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The electric conductance characterizes the response of a nanochannel/nanopore to an 10 

electrical potential drop. It has long been known that at low concentrations the electric 11 

conductance is independent of the bulk electrolyte concentration but depends on the surface 12 

charge density. In recent years, several works have demonstrated that the low-concentration 13 

conductance is concentration-dependent. This dependence is implicit through the mechanism 14 

known as surface charge regulation which causes the surface charge density to depend on the 15 

concentration, 
0c . As a result, the conductance, G , has power-law dependency such that 16 

0~G c  with a slope of  . It is typically assumed the slope takes on the particular values 17 

1 1
3 2

0, , = . Here, we will analytically show that slope varies continuously from 0 to 1
2
 as the 18 

system parameters vary. Thereafter, we will account for convection and the effects of a slip 19 

length at the channel surface. We will show that convection without slip increases the 20 

conductance but does not vary the slope  . The inclusion of slip not only increases the 21 

conductance but also increases the slope to 2 . Direct numerical simulations confirm our 22 

theoretical predictions. The consequences of these findings are important in the design of any 23 

electro-kinetically driven nanofluidic system insofar as they provide the experimentalist an 24 

accurate prediction of the system response as a function of the material properties.  25 
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I. INTRODUCTION 26 

The discovery of new materials and the development of more advanced fabrication 27 

methods results in system sizes that are ever decreasing [1]. With this comes the potential to 28 

enhance our understanding of nanoscale physics and, in parallel, revolutionize current 29 

technological setups. Of particular interest is the transport of ions across these nanoscale 30 

systems. Nanochannels, nanotubes, nanopores, and nanoporous materials are ubiquitous to 31 

nature and technology. They are found in desalination [2–7] and energy harvesting [8–21] 32 

systems, as well as biosensing [22–29], fluid-based electrical diodes [30–41], and various 33 

physiological phenomena [42–45]. However, as pointed out in recent reviews [7–9,46–48], 34 

numerous challenges related to scalability, fabrication technology, and elucidation of the 35 

unknown fundamental physics at these small scales remain. Specifically, it is known that a 36 

plethora of mechanisms, unique to nanoscale systems, determine the system’s overall response. 37 

Many of these mechanisms have already been investigated separately. However, the interplay 38 

of these mechanisms is not fully understood. This work will address how the interplay of 39 

surface charge regulation, bulk convection, and hydrodynamic slip length  varies nanopore 40 

systems’ conductance.  41 

The electrical conductance, G , is the ratio of the electrical current, I , to the electrical 42 

potential drop, V  (i.e. /G I V= ). In contrast, to classical metallic conductors (i.e., the Drude 43 

model), whose response is typically linear with the number density (i.e., the concentration of 44 

electrons) [49], electrolyte-based conductors display more complicated behavior. This can be 45 

associated with fluid-structure interactions – namely, the charging of the electric double layer 46 

(EDL), surface charge regulation, convection, slip lengths, and more. 47 

Stein et al.’s [50] pioneering work showed that the Ohmic conductance behaved peculiarly. 48 

At high bulk concentrations, 0c , when the electric double layers (EDLs)  49 
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do not overlap (i.e., the EDL is much smaller than the pore radius, a , such that 
D a ), the 51 

conductance increases linearly with the bulk concentration ( 0~highG c ). Here 
gR  is the 52 

universal gas constant, T  is the temperature, F  is the Faraday constant, and 
0  and 

r  are the 53 

permittivity of free space and the relative permittivity, respectively. At low concentrations, 54 

when the EDLs overlap (
D a ) and the effects of the surface charge are prominent , the 55 

conductance saturates to a constant value that is independent of the concentration but depends 56 

on the surface charge density, s , such that ~low sG  . The thick dashed orange line in Figure 57 

1 depicts the behavior schematically and is given by the well-known equation  [51–53] 58 

 59 

Figure 1. Schematic behavior of the linear Ohmic conductance, G , of a long 60 

nanopore versus the bulk concentration, 0c . The slopes are denoted by the numbers 61 

above the thin dashed black lines. The variation of the slope   at low 62 

concentrations is discussed throughout this work. 63 
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where 
cond  is the conductivity  65 

 2 2

0 / ( )cond gz F Dc R T = , (3) 66 

a  is the pore radius, L  is the pore length, and D  is the diffusion coefficient. Here N  represents 67 

the average excess counterion concentration due to the surface charge density [ derived later in 68 

Eq. (36) and again in Appendix A]  69 

 
2 sN
aFz


= − , (4) 70 

and it is explicitly independent of the concentration. Equation (2) is typically derived under 71 

numerous assumptions: that convection is negligible, the electrolyte is symmetric (defined 72 

below), large aspect ratio ( / 1L a ), the surface charge density is independent of electrolyte 73 

concentrations, and the effects of access-resistances/field-focusing-resistances due to the 74 

adjacent microchannels/reservoirs are negligible. We will review and revisit these assumptions 75 

throughout this work. In Appendix A, we derive this equation whereby the notation used in 76 

Appendix A is provided throughout this work. It is recommended to read this Appendix after 77 

Sec. IV.A. 78 

We consider Eq. (2) at the two extreme cases of high and low concentrations.  At high 79 

concentrations, 0N c , the conductance reduces to a term that is linear with the concentration, 80 

, 0~ ~Ohmic high condG c  such that the slope is 1 (Figure 1). In contrast, at low concentrations, 81 

0N c , one finds that the conductance 82 

 
2 2

,

0

~cond
Ohmic low

a a
G N N

c L L

  
= , (5) 83 
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is explicitly concentration-independent. However, recent works [54–58] have suggested that if 84 

the surface charge is regulated, this leads to 0~N c . Here,   is the exponent of the power-law 85 

dependency of the surface-charge regulation (Sec. III). As a result, Eq. (5) [and Eq. (2)] is 86 

implicitly concentration-dependent such that , 0~Ohmic lowG c  and the slope is no longer zero, but 87 

rather it is  . The dotted-dashed blue line in Figure 1 denotes Eq. (2) under the assumption 88 

of charge regulation. 89 

This work is structured as follows. In Sec. II, we introduce the model and governing 90 

equations. After which, we derive the solutions for fully developed profiles. We then calculate 91 

the transport coefficients, which represent the various contributions to the conductance. Before 92 

we analyze these coefficients, in Sec. III, we derive an expression for the surface density under 93 

the assumption of surface charge regulation whereby we show that the surface charge density 94 

varies with the conditions of the environment (namely the concentration and more). In Sec. IV, 95 

we analyze the transport coefficients and their dependence on the various system parameters 96 

(including space charge regulation, slip lengths, and more). The discussion and conclusions are 97 

presented in Sec. V. Throughout this work, we compare our theoretical predictions with 98 

numerical simulations. The correspondence is outstanding. 99 

II. MODEL AND SOLUTION DERIVATION 100 

This section is divided into six parts. First, in Sec. II.A, we present the geometry of the 101 

system and discuss the composition of the electrolyte. In Sec. II.B, we present the governing 102 

equations and the normalizations. In Sec. II.C, we derive the solution for the concentration and 103 

electric potential distributions while in Sec. II.D we derive the axial velocity distribution. 104 

Section II.E presents a comparison of the theoretical results of the two previous sub-sections 105 

to numerical simulations. In Sec. II.F, we calculate the transport coefficients – namely the 106 

various contributions to the conductance. These contributions are analyzed in Sec. IV. 107 
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A. Geometry and electrolyte components 108 

In this work, we model a cylinder of length L  and radius a  with a surface charge density, 109 

s  as shown in Figure 2(a). Dimensional quantities are denoted with tildes, while non-110 

dimensional quantities are without tildes. The various normalizations are discussed and 111 

provided below [Sec. II.B]. Shortly, we will assume that the length is substantially longer than 112 

the radius, / 1L a , such that all the distributions are fully developed. 113 

Figure 2 schematically depicts ions within a negatively charged pore. In the figure, we 114 

have added only the two major charge carriers of the salt (for example K+
 and Cl− ). In reality, 115 

there are at least two additional species – these are H+
 and OH− . In the following, we explicitly 116 

assume that the concentration, electric potential, and velocity profiles are determined by two 117 

of these species alone – these are the main charge carriers – which we assume to be symmetric 118 

such as, K+
 and Cl− . In a realistic electrolyte, there is always a presence of H+

 and OH− . 119 

However, their concentration is typically small enough that they are not dominant. In fact, due 120 

to coion exclusion, the concentration of OH−  is substantially smaller than that of H+ , to the 121 

point that we will not mention OH−  further. In contrast, while H+
 does not directly influence 122 

the system response, it indirectly regulates the surface charge density. The topic of surface 123 

charge regulation is discussed in Sec. III. In the following derivation, we do not directly model 124 

the effects of H+  and OH− .  125 
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 126 

Figure 2. (a) Schematic representation of a negatively charged long nanotube (127 

L a ). Due to the negative surface charge density, s , there is an excess of 128 

positive counterions, represented by purple spheres, over the negative coions, 129 

represented by green spheres. This work focuses on the case of a highly selective 130 

channel ( / 1)D a =  which corresponds to the case of few negative ions. (b) 131 

The surface charge density is regulated by H+  and OH−  (discussed in the text). A 132 

schematic profile of a (c) no-slip velocity profile and (d) a velocity profile with a 133 

slip length b . All three mechanisms [(b)surface charge regulation, (c) bulk 134 

convection, and (d) slip lengths) vary the conductance. 135 
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B. Governing equations 136 

The non-dimensional steady-state equations that govern ion transport in a system with a 137 

symmetric binary electrolyte with equal diffusion coefficients ( )D D =  and opposite valences 138 

(z z =  ) are the Nernst-Planck-Poisson-Stokes (PNP-S)equations 139 

 ( ) Pe( ) 0c c c   −  =   −  =j u     , (6) 140 

 2 22 ( )c c  + − = − − , (7) 141 

 0 =u , (8) 142 

 2 2 0 + =u  . (9) 143 

Here we have assumed that the pressure gradient in Stokes equation [Eq. (9)] is zero, and we 144 

have used the following normalizations 145 

 
0 0 0, , , ,tha c c c j u      = = = = =r r j j u u . (10) 146 

The spatial coordinates are normalized by the radius, a . The electric potential,  , has been 147 

normalized by the thermal potential, /th gR T Fz = , where gR  is the universal gas constant, T  148 

is the temperature, and F  is the Faraday constant. The concentrations, c , have been 149 

normalized by the bulk concentrations 0c . These normalizations lead to the non-dimensional 150 

Debye length or non-dimensional electric double layer (EDL) 151 

 
0

2 2

0

1

2

r gD
R T

a a F z c

 
 = = , (11) 152 

where 0  and r  are the permittivity of free space and the relative permittivity. The 153 

normalizations of Eq. (10) also lead to natural scales for the fluxes, j , and the velocity, u . 154 

These are respectively 0j  and 0u   155 

 2

0 0 0 0/ , /r thj c D a u a   = = , (12) 156 
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where   is fluid’s viscosity. Notably, the Peclet number, which is the non-dimensional number 157 

ratio of convective fluxes to diffusive fluxes, arises. Here, the Peclet number is defined as  158 

 
2

0 0Pe = = r thu a

D D

  


