties [15, 16]. Despite numerous experimental, numerical, and theoretical
works [4, 11, 14], simple generic models which are capable to quantitatively reproduce basic dynamical Lagrangian
properties (e.g., velocity and acceleration statistics) as well as the combined role of particle inertia and preferential
concentration are still lacking. In more detail, it is found that Langevin-type models, which were quite successful in
the modeling of ideal tracer velocities [17–19], are not sufficient to capture the intricate spatiotemporal complexity
that underlies the phenomenon of preferential concentration [20]. This is mainly due to the fact that spatial cor-
relations, which are usually invoked in order to characterize preferential concentration, are not taken into account
appropriately.

Turbulent flow properties can be described either in a fixed frame of reference, the so-called Eulerian description, or
alternatively by the Lagrangian description, where evolution of the flow is observed temporally through the trajectories
of point particles. The Lagrangian description in turbulence provides a complete view of particle transport and
dispersion which can be traced back to the seminal works by G.I. Taylor who set the diffusion problem in the context
of fluid element trajectories [21]. Thereby, the trajectory of an ideal tracer, the so-called Lagrangian path, can be
determined from the first-order ordinary differential equation (ODE)

Ẋ(y, t) ≡ v(y, t) = u(X(y, t), t) . (1)

where v(y, t) is the Lagrangian velocity, with the initial condition X(y, 0) = y. The statistical description of ideal
tracer particles in turbulent flows, which is governed by Eq. (1), is one of the main concerns of turbulence theory.
On the basis of the self-similar theory of Kolmogorov, moments of the Lagrangian velocity increments δτv(y, t) =
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v(y, t + τ) − v(y, t) are supposed to scale as 〈(δτv)n〉 ∼ τn/2. Hence, Kolmogorov’s theory suggests that a tracer
particle exhibits a diffusive process (ordinary Brownian motion) in velocity space [1, 22] at inertial scales. The
corresponding Ornstein-Uhlenbeck (OU) process for the Lagrangian velocity has been extended by Sawford in order
to account for finite Reynolds number effects [18] (see also [17, 23, 24] for further references and [25] for stochastic
models in the context of inertial particle dynamics). Recently, an infinitely differentiable causal random walk has been
proposed [19]. It can be considered as a layered OU processes, where each layer of order n ensures the existence of the
derivative of order n and causality. Nonetheless, experimental and numerical evidence suggests that moments exhibit
multifractal scaling 〈(δτv)n〉 ∼ τ ζn which manifests itself in form of a nonlinear dependence of the scaling exponents ζn
on order n [26–29]. The latter feature is a direct consequence of the phenomenon of intermittency, reminiscent of the
non-self-similarity of turbulence, which entails strongly non-Gaussian behavior of the Lagrangian velocity increment
probability density function at small time separations τ . Precisely those multiscaling (non-Gaussian) features impose
a major challenge for the modeling of particle transport in turbulent flows [19, 30].

Once a particle gains inertia, either from its size or its density in comparison to the surrounding fluid with kinematic
viscosity ν, the dynamics of the particle is governed by additional forces [12, 31]. For example, there are now effects
due to the Stokes’ drag force based on the relative velocities of the fluid and the particles and an added mass force
which is caused by the displacement of the fluid from the motion of the particle, to name a few. If we only retain
Stokes’ drag and disregard these other terms (which is typically assumed to be the case when particles are rather
heavy and small), the particle’s velocity is determined by the following set of equations [12, 31, 32]

Ẋp(y, t) =vp(y, t) , (2)

v̇p(y, t) =
1

τp
[u(Xp(y, t), t)− vp(y, t)] , (3)

where Xp(y, t) is the particle position, vp(y, t) is the particle velocity, and u(x, t) is the fluid velocity field. Initial
conditions fully determine the future evolution of the particle position and we assume them to be given by Xp(y, 0) = y
and vp(y, 0) = u(y, 0), where the matching of tracer and inertial particle position at t = 0 has been imposed arbitrarily.
The particle response time, τp, is defined as τp = mp/3πµfdp where mp and dp denote the mass and the diameter of
the particle, respectively, and µf is the viscosity of the fluid.

In this simplified model, the Stokes number, defined as St= τp/τK (where τK = (ν/〈ε〉)1/2 is the Kolmogorov time
scale and 〈ε〉 denotes the averaged local energy dissipation rate) is the relevant parameter to characterize particle
inertia. The Stokes number thus describes the ratio of the particle response time τp to the Kolmogorov time scale
τK at which viscous forces dominate the flow. In particular, for St= 0 (i.e., for the case of an overdamped inertial
particle) we recover Eq. (1) and the particle behaves as an ideal Lagrangian tracer.

