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Application of an electric field across the curved interface of two fluids of low but

non-zero conductivities, or ‘leaky dielectrics,’ can give rise to electric stresses that

drive sustained fluid flow. In a uniform DC electric field of sufficiently weak mag-

nitude, the electric and velocity fields around an isolated, neutrally buoyant leaky

dielectric drop at zero Reynolds number are fore-aft and azimuthally symmetric

about the applied field axis. Consequently, the drop remains stationary. The pres-

ence of a second drop breaks these symmetries, resulting in relative motion of the

drop pair. Recently, Sorgentone et al. derived an analytical expression for the rela-

tive velocity of a pair of widely separated drops of identical constitution, asymptotic

in the inverse separation distance between the drop centroids [C. Sorgentone, J. I.

Kach, A. S. Khair, L. M. Walker, and P. M. Vlahovska, “Numerical and asymptotic

analysis of the three-dimensional electrohydrodynamic interactions of drop pairs,”

J. Fluid Mech., 914, A24 (2021)]. In the present work, we generalize the theory of

Sorgentone et al. to interactions of dissimilar drops (of different size or constitu-

tion), and the pairwise additive interactions of three or more drops. We perform

experiments on silicone oil drops suspended in castor oil and compare to asymptotic

predictions of the drop pair trajectories. Experimental trajectories of drops with

their line of centers initially at an arbitrary angle to the field direction are shown to

be qualitatively predicted by our theory. We show results of experiments of dissim-

ilar drops and of three and four drops, again observing qualitative agreement with

our theoretical predictions.

I. INTRODUCTION

The application of an electric field across the interface between low-conductivity (leaky

dielectric) fluids gives rise to stresses that can deform the interface and drive electrohydro-
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dynamic (EHD) flows [1, 2]. EHD flows find applications in electrosprays [3, 4], electroco-

alescence [5, 6], electrorheology [7, 8], microfluidics [9, 10], the formation of Janus capsules

[11], and have shown promise in improving existing methods of inkjet printing [12–14]. Much

of the literature on electrohydrodynamics has focused on the deformation and breakup of

drops [4, 15–26]. In particular, the dynamics of drops that deform to an oblate shape has

garnered recent interest [27–30]. While the dynamics of a single drop is well understood [26],

many applications involve multiple drops. In electrocoalescence, for example, it is important

to predict the behavior of multiple drops in electric fields weak enough to avoid breakup. To

this end, the electrohydrodynamic interactions between drops must be determined.

Due to the non-zero electrical conductivities of leaky dielectrics, a drop interface polar-

izes in an electric field due to both free-charge accumulation and the permittivity mismatch

between drop and suspending phases. The resulting surface charge profile induces an elec-

trical stress both normal and tangential to the local interface, thus shearing the interface

and driving flow in and outside of the drop. Here, by a “weak” electric field it is meant that

the capillary number, Ca = µsUEHD/γ = εsE
2

∞a/γ ≪ 1, where µs is the viscosity of the

suspending fluid, UEHD = εsE
2

∞a/µs is the velocity scale of the EHD flow, E∞ is the strength

of the applied field, εs is the absolute electrical permittivity of the suspending phase, a is the

undeformed drop radius, and γ is the surface tension of the interface. Since UEHD depends

inversely on viscosity Ca is independent of viscosity, unlike for a drop in an externally im-

posed flow field where the capillary number is inversely proportional to viscosity. A neutrally

buoyant drop at zero Reynolds number remains nearly spherical, deforming to a spheroidal

shape to leading order in Ca. Ignoring surface charge convection, the deformation of a single

drop can be described to leading order in Ca using the material property ratios of viscosity

M = µd/µs, conductivity R = σs/σd, and permittivity S = εd/εs, where subscripts d and s

denote the drop and suspending phases, respectively. The deformation parameter, a function

of the length of the major and minor axes of the drop (L‖ and L⊥, respectively), is given by

the following expression derived by Taylor [15]

DT ≡
L‖ − L⊥

L‖ + L⊥
=

9 Ca

16(1 + 2R2)

[

3(2 + 3M)

5(1 +M)
R(1−RS) +R2(1− 2S) + 1

]

+O(Ca2). (1)

Thus, drops can either deform to a prolate (DT > 0) or an oblate (DT < 0) spheroid,
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depending solely on the properties of the fluids. An example of the steady deformation and

electric and velocity fields around a single leaky dielectric drop forM = 2, R = 1/5, S = 1/3

is shown in figure 1.
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FIG. 1. Example steady electric and velocity fields around a leaky dielectric drop in a uniform

electric field, where M = 2, R = 1/5, S = 1/3. In this example, the drop is slightly deformed to

a prolate spheroid with undeformed radius a, major axis L‖, and minor axis L⊥ with respect to

the applied field direction. The viscosity µ, conductivity σ, and permittivity ε of the drop phase

are denoted with subscript d and the suspending phase properties are denoted with subscript s.

Both the electric and flow fields have fore-aft symmetry about the drop equator perpendicular to

the applied field direction and axially symmetric about the poles in parallel to the applied field

direction. Internal electric field lines are omitted, however the internal field is uniform and parallel

to the applied field direction.