.  (13) 159 

In Sec. II.F, we will demonstrate the contributions of the convective fluxes to the conductance 160 

via the dependence on Pe . 161 

We assume that the channel has a large aspect ratio, / 1L a . As a result, derivatives of 162 

the fluxes in the axial direction are negligible such that 0x = . Further, we assume 163 

axisymmetric profiles whereby derivatives in the azimuthal direction are zero, 0 = . As a 164 

result, the equations depend solely on the radial coordinate, r . The large aspect ratio also 165 

allows the electric potential to be separated into two terms 166 

 ( , ) ( ) (1 / )r x r V x L = + − . (14) 167 

The first term represents the electric potential of the fully developed profile. The second term 168 

represents the linear Ohmic potential drop across a channel of length L  due to a voltage drop 169 

of V . In the remainder of this work, we will also denote the thermal potential in Eq. (10) as 170 

th th = . Also, it should become evident that the electric field in the axial direction is given by 171 

the constant (the subscript of a comma denotes a derivative) 172 

 , /xE V L= − = . (15) 173 

C. Potential and concentration solutions 174 

For fully developed and axisymmetric profiles, the Nernst-Plank [Eq. (6)] and Poisson 175 

equations [Eq. (7)] are drastically simplified  176 

 , , 0r rc c   = , (16) 177 

 
2 1

, ,2 ( ) ( )r rr r c c −

+ −= − − . (17) 178 
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Note that Eq. (16) has assumed that there is no flux into the solid wall 179 

 ˆ( 1) 0r =  =j r . (18) 180 

Integrating Eq. (16) leads to 181 

 c e 

 = . (19) 182 

Substituting Eq. (19) into Eq. (17) yields the Poisson Boltzmann (PB) equation [59] 183 

 2 1

, ,2 ( ) ( )r rr r e e  − −= − − . (20) 184 

To solve the PB equation, we supplement the boundary conditions of no flux at the center of 185 

the channel and a surface charge density at the surface of the channel, respectively, 186 

 , ( 0) 0r r = = , (21) 187 

 , ( 1)r sr = = , (22) 188 

where the dimensional-less surface charge density has been normalized by  189 

 
0 /d r th a   = , (23) 190 

(i.e. /s s d  = ). Here, we assume that the surface charge is negative (i.e. 0s  ). Shortly, 191 

this will lead to coion exclusion of negatively charged ions. 192 

For the case of highly overlapping EDLs ( 1 ), with a surface charge of order unity193 

[ ~ (1)]s O , Schnitzer and Yariv  [60] suggest a solution of the form 194 

 2ln  = − + . (24) 195 

Substituting Eq. (24) into Eq. (19), combined with 0s  , yields a ratio of the coion to the 196 

counterion concentration that is 4/ ~ ( )c c O  −

− +  [58]. Since 1 , we conclude that the effects 197 

of the coions are negligible. Thus, the PB equation is further reduced to 198 

 
1 1

, , 2
( )r rr r e − −= − . (25) 199 

The solution of this equation is  [56–58,61,62] 200 
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s s
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 2

2 2

16 ( 4)

[4 ( 1) ]

s s

s

c e
r

  




−

+

−
= =

+ −
. (27) 202 

D. Solution: Velocity distributions  203 

For unidirectionally developed flows, the simplified governing equation for the velocity 204 

field in the axial direction is 205 

 1 1

, , , , ,( ) ( ) 0x r r r r xr ru r r − −+ = . (28) 206 

The appropriate boundary conditions are 207 

 , ( 0) 0x ru r = = , (29) 208 

 ,( 1)x x ru r bu= = − . (30) 209 

Equation (29) is a symmetry condition at the center of the channel, while Eq. (30) is a slip 210 

length boundary condition at the wall. The non-dimensional slip length is normalized by the 211 

radius such that /b b a= . For 0b = , the traditional no-slip boundary condition is recovered. 212 

The inclusion of the slip length is new relative to our recent work  [58]. We will shortly 213 

demonstrate that the slip length is responsible for changing the slope of the conductance. The 214 

minus sign in Eq. (30) denotes that the normal to the surface is in the decreasing radial 215 

direction. 216 

Equations (28)-(30) are solved via direct integration. Since the governing equation and 217 

boundary conditions are linear, the velocity profile can be divided into two contributions: 218 

electric body force with a no-slip contribution and a slip contribution 219 

 x no slip slipu u u−= + , (31) 220 

 
21

4
2 ln[1 ) ]1(no slip su E r − −= + , (32) 221 

 slip su b E= − . (33) 222 
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Equation (32) has been derived in past works  Ref.  [56–58,61] while Eq. (33) has also been 223 

derived in past works  [57,63–65]. However, the dependency of 
s  on the concentration is 224 

either overlooked or over-simplified. Thus, the main finding of this work, which is discussed 225 

in Sec. IV, is the demonstration of the universal change of the conductance and the slope due 226 

to the two terms in Eq. (31). 227 

E. Concentration, electric potential, and velocity plots 228 

In Sec. II.F, we will calculate cross-sectional averages of the various flux contributions – 229 

these will include multiplication of the concentration, c+ , with the electric field, E , and the 230 

axial velocity, 
xu . Therefore, it is useful to compare our theoretically predicted values with 231 

those calculated from numerical simulations. The details of the 2D numerical simulations that 232 

don’t assume fully developed profiles are provided in Appendix B.  233 

Figure 3(a)-(c) compare our theoretical predictions for the fully developed profiles to 234 

direct numerical simulations for (a) c+ , (b)  , and (c) 
xu  at 1

2
x L= . Figure 3(d) presents the 235 

axial potential distribution on the centerline [i.e. ( 0, )r x = ]. The correspondence is excellent, 236 

confirming our underlying assumptions and our derivation are self-consistent and correct. The 237 

electric potential   shown in Figure 3(b) accounts for the additional 1
2
V  term provided in Eq. 238 

(14). In Figure 3(d), the edges of the simulation domain have been cropped – these are regions 239 

where there are sharps drops in the potential due to the EDLs (i.e., edge effects). 240 
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 241 

 242 

Figure 3. Plots of the (a) concentration [Eq. (27)], (b) electric potential [Eq. (26)], 243 

and (c) axial velocity [Eq. (31)] distributions versus the radial coordinate at the 244 

center of the channel ( / 2x L= ). (d) The electrical potential along the axis  ( 0r =245 

). For presentation purposes, we have presented only some of the simulation points. 246 

The simulation parameters are 10 = , 1
3

2 1/3

,
(10 / )

s
 = − , 1,V = Pe 0.45= , and 247 

0b = . 248 

F. Transport coefficients 249 

In non-dimensional units, the cross-sectional average for any quantity f  can be calculated 250 

by 251 

 

2 1 1

0 0 0

1
( ) 2 ( )f f r rdr d f r rdr






 
= = 

 
   , (34) 252 

where the overbar denotes cross-sectional averages. Here, we will calculate a couple of 253 

interesting quantities to confirm our solution. However, our primary focus is on the 254 

fluxes/conductance terms. 255 
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The average counterion concentration is 256 

 
1

2

0

2 4 sN c crdr  += = = − . (35) 257 

In dimensional units, this is 258 

 
2

0

2

0

4 2 (2 )

( )

s s sc a
N c

aFz a Fz

    

 
+= = − = − = − , (36) 259 

which is the expected result one gets if the surface charge density is multiplied by the perimeter 260 

and divided by the cross-section area. This is the average excess counterion concentration 261 

discussed in the Introduction [and in Eq. (2)]. Note that EDL overlap alone does not guarantee 262 

high selectivity. Instead, one must require a combination of surface-charge and EDL effects – 263 

namely, the requirement is that 1N  [or 0N c ]. See Appendix A for a short discussion on 264 

this issue. Also, the issue of high selectivity versus vanishing selectivity has been extensively 265 

discussed in our recent work [66]. Finally, we note that N  can be rewritten in terms of the 266 

dimensional and non-dimensional Dukhin length, respectively, 267 

 
0/ ( )Du sl Fc= − , (37) 268 

 22Du sl z = − , (38) 269 

such that  270 

 0 02 2Du
Du

l c c
N l

a z z
= = . (39) 271 

Note that dividing Eq. (39) by 
0c  yields 272 

 12 DuN l z−= . (40) 273 

In the remainder, we will use the notation of N  rather than the notation of 
Dul . However, they 274 

are trivially linked through Eq. (40). Also, one can easily note that the two limits of Eq. (2) of  275 

1N  and 1N  correspond to 1Dul  and 1Dul , respectively. 276 
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The average electrical potential is  277 

 

1

0

8 4 4
2 2ln 2 ln ln

4 16

s

s s s

rdr


  
  

   −
= = − − + +   

−   
 . (41) 278 

In our previous work [58], we reported, “For the case of large surface charge, which is typically 279 

the case in highly selective nanopores, the limit 
s →− , the leading order term is 280 

2ln( 4 ) lns c   += − − = − .” This statement is incorrect, and we wish to correct our 281 

miscalculation. In the limit 
s →− , the correct value is given by 22 ln(16 ) = − −  which is 282 

independent of the surface charge.  283 

Due to coion exclusion, the current is transported solely by the counterions. Thus, the 284 

current density in the axial direction is given by 285 

 ,
ˆ ( Pe )z x ohmic advi c u c i i+ + +=  = − − = +j x . (42) 286 

We calculate the average electrical current density of both the ohmic and advective current 287 

densities [using Eqs. (26), (27), (15), (31), (34)]. The Ohmic current is 288 

 
1

2

0

2 4Ohmic s

V
i c Erdr c E

L
 + += = = − . (43) 289 

The axial velocity [Eq. (31)] has two contributions: no-slip and slip. Thus, the advective 290 

current, too, has two contributions 291 

 , ,Pe Pe ( )no slip sadv x adv no slip adv sllip ipi c iuu uc i+ + − −= = = ++ . (44) 292 

We calculate the average of each term 293 

 2 1
4

1

,

0

8 [2Pe Pe 4ln(1 )]adv no slip no sl s sipi c u rdr
V

L
  − + − − += −= , (45) 294 

 
1

2 2

,

0

2Pe 4Peadv slip slip s

V
i c u rdr b

L
 += = . (46) 295 

Note that Eqs. (43),(45)-(46) are linear with the applied potential drop, V .  296 
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Consider the conductance, which is the ratio of the current to the voltage 297 

 /condG i V= . (47) 298 

Due to the linearity of Eq. (42), the conductance is a sum of three different terms 299 

 , ,adv nc oond o slip adv sliphmicG G G G−= + + , (48) 300 

where 301 

 
21 4Ohmic s

Ohmic

i V c
G c

V V L L L

 +
+

−
= = = = , (49) 302 

 
 2 1

, 4

,

P 4ln(e8 1 )adv no slip s s

adv no slipG
i

V L

  −

−

− + −
= = , (50) 303 

 
,

2 2
, 4Peadv s

adv sli

l p s
p

ii b
G

V L

 
= = . (51) 304 

Eqs. (48)-(51) are the non-dimensional expressions for the conductance. Note that two of the 305 

terms depend on the Peclet number.  306 

The dimensional expressions are recovered by using the normalizations given in Eqs. (10)307 

-(13). The dimensional conductance is related to the non-dimensional conductance 308 

 
0 / )cond cond thG G i = ( , (52) 309 

where 0i  is the characteristic electrical current density given by 310 

 0 0 0 /i zFj zFDc a= = . (53) 311 

The current density to thermal voltage ratio in Eq. (52) is 312 

 
2 2

0 0 0/ 1

/

cond

th g g

i zFDc a z F Dc

R T Fz R T a a




= = = , (54) 313 

where, once more, 314 

 
2 2

0 / ( )cond gz F Dc R T = , (55) 315 
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is the dimensional conductivity. Note that the a  in the denominator of Eq. (54) will transform 316 

the L  in each of the conductance terms to be L . After multiplying by the area, 2a , the 317 

dimensional cross-sectional integrated conductances are 318 

 
2

24 s
Ohmic cond

d

a
G

L

 
 