The main purpose of this paper is to generalize recent stochastic and multifractal modeling approaches [19] -
which were initially devised for the Lagrangian velocity (1) - in order to include finite inertia effects. The simplest
approach in this direction is to investigate the particle dynamics under the assumption that each inertial particle
samples homogeneously the carrier flow, and hence the explored Lagrangian flow velocity u(Xp(y, t), t) in Eq. (3) is
representative of the complete background turbulence regardless of any eventual preferential concentration mechanism.
This approximation, determines the particle velocity vp(y, t) by a linear filter of the Lagrangian velocity v(y, t) (see
Eq. (3)) and has been invoked for the first time by Tchen [33] and Hinze [34]. In particular, under the assumption of
an exponential decay of the Lagrangian velocity correlation function for the tracers of the carrier flow (what would
correspond for instance to a simple OU dynamics for the tracers), the Tchen-Hinze theory relates the variance of the
particle velocity σ2

vp directly to that of the ideal tracer σ2
v according to

σ2
vp =

T 2
L

T 2
L − τ2p

σ2
v , (4)

where TL denotes the Lagrangian integral time scale. An extension of this linear filter approximation has been
suggested by Deutsch and Simonin [35, 36]. They argued that fluid quantities in Eq. (4) do not take into account the
fact that the Lagrangian dynamics of the tracers, probed at the position of the inertial particles, may deviate from the
global Lagrangian dynamics of the carrier flow due to preferential concentration. Hence, they propose to replace the
Lagrangian integral time scale TL and variance σ2

v by quantities determined at the position of inertial particles (TL,p
and σ2

v,p). This refinement improves the agreement of Eq. (4) with direct numerical simulations [37], in particular for
particles with small Stokes numbers, which seem to be more sensitive to preferential sampling effects. From a practical
point of view, such a refinement requires however to determine TL,p and σ2

v,p on the basis of statistics of trajectories
of individual inertial particles and their coincident Lagrangian particles, which is a quite challenging task, hardly
feasible in experiments. Furthermore, the framework by Tchen-Hinze as well as the refined theory [35, 36] do not
reproduce the observed behavior of statistical quantities at small time lags. This applies in particular to the particle’s
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acceleration which remains non-differentiable under the assumption of a simple exponential correlation function for
the Lagrangian velocity, in contrast to empirical evidence which shows smooth behavior. These limitations have also
been discussed recently in the broader context of particle settling in turbulent flows [38].

In this context, the purpose of the present work thus is twofold: i.) we generalize the Tchen-Hinze theory to
a stochastic process which is infinitely differentiable (similarly to the framework which has been devised for the
Lagrangian velocity [19]) and, hence, contains important information on small-scale fluctuations, and, ii.) we take
into account the effects of preferential concentration (e.g., the correct amplitudes of particle accelerations [39]) by the
introduction of an effective Stokes number, which is determined on the basis of the zero crossing of the empirically
determined acceleration correlation function.

The paper is organized as follows: Section II discusses the implications of the linear filter approximation for the
particle velocity correlation function. Moreover, we provide a comparison between trajectories obtained under this
approximation, and the ones obtained from direct numerical simulations (DNS) of turbulence. We present then
models for particle correlation functions based on filtered versions of an infinitely differentiable causal random walk in
Section III and by the Batchelor model in Section IV. These predictions are directly compared to DNS in Section V
and a summary of our results is included in Section VI.

II. PARTICLE RESPONSE BASED ON THE LINEAR FILTER APPROXIMATION

Inertial particle motion at low Stokes numbers, as mentioned in the introduction, is determined by the system of
first order ODEs (2-3) and requires the knowledge of the full spatiotemporal (Eulerian) fluid velocity field in Eq.
(3). In the following, an approximation will be discussed, which replaces the Eulerian fluid velocity at the position
of the inertial particle Xp(y, t) by its value at the position of the tracer, i.e. by the Lagrangian velocity. In this
approximation, particle velocity is obtained by the linear filtering of tracer velocity.

A. Linear filtering of Lagrangian velocity

In order to model inertial particle statistics on the basis of the Lagrangian velocity (1), an approximation of the
coupled system of first-order ODEs is invoked which can be termed “linear filtering of the particle velocity” due to
its analogy to methods from signal processing [39]. In this approximation, the particle position Xp(y, t) that enters
the fluid velocity field in Eq. (3) is approximated as the position of the ideal tracer X(y, t) whose temporal evolution
is governed by equation (1). Therefore, Eqs. (2-3) are approximated by

Ẋp(y, t) =vp(y, t) , (5)

v̇p(y, t) =
1

τp
[u(X(y, t), t)− vp(y, t)] . (6)

Hence, in this linear filter approximation, the particle velocity is effectively decoupled from the particle position.
Therefore, the temporal evolution of the particle velocity is solely determined by the Lagrangian velocity v(y, t) along
the tracer trajectory starting from the initial position of the inertial particle Xp(y, 0) = y. To some extent, the
linear filter neglects the spatiotemporal organization of the fluid velocity, and thus the segregation of inertial particles
in regions of low vorticity, as suggested by the phenomenon of preferential concentration. Nonetheless, as we will
stress in the following sections, certain empirically observed effects (e.g., the sharp drop in acceleration variance for
increasing St) can be modeled indirectly via this filtering technique. Furthermore, under this approximation, the
evolution equation for the particle velocity (6) can be solved according to

vp(y, t) = v(y, 0)e−t/τp +
1

τp

∫ t

0

dt′e−(t−t
′)/τpv(y, t′) . (7)

The particle position is thus determined as

Xp(y, t) = y + τpv(y, 0)(1− e−t/τp) +
1

τp

∫ t

0

dt′
∫ t′

0

dt′′e−(t
′−t′′)/τpv(y, t′′) . (8)