Due to the fore-aft and axial symmetry of the electric and flow fields in and outside a drop,

a single, freely suspended drop remains stationary. In the presence of a second drop, however,

those symmetries are broken, and the drops translate by action of the flow and non-uniform

electric field due to the presence of the other drop. When perfectly dielectric or conducting

drops are suspended in a dielectric medium, they interact only through dielectrophoresis

(DEP), i.e the force on a body residing in an electric field gradient [31, 32]. The electrostatic

interaction of two dielectric spheres arbitrarily placed in an electric field was calculated

using a multipole re-expansion by Washizu and Jones [33], who found that the interaction

of widely separated spheres matches closely with a point dipole approximation [34]. In both

cases, there is a critical angle between the line of centers connecting the drops and the

applied field direction, Θ = 54.7°, below which the spheres will attract and above which they
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will repel. This is the basis for electrocoalescence, where these interactions are exploited

to augment the rates of collision and coalescence of water drops in oil [35, 36]. When the

drop and suspending fluids are leaky dielectrics, the drops interact through EHD as well.

This was first addressed by Sozou [37], who calculated that the flow field around two drops

can be modified considerably depending on the drops’ separation distance using a multipole

expansion in bispherical coordinates; however, this calculation was restricted to the case of

two identical, spherical drops with the line connecting their centers aligned in the direction of

the applied field. Baygents, Rivette, and Stone [38] then demonstrated that leaky dielectric

drops interact through a combination of EHD and DEP. They employed a boundary integral

method, which considered the relative motion and deformation of identical drops aligned

in the field direction. Their analysis showed that for widely separated drops, the DEP

force scales to leading order as O(a4/d4) while the EHD flow scales to leading order as

O(a2/d2), where a is the radius of the drops and d is the separation distance of their centroids.

Recently, Zabarankin [39] derived an analytical expression via a multipole re-expansion for

the velocities of nearly spherical but non-identical drops aligned in the direction of the

electric field. This theory matched observations by Baygents et al. that prolate-deforming

drops may attract when drops are close and DEP dominates, yet repel at larger separations

where the EHD flow dominates. Furthermore, Zabarankin’s work introduced the possibility

that oblate-deforming drops with dissimilar permittivities and conductivities in an inviscid

suspending fluid could have a repulsive interaction, a behavior not reported in previous

studies.

In order to study the EHD interactions of drops in two dimensions, Dong & Sau [40]

performed lattice Boltzmann computations, using a point-dipole approximation for the DEP

interaction. At a separation of d/a = 5 and Ca = 0.18, they noted that the critical angle of

the EHD flow for circular drops is similar to that of the point-dipole approximation for DEP.

Mhatre et al. [41] compared boundary integral simulations to experimental drop trajectories

for two drops aligned parallel to the field. Although they did not compare their simulations

to experiments for drops misaligned with the field, they did experimentally observe the

existence of a critical Θ, above which drops did not attract each other. More recently,

Sorgentone et al. [42] considered three dimensional EHD drop interactions via asymptotic

theory and boundary integral simulations. Accurate to O(a5/d5), their asymptotic theory
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showed that leaky dielectric drops initially at an angle to the field may align either parallel

or perpendicular to the field direction depending only on the material properties of the

drop and suspending phase. An expression, denoted by Φ, was derived that quantifies the

competition between EHD and DEP. This expression, given again in equation 14, can be

used to determine the long-term behavior of the drop pair. Additionally, a derived expression

for a critical separation distance further quantified the competition between the DEP and

EHD effects driving the interaction.

In the present work, we first extend the theory of Sorgentone et al. to consider non-

identical and multiple, widely separated. We then compare our calculations to experiments

of two or more drops, showing in particular that a pairwise additive approximation is capable

of qualitatively predicting the trajectories of multiple leaky dielectric drops. In section II, we

formulate the problem of interest. In section III, the asymptotic theory for drop interactions

is generalized to include dissimilar drops and multiple drops. In section IV, we outline the

experimental method and discuss the implications of the parameter Φ on practical systems.

In section V, we compare the theory to experimental measurements of drop trajectories.

We first compare the theory to measurements of drop pair trajectories for identical drops,

which qualitatively validate the calculations and illustrate the importance of considering

the combined effects of DEP and EHD in drop interactions. We then compare the theory

to experimental measurements of the trajectories of drops of different size and discuss the

dynamics of electrically dissimilar drops. Finally, we compare the theory to experimental

measurements of the interactions of three and four drops. In section VI, we provide the

conclusions of our work.

II. PROBLEM FORMULATION

Consider two spherical, leaky dielectric drops suspended in an unbounded, density

matched fluid and subject to a uniform DC electric field E∞ pointing in direction Ê∞ =

E∞/E∞. We introduce the subscripts i and j to identify the drops, where i = 1, 2, j = 1, 2,

and j 6= i. The drop phases (denoted by subscript d) and suspending medium (denoted

by subscript s) have constant and homogeneous properties of conductivity, permittivity,

viscosity,, with ratios of material properties Mi = µd,i/µs, Ri = σs,i/σd, and Si = εd,i/εs,
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respectively. The positions of the drops evolve on the timescale τc = a/UEHD = µs/εsE
2

∞.

A schematic of the two drop system is shown in Figure 2, where the centers of each drop,

relative to an arbitrary origin, are denoted as x1 and x2.

Θ

E∞ 

d

d
̂

Θd

̂

FIG. 2. Depiction of coordinate system for two spherical drops of radius a. The centers of the

drops are separated by a distance d, with the angle between the line of centers and the applied field

denoted as Θ.