= − , (56) 319 

 
,

2
2 1

8 Pe 4ln 1
4

s s
ca ond

d

dv no sli

d

p

a
G

L


  


 
−

 
= − + −




 


 
 

, (57) 320 

 

2
2

2

, 4 Pe s
cond

d

adv slip

b a
G

a L

 
 



 
=  

 
, (58) 321 

 , ,adv no slip adv slipcond ohmicG G G G−= + + . (59) 322 

The overbar for the dimensional quantities has been omitted to avoid a complicated notation 323 

but also because these are no longer cross-sectional averaged quantities – rather, they are cross-324 

sectional integrated quantities.  325 

Multiplying Eqs. (11) and (55) yields 326 

 2 0

22

r
cond

D

a

 
  = , (60) 327 

where it can be observed that 2

cond   is concentration-independent. This observation will be 328 

used in Sec. IV. Before analyzing the behavior of the conductance (Sec. IV), we will now 329 

discuss the effects of surface charge regulation (Sec. III). 330 

It is worthwhile to note that the relations given by Eqs. (56)-(59) are very similar to the 331 

conductance expression derived in Manghi et al. [57] [their Eq. (19)]. However, several 332 

precautionary remarks are needed in comparing this work to Ref. [57]. To compare their low 333 

concentration theoretical model to experiments at both low and high concentrations, Manghi 334 

et al.  [57] attempt to derive a solution that holds for all concentrations (high and low 335 

concentrations). To that end, they use an interpolating function to empirically extend their 336 
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solution from high selectivity [which they term the good-ion exclusion limit (GCE)] to low 337 

concentrations. However, such an extension is artificial and is empirical. It is equivalent to 338 

assuming a known solution to the Poisson-Boltzmann equation that holds for all concentrations. 339 

However, to the best of our knowledge, a tractable analytical solution of the Poisson-340 

Boltzmann equation is unknown except for the two limiting cases of high-selectivity and 341 

vanishing selectivity. Thus that extension, and the final form of their Eq. (19), is not rigorous 342 

in the sense that it cannot be derived directly from the PNP equations. In fact, in the case that 343 

advection is neglected, one would expect that the solution of Manghi et al. [57] would match 344 

the well know model of Eq. (2) that is rigoursly derived in Appendix A. It does not. This is yet 345 

another indicatation that their interpolation formula is incorrect. In fact, using an interpolation 346 

formula to fit two knowns limits is related to the commonly used superposition approach of 347 

adding the bulk conductance and the surface charge conductance. In two of our past 348 

works [67,68], we have discussed the flaws of the superpositon approach and why it is 349 

inapplicable. Those understandings carry over to the “interpolation” approach. 350 

In continuation, Manghi et al. [57] introduce another conceptual error regarding their 351 

artificial extension of the advective flux. They assume that the advective flux obtained at high 352 

selectivity also holds for vanishing selectivity. Vanishing selectivity is derived under the 353 

Debye–Hückel (DH) approximation, whose inherent assumption of small potential contradicts 354 

the one used here of large potentials. Under the DH approximation, the resultant potential, 355 

space-charge density, and no-slip velocity field are given by 356 

 0

1

1

( / )

( )
DH s

I r

I


 

 −
= , (61) 357 

 2DH DH = − , (62) 358 

 
1

0 0

1

1

( / ) ( )

( )
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I r I
u E

I

 
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

−

−

−
= . (63) 359 
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It is evident that all these distributions are different than those of highly-selective systems. We 360 

see that the space charge for the DH approximation, given by Eqs. (61)-(62), differs from the 361 

space charge given by the e c e  −

+= =  [Eq. (27)]. At high selectivity, only the counterion 362 

contributes to the space charge density, while under the DH approximation, the coion also 363 

contributes – [this is the factor 2 in Eq. (62)]. If the space charge density is different, so is the 364 

driving force for the velocity. As a result, the velocity given by Eq.(63) differs from that given 365 

by Eq. (32). Naturally, the form of the advective current changes as well – see Ref.  [58]. Hence, 366 

Manghi et al. [57] extension of the advective current, given by Eq. (57), from low to high 367 

concentrations is incorrect. Nonetheless, while it appears that their extension to high 368 

concentrations is incorrect, it appears that their Eq. (19), when evaluated for low 369 

concentrations, is similar to our expression for their conduction. That it is similar but not 370 

identical can be attributed to their interpolating function. Also, their analysis and results differ 371 

from the one given in this work. This will be discussed further. 372 

III. SURFACE CHARGE REGULATION  373 

In our derivation thus far, the surface charge density has been assumed to be a spatial 374 

constant that does not change as the environment around it changes. In the remainder, we will 375 

continue with the assumption of spatial independence, but we will alleviate the assumption that 376 

the surface charge does not vary with the environment. 377 

The pioneering work of Stein et al. [50] showed that when the surface charge is spatially 378 

constant, one finds that the conductance depends on the surface charge and is concentration-379 

independent at low concentrations[Eq. (5)]. Stein et al. [50] also showed that the surface charge 380 

density could be modulated by varying the pH. Nonetheless, while the value of the conductance 381 

changed, the slope of the conductance did not appear to change. The fact that the slope did not 382 

change was later verified by Schoch et al. [69,70] and very recently by Wang et al. [71]. 383 
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However, Smeets et al. [72] showed that under certain conditions, the conductance exhibited a 384 

non-zero slope. This change in slope was attributed to a concentration dependency of the 385 

surface charge density. 386 

In recent years, it has been suggested that the surface charge density, 
s , is regulated 387 

through the Langmuir isotherm [54–56,58], and that it depends on the potential at the surface, 388 

( 1)s r = = , 389 

 

1

pK pH
1 10 exps s

s

d a d th

Fn

N

 


  


−

−
  

= = + −  
  

. (64) 390 

Here, aN  is Avogadro’s constant, n  is the maximal number of ionizable sites per unit area, 391 

Kp  is the disassociation constant, and Hp 
 is the Hp  in the bulk concentration. Using the 392 

Langmuir isotherm, various models have predicted have various slopes. In particular, it has 393 

been observed that, without convection, the slope of the conductance-concentration plot,  , 394 

takes the specific values of 1
3
 [54] and 1

2
 [55]. Recently, using numerical simulations, Uematsu 395 

et al. [56] demonstrated that the slope transitions continuously between 0 to 1
2
. 396 

Nonetheless, while the findings of Uematsu et al. [56] can numerically explain the various 397 

slopes observed in experiments, the theoretical understanding of the underlying physics is still 398 

missing. Also, the framework of surface charge regulation alone is unable to predict slopes 399 

larger than 1
2
. For example, Noy and coworkers  [3,73] have measured slopes ranging from 1

2
 400 

to 1 in their system of carbon nanotubes porins. Green et al. [67,68] measured a slope of 1 in 401 

their silicon-based channels. In their recent work, Noh and Aluru [74] compiled the slopes of 402 

many nanofluidic systems and showed that the slopes vary continuously from 0 to 1. As such, 403 

there is a non-trivial knowledge gap regarding slopes that are larger than 1
2
. The case of slopes 404 
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that are smaller than 1
2
 are considered first and the case of slopes exceeding 1

2
 will be addressed 405 

further below. 406 

Here, we leverage the derivations of Sec. II.C to recapitulate the results of Uematsu et 407 

al. [56] in an almost analytical manner (i.e., 1
2

[0, ] ). In the next section, we will extend our 408 

solution to account for convection and show that   can take any value between 0 and 1. In the 409 

Discussion (Sec. V), we will discuss another mechanism related to entrance effects, that 410 

changes the slope to 1. 411 

From Eq. (26) we find the surface potential [ ( 1)]s r = =  412 

 2/ ln[ ( 4)]s th s s    = − − . (65) 413 

Once more, /s s d  =  is the non-dimensional surface charge density. Substitution of Eq. 414 

(65) into Eq. (64) yields a third-order polynomial that determines the surface charge density 415 

 3 2 2 1 2 14 ( ) ( ) 0s s s     − −− + + = , (66) 416 

where 417 

 pK pH
10 −

= , (67) 418 

 / ( )a dFn N = . (68) 419 

It can be observed from Eq. (66) that the surface density, 
s , depends on three parameters: 420 

, ,   . This contrasts with the dimensional form of Eq. (66), which depends on five 421 

parameters [56]: 
0pK,pH , , ,c n a

. In fact, the number of parameters in Eq. (66) can be reduced 422 

to two: 2,  . This reduction to a more general equation will not only provide us with more 423 

robust results but will also allow us to better interpret the numerical results of Uematsu et 424 

al.  [56] (Sec. IV). 425 

Equation (66) can be solved analytically with any symbolic math program. Surprisingly, 426 

the solution for a third-order polynomial that depends only on two parameters is not tractable. 427 
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Thus, we do not present the long solution here. Instead, we show that three solutions are 428 

immediately recovered. For the case that 2 1 , the 2

s  and 3

s  are negligible. This leads to 429 

the concentration-independent solution 430 

 ,0s = − , (69) 431 

For the case that 2 1  the linear term is negligible. This leads to two solutions for large and 432 

intermediate surface charges, respectively [58] 433 

 1
3

2 1/3

,
[ / ( )]

s
  = − , (70) 434 

 1
2

2 1/21
2,
[ / ( )]

s
  = − . (71) 435 

Section IV utilizes the dimensional form of these equations 436 

 ,0 /s d aFn N = − = − , (72) 437 

 1
3

2 1/3 1/3

0 0,
[ / ( )] (2 / )d r gs

R Tzc       = − = − , (73) 438 

 1
2

2 1/2 1/21 1
02 2,

[ / ( )] ( / )ds
aFc z     = − = − . (74) 439 

Equation (74) is identical to the equation suggested by Ref.  [55], while Eq. (73) is identical to 440 

the equation suggested by Ref.  [54]. It should also be mentioned that in both works, these 441 

equations were derived using the cross-sectional average of the electric-potential distribution. 442 

In contrast to Refs.  [54,55], here we have derived these two relations from local considerations. 443 

In the next section, we will demonstrate that the insertion of Eqs. (72)-(74) in Eq. (2) will yield 444 

conductance slopes of 0 [56]to 1
3
 [54,56] to 1

2
 [55,56]. Since Refs.  [54–56] conducted a 445 

comparison with experiments; we will not undertake a similar comparison. Instead, our purpose 446 

thus far has been to demonstrate that these three different models are derived from the same 447 

universal equation [Eq. (66)] representing the same theory. In the next section, we confirm 448 

Uematsu et al. [53] finding that the slope can vary smoothly from 0 to 1
2
. 449 
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In their work, Manghi et al. [57] considered the case that the unity term in Eq. (64) is 450 

negligible relative to the pH term. Indeed, in the limit of high surface charges, this is the case. 451 

However, if one neglects this term before inserting Eq. (65) into Eq. (64), then one changes the 452 

resulting governing equation for the surface charge density [Eq. (66)]. As a result, the linear 453 

s  contribution is removed, and the slope varies between the two limiting solutions of 1
3
 to 1