The implications of this linear filter approximation for particle velocity and acceleration correlation functions will be
discussed in the following section.
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B. Linear filtering of correlation functions

In this section, the linear filter approximation (6) is applied in order to establish relations between inertial particle
velocity correlation functions and the Lagrangian velocity correlation function. To this end, without loss of generality,
we denote vp as any of the components of the particle velocity vector, and correspondingly ap as any component of the
particle acceleration vector. Furthermore, we assume that the particle velocity has reached a statistically stationary
state, such that we can neglect the dependence on its initial position. Eq. (6) can then be integrated according to

vp(t) =
1

τp

∫ t

−∞
dt′e−(t−t

′)/τpu(X(t′), t′) =
1

τp

∫ t

−∞
dt′e−(t−t

′)/τpv(t′) =
1

τp

∫ +∞

−∞
dt′gτp(t− t′)v(t′) , (9)

where gτp(t) = e−t/τpH(t), where H(t) denotes the Heaviside step function. The linear filter approximation for inertial
particle velocities based on the trajectory of individual tracer particles can also be applied to the correlation functions
of velocity and acceleration. To do so, Cv(τ) = 〈v(t)v(t+ τ)〉 defines the correlation function of the velocity of tracers
where v(t) is any component of the tracer velocity. Similarly, the correlation function of the inertial particle velocity
vp(t) is defined as Cvp(τ) = 〈vp(t)vp(t+ τ)〉 and we obtain, in the statistically stationary range,

Cvp(τ) =
1

τ2p
(Gτp ? Cv)(τ) =

1

τ2p

∫ +∞

−∞
dtGτp(τ + t)Cv(t)

=
1

τ2p

∫ +∞

0

dt
[
Gτp(τ + t) +Gτp(τ − t)

]
Cv(t) =

1

2τp

∫ +∞

0

dt
[
e−|τ+t|/τp + e−|τ−t|/τp

]
Cv(t) , (10)

where the kernel Gτp(t) = (gτp ? gτp)(t) =
τp
2 e
−|t|/τp was introduced using the parity of correlation functions. Fur-

thermore, the convolution product is defined as

(g1 ? g2)(τ) =

∫ ∞
−∞

dtg1(t)g2(t− τ) . (11)

The Fourier representation of Eq. (10) has been proposed for the first time by Tchen [33]. The determination for the
inertial particle acceleration correlation function Cap(τ) based on the filtering of the tracer acceleration Ca(τ) is done
in a similar fashion, resulting in

Cap(τ) =
1

2τp

∫ +∞

0

dt
[
e−|τ+t|/τp + e−|τ−t|/τp

]
Ca(t). (12)

The linear filter approximation thus allows for direct assessment of velocity and acceleration correlation functions
via the corresponding tracer correlation functions Cv(t) and Ca(t). The implications of this approximation will be
addressed in the following section where ideal tracer, filtered inertial particles, and true inertial particles will be
compared in DNS of turbulence.

C. Direct numerical simulations of Lagrangian trajectories, inertial particles, and comparison to linear filter
approach

Twenty-one datasets containing particle trajectories for varying Stokes numbers have been generated through
JHTDB (http://turbulence.pha.jhu.edu) [40]. The spatiotemporal evolution of the fluid velocity has been
obtained by solving the Navier-Stokes equations in a periodic box with a resolution of 10243. The equation of motion
of inertial particles (2-3) are solved by a second order Runge-Kutta scheme and each DNS subset of data contains 323

trajectories. The relevant turbulence quantities are summarized in Tab. I.
The temporal evolution of particle position Xp(t), a velocity component vp(t), and the corresponding acceleration

ap(t) for St= 0.2 are presented in Figure 1 in yellow for a time span of ≈ 110τK . For comparison, Figure 1(b), shows
the trajectory of an ideal tracer X(y, t) (green) starting from the same initial condition Xp(0) = y. Whereas the
tracer particle’s velocity (green) exhibits several strong oscillations, the inertial particle’s velocity (yellow) seems not
so much affected. Indeed, from Figure 1(b) one can deduce that - already at such low Stokes numbers - the trajectory
of the inertial particle follows a substantially different path. In the context of preferential concentration [39, 41],
one could interpret this in terms of the inertial particle evading strong vortical flow structures. This might also be
supported by the evolution of the particle’s acceleration whose amplitude (and statistically speaking its variance) is
significantly decreased in comparison to the tracer particle.
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Reλ ν 〈ε〉 dt τK τp TL Ttot Np N3

418 1.85× 10−4 0.103 0.002 0.0424 St×τK 1.3003 7.692TL 323 10243

TABLE I. Characteristic parameters of the direct numerical simulations of inertial particles : Taylor-Reynolds number Reλ,

kinematic viscosity ν, averaged kinetic energy dissipation rate 〈ε〉, time step of simulation , dissipation time τK =
(
ν
〈ε〉

)1/2

,

particle response time τp with St = [0, 0.1, . . . , 1.9, 2], Lagrangian integral time TL, total time of simulation Ttot, number of
particles in each simulation Np, and resolution N of the periodic simulation domain.