The vector d = x2 − x1 points from the center of drop 1 to the center of drop 2 with

associated unit vector d̂. A second, right-handed unit vector Θ̂ is introduced to denote

rotations of d̂. In effect, Θ̂ describes rotations of the drop pair, where a positive Θ indicates

a counter-clockwise rotation of drop 2 about drop 1.

We describe the combined electrostatic and hydrodynamic problems using the approach

of Melcher and Taylor [1]. We assume no free charge in the bulk, such that the potential

inside and outside the drops satisfies Laplace’s equation

∇2φi = 0, ∇2φs = 0. (2)

The electric field is expressed as the negative gradient of the potential, E = −∇φ. Far from

the drops, the electric field approaches the imposed field, E∞, and the field is bounded at

the centroid of each drop. The capillary number is taken to be small, Ca ≪ 1, such that the

interface of the drops can be assumed to be spherical. The potential is continuous across

the surface of the drops, and the surface charge density is given as

εs (∇φs · ni − S∇φi · ni) = q at ri = |x− xi|= a (3)
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where ni is the outward pointing unit normal vector of the drops. Neglecting surface charge

convection and charge relaxation, current across the interface is conserved, satisfying

∇φi = R∇φs at ri = a. (4)

The assumption of no surface charge convection requires the electric Reynolds number,

ReE = ε2sE
2

∞/σsµs ≪ 1. The charge relaxation timescales in and outside the drop are

assumed to be small, εd,s/σd,s ≪ 1.

Assuming creeping flow of incompressible fluids, the velocity and pressure inside and

outside the drops are governed by the Stokes equations

∇ · σi = µi∇
2
ui −∇pi = 0, ∇ · σs = µs∇

2
us −∇ps = 0, (5)

where σ = −pI + µ
(

∇u+ (∇u)T
)

is the hydrodynamic stress tensor and I is the identity

tensor. The flow is quiescent far from the drops and bounded within. The velocity is

continuous across the interface, with no penetration of fluid across the boundary. The

electric field acting on the developed surface charge induces a tangential Maxwell stress at

the surface, which drives the EHD flow. The tangential stress balance is given as

[σs · ni − σi · ni]× ni = q∇φi × ni, ri = a, (6)

where ∇φi × ni is the tangential component of the electric field, which is continuous across

the interface. Solution of the above equations and boundary conditions gives the electric and

flow fields around each drop individually, which are then used with the method of reflections

to determine the interaction of widely separated drops.

III. ASYMPTOTIC APPROXIMATION OF PAIR INTERACTION

We generalize the methodology of Sorgentone et al. [42] to determine the interaction be-

tween two widely separated, dissimilar, leaky dielectric drops. Via the method of reflections,

a single reflection of the electric and velocity fields around drop i as seen by drop j a distance
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d away are [43],

Ei = E∞ −
1− Ri

1 + 2Ri

E∞ ·
(

I− 3d̂d̂
)(ai

d

)3

+O

(

(ai
d

)6
)

, (7)

ui =
9

10

εsE
2

∞ai
µs

Ri(1−RiSi)

(1 + 2Ri)2(1 +Mi)
Ê∞Ê∞

:

[

(

I− 3d̂d̂
)(ai

d

)2

d̂+
1

3
∇

(

I
(ai
d

)3

− 3d̂d̂
(ai
d

)3
)]

+O

(

(ai
d

)5
)

.

(8)

The electric and flow fields have fore-aft about the equator and axial symmetry about the

field direction, illustrated by the field lines and streamlines in figure 1, and a single drop

undergoes no translational motion. Upon addition of a second drop, that symmetry is broken.

The disturbance electric and velocity fields from one drop act on the other, and vice versa,

resulting in translational motion of the drops.

To describe the interactions between drops, we introduce the notation Fji and Uji, where

the subscripts denotes the force or velocity on drop j due to its interaction with drop i.

Approximating each drop as a point dipole, the DEP force on drop j in the disturbance

electric field of drop i is

Fji = Pj · ∇Ei|x=xj
, (9)

where Pj is the polarizability of drop j, Pj = 4πεsa
3

j

1−Rj

1 + 2Rj

E∞, and ∇Ei|x=xj
is the

gradient of the electric field around drop i evaluated at the center of drop j. The translational

velocity of drop j, considering the EHD and DEP interactions with drop i, as well as the

drag on drop j, is then, via Faxén’s law for drops [44],

Uji =

(

1 +
a2jMj

2(2 + 3Mj)
∇2

)

ui(x)|x=xj
+

1

2πµsaj

1 +Mj

2 + 3Mj

Uji. (10)
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Insertion of equations (8) and (9) into (10) returns the velocity of each drop

Uji =
9

5

εsE
2

∞ai
µs

[

Ri(1− RiSi)

(1 + 2Ri)2(1 +Mi)
P2(cosΘ)

(ai
d

)2

d̂

−
Ri(1− RiSi)

(1 + 2Ri)2(1 +Mi)

(

P2(cosΘ)d̂+
1

2
sin(2Θ)Θ̂

)

(ai
d

)4

−

(

3Mj

(2 + 3Mj)

Ri(1− SiRi)

(1 + 2Ri)2(1 +Mi)
+

20

3

(1 +Mj)

(2 + 3Mj)

(1−Rj)

(1 + 2Rj)

(1− Ri)

(1 + 2Ri)

)

×

(

P2(cosΘ)d̂+
1

2
sin(2Θ)Θ̂

)(

a2ia
2

j

d4

)]

+ O

(

a2ia
3

j

d5

)

,

(11)

where P2(cosΘ) is the second Legendre polynomial. Clearly, for nonidentical drops, Ud =

Uji − Uij 6= 2Uji, analogous to non-reciprocal interactions of phoretic particles with dif-

ferent interaction potentials [45, 46]. For dissimilar drops, the higher order, i.e. O(a4/d4),

interactions depend on properties from both drops i and j, as seen in equation (11). This is

a generalization of equation 4.8 in Sorgentone et al. [42], from which the orientation of an

identical drop pair can be predicted based solely on the material properties of the system.