2
454 

. Manghi et al. [57] indeed only consider the two specific cases of 1
3

 =  and 1
2

 =  which they 455 

term “high surface charge density (inhomogeneous) GCE” and “low surface charge density 456 

(homogeneous) GCE” limits, respectively. Once more, it appears that in these two distinct 457 

limits, their approximations are correct. However, they don’t show the gradual and smooth 458 

transition from 1
3

 =  (or 0 = ) to 1
2

 = . While potentially they could have predicted the 459 

doubling presented in this work, it appears that they only considered for the particular cases of 460 

1
3

 =  and 1
2

 = [additional comments regarding the 1
2

 =  scenario described in Manghi et 461 

al. [57] – their Eq. (24) – can be found below Eq. (79)], and they overlooked the general 462 

solution.  463 

IV. CONDUCTANCE 464 

This section is divided into three. First, we discuss the behavior of the Ohmic conductance 465 

(i.e., the effects of convection to the conductance are negligible) (Sec. IV.A). Second, we 466 

discuss the contribution of convection without slip to the conductance (Sec. IV.B). Finally, we 467 

discuss the contribution of convection with slip to the conductance (Sec. IV.C). In all three 468 

sub-sections, we consider the effect of surface charge regulation [Eqs. (72)-(74)].  469 

Before proceeding with the analysis, it should be noted that while this analysis focuses on 470 

the electrical conductance, one can also consider the mass transport coefficients. This is the 471 

transport coefficient matrix that relates the volume flux and electrical current densities to the 472 
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pressure drop and electric field. It can be shown that such a matrix satisfies Onsager reciprocity. 473 

An analysis of this matrix (without the effects of slip) was conducted in our previous work [58]. 474 

A. Convection-less conductance 475 

Consider the low concentration response of the Ohmic conductance – this is the limit when 476 

the concentration term in Eq. (2) is negligible ( 0N c ) 477 

 
,

2
Ohmic low s

g

a zFD
G

L R T


= . (75) 478 

This expression was derived in Sec. II.F [Eq. (56)] but is also recapitulated by inserting Eq. 479 

(36) into Eq. (5). Observe that Eq. (75) is explicitly concentration-independent, yet there is an 480 

implicit dependency on the concentration through the surface charge. In Eqs. (72)-(74) we saw 481 

that 0~s c . This leads to 
0~ohmicG c . Hence, the conductance is implicitly dependent on the 482 

concentration, and the slope of the Ohmic conductance is the same slope of the surface charge 483 

density,  . 484 

Under the assumption of negligible convection, we can use Eq. (2) in the entire 485 

concentration domain. We insert into it Eqs. (72)-(74) and plot the conductance for these three 486 

specific cases (Figure 4). At high concentrations, when the effects of the surface charge are 487 

negligible, these three lines collapse on each other, and the slope is 1. At low concentrations, 488 

however, the behavior of the three curves varies drastically, where it becomes evident that the 489 

slope has a dependence on the concentration (via surface charge regulation). Our theoretical 490 

predictions are verified by direct numerical simulations of the PNP equations (Appendix B) – 491 

the correspondence between theory and simulation is remarkable. 492 
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 493 

 494 

Figure 4. (a) Ohmic conductance versus concentration [Eq. (2)] for the three 495 

surface charge densities: ,0s , 1
3

,s
 , 1

2
,s

  [Eqs. (72)-(74), respectively]. Theory is 496 

denoted by lines, and simulations are denoted by markers. (b) A zoomed-up view 497 

of (a). The values for the simulations are given in Table 1 and Table 2. 498 

While the purpose of the numerical simulations was to verify our analytical results, the 499 

technical feat of these simulations is also noteworthy– namely, the high resolution of these 500 

simulations. In most state-of-the-art 2D or 3D simulations, the typical concentration range 501 
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covers only three decades with 2-4 points per decade. Here, we investigate the changes over 502 

six decades of concentrations. We have 5 points per decade of concentration in regions when 503 

the slope is not transitioning from one value to another and 20 points per decade of 504 

concentration in regions where the slope is transitioning. In fact, in Figure 4(b), it is 505 

challenging to differentiate the curve from the almost continuous array of markers representing 506 

the numerical simulations due to the high density of points. 507 

Figure 4 considers only three particular solutions of Eq. (66) with slopes of 0, 1
3
 and 1

2
. 508 

We will now demonstrate that the slope varies continuously between 0 to 1
2
. To that end, we 509 

review the numerical approach of Uematsu et al. [56], whose approach will be used here as 510 

well, albeit we supplement it with a more theoretical approach.  511 

Uematsu et al. [56] numerically solved the 1D PNP equations and investigated how the 512 

slope of the conductance varied with the 
0(pK,pH , , , )c n a

 phase space of the Langmuir 513 

isotherm [Eq. (64)]. In their simulations, they set , , Ka n p  to several particular values and 514 

investigated the effects of pH
 and 

0c . Since they utilized numerical simulations, they 515 

considered both low and high concentrations. Expectedly at high concentrations, they showed 516 

that the slope was 1 (Figure 4, which will not be considered in our upcoming analysis). At low 517 

concentrations, Uematsu et al. [56] showed that the slope   varies from 0 to 1
2
. To that end, 518 

they numerically calculated the conductance for each configuration in their 
0 pHc −  phase 519 

space, and they evaluated the slope via 520 

 
0

(ln )

(ln )

d G

d c
 = . (76) 521 

Thereafter, they plotted a 2D color plot of the value of   for the 
0 pHc −  phase space.  522 

Here, we recapitulate the low-concentration results of Uematsu et al.’s Figure 1  [56] – this 523 

is our Figure 5, albeit our approach is different. First, our analytical derivation is limited to 524 
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low concentration. However, the variation with   occurs only at low concentrations. Second, 525 

our approach is almost entirely analytical. The only numerical evaluation used here is in solving 526 

Eq. (66) , which was analytically derived. Specifically, we use the Newton-Raphson method to 527 

solve Eq. (66) for 
s . Third, Uematsu et al. [56] have five parameters. Our approach has two 528 

parameters:   and 2 . Upon solving Eq. (66), the surface charge density, 
s  is inserted into 529 

,Ohmic lowG  [Eq.(75)]. We evaluate the slope using Eq. (76). The benefits of our approach are two-530 

fold: technical and physical insights.  531 

On the technical side, Uematsu et al.’s [56] results were based on direct numerical 532 

simulations of the PNP equations. Even though 1D simulations are no longer computationally 533 

costly, scanning a 5D phase space can be burdensome. Even scanning a 2D phase space 534 

0( pH)c −  takes time, and the final results of Eq. (76) eventually depend on the resolution of 535 

the phase space. For example, Figure 1 of Ref.  [56] is pixilated. In contrast, our approach is 536 

by far less computationally demanding. Our approach allows us to scan the phase space to any 537 

desired resolution in an almost instantaneous manner. As a result, Figure 5 is not pixelated. 538 

Figure 5 also provides new physical insights into the conductance at low concentrations. 539 

Figure 1 of Uematsu et al.’s [56] exhibited several stripes of the same color (that denote 540 

constant slopes). The origin of these stripes was not explained. Our theoretical approach 541 

provides a remarkable and intuitive explanation – these are lines of constant 2  [this result 542 

can be recovered by taking 2

10log ( )  and inserting Eqs. (11) and (67)]. In our two-parameter 543 

approach 2( , )  , which follows the five-parameter approach of Uematsu et al.’s [56], we set 544 

  and scan 2 . Hence, values of constant 2  should lead to values of constant slope. In, 545 

the 
0 pHc −  plane there are stripes. Figure 5 demonstrates two key results: 1) the slope varies 546 

continuously between 0 to 1
2
; 2) the slopes are lines of constant 2 . 547 
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548 

 549 

Figure 5. Color map of the slope  , in the 
0 pHc −  plane of the Ohmic 550 

conductance, ,Ohmic lowG  [Eq. (75)]. White diagonal lines denote the lines of constant 551 
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slope of 1
3

 =  and 0.483 = . The thick red lines denote cutoffs discussed in the 552 

main text. Here we used the values of Figure 1 from Uematsu et al.  [56]:553 

35[nm]a = , pK=5 , and 20.2[nm ]n −= . 554 

Further below, we discuss the thick red lines at the top and bottom of the phase space of 555 

Figure 5. These lines are the cutoffs, as suggested by Ref.  [56], when the contribution of H+
 556 

ions to the conductance is no longer non-negligible. 557 

B. Convection without slip 558 

Before we present the results pertaining to the effects of convection, we wish to make three 559 

general statements. 1) It is intuitive and elementary that convection should increase the 560 

conductance. 2) It is not intuitive whether or not convection should vary the slope of the 561 

conductance. 3) Nor is it intuitive whether or not the effects of the slip length will vary the 562 

slope. We will shortly show that no-slip convection increases the conductance but doesn’t 563 

change the slope  . Inclusion of slip changes further increases the conductance and varies the 564 

slope from   to 2 . 565 

Consider the conductance that accounts for the Ohmic contribution and the no-slip 566 

advective term 567 

 , , ,total no slip Ohmic low adv no slipG G G− −= + . (77) 568 

We return to Eq. (57) 569 

 
,

2
2 1

8 Pe 4ln 1
4

s s
ca ond

d

dv no sli

d
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

  

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−
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= − + −




 


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 

. (78) 570 

Since 2

cond   is concentration-independent [Eq. (60)] then ,adv no slipG −  is also explicitly 571 

concentration-independent. However, ,adv no slipG −  implicitly depends on the concentration 572 

through the surface charge density.  573 
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We will now consider two situations / 1s s d  =  and 1s . The case of small 574 

surface charge yields 575 

 

2
2

/ 1)

,

( 2Pes d s
cadv ondno s

d

lip

a
G

L

  






−

 
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 

= . (79) 576 

This contribution was previously derived in Refs.  [55,57]. This solution corresponds to the 577 

solution predicted by the uniform potential model [75] (see Ref.  [58] for a discussion regarding 578 

the limitations of the uniform potential model for nanopores with 1  ). Eq. (79) predicts a 579 

2

s  scaling while ,Ohmic lowG  predicts a linear scaling. Hence, one might expect a change in the 580 

slope. Yet, in the limit 1s  one has , , 0~ ~total no slip Ohmic lowG G c

− . Hence, there is no change in 581 

slope. Manghi et al.  [57] also derived Eq. (79) in their work, only for the particular slope 1
2

 =582 

, and they state (in the notation of this work), “At low but intermediate 
0c  and high enough slip 583 

length the second term may dominate and lead to a cross-over exponent of 1.” Such a statement 584 

is not entirely correct. In order for 
, / ~ (1)ad Ohmlip icv sG G O , once must have Pe ~ (1)sb O  585 

which requires that 1~ ( ) 1sb O  − . However, in order for 
, / 1adv slip OhmicG G  one must 586 

require that 1b . As we will discuss in the Discussion, the slip-length is a material property 587 

that cannot be increased without limit. Further, we will shortly show that once one takes the 588 

1s  limit combined with the slip length, a value of ~ (1)b O   predicts the doubling of the 589 

slope.  590 

For large surface charges, 1s , which is the typical case for highly selective 591 

nanochannels, the logarithmic term in Eq. (78) is negligible. This results in 592 

 
2

( / 1 2

,

)
8 Pes d s

conadv no s p d

d

li

a
G

L

   
 


− = − . (80) 593 

Inserting Eqs. (56) and (80) into Eq. (77) yields 594 
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2