0 20 40 60 80 100

−20

−10

0

10

20

v x
(t

)/
u
η

(a)

0 20 40 60 80 100

t/τη

−20

0

20

a
x
(t

)/
a
η

tracer filter St=0.2 filter St∗ inertial St=0.2

x/η

300
400

500
600

700
800

y/
η

600
800

1000
1200

1400
1600

1800

z/
η

1050

1100

1150

1200

1250

1300

1350

(b)

FIG. 1. (a) Velocity vx(t) (upper panel) and acceleration ax(t) (lower panel) of tracers (green), filtered tracers (orange and
turquoise) and true inertial particles (yellow) for St = 0.2. (b) Trajectories of tracer, filtered tracers, and inertial particles.

The linear filter approximation from Eqs. (5-6) with τp = 0.2τK (St= 0.2, orange curve) remains very close to
its determining tracer trajectory (green). Especially the temporal evolution of the acceleration suggests that the
linear filter (orange) overestimates the acceleration variance in comparison to the ordinary inertial particle. Cencini
et al. [39] applied the same technique to compare root-mean-squared accelerations and observed large discrepancies
between filtered and true arms at low St. Nonetheless, for larger Stokes numbers, true and filtered arms-values seemed
to approach one another. Hence, this study suggests that non-trivial effects due to preferential concentration, when
inertia is introduced to the particles, creates the gap between true and filtered results for St <1. On that account,
Figure 2(a) depicts the acceleration auto-correlation function which has been obtained by averaging over all Np = 323

particle trajectories. Here, the dash-dotted curves correspond to the linear filter approximation (12) for τp = StτK
with St= [0.1, 0.2, 0.5, 1, 2] from left to right. Thereby, the fluid velocity correlation function Ca(τ) was integrated
over the entire time range of the simulation T (see also Tab. I). In agreement with the findings by Cencini et al. [39],
the modeling breaks down initially, drastically underestimating the correlation of the particle for St ≤1, but recovers
to generate meaningful statistics for St=2. Especially, the regime of low Stokes numbers, e.g., for St=0.1, suggests
that the filter approximation (first dash-dotted curve from left) is nearly identical to the ideal tracer St=0 (not shown
in plot) and decorrelates much faster than the true DNS for St=0.1 (orange curve).

These profound changes between inertial particle and tracer (or filtered tracers) acceleration properties at low Stokes
also manifest themselves in the root mean square of acceleration itself. Figure 3 depicts the root mean square values
of acceleration arms as a function of St for inertial particles (blue) and filtered tracer particles (orange) according
to Eq. (9). The arms-values of inertial particles decrease much faster than their filtered counterparts. These strong
discrepancies were interpreted by Cencini et al. [39] in terms of inertial particles which preferentially sample regions
of low turbulence intensity (or depleted vorticity regions) whereas the filtered tracer particles are still impacted by
strong acceleration events of tracer trajectories trapped in vortical structures. In other words, by restricting itself
to individual tracer trajectories X(y, t), the filtering approach bears no information on the spatial organization of
the surrounding fluid velocity field, which apparently is crucial for a better understanding of the dynamics of inertial
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FIG. 2. (a) Acceleration auto-correlation from DNS for inertial particles with Stokes numbers St = 0.1, 0.2, 0.5, 1., 2. The
dash-dotted lines correspond to the linear filter approximation (5-6) with τp = StτK and underestimate the correlations at
small St in comparison to their DNS counterparts. The linear filter approximation approaches the DNS acceleration correlation
function for larger St = 2. (b) Same as in (a) but for a filter with an effective Stokes number St∗ = τ∗p /τK which has been
determined from the zero crossing of the acceleration correlation from DNS (dash-dotted curves and DNS curves now possess
the same zero crossing). The agreement between DNS and filtered curves is more accurate than in (a) for small St.

particles.
In the following, we suggest a modification of the linear filter which is in better agreement with DNS but at the

same time is still solely based on the Lagrangian velocity v(y, t) of an individual tracer. To this end, we introduce
an effective particle response time τ∗p in the linear filter approximation (6) which does not necessarily obey the usual
relation τp = StτK but henceforward is considered as a free model parameter. In the spirit of recent stochastic models
for Lagrangian tracers [19], which identified the zero crossing of the acceleration correlation as a crucial ingredient
for model calibration, we proceed in a similar way: First, we determine the zero crossing τ0(St) of the acceleration
auto-correlation functions from DNS in Figure 2. Subsequently, with the help of a suitable roots-finding algorithm,
we determine the effective particle response time τ∗p (St) in Eq. (12) in such a way that Cap(τ0(St)) = 0.

Figure 2(b) depicts the acceleration auto-correlation functions (dash-dotted curves) after this calibration. Hence,
by virtue of an effective particle response time τ∗p based on matching zero crossing of the acceleration correlation
functions, a better agreement with DNS has been achieved, particularly for low Stokes numbers. The corresponding
filtered trajectories with St∗ = τ∗p /τK are also included in Figure 1 and correspond to the turquoise curves. Due to
the increased damping (τ∗p > τp) in the filter, τ∗p -filtered accelerations (turquoise) are closer to their DNS counterparts
(yellow). In conclusion, the introduction of an effective particle response time τ∗p based on the zero crossing of the
acceleration correlation function reinstates the effects of preferential sampling of inertial particles to some extend.
This notion will be further assessed in the following section by example of stochastic models for inertial particle
statistics.