The expression presented here, namely the second and third terms in equation (11), show

that the interactions of dissimilar drops are more complex. When one drop is much larger

than the other, equation (11) reduces to the EHD flow profile around the larger drop, with

the smaller drop effectively acting as a tracer in the EHD flow of the larger drop. For drops

of equal size but different constitution, the expression governing the O(a4/d4) interactions

of the drops becomes

Φji =
1

(2 + 3Mj)

(

2(1 + 3Mj)Ri(1− RiSi)

(1 +Mi)(1 + 2Ri)2
+

20

3
(1 +Mj)

(1−Rj)(1− Ri)

(1 + 2Rj)(1 + 2Ri)

)

, (12)

where Φji denotes the O(a4/d4) contribution to the velocity of drop j due to its interaction

with drop i. Equation (12) shows that two drops may align perpendicular to the electric

field direction if their conductivities are larger and smaller, respectively, than the suspending

phase (i.e. Ri < 1 < Rj). Thus, Φji, and therefore the total interaction of the drop pair,

cannot be described using Φi and Φj for interactions of identical drops of type i and j. For

drops of identical size and constitution (i.e. when Mj = Mi, Rj = Ri, Sj = Si, and aj = ai),

Ud = 2Uji, and equations (11) and (12) reduce to equations 4.7 and 4.8 for identical drops
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given by Sorgentone et al. [42]

Ud =
18

5

εsE
2

∞a

µs

[

R(1−RS)

(1 + 2R)2(1 +M)
P2(cosΘ)

(a

d

)2

d̂

− Φ

(

P2(cosΘ)d̂+
1

2
sin(2Θ)Θ̂

)

(a

d

)4
]

+ O

(

(a

d

)5
)

,

(13)

and

Φ =
1

(2 + 3M)(1 + 2R)2

(

2(1 + 3M)R(1 −RS)

(1 +M)
+

20

3
(1 +M)(1− R)2

)

. (14)

Equations (11) and (13) can be reduced to pure dielectrophoresis of conducting drops by

setting S = 1/R, where the EHD interaction of O(a2/d2) is absent and the weaker DEP

governs the interaction of the drops to leading order of O(a4/d4). In this case, the charging

timescales of the drop and suspending phases match (εd/σd = εs/σs, or RS = 1) and the

tangential electric stress on each side of the interface balance, eliminating the driving force

for the interface to shear and resulting in the EHD flow vanishing, exemplified by ui = 0

when RS = 1 in equation (8).

The relative velocity of the drop pair can be used to determine the trajectory of the drop

pair via the relations
dd

dt
= Ud · d̂, and d

dΘ

dt
= Ud · Θ̂, (15)

where d is the separation distance between the centroids of the drops and Θ is the angle

between the drops’ line of centers and the electric field direction, equal to arccos (E∞ · d̂).

The unit vectors d̂ and Θ̂ are those pointing along the line of centers of the drops and

perpendicular to the drops’ line of centers. Additionally, the position of each drop can be

tracked individually as
dxj

dt
= Uji, (16)

which, while a trivial result, can be extended to predict the behavior of multiple drops, as

follows. When there are multiple drops, it is assumed that each drop moves due to pair-

wise interactions with every other drop. The position of each drop can then be predicted

by summing over the interactions of that drop with all other drops. This yields the same

expression as equation (16), but now including a sum over i. The positions of the entire
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collection of drops can then be described as

dxj

dt
=

N
∑

i 6=j

Uji, for j = 1, 2, ...N, (17)

where xj is the position of the jth drop, Uji is the velocity of drop j due to its interaction

with drop i, and N is the total number of drops in the system.

The trajectories of a set of two or more drops can be predicted via integration of equation

(17). The positions of the drops in time are hence calculated by numerically integrating

equation (17) using a forward Euler scheme with time step 0.001tc, where tc = µs/εsE
2

∞ is the

characteristic timescale of the EHD flow. In the next sections, these calculated trajectories

are compared to experimental results in various scenarios, and theoretical results for other

scenarios are shown as well.