( / 1) 2

, 4 (1 2Pe)s d s
total no slip cond

d

a
G

L

   
 


− = − + . (81) 595 

Indeed, the convection term substantially increases the conductance [60]. For example, for a 596 

KCl water-based electrolyte at room temperature, one finds that the Peclet number [Eq. (13)] 597 

is approximately 0.45 such that convection increases the conductance by approximately 100%. 598 

However, Eq. (81) predicts that the slope of the conductance remains unchanged relative to the 599 

Ohmic conductance (i.e., , 0~ ~total no slip sG c− ). Note that in our calculations, we use the 600 

complete form of Eq. (57) [or Eq. (78)] whereby the analysis leading up to Eq. (81) has been 601 

used for demonstration purposes to understand each of the contributions better. 602 

Figure 6(a)-(c) compares the theoretical predictions of Eq. (77) to numerical simulations 603 

for the three cases of (a) ,0s , (b) 1
3

,s
 , (c) 1

2
,s

  The solid red lines are the Ohmic conductance 604 

previously shown in Figure 4. For presentation purposes, we have not included the convection-605 

less simulations (Pe 0)=  that were shown in Figure 4. The dashed blue lines in each of the 606 

plots represent the case of Pe 0.45=  with a no-slip boundary condition ( 0)b = . The excellent 607 

correspondence confirms in all three cases confirms the prediction that no-slip convection 608 

increases the conductance but does not change the slope.  609 
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 612 

 613 

Figure 6. Conductance-concentrations curves predicted by Eq. (83) for (a) ,0s614 

[Eqs. (72)], (b) 1
3

,s
  [Eqs. (73)], (c) 1

2
,s

 [Eq. (74)]. Theory is denoted by lines, and 615 

simulations are denoted by markers. The values for the simulations are given in 616 

Table 1 and Table 2. 617 

C. Convection with slip 618 

We return to Eq. (58) , which gives the expression for the contribution of the slip length to 619 

the conductance 620 

 

2
2

2

, 4 Pea
s

cond

d

dv slip

b a
G

a L

 
 



 
=  

 
. (82) 621 

Note that while this term depends on the area 2a , the slip length is divided by the radius such 622 

that the term is linear with the radius. This is expected of a phenomenon that originates at a 623 

surface. Similarly, the low concentration Ohmic conductance [Eq. (56)] scales with the 624 

perimeter. We add Eq. (82) to Eq. (77) to get an expression for the conductance that accounts 625 

for all three contributions 626 

 , , ,,,, adv sliptotal slip total no slip Ohm advic low no slip adv slipG G G G G G− −= + = + + . (83) 627 
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Two observations are noteworthy. First, as can be expected, ,adv slipG  further increases the 628 

conductance. Second, ,adv slipG  scales quadratically with the surface charge, 2

, 0

2~ ~sadv slip cG  . 629 

As a result, the overall slope of ,total slipG  changes relative to that of ,total no slipG − . If ,total no slipG −  has 630 

a slope 1
2

[0, ]  then ,total slipG  has a slope 2 [0,1] . We demonstrate this change of slope in 631 

two different manners. 632 

The dotted orange, magenta, and green lines of Figure 6(a)-(c) compare the theoretical 633 

predictions of Eq. (83) to numerical simulations that account for convection with a non-zero 634 

slip length ( 0)b  . Figure 6(a) shows that when 0

,0 0~s c  [i.e. 0 = , Eq. (72)], the slope 635 

always remains 0 = . Figure 6(b) shows that when 1
3

1/3

0,
~

s
c  [Eq. (73)], the slope transitions 636 

from 1
3

 =  to 2
3

 =  as the slip length is increased. Figure 6(c) shows that when 1
2

1/2

0,
~

s
c  637 

[Eq. (74)], the slope transitions from 1
2

 =  to 1 =  as the slip length is increased. The 638 

correspondence between simulations and theory is excellent and demonstrates the dependency 639 

of the conductance on 
s  and b . 640 

Several comments are warranted. The 2
3
 slope was recently measured in an experimental 641 

work that utilized carbon nanotube porins [73]. These experimental results [73] correspond 642 

well to the theoretical predictions of Ref.  [57] who predicted a slope of 2
3

 =  (due to the 643 

effects of slip). However, Ref.  [57] specifically considered 1
3

1/3

0,
~

s
c  (i.e. 

2/3

, 0~total slipG c ) and 644 

overlooked the more general ,

2

0~total slipG c 
 solution that holds for all 1

2
[0, ] . One of the 645 

main findings of this work is the generality of the transition from a slope of   (for convection 646 

without slip) to 2  (for convection with slip). The slope of 1 corresponds to the experimental 647 

finding of Ref.  [3]. 648 
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It can be argued that the slope in Figure 6(c) does not truly reach a slope of 1. Below we 649 

discuss how decreasing the concentrations or increasing the slip lengths would show the slope 650 

indeed reaches 1. Beforehand, for demonstration purposes, we use the “unrealistic” case 651 

100b a=  to show that the slope indeed varies from 0 to 1. We use the parameter set ( , , K)a n p  652 

used to calculate for Figure 5. We use the same parameter set but rather than inserting it into 653 

the Ohmic contribution [Eq. (75)], we insert the calculated value of 
s  in the equation that 654 

accounts for convection and slip [Eq. (83)]. The results are shown in Figure 7, where it is 655 

observed that [0,1] .  656 
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657 

 658 

Figure 7. Color map of the slope,  , in the 
0 pHc −  plane for ,total slipG  [Eq. (83)]. 659 

The white diagonal lines denote the lines of constant slope of 1
3

 =  and 0.483 =  660 

shown in Figure 5. 661 
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To achieve a slope of 1, one can either consider smaller 
0c  or larger b . In both cases, this 662 

will result in ,adv slipG  dominating ,total slipG . However, while both approaches are mathematically 663 

allowed, two experimental facts should be remembered. Varying the slip-length without end 664 

suffers a substantial setback – the slip length is a material property that cannot be tuned as 665 

desired. Several comments are noteworthy. First, A number of works have shown that the slip 666 

length can take values 50 200nmb = −  [76–79]. If the slip length is indeed a material property, 667 

then a CNT channel with a radius of 10nma =  would have a dimensionless slip length of 668 

5 20b = −  which is only five times smaller than that used in Figure 7 but well within the values 669 

used in Figure 6. Second, it has been recently suggested [80], through statistical physics 670 

considerations and molecular dynamics simulations, that the slip length can be varied by 671 

changing a few fluid-structure interaction parameters. However, these parameters are also 672 

characteristics of the material and hence from our perspective, indeed, b  is a non-tunable 673 

property. Third, in a recent work that utilized molecular dynamic simulations, it was shown 674 

that for pores with large aspect ratios ( )L a , the slip length appears to be a property of the 675 

material. However, for L a , the slip length appears to have a certain enhancement. In this 676 

work, we have utilized the assumption of L a  which is realistic to the scenario for CNTs 677 

and BNNT. Nonetheless, future works should consider how the conductance in short pores, 678 

~L a , varies with slip.  679 

In Sec. II.A. we assumed that the contributions of hydrogen and hydroxide to the 680 

conductance are negligible. However, this assumption fails at extremely low concentrations 681 

that can be probed experimentally. When this occurs, our assumption that the current is 682 

transported only by the salts no longer holds. Thus, at sufficiently low concentrations, a cutoff 683 

is needed. These are the thick red lines in Figure 5 and Figure 7 (as suggested by Uematsu et 684 

al.  [56]). The concentrations used in this work are representative of realistic experimental 685 
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conditions. Hence, within the limits considered in this model, we have still demonstrated the 686 

slope ,total slipG  changes due to surface charge regulation and convection. Future works should 687 

attempt to model the case of fours species with a pore.  688 

V. DISCUSSION AND CONCLUSIONS 689 

This work aims to elucidate the underlying theory affecting the change of the slope of the 690 

electrical conductance at low concentrations, as numerous phenomena are added. Specifically, 691 

we start with the Ohmic conductance. We then consider surface charge regulation, convection 692 

without slip, and convection with slip. The contribution of each phenomenon is analyzed 693 

separately. Specifically, we show that the Ohmic contribution, along with surface charge 694 

regulation, can have a slope 1
2

[0, ] . The addition of convection without slip does not vary 695 

the slope. However, the addition of a slip length results in a change of the slope from 1
2

[0, ]  696 

to 2 [0,1] . This is the main finding of this work and has broad implications for theory and 697 

experiments [81]. 698 

From the theoretical standpoint, numerous past works have derived expressions for various 699 

contributions to conductance. Each of these contributions/terms holds under different 700 

assumptions, whereby the assumptions do not necessarily overlap and/or are in conflict. Also, 701 

some of these models are based on empirical reasoning. Despite such shortcomings, it has 702 

become common practice to model the total conductance, ,total slipG  , as a superposition of these 703 

various models. In contrast, in this work, our model is an exact solution of the PNPs equations, 704 

and all terms are entirely self-consistent with each other. 705 

In experiments, one measures the total conductance, , 0( )total slipG c  from which the slope, 706 

meas  can be extracted. From the experimental standpoint, there remain two additional 707 

unknown parameters from Eq. (83) that need to be determined. These are the n  and b . 708 
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Determining these is challenging because the surface charge is a complicated function of n  709 

and 
0c , 0( , )s c n , that needs to be determined by Eq. (66). We consider a number of scenarios. 710 

In all these scenarios, foreknowledge of pK , which is a material property, is needed. If not, 711 

this parameter also needs to be fitted or estimated: 712 

- No convection (with and without slip): If one assumes that the slope has very discrete 713 

values: 1 1
3 2

0, , =  , it is straightforward to extract the maximal number of ionizable 714 

sites per unit area, n , from Eqs. (72)-(74). If the assumption of discrete values is 715 

relaxed such that 1
2

[0, ]meas  , one can solve Eq. (66) to find what value of n  will give 716 

meas theory = . 717 

- With slip ( 1
2meas  ): Surface charge regulation predicts a maximal slope of 1

2
 (718 

1
2

[0, ]theory  ). Hence, slip effects are necessarily present when 1
2meas  . For a 719 

measured slope, the theoretical slope is 1
2theory meas = . One can solve Eq. (66) to find 720 

what value of n  will give meas theory = . Thereafter, the slip length can be calculated. 721 

- With slip ( 1
2meas  ): This scenario, with no existing knowledge regarding the slip 722 

length, is exceptionally challenging. One can use the scenarios mentioned above as two 723 

possible initial guesses. Another possibility is to conduct another round of experiments 724 

with a different set of conditions (i.e., different pH) such that the slope changes. Given 725 

two sets of experiments and assuming that material properties are invariant to the 726 

experimental conditions, calculation of n  and b  should be possible. 727 

Additional theoretical and experimental complications in extracting the slope follow from 728 

the unfortunate reality that other phenomena not modeled here are, possibly, present in the 729 

system. For example, recently, Noh and Aluru [74] derived a model that also predicted a slope 730 

of [0,1] . In contrast to this model, Noh and Aluru [74] have assumed a non-regulated 731 
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surface density (i.e. 0

0~s c  ) and negligible convection. Instead, Noh and Aluru [74] 732 

introduced a new term/expression into their model related to the newly suggested phenomena 733 

of electroneutrality breakdown [82] such that their slope,  , is a free fitting parameter and 734 

serves as a proxy for the breakdown. Such an approach contrasts with the approach taken in 735 

this work. In our work, the value of the slope depends on the material properties and is not a 736 

fitting parameter. Here, the only way to vary the slope is to tune the material properties ( , )n b  737 