III. PROCESS FOR INERTIAL PARTICLES SUBJECT TO GAUSSIAN INFINITELY
DIFFERENTIABLE FLUID VELOCITY

This section is devoted to a generalization of a recently developed model for the Lagrangian velocity [19] which will
be extended to take into account finite particle inertia. The simplest model for the Lagrangian velocity v(t) consists
of an Ornstein-Uhlenbeck process which obeys the following Langevin equation

dv(t) = − 1

T
v(t)dt+

√
2σ2

T
dW (t) , (13)

where dW (t) denote the increments of a Wiener process W (t) with zero mean and variance dt, and σ2 denotes the
variance of the process 〈v2〉. Furthermore, T is a large turbulence time scale. In this framework, velocity is non-
differentiable and thus acceleration only has a meaning in a distributional sense, which is at odds with experimental
and numerical observations. This model has been extended by Sawford [18] in order to allow for the differentiability
of the velocity, however, the acceleration of the process remains non-differentiable itself. Therefore, a multilayered
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FIG. 3. Root mean square values of acceleration arms as a function of the Stokes number for inertial particles in DNS (green)
and filtered tracer particles (orange) according to Eq. (6). The arms-values from DNS exhibit a rapid decrease for small but
finite St whereas the linear filter approximation decays much slower.

Ornstein-Uhlenbeck process has been proposed where the velocity itself is infinitely differentiable when the number
of layers tends to infinity [19]. In making use of the linear filter approximation discussed in the previous section, the
latter model can readily be extended in order to allow for the effects of finite particle inertia. Following the approach
of [19], we consider the system of coupled stochastic differential equations

v̇p =
1

τ∗p
(v − vp) , (14)

v̇ =− 1

T
v + fτη , (15)

where τ∗p denotes the particle response time of the model and τη is a small-scale turbulence time scale of the order
of the Kolmogorov dissipative time scale τK defined in the caption of table I. The forcing term fτη is a zero-average
Gaussian random force, which is fully determined by its covariance in the statistically stationary regime. Following
the procedure outlined in [19], the covariance in both, physical and spectral space, reads

Cfτη (τ) ≡ 〈fτη (t)fτη (t+ τ)〉 =
σ2e−τ

2
η/T

2

√
πTτη erfc (τη/T )

e
− τ2

4τ2η =
2σ2e−τ

2
η/T

2

T erfc (τη/T )

∫
dω e2iπωτe−4π

2τ2
ηω

2

, (16)

where we have introduced erfc(x) = 1− erf(x) as the complementary of the error function erf(x). The principal steps
in [19] that led to the model for the Lagrangian velocity v in Eq. (15) can be interpreted in terms of the layering of
an ordinary Ornstein-Uhlenbeck process. Here, each layer increases the degree of differentiability of the Lagrangian
velocity and thus improves modeling proficiency at small time scales. Moreover, it is possible to perform the limit to
an infinite number of layers (and thus an infinitely differentiable Lagrangian velocity v), which results in Eq. (16).

As we can see from the structure of its covariance (16), the Gaussian forcing term fτη is correlated over the
dissipative time scale τη, the correlation function being itself a Gaussian function. Moreover, this covariance structure
shows that the random process fτη (t) is infinitely differentiable, which is a direct consequence of the smoothness of its

Gaussian shape. As developed in Ref. [19], the remaining parameter σ2 entering Eq. 16 corresponds to the variance
of the Lagrangian velocity v, that is the variance of the solution of Eq. (15) in the statistically steady range

σ2 = 〈v2〉. (17)

At this stage, causality of the forcing term fτη is not obvious, and cannot be deduced from the covariance Cfτη (τ) (Eq.

16). It is indeed shown in Ref. [19] that this forcing term can be obtained as an infinite sequence of causal equations,
i.e., an infinite number of embedded Ornstein-Uhlenbeck processes, making the asymptotic process fτη itself causal.
Finally, the covariance function of the particle velocity vp, defined as successive linear operations (Eqs. 14 and 15) on
the forcing term fτη , can be obtained as

Cvp(τ) ≡ 〈vp(t)vp(t+ τ)〉 =
2σ2e−τ

2
η/T

2

T erfc (τη/T )

∫
dω e2iπωτ

1

1 + 4π2(τ∗p )2ω2

T 2

1 + 4π2T 2ω2
e−4π

2τ2
ηω

2

, (18)
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which can be calculated explicitly in physical space according to

Cvp(τ) =
σ2T

2(T 2 − (τ∗p )2) erfc(τη/T )

{
Te−|τ |/T

[
erfc

(
τη
T
− |τ |

2τη

)
+ e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]

− τ∗p e−|τ |/τ
∗
p e

τ2η

(τ∗p )2
− τ2η

T2

[
erfc

(
τη
τ∗p
− |τ |

2τη

)
+ e2|τ |/τ

∗
p erfc

( |τ |
2τη

+
τη
τ∗p

)]}
. (19)

Herein, the dependence of the variance of the particle velocity on τ∗p can be determined. Setting τ = 0 in equation
(19) yields

σ2
vp =

σ2T 2

T 2 − (τ∗p )2

1− τ∗p
T
e

τ2η

(τ∗p )2
− τ2η

T2
erfc

(
τη
τ∗p

)
erfc

( τη
T

)
 . (20)