IV. MATERIALS AND METHODS

Experiments were performed in a 3D-printed acrylic cell 2.8cm width × 3.6cm length

× 7cm height developed by Sengupta et al [47]. Two stainless steel electrodes 35 mm wide

are set 28 mm apart. Voltages of 2, 3, 4, and 5 kV are applied to one electrode from a

high-voltage power supply (Gamma High Voltage Research, Inc.) with the other grounded,

resulting in calculated electric field strengths of 0.714 kV/cm, 1.07 kV/cm, 1.43 kV/cm, and

1.79 kV/cm, respectively, in the cell. A foot switch connected to the voltage supply circuit

allows for rapid and safe activation/deactivation of the electric field. Drops of volume 1 µL

(620 µm radius) are administered using a 25 µL glass syringe with a grounded 22s gauge

stainless steel needle (Hamilton). After insertion into the cell, drops are then placed in their

initial positions by moving nearby fluid using the grounded needle. The two walls adjacent

to the electrodes have circular windows, where drops are imaged using a camera (Point Grey

Grasshopper) with a 10× objective lens (Nikon) and a fiber optic back light (QVABL, Dolan-

Jenner). The drops are initially placed in the same focal plane. Via equation (11), drops

positioned in the plane made by the field direction and the line connecting their centers will

only move within that plane. Visual observations made during the experiments indicate that

out-of-plane motion is small compared to that in-plane. A schematic of the setup is shown
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in figure 3. Images are recorded at 7 frames per second with LabView. Drop positions and

trajectories are analyzed in MATLAB with the function imfindcircles ; the data is smoothed

for clarity by taking a moving average of the previous 7 data points and data points spaced

one second apart are shown.

35 mm

28 mm

Objective lens Light source

Electrode

V

FIG. 3. Schematic of experimental setup. Drops are initially placed in the same focal plane, where

they tend to remain throughout the experiment.

The oils used are 350 cSt silicone oil (Sigma-Aldrich) and castor oil (Sigma-Aldrich).

Prediction of the interaction between drops requires accurate knowledge of the drop and

suspending phase fluid and electrical properties. Electrical properties are taken from Lanauze

et al. [23], wherein electrical impedance spectroscopy was used [48] and the viscosities of the

fluids are measured using a concentric cylinder rheometer (DH-2, TA Instruments) at 20°C.

The densities are considered as given by the supplier. These material properties are given

in Table I.

Fluid ε σ (S/m) µ (Pa s) ρ (kg/m3)

Castor oil 4.9 5.8× 10−11 0.99 961
Silicone oil 2.8 2.0× 10−12 0.39 970

TABLE I. Material properties for a silicone oil drop suspended in castor oil. Here, ε denotes the

relative permittivity.

For identical drops, the quantity 1 − RS and the expression for Φ in equation (14) are

enough to qualitatively predict how a given pair of drops will behave. The leading order
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term in equation (13) determines the relative velocity of the drop pair at large separation

distances. This term is purely electrohydrodynamic, since it vanishes if 1 − RS = 0. The

sign of 1−RS determines the direction of this EHD interaction, where if 1−RS > 0 (< 0),

Ud > 0 (< 0), and widely separated drops will repel (attract) when P2(cosΘ) > 0, or

Θ < 54.7°, and attract (repel) when Θ > 54.7°. The shorter range O(a4/d4) contribution

to the relative velocity is due to a combination of both EHD and DEP. The expression Φ

quantifies the interplay between EHD and DEP interactions, and can be used with the sign

of 1 − RS to predict whether or not a drop pair will come together or drift apart. From

equation (13), the only contribution to the drop pair orientation relative to the field is scaled

by −Φ. As indicated in figure 2, positive motion in the Θ̂ direction constitutes a rotation

toward a perpendicular alignment relative to the field. Thus, just by knowing the sign of Φ,

the direction the drop pair aligns can be predicted. Finally, to qualitatively approximate the

dependence of the pair interaction on separation distance, Sorgentone et al. introduced a

critical separation distance, dc, solved by setting Ud = 0 and Θ = 0 or π/2. From Sorgentone

[42] et al.,

dc
a

=

√

(1 + 2R)2(1 +M)

R(1− RS)
Φ. (18)

The critical separation distance dc gives the centroid separation where the effects of EHD

and DEP balance, and is an equilibrium point where the drops do not move relative to

each other. Above this separation distance, long range EHD interactions will dominate, and

below this separation distance the drop motion will be dominated by DEP. The combined

use of 1−RS, Φ, and dc to predict the long-time behavior of a leaky dielectric drop pair can

be visualized as a phase diagram for a chosen value of one of the three material property

ratios. For M = 1, the associated phase diagram is shown in figure 4. For systems where

Φ < 0, drop pairs rotate toward a perpendicular alignment with the field. The line Φ = 0

never crosses RS = 1, thus systems where Φ < 0 will always have RS > 1 and will repel

when aligned perpendicular to the field. In these cases, dc/a is never greater than 2, and

drops will repel, however the error in prediction grows as drop separation decreases. In the

region where Φ > 0 and RS > 1, drops align parallel to the field and attract along their

alignment. Here, since 1 − RS < 0 while Φ is positive, dc is imaginary, and the interaction

behavior is directionally identical to pure DEP. When RS < 1, Φ is always positive and drops
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FIG. 4. Phase diagram for behavior of a pair of equiviscous (M = 1), identical, leaky dielectric

drops with permittivity ratio S and conductivity ratio R, based on equation 4.8 from Sorgentone

et al [42].