. Also, electroneutrality breakdown has recently been contested [66], where it was shown that 738 

the breakdown might not be as prevalent as is thought, and unique conditions are needed for 739 

the breakdown to occur. Nonetheless, the issue of electroneutrality breakdown remains an open 740 

question. 741 

This work has shown that the effects of surface charge regulation can result in a slope of 0 742 

to 1
2
. Upon the inclusion of slip, the slope varies between 0 and 1. Yet, an additional 743 

mechanism, independent of surface charge regulation and slip, also predicts a slope of 1. This 744 

mechanism is related to the added contributions of the field-focusing resistances and 745 

microchannels resistances [67,68,83]. In many works, typically, only the nanochannel is 746 

modeled such that, naturally, only the nanochannel conductance arises. However, if one 747 

accounts for the adjacent microchannels, two additional resistances arise. The first is 748 

commonly known as “access” resistance [44,84–86]. This resistance describes how electric 749 

field lines focus from an infinitely large reservoir into a smaller area. This resistance has 750 

recently been modeled to account for reservoirs of a finite size where the electric field lines are 751 

no longer axisymmetric and are highly influenced by the boundaries (i.e., walls, as in the case 752 

of microchannels [83], or planes of symmetry, as in the case of nanochannel arrays [87]). The 753 

generalized “access resistances” have been termed “field-focusing” resistances, 754 
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ffR  [67,68,83]. In this new model, the reservoir geometric lengths are finite. This leads to non-755 

negligible resistances. This is the second resistance – the microchannel resistance, microR .  756 

It is common to assume that the microchannel and field-focusing resistances are negligible 757 

relative to the nanochannel resistance. However, as it turns out, such an assumption is 758 

inherently wrong. Instead, at low concentrations, these two newer resistances dominate over 759 

the nanochannel resistance. In dimensional form, both the microchannel and field-focusing 760 

resistances are inversely proportional to the concentration 1

0( ~ ~ )micro ffR R c− . Without surface 761 

charge regulation, the nanochannel resistance is a constant that is independent of the 762 

concentration. Thus, the total resistance of the system { ~ ( 2 2 )total nano micro ffR R R R+ +  – see 763 

Ref.  [68] for an exact expression} is dominated by the microchannel and field focusing 764 

resistances. The conductance of the system, which is reciprocal to the resistance 1( )total totalG R−=765 

, is then determined by microR  and/or ffR  such that the conductance is linear with the 766 

concentration 
0( ~ )totalG c . This is the dashed red line in Figure 8.  767 

Notably, the derivation in Ref.  [68] for totalR  is not limited solely to ,0s . The derivation 768 

in Ref.  [68] also uses the average excess counterion concentration [Eq. (36)] which generally 769 

holds for any surface charge density [Eqs. (72)-(74)]. Hence, it can be shown that when the 770 

surface charge density is regulated and microchannel effects are accounted for, the conductance 771 

as given by Ref.  [68] has two inflections – this is the solid purple line in Figure 8. Initially, as 772 

the concentration is decreased, the slope reduces from 1 to   where the slope is determined 773 

by surface charge regulation. Upon further decreasing the concentration, the slope returns to a 774 

value of 1 dictated by the microchannel and field focusing resistances. Consider again the work 775 

of Smeets et al. [72], who first observed a change in the slope with the concentration. Their 776 

system, which was relatively short, should have had strong access resistances effects. However, 777 
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the access resistance slope of 1 was not observed. This can be due to the fact that their channel, 778 

comprised of silicon nitride, has a different surface charge chemistry (i.e., different charging 779 

mechanism). Another possibility lies in the interplay between the nanopore resistance and 780 

access resistance. Specifically, the low concentration domain, where surface charge effects are 781 

important, can be divided into two. At the upper end of this region (i.e., intermediate 782 

concentrations, one finds that the slope is still determined by the nanochannel and the regulated 783 

surface charge density such that slope is  . When one goes down to lower concentrations, the 784 

access resistance which scales with the bulk concentration is larger than the nanochannel 785 

resistance the slope is determined by the access resistance such that the slope is once more one 786 

– this is the solid purple line in Figure 8. In reality, when surface charge regulation occurs, it 787 

can experimentally difficult to access the very low concentration regime where the slope is 1 788 

because the region of intermediate concentration is sufficiently large. 789 

In contrast to this work, the solution of Ref.  [68], which accounts for the microchannels, 790 

does not account for the effects of convection and slip. Future works should consider field 791 

focusing resistances combined with convective effects as well as with hydrodynamic slip. 792 

 793 
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Figure 8. Schematic behavior of the linear Ohmic conductance, G  , of a 794 

nanochannel-microchannel system versus the bulk concentration, 
0c . The two 795 

lines of the nanochannel-only system (shown in Figure 1) have been added for 796 

comparison’s sake. 797 

In this work, we have focused on systems that have large aspect ratios ( / 1)L a  . 798 

However, in recent years, we have seen the advancement of ion transport systems based on 2D 799 

materials whereby the system’s thickness is of the order of the radius ( / ~1)L a  or smaller 800 

( / 1)L a . Future works should undoubtedly focus on these systems. However, in such 801 

systems, the lack of fully-developed profiles will undoubtedly result in more complicated 802 

mathematics and physics.  803 

In conclusion, in this work, we have delineated the interplay of surface charge regulation, 804 

convection, and slip lengths on the slope of the conductance. The results of this work can be 805 

used to improve the design stages of electro-kinetically based nanofluidics systems. 806 
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APPENDIX A: DERIVATION OF EQ. (2) 811 

Here we will show how to derive Eq. (2) for the case of no convection when the electrolyte 812 

is symmetric and at its two ends are bulk reservoirs. The possible inclusion of the advective 813 

term and its effects are also discussed. This approach can be generalized for non-symmetric 814 

electrolytes. Also, this derivation is a simplified derivation relative to the derivation that 815 

accounts for the effects of the microchannel (including access/field-focusing resistances). 816 

For an axisymmetric system, when 0 = , the 2D Poisson equation [Eq. (7)] is given by  817 
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, ,2

, 2
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2
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r c c

r


 


+ −− −

 = + = . (84) 818 

We apply the cross-sectional average [Eq. (34)] to this equation. The radial-dependent term is  819 

 

1 1
1, , , ,

, , , 0
0 0

( ) ( )
2 2 ( ) 2( ) 2

r r r r

r r r s

r r
rdr r dr r

r r

 
  = = = =  . (85) 820 

We have utilized the boundary conditions given by Eqs. (21)-(22) we insert this and find that  821 

 
, ,2 2

( ) ( )
2

2 2
s xx xx

c c c c N
  

 
+ − + −− − − − −

+ =  = . (86) 822 

where 24 sN  = −  is once more Eq. (35). Once more, we can consider a linear potential drop 823 

( , ) (1 / )r x V x L = −  [similar to Eq. (14)]. Note that the Laplacian of such a potential is zero. 824 

We find the expected difference between the counterions and coions is precisely the value of 825 

the average excess counterion concentration 826 

 c c N c c N c N+ − + −− =  = + = + . (87) 827 

Note that the difference between the counterion and coions holds for all concentrations (or all 828 

values of N ). 829 

We now consider the Nernst-Planck equations (for the sake of simplifying notations, we 830 

drop the   subscripts for the following two equations) 831 

 , , ,{ , } ( ) 0r x r r x xj j j rj j−  =  = + =j  . (88) 832 

Applying cross-sectional average and utilizing Eqs. (18) leads to  833 

 
1

, , , ,0
( ) 0 ( ) 0 0r r x x r x x x x xrj j rj j j j const+ =  + =  =  = . (89) 834 

We find that each of the fluxes are given by constants. We now consider both the positive and 835 

negative species 836 

 , , Pe  z x xj c c u c   −  −= . (90) 837 
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In general, the average of a multiplication of functions is not equal to the multiplication of the 838 

averages. For the electro-migrative term, we note that , /x V L = −  so that , ,x xc c  = . 839 

However, this is a degenerate case. In contrast,   x xu c u c   (discussed thoroughly in 840 

Ref.  [58]). As noted in the main text, the model for 
xu  and c  varies substantially from the 841 

two limits of 1N  and 1N . A uniform solution for all these functions is not known for all 842 

concentrations – this is related to finding a solution for the Poisson-Boltzmann at all 843 

concentrations. Thus the expression for  xu c  is highly dependent on whether 1N  or 1N844 

. In the following, we will neglect the effects of convection. We have  845 

 , /zj c c V L  − = . (91) 846 

We take the difference between these two equations from which we find a relation between the 847 

electrical current density and the voltage drop and insert Eq. (87) 848 

 (2 ) /i j j c N V L+ −= − += . (92) 849 

To find c , we utilize the electrochemical potential ln c  =   and require that this term is 850 

continuous at the edges of the system ( 0,x L= ). We note that the sum of the positive and 851 

negative electrochemical potentials can be written as ln( )c c + −= . As noted in the following 852 

appendix, in the reservoirs, we have uniform bulk concentrations ( 1)c =   853 

 ( ) 1 ( ) 1reservoirs nano nanoc c c c N  + −=  =  + = . (93) 854 

The leads to 855 

 
2

1
2 4

N N
c = − + + . (94) 856 

Inserting this into Eq. (92) 857 

 
21

1
4

i N
G

V L
= = + . (95) 858 
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Upon re-dimensionalization, we recover Eq. (2). In this derivation, we have only assumed the 859 

system can be characterized by cross-sectional averages. Notably, we utilize the average of the 860 

excess counterion concentrations, N . We see that that this equation can be divided into the 861 

two limits of vanishing ( 1)N   and high selectivity ( 1)N  862 

 

1

11
2

( 1)

( 1)

vanishing

high

G N L
G

G N NL

−

−

 =
= 

=

. (96) 863 

Classically, it is thought that 
s  (or N  ) is spatially constant. Indeed this must be a spatial 864 

constant, but that doesn’t prohibit 
s  from being concentration-dependent. Thus, this classical 865 

approach, which holds for all concentrations, can also account for space charge regulation.  866 

If one were to add advection, the resultant solution would change drastically. However, the 867 

general expression for the advective current is not known for all N  , and thus we are limited 868 

to 1N  and 1N . In particular, this work focuses on 1N  which is by far more relevant 869 

to nanochannels.  870 

Also, as noted above, we have assumed that 1reservoirsc = . However, this assumption can 871 

also be alleviated so that we consider the effects of the microchannels. This approach is 872 

discussed thoroughly in Ref.  [68]. 873 

APPENDIX B: NUMERICAL SIMULATIONS 874 

Equations (6)-(9) are numerically solved using COMSOL in the 2D axisymmetric 875 

geometry specified in Figure 9. Specifically, the Transport of Diluted Species, Electro-static, 876 

and Creeping Flow modules are used for a cylinder whose non-dimensional radius is 1a =  and 877 

length 410L = . We have utilized / 1L a  to ensure that the profiles are fully developed.  878 

For the ionic fluxes, we utilize the no-flux BC [Eq. (18)] at the wall, a symmetry BC at the 879 

center of the channel ˆ[ ( 0) 0]r =  =j r , and bulk concentrations at the two ends ( 0, ) 1c x L = =880 
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. For the electric potential, we use the symmetry and surface charge conditions given by Eqs. 881 

(21)-(22), respectively. Specifically, for the surface charge density we have used Eqs. (69)-(71) 882 