Hence, in the limit τ∗p → 0, the variance of the Lagrangian model, limτ∗p→0 σ
2
vp = σ2, is recovered [19]. Furthermore,

the prediction of the “single-layered” Tchen-Hinze theory (4) can be recovered by discarding the square brackets in
Eq. (20).
The acceleration correlation function can be calculated from Eq. (19) according to

Cap(τ) = −d2Cvp(τ)

dτ2
, (21)

which yields

Cap(τ) =
σ2T

2(T 2 − (τ∗p )2) erfc(τη/T )

{
1

T
e−|τ |/T

[
2T√
πτη

e
−
(
τη
T −

|τ|
2τη

)2

− erfc

(
τη
T
− |τ |

2τη

)
− e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]

− 1

τ∗p
e−|τ |/τ

∗
p e

τ2η

(τ∗p )2
− τ2η

T2

[
2τ∗p√
πτη

e
−
(
τη
τ∗p
− |τ|2τη

)2

− erfc

(
τη
τ∗p
− |τ |

2τη

)
− e2|τ |/τ∗p erfc

( |τ |
2τη

+
τη
τ∗p

)]}
. (22)

The variance of the acceleration can be determined according to

σ2
ap =

σ2

T 2 − (τ∗p )2

 T
τ∗p

e

τ2η

(τ∗p )2

e
τ2η

T2

erfc
(
τη
τ∗p

)
erfc

( τη
T

) − 1

 . (23)

In the limit of τ∗p → 0, the reduced tracer model discussed in [19] is recovered and we get

lim
τ∗p→0

σ2
ap =

σ2

T 2

 T√
πτη

e−
τ2η

T2

erfc
( τη
T

) − 1

 . (24)

So far, the proposed model possesses Gaussian properties, i.e., the particle velocity statistics is fully determined by
the correlation function (19). The inclusion of non-Gaussian properties into the stochastic process can be achieved in
the same manner discussed in [19] and will be the subject of future work. In the present model, the fluid properties
enter through the turnover time T and the small time scale τη, which can be parameterized in order to match certain
characteristics of Lagrangian tracers. In [19], for instance, T and τη were determined in order to match the integral
Lagrangian time scale

TL =

∫ ∞
0

dτ
Cv(τ)

Cv(0)
, (25)

and the zero crossing of the empirically determined acceleration correlation function Ca(τ). In addition to this
parameterization, here, we also have to determine the particle response time τ∗p . In the spirit of the effective particle
response time of the linear filter approximation discussed in Section II, τ∗p will be determined in order to match the
zero crossing of the acceleration correlation function for different Stokes numbers. However, before we explicitly carry
out the model calibration, we want to discuss the linear filter approximation in the context of the Batchelor model
for Lagrangian tracers in turbulence. The latter modeling technique operates directly at the level of the second order
structure function S2(τ) = 2σ2 − 2Cv(τ) and differentiability of the Lagrangian velocity is ensured by introducing
the correct dissipation range behavior at small τ . By contrast to the present stochastic model, which was based on a
Langevin equation (14) at its basic level, the Batchelor model will not be discussed in form of a stochastic process,
but rather in the context of the so-called multifractal formalism [28].
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IV. INERTIAL PARTICLE STATISTICS FROM BATCHELOR’S MODEL FOR LAGRANGIAN
TRACERS

In the seminal work of Batchelor [42] an interpolation between dissipation and inertial range was proposed in the
Eulerian frame of reference. The interpolation was capable to reproduce the inertial range behavior of the second
order structure function 〈(δru)〉 ∼ r2/3 and, at small r, the dissipation range prediction 〈(δru)〉 ∼ r2 by a simple
polynomial interpolation [43]. Similarly, an interpolation for the Lagrangian second order structure function

〈
(δτv)2

〉
,

which covers both inertial
〈
(δτv)2

〉
∼ τ and dissipation range τ2, can be deduced [26, 28, 29, 44]. In its simplest form,

the second order Lagrangian structure function reads

S2(τ) =
〈
(δτv)2

〉
= 2σ2

τ
T[

1 +
(
τ
τη

)−δ] 1
δ

, (26)

where δ determines the transition between dissipation and inertial range. Within the multifractal formalism, which
proposes a more complete modeling of the differential action of viscosity not only up to second order statistics as it is
done here, but also for higher order structure functions, Lagrangian statistics seem to be well reproduced by choosing
δ = 4. Nevertheless, in what follows, where we completely neglect the implications of intermittent corrections on
the width and shape of the so-called intermediate dissipative range, we will restrict ourselves to the case δ = 2, as
initially chosen by Batchelor to reproduce the behavior of the second order structure function of Eulerian velocity,
which leads to an acceptable agreement with DNS data, as it will be shown in the following Section. Furthermore,
because the proposed parametrization for S2 does not saturate for τ � T (Eq. (26) is understood as a model for scales
τ � T only), we need to introduce a proper cutoff at large scales. Following the proposition of Ref. [19], we include
in this simple picture an additional exponential decrease over the characteristic large time scale T , and consider the
alternative form

S2(τ) = 2σ2 1− e− τ
T[

1 +
(
τ
τη

)−δ] 1
δ

, (27)

which entails a finite Lagrangian integral time scale. For our case, i.e., δ = 2, this time scale can be calculated
explicitly