The solid black line denotes combinations of S and R for which Φ = 0 and the orientation
of the drops is steady in time. In the (blue) region above the black line, Φ < 0, such that
material systems in that region will show drop pair rotation toward Θ = π/2. Below the

black line, Φ > 0. In the (orange) region between the lines of Φ = 0 and RS = 1 drop pairs
will rotate toward parallel and attract when Θ < 54.7°. In the green region below RS = 1,
drop pairs will rotate toward parallel, however whether they attract or repel at Θ < 54.7°

depends on the separation distance relative to dc for the given M , S, and R.

align along the field direction. In this region, whether the drops repel or attract in the field

direction depends on their separation distance relative to dc. At separations above dc drops

will repel in the field direction, while below dc they will attract, making dc in this case an

unstable equilibrium position. Therefore the quantity 1 − RS, equation (14), and equation

(18) can be used to determine how a pair of identical drops will qualitatively behave under

an electric field. For the system given in table I, M = 0.39, R = 29, and S = 0.57. Although

the phase diagram in figure 4 is for M = 1, not much change is observed when M = 0.39,

placing the system of silicone oil drops suspending in castor oil in the orange region of figure

4. Here, the product RS = 17 > 1 and Φ = 0.53 > 0. Thus, these drops are predicted to

align parallel to the field and attract one another.

In practicality, the material properties of systems where Φ < 0 are heavily constrained.
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As M increases from unity for figure 4, the line for Φ = 0 on the right sight of the diagram

increases in slope, making the region of S and R for which Φ < 0 narrow quickly. In the

EHD literature, the maximum value of S is around 40, corresponding to water (ε ≈ 80)

in oil (ε & 2) [16, 49–51], thus narrowing the accessible zone of the phase diagram in real

systems. The dip at S = R = 1, remains unchanged with M . Thus, fluid combinations with

similar conductivities are seemingly feasible systems to have Φ < 0. These systems, however,

clearly must be immiscible, with distinct permittivities, as well as low capillary numbers and

matched densities, such that the drops will not break up at field strengths needed to observe

their interaction, or settle on a timescale faster than their interaction. These conditions are

not wholly exclusive, however experimental evidence of interactions for drops with Φ < 0

has not been reported as of this writing.

The theory presented in Section III relies on the assumptions that the capillary number,

Reynolds number, and electric Reynolds number are small. A typical capillary number in

our experiments is calculated to be Ca = 0.19, using an initial drop radius of 620 µm and a

surface tension value for castor oil and silicone oil of 4.5 mN/m from Salipante & Vlahovska

[22]. Using outer phase properties of castor oil, the Reynolds number Re = 5.24× 10−4, and

the electric Reynolds number ReE = 1.05. An electric Reynolds number of 1.05 indicates the

effect of surface charge convection may not be negligible, however for the sake of qualitatively

predicting drop interactions, we will show that use of this assumption is reasonable, and in

fact variation of ReE will be shown to have little impact on the interaction dynamics in

Section VA.

V. RESULTS AND DISCUSSION

A. Interaction of identical drops

Results are presented of two identical silicone oil drops suspended in castor oil subject

to a uniform electric field. Via table I, the material property ratios for this system are

M = 0.39, R = 29, and S = 0.57, thus equation (1) dictates that these drops will deform

into oblate spheroids, where the major axis is perpendicular to the field direction. Here, the

product RS > 1, therefore drops aligned at angles Θ < 54.7° to the field should attract and

drops at angles Θ > 54.7° to the field should repel. In the first set of experiments, drops
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are initially aligned parallel (Θ = 0°) or perpendicular (Θ = 90°) to the field direction. The

relative velocity and trajectory of the drop pair should then only be a function of the centroid

separation d of the drops. Figures 5a and 5b show the separation distance of parallel and

1 mm

E∞

a) b)

1 mm

E∞

FIG. 5. (a) Centroid separation between two 350 cSt silicone oil drops in castor oil aligned parallel

to the field. (b) Centroid separation between two drops aligned perpendicular to the field. Error

bars represent a standard deviation of interpolated and time-averaged experiments. In both cases,

sin(2Θ) = 0 and minimal rotation of the drop pair is observed. E∞ = 1.79 kV/cm and a = 620

µm.

perpendicular aligned drops as a function of dimensionless time, respectively, where time is

nondimensionalized with τc = µs/εsE
2

∞. Insets in the bottom corners are pictures of the

initial positions of the drops in one of the experiments included in each of the presented

datasets. In these experiments, precise repeated placement of the drops in the same initial

position is difficult. To analyze the data from experiments started at the same initial angle

but varying separation distances, we consider the fact that the interactions between the drops

are strongest (and therefore the most reproducible) the closer the drops are together. Since

Re ≪ 1, the flow is reversible, therefore the time axis of each experiment is shifted (without

changing the time increment between the data points) such that the slope of separation

distance versus time for each experiment reaches a minimum value at the same time, allowing

a clear comparison of the trajectories between experiments. These experimental trajectories

are shown with the EHD theory of equation (13) and the case of pure DEP (S = 1/R).

The theoretical trajectories include a cut off at d/a = 2, where a hard sphere interaction is

imposed. Clearly, considering only DEP results in a drastic under-prediction of the rate of
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approach of the drop pair, which strongly suggests that EHD interactions are present. When

drops are attracting (figure 5a), a faster approach is predicted compared to the experiments

when starting at a separation distance d/a ≈ 5. Additionally, the drops attain a minimum

centroid separation of 1.8, which can be attributed to the oblate deformation of the drops,

whereas perfect spheres will reach a minimum separation of 2. Prediction of the repulsive

interaction between the drops, on the other hand, matches quite well with the measured

trajectories. The asymptotic theory here is accurate through O(a4/d4), and is therefore

restricted to descriptions of widely separated drops, so predicted and measured trajectories

should become increasingly disparate as drops come closer together. A comparison can be

made to figures 7 and 8 in Sorgentone et al., which show the asymptotic theory for identical

drops along with boundary integral computations. At separations as low d/a = 3.5, the

theory and computations are nearly identical, yet diverge as separation distance decreases.