. Additionally, we have a potential drop of V  across the system whereby ( 0)x V = =  and 883 

( ) 0x L = = . For fluid flow, we utilized the symmetry and slip boundary conditions given in 884 

Eqs. (29)-(30), respectively. At the two ends of the channel, we used inlet and outlet BCs 885 

whereby the normal stresses were zero, and the pressures were defined as zero. The lack of a 886 

pressure difference across the two ends ensures that the pressure gradient is zero in the fully 887 

developed region.  888 

For the convection-less scenario, we used Pe 0=  while for the convection scenario, we 889 

used the value given by Eq. (13) and the parameter values given in Table 1. The slip length b  890 

was varied from the case of no-slip ( 0)b =  up to 10b = . In all the various scenarios, to 891 

simulate the change in concentration, we varied the non-dimensional EDL [Eq. (11)]. 892 

Simulating three order of magnitude difference in   corresponds to six orders of magnitudes 893 

in concentrations.  894 

 895 

Figure 9. Two-dimensional axisymmetric geometry used for numerical 896 

simulations. The bottom dashed red line is the line of symmetry 0r = . The top 897 

solid blue line is the cylinder surface located at 1r a= = . The two vertical black 898 

lines are the bulk reservoirs located at 0x =  and x L= . 899 

Table 2 provides the dimensional parameters used for the figures in the main text. Table 900 

3 provides a list of important normalization factors 901 

Table 1. Non-dimensional parameters used in simulations 902 

 Notation Value 

Radius a   1 

Length L  410  

Potential Drop V  1 

  

  

 

a 

L 
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Surface charge without SCR  - ,0s  ,0( / )s d  = −  10  

Exponent of pK and pH1 pK pH
10 −

=  1 

Surface charge with SCR -  1
2

,s
   

1
2

2 1/21
2,

( / ) [ / ( )]ds
   = −  2 1/21

2
(10 / )−  

Surface charge with SCR  - 1
3

,s
  

1
3

2 1/3

,
( / ) [ / ( )]ds
   = −  2 1/3(10 / )−  

Non-dimensional EDL    2[10 ,10]−   

Valency z   1 

Relative permittivity  
r   78 

Peclet number 2

0Pe = / ( )r th D      0.4554 

1 This particular value of pK pH 0− =  was chosen for numerical convenience. 903 

Table 2. Dimensional parameters used for presentation purposes. All units are 904 

given in SI units. 905 

 Notation Value 

Diffusion coefficient D   9 2 110 [m s ]− −   

Nanopore radius a  810 [m]−  

Temperature T   298[K]  

Viscosity    310 [Pa×s]−  

Table 3. List of important normalization factors. 906 

 Notation Value 

Thermal potential  /th th gR T Fz = =  25.7 [mV] 

Surface charge 
0 /d r th a   =  3 21.8 10 [C/m ]−  

REFERENCES 907 

[1] J. P. Thiruraman, P. Masih Das, and M. Drndić, Ions and Water Dancing through Atom-908 

Scale Holes: A Perspective toward “Size Zero,” ACS Nano 14, 3736 (2020). 909 

[2] S. K. Patel, P. M. Biesheuvel, and M. Elimelech, Energy Consumption of Brackish Water 910 

Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis, ACS 911 

EST Eng. (2021). 912 

[3] R. H. Tunuguntla, R. Y. Henley, Y.-C. Yao, T. A. Pham, M. Wanunu, and A. Noy, 913 

Enhanced Water Permeability and Tunable Ion Selectivity in Subnanometer Carbon 914 

Nanotube Porins, Science 357, 792 (2017). 915 



Page 49 of 57 

 

[4] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, 916 

A. Noy, and O. Bakajin, Fast Mass Transport Through Sub-2-Nanometer Carbon 917 

Nanotubes, Science 312, 1034 (2006). 918 

[5] S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. 919 

M. Mahurin, Water Desalination Using Nanoporous Single-Layer Graphene, Nature 920 

Nanotechnology 10, 459 (2015). 921 

[6] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, 922 

N. R. Aluru, A. Kis, and A. Radenovic, Single-Layer MoS2 Nanopores as Nanopower 923 

Generators, Nature 536, 197 (2016). 924 

[7] C. Chen and L. Hu, Nanoscale Ion Regulation in Wood-Based Structures and Their 925 

Device Applications, Advanced Materials 33, 2002890 (2021). 926 

[8] L. Bocquet, Nanofluidics Coming of Age, Nat. Mater. 19, 3 (2020). 927 

[9] N. Kavokine, R. R. Netz, and L. Bocquet, Fluids at the Nanoscale: From Continuum to 928 

Subcontinuum Transport, Annu. Rev. Fluid Mech. (2020). 929 

[10] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, and L. Bocquet, 930 

Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride 931 

Nanotube, Nature 494, 455 (2013). 932 

[11] A. Siria, M.-L. Bocquet, and L. Bocquet, New Avenues for the Large-Scale Harvesting of 933 

Blue Energy, Nature Reviews Chemistry 1, 11 (2017). 934 

[12] L. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei, J. Caro, and H. Wang, Oppositely Charged 935 

Ti3C2Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy 936 

Harvesting, Angewandte Chemie 132, (2020). 937 

[13] S. Hong, F. Ming, Y. Shi, R. Li, I. S. Kim, C. Y. Tang, H. N. Alshareef, and P. Wang, 938 

Two-Dimensional Ti3C2Tx MXene Membranes as Nanofluidic Osmotic Power 939 

Generators, ACS Nano 13, 8917 (2019). 940 



Page 50 of 57 

 

[14] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, and X. Feng, Mechanically Strong 941 

MXene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic 942 

Osmotic Power Generators, Nat Commun 10, 1 (2019). 943 

[15] W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, and L. Wen, 944 

High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy 945 

Conversion, Nat Commun 10, 1 (2019). 946 

[16] L.-J. Cheng and L. J. Guo, Rectified Ion Transport through Concentration Gradient in 947 

Homogeneous Silica Nanochannels, Nano Lett. 7, 3165 (2007). 948 

[17] Q.-Y. Wu, C. Wang, R. Wang, C. Chen, J. Gao, J. Dai, D. Liu, Z. Lin, and L. Hu, Salinity-949 

Gradient Power Generation with Ionized Wood Membranes, Advanced Energy Materials 950 

10, 1902590 (2020). 951 

[18] Y. Green, Y. Edri, and G. Yossifon, Asymmetry-Induced Electric Current Rectification in 952 

Permselective Systems, Phys. Rev. E 92, 033018 (2015). 953 

[19] D. Brogioli, Extracting Renewable Energy from a Salinity Difference Using a Capacitor, 954 

Phys. Rev. Lett. 103, 058501 (2009). 955 

[20] F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for Efficient 956 

Energy Extraction from a Water Salinity Difference, Nano Lett. 11, 1810 (2011). 957 

[21] F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, Power 958 

Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels, Nano Lett. 7, 959 

1022 (2007). 960 

[22] D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, 961 

S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. 962 

H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. 963 

Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss, The Potential and 964 

Challenges of Nanopore Sequencing, Nat Biotech 26, 1146 (2008). 965 



Page 51 of 57 

 

[23] A. Meller, L. Nivon, and D. Branton, Voltage-Driven DNA Translocations through a 966 

Nanopore, Phys. Rev. Lett. 86, 3435 (2001). 967 

[24] B. Nadler, Z. Schuss, U. Hollerbach, and R. S. Eisenberg, Saturation of Conductance in 968 

Single Ion Channels: The Blocking Effect of the near Reaction Field, Phys. Rev. E 70, 969 

051912 (2004). 970 

[25] A. Meller, A New Tool for Cell Signalling Research, Nat. Nanotechnol. 14, 732 (2019). 971 

[26] M. Aramesh, C. Forró, L. Dorwling-Carter, I. Lüchtefeld, T. Schlotter, S. J. Ihle, I. 972 

Shorubalko, V. Hosseini, D. Momotenko, T. Zambelli, E. Klotzsch, and J. Vörös, 973 

Localized Detection of Ions and Biomolecules with a Force-Controlled Scanning 974 

Nanopore Microscope, Nat. Nanotechnol. 14, 791 (2019). 975 

[27] M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, Electrostatic 976 

Focusing of Unlabelled DNA into Nanoscale Pores Using a Salt Gradient, Nature 977 

Nanotechnology 5, 160 (2010). 978 

[28] M. Wanunu, T. Dadosh, V. Ray, J. Jin, L. McReynolds, and M. Drndić, Rapid Electronic 979 

Detection of Probe-Specific MicroRNAs Using Thin Nanopore Sensors, Nature 980 

Nanotechnology 5, 807 (2010). 981 

[29] M. Wanunu, J. Sutin, and A. Meller, DNA Profiling Using Solid-State Nanopores: 982 

Detection of DNA-Binding Molecules, Nano Lett. 9, 3498 (2009). 983 

[30] Z. S. Siwy and S. Howorka, Engineered Voltage-Responsive Nanopores, Chem. Soc. Rev. 984 

39, 1115 (2010). 985 

[31] R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, and A. Majumdar, Electrostatic Control of 986 

Ions and Molecules in Nanofluidic Transistors, Nano Lett. 5, 943 (2005). 987 

[32] R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, Rectification of Ionic 988 

Current in a Nanofluidic Diode, Nano Lett. 7, 547 (2007). 989 



Page 52 of 57 

 

[33] W. Guan, R. Fan, and M. A. Reed, Field-Effect Reconfigurable Nanofluidic Ionic Diodes, 990 

Nat Commun 2, 506 (2011). 991 

[34] R. Yan, W. Liang, R. Fan, and P. Yang, Nanofluidic Diodes Based on Nanotube 992 

Heterojunctions, Nano Lett. 9, 3820 (2009). 993 

[35] I. Vlassiouk, S. Smirnov, and Z. Siwy, Nanofluidic Ionic Diodes. Comparison of 994 

Analytical and Numerical Solutions, ACS Nano 2, 1589 (2008). 995 

[36] I. Vlassiouk, T. R. Kozel, and Z. S. Siwy, Biosensing with Nanofluidic Diodes, J. Am. 996 

Chem. Soc. 131, 8211 (2009). 997 

[37] Y. Green, Current-Voltage Response for Unipolar Funnel-Shaped Nanochannel Diodes, 998 

Phys. Rev. E 98, 033114 (2018). 999 

[38] R. Abu-Rjal and Y. Green, Bipolar Nanochannels: A Systematic Approach to Asymmetric 1000 

Problems, ACS Appl. Mater. Interfaces 13, 27622 (2021). 1001 

[39] R. A. Lucas and Z. S. Siwy, Tunable Nanopore Arrays as the Basis for Ionic Circuits, 1002 

ACS Appl. Mater. Interfaces 12, 56622 (2020). 1003 

[40] Z. Sarkadi, D. Fertig, Z. Ható, M. Valiskó, and D. Boda, From Nanotubes to Nanoholes: 1004 

Scaling of Selectivity in Uniformly Charged Nanopores through the Dukhin Number for 1005 

1:1 Electrolytes, J. Chem. Phys. 154, 154704 (2021). 1006 

[41] M. Valiskó, B. Matejczyk, Z. Ható, T. Kristóf, E. Mádai, D. Fertig, D. Gillespie, and D. 1007 

Boda, Multiscale Analysis of the Effect of Surface Charge Pattern on a Nanopore’s 1008 