TL =

∫ ∞
0

dτ
Cv(τ)

Cv(0)
= τη

[
1− π

2
Y1

(τη
T

)
− π

2
H−1

(τη
T

)]
, (28)

where Yn(z) denotes the Bessel function of the second kind and Hn(z) the Struve function, as it is provided by a
symbolic calculation software. In this framework, the acceleration correlation function for the tracer particle can be

calculated from the second order structure function (26) by Ca(τ) = 1
2
d2S2(τ)

dτ2 .
Finite particle inertia can again be included in using the linear filter approximation discussed in Section II. To this

end, Eq. (10) has to be evaluated from the Lagrangian velocity correlation Cv(τ) = σ2 − S2(τ)
2 . We could not obtain

a closed expression for the integral and thus have restricted ourselves to a numerical evaluation, which will be further
elaborated upon in the next section.

V. COMPARISON TO DNS

In this section, we will apply the presented modeling techniques to the DNS discussed in Section II C. In order
to connect these approaches to the simulated data, parameters of the DNS must be defined to properly calibrate
the models, namely the integral length scale, T , the dissipative scale, τη, and the effective particle response time τ∗p .
Detailed explanations of the calibration technique can be found in [19]. In summary, two conditions have to be imposed
for the Lagrangian stochastic model (τ∗p = 0), namely the matching of the Lagrangian time scale of the stochastic
model (25) to TL of the DNS as well as the matching of the zero crossing of the acceleration correlation function (22)
to the zero crossing from the DNS data. This calibration suggests the values (τη/τK , T/TL) = (0.5759, 0.9791). For
the Batchelor model, the same calibration has to be carried out, where now the Lagrangian integral time scale is given
by Eq. (28). Furthermore, by matching the zero crossing, we obtain the values (τη/τK , T/TL) = (1.7956, 0.9941). It
can be noted that τη from the Batchelor model is larger than τK whereas the stochastic model exhibits a τη smaller
than τK after calibration.
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FIG. 4. Comparison of the second-order structure function to DNS from (a) the stochastic model (dash-dotted lines) and (b)
the Batchelor model for five different St parameters in between 0 and 1. The structure functions have been shifted vertically by
multiplication of 10−n for n = 0− 4 from top to bottom. At the level of velocity, both models perform nearly identical and (a)
and (b) exhibit only slight differences. These differences are more pronounced at the level of acceleration as shown in Fig. 5.

With the inclusion of St, an additional free parameter of the models is available for calibration, the effective particle
response time τ∗p . As discussed, the acceleration correlation function for the stochastic Gaussian process is given by
Eq. (22), from which τ∗p can be extracted based on the zero crossing of the DNS data for each Stokes number. In
a similar fashion, the new model parameter τ∗p is obtained from the linear filtering of the acceleration correlation
function of the Batchelor model derived from Eq. (27).

Figures 4(a) and 4(b) depict the comparison of second order structure function S2(τ) =
〈
(δτvp)

2
〉

stochastic and
Batchelor model, respectively (dash-dotted curves), to DNS for St=0-1 (solid curves). For the tracers, St=0, the
original stochastic model [19] and Batchelor model are implemented.

For St >0, linear filtering of the velocity correlation function for tracer particles agrees well with S2(τ) from DNS
for both models. The stochastic approach, Figure 4(a) shows agreement between the model and DNS at small scales
and deviates slightly as the time lag τ increases. Notably, slight deviations appear in the inertial range and might be
attributed to the Gaussianity of the stochastic model, which thus neglects intermittency corrections. The application
of our filtering technique to the statistics of the Batchelor model, Figure 4(b), shows similar tendencies. At small
scales the model coincides with the DNS profiles for the given St presented. At τ/τK >1, again a deviation occurs
where the model begins to overestimate the structure function of its corresponding DNS curve, the near-dissipative
range seems to extend further than the one present in the simulated data. These deviations slightly increase with St.
The application of the models to the acceleration correlation function is presented in Figure 5. Here, the discrepancy
between modeled correlations and those obtained from the simulated data can be observed at all scales. The stochastic
modeling of the inertial particle correlations is presented in Figure 5(a) for the considered St range. The model over-
predicts correlations in the dissipative range. For increasing Stokes number, linear filtering of the model improves the
ability to accurately describe small scale correlations, for example for St=0.2. As St increases further, quickly the
filtered model and the DNS show increased discrepancies between the profiles, as the decorrelation of the acceleration
occurs more rapidly than the model predicts. Filtering of the Batchelor model, Figure 5(b), shows similar tendencies
of the results of the stochastic approach, but with even greater variation. The correlation of tracer velocity at St=0
is slightly over-predicted at small scales and slightly under-predicted at large scales. Comparable dissimilarity is
observed between the DNS and model at St=0.1. As the Stokes number increases, the linear filter of the model breaks
down and the predictions decorrelate slower when compared to the simulated data responses.