The same divergence between the asymptotic method of reflections and a more rigorous

approach like the twin multipole re-expansion can be seen in similar systems of conducting

spheres in electrolyte [52]. While the asymptotic theory loses accuracy with decreasing

separation distance, the error in the measured trajectories is observed to increase when

drops are further apart. This is attributed to the fact that when the drops are relatively

close together, their interaction velocity is strong compared to any interfering effects, such

as gravity, migrations due to field distorting impurities and charge carriers, or triboelectric

charge. When the drops are further apart, the relative strength of interaction is abated

compared to the uncontrolled effects just stated, hence the widening of error bars at larger

d/a in figure 5. Evidently, then, there is then a desirable experimental range for attractive

interactions around d/a = 4−4.5, where the pair interactions dominate in the system and the

drops are separated enough for the theory to be qualitatively relevant. In light of this fact,

the asymptotic theory qualitatively predicts the observed experimental trajectories quite

well.

Admittedly, the electric Reynolds number of the suspending phase, ReEs
= 1.05, is not

small. The drop phase value, ReEd
= 25.52, is even larger, clearly in violation of the assump-

tion that ReE ≪ 1. To determine the impact of ReE and surface charge convection on the

drop trajectories, experiments of parallel- and perpendicular- aligned drops were performed

at various electric field strengths. The effect of surface charge convection on the interac-
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tion velocities of the drops can be visualized by normalizing the time over which the drops

interact by τc, where E∞, and thus τc, now varies between experiments. Results for drops

with Θ = 0° are plotted in figure 6a and 6b, and with Θ = 90° in 6c and 6d. Normalization

of time by τc collapses the trajectories together, indicating that the role of surface charge

convection either has a small influence on the interactions at the separation distances shown,

or the effect similarly scales with E2

∞. It should be noted as well that Ca similarly scales

with E2

∞, however the maximum Ca achieved is 0.19, and as seen in the insets of figure 5 the

drops remain nearly spherical. Therefore, the collapse of the trajectories in figure 6 justifies

the choice of a 5 kV applied voltage, where the strongest possible interactions between drops

can be induced without observing a change in the dynamics of their interaction. Included

in figure 6b and 6d are dimensionless theoretical trajectories for attracting and repelling

drops, respectively. There is a slight over-prediction of the perpendicular drop separations,

however this is consistent with figure 5b. In both cases, the asymptotic theory performs

reasonably well in predicting the normalized behavior of the drops, demonstrating that the

physics inherent in these pairwise interactions are captured, and that using the largest volt-

age difference of 5 kV to conduct the experiments does not appreciably impact the dynamics

of the drops.

We now consider drops unaligned with the electric field direction. Drops with an angle

Θ 6= 0 and Θ 6= 90° will rotate due to the O(a4/d4) EHD and DEP interactions of the

drops, described by the Θ̂ term in equation (13). The direction of the pair rotation can be

predicted based on the discussion of Φ in section IV, and here the dynamics of drop pair

rotations are shown experimentally. In performing these experiments, similarly as discussed

with figure 5, the drop interactions were stronger the closer the drops started together, while

more variability was observed at larger separation distances. Like the experiments shown

thus far, precisely matching initial conditions for the sake of comparison between trials

is difficult. Additionally, unlike with drops aligned parallel or perpendicular to the field

direction, normalizing the data between experiments starting at different initial positions

proves infeasible, since the velocities of drop pairs at similar separation distances but different

angles to the field (and vice versa) are not the same. In other words, drop pairs starting

further apart may not “pass through” the same position as drops starting at a similar angle to

the field but closer together, rendering comparison of their trajectories impossible. Consider
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a) b)

c) d)

FIG. 6. Parallel and perpendicular drop trajectories for various applied voltages, with ReE =

ε2sE
2
∞/σsµs. (a) Drops are aligned parallel to the field direction. (b) Same trajectories as (a), with

time normalized by τc. (c) Drops are aligned perpendicular to the field. (d) Same trajectories as

(c), with time normalized by τc. Trajectories collapse upon normalization of time by τc = µs/εsE
2
∞,

indicating that the maximum voltage tested of 5 kV will not appreciably alter the dynamics of the

drop interactions compared to lower voltages.

two experiments where drops start at the same d0 but differ in Θ0 between runs. The two

velocities scale with the same a/d0, but values of the second Legendre polynomial, which also

scale the interaction velocity, are different. Thus, the angle the drops’ line of centers makes

with the field can have noticeable effect on the drop pair dynamics, exemplified in figure

7. Figure 7a and 7b are the center to center and angular trajectories for a drop pair with

d0 = 4.7 and Θ0 = 21°, and figure 7c and 7d correspond to a drop pair with d0 = 4.4 and

Θ = 39°. Even though the drop pair in figure 7a starts at a larger initial separation distance

than in 7c, the drops closer together but starting at a larger Θ attract each other more slowly.
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The increased angle between the drop pair and the electric field results in a reduced initial

relative velocity, as P2(cos(21°)) = 0.80, while P2(cos(39°)) = 0.41. Note that equation (13)

is successful at predicting both the center-to-center and angular initial trajectories of the

drop pairs in figure 7; although seemingly large, the early discrepancy in Θ between the

experimental and theoretical trajectories in figure 7b is only about 3°. The prediction of