Rectification and Selectivity Properties: From All-Atom Model to Poisson-Nernst-Planck, 1009 

J. Chem. Phys. 150, 144703 (2019). 1010 

[42] Y. Qiu, R. A. Lucas, and Z. S. Siwy, Viscosity and Conductivity Tunable Diode-like 1011 

Behavior for Meso- and Micropores, J. Phys. Chem. Lett. 8, 3846 (2017). 1012 



Page 53 of 57 

 

[43] T. Plett, M. L. Thai, J. Cai, I. Vlassiouk, R. M. Penner, and Z. S. Siwy, Ion Transport in 1013 

Gel and Gel–Liquid Systems for LiClO4-Doped PMMA at the Meso- and Nanoscales, 1014 

Nanoscale 9, 16232 (2017). 1015 

[44] A. Alcaraz, M. L. López, M. Queralt-Martín, and V. M. Aguilella, Ion Transport in 1016 

Confined Geometries below the Nanoscale: Access Resistance Dominates Protein 1017 

Channel Conductance in Diluted Solutions, ACS Nano 11, 10392 (2017). 1018 

[45] M. Queralt-Martín, M. L. López, M. Aguilella-Arzo, V. M. Aguilella, and A. Alcaraz, 1019 

Scaling Behavior of Ionic Transport in Membrane Nanochannels, Nano Lett. 18, 6604 1020 

(2018). 1021 

[46] S. Faucher, N. Aluru, M. Z. Bazant, D. Blankschtein, A. H. Brozena, J. Cumings, J. Pedro 1022 

de Souza, M. Elimelech, R. Epsztein, J. T. Fourkas, A. G. Rajan, H. J. Kulik, A. Levy, A. 1023 

Majumdar, C. Martin, M. McEldrew, R. P. Misra, A. Noy, T. A. Pham, M. Reed, E. 1024 

Schwegler, Z. Siwy, Y. Wang, and M. Strano, Critical Knowledge Gaps in Mass 1025 

Transport through Single-Digit Nanopores: A Review and Perspective, J. Phys. Chem. C 1026 

123, 21309 (2019). 1027 

[47] L. Wang, Z. Wang, S. K. Patel, S. Lin, and M. Elimelech, Nanopore-Based Power 1028 

Generation from Salinity Gradient: Why It Is Not Viable, ACS Nano 15, 4093 (2021). 1029 

[48] H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, Maximizing 1030 

the Right Stuff: The Trade-off between Membrane Permeability and Selectivity, Science 1031 

356, (2017). 1032 

[49] N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1 edition (Cengage Learning, New 1033 

York, 1976). 1034 

[50] D. Stein, M. Kruithof, and C. Dekker, Surface-Charge-Governed Ion Transport in 1035 

Nanofluidic Channels, Phys. Rev. Lett. 93, 035901 (2004). 1036 



Page 54 of 57 

 

[51] L. Bocquet and E. Charlaix, Nanofluidics, from Bulk to Interfaces, Chemical Society 1037 

Reviews 39, 1073 (2010). 1038 

[52] G. Yossifon and H.-C. Chang, Changing Nanoslot Ion Flux with a Dynamic Nanocolloid 1039 

Ion-Selective Filter: Secondary Overlimiting Currents Due to Nanocolloid-Nanoslot 1040 

Interaction, Phys. Rev. E 81, 066317 (2010). 1041 

[53] R. B. Schoch, J. Han, and P. Renaud, Transport Phenomena in Nanofluidics, Rev. Mod. 1042 

Phys. 80, 839 (2008). 1043 

[54] E. Secchi, A. Niguès, L. Jubin, A. Siria, and L. Bocquet, Scaling Behavior for Ionic 1044 

Transport and Its Fluctuations in Individual Carbon Nanotubes, Phys. Rev. Lett. 116, 1045 

154501 (2016). 1046 

[55] P. M. Biesheuvel and M. Z. Bazant, Analysis of Ionic Conductance of Carbon Nanotubes, 1047 

Phys. Rev. E 94, 050601 (2016). 1048 

[56] Y. Uematsu, R. R. Netz, L. Bocquet, and D. J. Bonthuis, Crossover of the Power-Law 1049 

Exponent for Carbon Nanotube Conductivity as a Function of Salinity, J. Phys. Chem. B 1050 

122, 2992 (2018). 1051 

[57] M. Manghi, J. Palmeri, K. Yazda, F. Henn, and V. Jourdain, Role of Charge Regulation 1052 

and Flow Slip in the Ionic Conductance of Nanopores: An Analytical Approach, Phys. 1053 

Rev. E 98, 012605 (2018). 1054 

[58] Y. Green, Ion Transport in Nanopores with Highly Overlapping Electric Double Layers, 1055 

J. Chem. Phys. 154, 084705 (2021). 1056 

[59] M. Biesheuvel and Jouke. E. Dykstra, Physics of Electrochemical Processes, Pre-release 1057 

(www.physicsofelectrochemicalprocesses.com, 2020). 1058 

[60] O. Schnitzer and E. Yariv, Electric Conductance of Highly Selective Nanochannels, Phys. 1059 

Rev. E 87, 054301 (2013). 1060 



Page 55 of 57 

 

[61] H. J. M. Hijnen, J. van Daalen, and J. A. M. Smit, The Application of the Space-Charge 1061 

Model to the Permeability Properties of Charged Microporous Membranes, Journal of 1062 

Colloid and Interface Science 107, 525 (1985). 1063 

[62] We Thank the Anonymous Referee for Referring Us to the Work of Hijnen et al. [XX] of 1064 

Which We Were Unfamiliar With. 1065 

[63] K. Yazda, S. Tahir, T. Michel, B. Loubet, M. Manghi, J. Bentin, F. Picaud, J. Palmeri, F. 1066 

Henn, and V. Jourdain, Voltage-Activated Transport of Ions through Single-Walled 1067 

Carbon Nanotubes, Nanoscale 9, 11976 (2017). 1068 

[64] S. Balme, F. Picaud, M. Manghi, J. Palmeri, M. Bechelany, S. Cabello-Aguilar, A. Abou-1069 

Chaaya, P. Miele, E. Balanzat, and J. M. Janot, Ionic Transport through Sub-10 Nm 1070 

Diameter Hydrophobic High-Aspect Ratio Nanopores: Experiment, Theory and 1071 

Simulation, Sci Rep 5, 10135 (2015). 1072 

[65] O. I. Vinogradova, E. F. Silkina, and E. S. Asmolov, Enhanced Transport of Ions by 1073 

Tuning Surface Properties of the Nanochannel, ArXiv:2106.07915 [Cond-Mat, 1074 

Physics:Physics] (2021). 1075 

[66] Y. Green, Conditions for Electroneutrality Breakdown in Nanopores, J. Chem. Phys. 155, 1076 

184701 (2021). 1077 

[67] Y. Green, R. Eshel, S. Park, and G. Yossifon, Interplay between Nanochannel and 1078 

Microchannel Resistances, Nano Lett. 16, 2744 (2016). 1079 

[68] Y. Green, R. Abu-Rjal, and R. Eshel, Electrical Resistance of Nanochannel-1080 

Microchannel Systems: An Exact Solution, Phys. Rev. Applied 14, 014075 (2020). 1081 

[69] R. B. Schoch and P. Renaud, Ion Transport through Nanoslits Dominated by the Effective 1082 

Surface Charge, Applied Physics Letters 86, 253111 (2005). 1083 

[70] R. B. Schoch, H. van Lintel, and P. Renaud, Effect of the Surface Charge on Ion Transport 1084 

through Nanoslits, Physics of Fluids 17, 100604 (2005). 1085 



Page 56 of 57 

 

[71] H. Wang, L. Su, M. Yagmurcukardes, J. Chen, Y. Jiang, Z. Li, A. Quan, F. M. Peeters, 1086 

C. Wang, A. K. Geim, and S. Hu, Blue Energy Conversion from Holey-Graphene-like 1087 

Membranes with a High Density of Subnanometer Pores, Nano Lett. 20, 8634 (2020). 1088 

[72] R. M. M. Smeets, U. F. Keyser, D. Krapf, M.-Y. Wu, N. H. Dekker, and C. Dekker, Salt 1089 

Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores, 1090 

Nano Lett. 6, 89 (2006). 1091 

[73] Y.-C. Yao, A. Taqieddin, M. A. Alibakhshi, M. Wanunu, N. R. Aluru, and A. Noy, Strong 1092 

Electroosmotic Coupling Dominates Ion Conductance of 1.5 Nm Diameter Carbon 1093 

Nanotube Porins, ACS Nano 13, 12851 (2019). 1094 

[74] Y. Noh and N. R. Aluru, Ion Transport in Electrically Imperfect Nanopores, ACS Nano 1095 

14, 10518 (2020). 1096 

[75] P. B. Peters, R. van Roij, M. Z. Bazant, and P. M. Biesheuvel, Analysis of Electrolyte 1097 

Transport through Charged Nanopores, Phys. Rev. E 93, 053108 (2016). 1098 

[76] E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, and L. Bocquet, Massive Radius-1099 

Dependent Flow Slippage in Carbon Nanotubes, Nature 537, 210 (2016). 1100 

[77] Q. Xie, M. A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H. G. Park, and C. Duan, 1101 

Fast Water Transport in Graphene Nanofluidic Channels, Nature Nanotech 13, 238 1102 

(2018). 1103 

[78] C. Herrero, G. Tocci, S. Merabia, and L. Joly, Fast Increase of Nanofluidic Slip in 1104 

Supercooled Water: The Key Role of Dynamics, Nanoscale 12, 20396 (2020). 1105 

[79] Y. Xie, L. Fu, T. Niehaus, and L. Joly, Liquid-Solid Slip on Charged Walls: The Dramatic 1106 

Impact of Charge Distribution, Phys. Rev. Lett. 125, 014501 (2020). 1107 

[80] G. J. Wang and N. G. Hadjiconstantinou, Universal Molecular-Kinetic Scaling Relation 1108 

for Slip of a Simple Fluid at a Solid Boundary, Phys. Rev. Fluids 4, 064201 (2019). 1109 



Page 57 of 57 

 

[81] Yoav Green, Electrical Conductance of Charged Nanopores, (submitted to Phys. Rev. 1110 

Lett.). 1111 

[82] A. Levy, J. P. de Souza, and M. Z. Bazant, Breakdown of Electroneutrality in Nanopores, 1112 

Journal of Colloid and Interface Science 579, 162 (2020). 1113 

[83] Y. Green, S. Shloush, and G. Yossifon, Effect of Geometry on Concentration Polarization 1114 

in Realistic Heterogeneous Permselective Systems, Phys. Rev. E 89, 043015 (2014). 1115 

[84] J. E. Hall, Access Resistance of a Small Circular Pore., J Gen Physiol 66, 531 (1975). 1116 

[85] C. Lee, L. Joly, A. Siria, A.-L. Biance, R. Fulcrand, and L. Bocquet, Large Apparent 1117 

Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction, 1118 

Nano Lett. 12, 4037 (2012). 1119 

[86] I. Vlassiouk, S. Smirnov, and Z. Siwy, Ionic Selectivity of Single Nanochannels, Nano 1120 

Lett. 8, 1978 (2008). 1121 

[87] Y. Green, S. Park, and G. Yossifon, Bridging the Gap between an Isolated Nanochannel 1122 

and a Communicating Multipore Heterogeneous Membrane, Phys. Rev. E 91, 011002 (R) 1123 

(2015). 1124 

 1125 