Due to the fact that the model calibration for finite St is based on the zero crossing of the acceleration correlation,
it is worth studying the St-dependence of this quantity as well. Therefore, Figure 6(a) depicts the zero crossing τ0
from DNS as a function of the Stokes number St. For the case of Lagrangian tracers St = 0, the zero crossing is
at around 2.2τK and increases sharply for St > 0. For St ≈ 1, a new quantitative behavior sets in, and the zero
crossing exhibits a slower increase. Furthermore, the zero crossing becomes rather noisy, therefore, it is not entirely
clear whether the zero crossing would saturate at even higher St. The inset of Figure 6(a) shows a double-logarithmic
representation of τ0. For St < 1, the zero crossing appears to be a power law, whereas deviations from this power
law appear at St ≈ 1. For comparison, the black line shows a power law ∼ St0.35. However, at this point, no clear
phenomenological description could be provided that would allow for the explanation of such a power law of the zeros
of acceleration for inertial particle motion.
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FIG. 5. Comparison of acceleration auto-correlation function from (a) the stochastic model (dash-dotted lines) and (b) the
Batchelor model (dash-dotted lines) to DNS for five different St parameters in between 0 and 1.
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FIG. 6. (a) Zero crossing τ0 of the acceleration correlation functions from DNS (as partially shown in Figure 2) as a function
of St. The inset shows a double-logarithmic representation with the black line indicating τ0 ∼ St0.35. (b) Recalibrated particle
response time τ∗p expressed as St∗ = τ∗p /τK based on the zero crossing τ0 (see main text for more details on the calibration
process) as a function of St.

Figure 6(b) depicts the calibrated effective Stokes number St∗ =
τ∗p
τK

as a function of the DNS Stokes number St

for both the stochastic (yellow) and the Batchelor model (dark blue). Interestingly, the curves strongly resemble
Figure 6(a) which suggests a nearly linear relation between the zero crossing τ0 and the effective (calibrated) particle
response time τ∗p . The arms-values as a function of the Stokes number for all modeling techniques are included in
Figure 7 for direct comparison of the statistic. The filtered acceleration, found directly from Eq. (12) (orange), and
the stochastic model, based on τp (turquoise), quickly deviate from the DNS arms curve while the two models with the
updated τ∗p for the stochastic process (yellow) and Batchelor representation (dark blue) show improved agreement at
all St and good agreement between 0.2 ≤ St ≤ 1.1. Cencini et al. [39] present a similar comparison and suggest that
the deviation between the profiles at small Stokes numbers is due to preferential concentration which is not captured
by the linear filter approximation. The inclusion of the effective particle response time τ∗p in our model counteracts
this discrepancy, providing accurate representations of acceleration statistics for the presented Stokes numbers.

VI. CONCLUSION

We have presented a modeling technique for single inertial particle statistics based on a filtering approach for the
Lagrangian fluid velocity. The introduction of an effective particle response time τ∗p in the linear filter is motivated by
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FIG. 7. (a) Comparison of root mean square values of acceleration for DNS and the different models. (b) Semi-logarithmic
representation of (a).

the strong discrepancies in the dynamics of tracer-like and true inertial particles at low Stokes numbers. In particular,
the effective particle response time accounts for the effects of preferential sampling of depleted vorticity regions by
inertial particles, which manifests itself, for instance, in a strong decrease of the variance of the particle acceleration
as suggested by Figure 7. Both the stochastic and the Batchelor model are capable of reproducing this characteristic
feature of inertial particles. It has to be stressed that this feature cannot be reproduced by a pure linear filtering
approximation which over-estimates acceleration variances.

In contrast to the refinement of the linear filtering approximation proposed by Deutsch and Simonin [35, 36], here,
we do not operate on the level of fluid quantities as “seen” by inertial particles, but rather modify the “response of
particles to fluid structures”. This has the advantage that the calibration of our model equations is rather simple
(i.e., it suffices to determine the empirically observed zero crossing of the acceleration correlation) in comparison
to evaluating fluid quantities on the basis of individual inertial particle trajectories. In principle, it should also be
possible to determine zeros of acceleration directly from measurement campaigns which would thus allow to access
and parametrize statistical quantities such as velocity and acceleration correlation functions. In particular, explicit
formulas for the variance of velocity (20) and acceleration (23) could offer a quite accurate characterization of inertial
particle dynamics with respect to its Stokes number dependencies. Nonetheless, in cases where zeros of acceleration
are inaccessible one might also resort to phenomenological parametrizations as suggested by Fig. 7(b) or by directly
fitting the variances (20) and (23) which are oftentimes available in experiments [5]. Hence, the proposed modeling
approach might offer additional diagnostic tools, e.g., for a more accurate determination of integral time scales whose
estimation are usually limited by the length of particle trajectories.

It will be a task for the future, to further investigate the peculiar notion of preferential sampling/preferential
concentration by extending the modeling techniques and possibly combine them with generalized vortex models
similar to those in Refs. [45–48] . Furthermore - as we currently operate at the level of second order statistics -
much more could be understood by focusing for instance on the behavior of the flatness of velocity increment which
highlights the implication of the existence of intermittent corrections. To include this behavior, we would first need
to derive the action of the linear filtering at this higher level of statistics, and then to generalize both the stochastic
process as well as the parametrization of Batchelor to include intermittent corrections, as it was done for Lagrangian
velocity in Ref. [19]. Furthermore, the proposed model might be generalized to particle pairs which opens up the way
for investigating particle collisions [41] on the basis of simple stochastic models or the multifractal formalism.
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