Θ is seen to quickly diverge from the measured values at the same time that the predicted

and measured separation distances split. The failure of equation (13) to quantitatively

capture the dynamics of the drops at close distances is indicative of the method of reflections

employed, and should not obfuscate the qualitative success of the theory in predicting drop

pair behaviors. That the nature of interactions between arbitrarily positioned drops, and

the timescale of their interaction, can be predicted underscores the power of the asymptotic

method of reflections. Experiments are also performed of drops initially unaligned with the

field at angles larger than Θ = 54.7°. At these angles, drop pairs will initially repel while

still rotating toward the electric field direction and decreasing Θ. Upon crossing Θ = 54.7°,

the center-to-center interaction switches from repulsive to attractive, and the drops begin to

approach each other. An example of this behavior is shown in figure 8. The initial separation

d0/a of the drops is just over 2, and the drops rotate toward parallel and repel to a maximum

of 2.9 where they reach an angle of Θ ≈ 54.7°. At this moment, the centerline velocity of

the drops is no longer repulsive, and the drops approach each other until they are near

contact. While these dynamics are captured with equation (13), the extent of repulsion and

the timescale of the interaction are not in quantitative agreement. This is entirely expected

to be the case with an asymptotic theory being only accurate through O(a4/d4). Over the

course of the whole experiment, the drops never reach a separation distance large enough

where the error from neglected terms can be accurately ignored, and thus comparison of

the data shown in figure 8 to the EHD theory should only be for qualitative consideration.

Nonetheless, the ability to capture qualitatively the dynamics of drop pairs unaligned with

the electric field, even at small separation distances, with an asymptotic theory for widely

separated drops is remarkable.
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FIG. 7. (a) Separation distance between the centers of drops unaligned with the field direction and

(b) angle between the line of centers of the drops and the field direction, for drops initially placed

with d0/a = 4.7 and Θ0 = 21°. (c) Separation distance and (d) angle between line of centers and

field, for drops initially placed with d0/a = 4.4 and Θ0 = 39°. The vector between the drops points

from the drop on the left to the one on the right, and angles plotted are |Θ| (therefore always

between 0 and 90°).

B. Interaction of dissimilar drops

Here we consider the interaction of drops of different sizes and composition. When drops

are differing in size, the strength of interaction of the smaller drop acting on the larger

one is no longer the same as the larger drop acting on the smaller. This is evident in

the velocity scale for drop j in the presence of drop i, U = εE∞ai/µs, scaling with the

radius ai. Due to these nonreciprocal interactions, the center of mass between the drops

is not constant in time, and the relative velocity of the drop pair must be modeled with

the more general expression Ud = |Uj −Ui|, where Uj and Ui are found via equation (11).
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FIG. 8. (a) Separation distance between the centers of drops unaligned with the field direction

and (b) angle between the drops’ line of centers and the field direction. (c) Photos taken from the

experiment showing the progression of drop positions in time. At the initial time Θ0 > 54.7°, and

drops initially repel. The vector between the drops points from the drop on the left to the one on

the right, and angles plotted are |Θ|.

We compare calculation of the trajectories using equation (11) for two drops, one of radius

aj = 620 µm (same size as the previous experiments) and the other ai = 391 µm (a quarter

the volume of drop j, or 0.25 µL), to that for identical drops using an average radius in

equation (13) in figure 9. As shown similarly for identical drops, equation (11) predicts

the interaction of the drops reasonably well at separation distances of around d/aavg = 4

and larger. For comparison, the trajectory is shown for identical drops using the mean size

aavg = 505.5 µm of the two dissimilar drops. Both equation (11) for dissimilar drops and

equation (13) for identical, average-sized drops agree qualitatively with the experimental

trajectory of the drops. Only a slight difference is observed between the two predictions,

which is expected upon briefly comparing the differences in leading order O(a2/d2) terms

of the interaction velocities. With the drop sizes given above, the leading order terms can

be used to estimate how different predictions from equation (13) for identical, average-sized

drops will be compared to predictions for dissimilar drops using equation (11). The leading

order relative velocity of identical, average-sized drops scales as 2a3avg/d
2

0
, while the leading
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FIG. 9. (a) Normalized separation distance d/aavg for drops of dissimilar size. Solid black line

indicates theoretical prediction of the separation distance from equation (11); dotted black line

indicates prediction for identical drops with equation (13) using an average radius of 505.5 µm.

Inset shows initial position of drops when electric field is applied. (b) Angle between line of centers

and the field direction shown with corresponding values of the second Legendre polynomial. The

largest angle observed between the line of centers and the applied field is Θ ≈ 0.11, which gives a

value of 0.98 for the second Legendre polynomial.

order relative velocity of a dissimilar drop pair scales as a3i /d
2

0
+ a3j/d

2

0
, giving the ratio

of the two relative velocities, respectively, as 2a2avg/(a
3

i + a3j ). From this expression, the

predicted leading order velocity for identical, average-sized drops will always be slower than

that predicted for dissimilar drops, which coincides with the faster predicted approach of

dissimilar drops observed in figure 9. To highlight the non-reciprocal EHD interactions of

the drop pair, a parallel initial configuration of the drops is chosen in order to minimize

the effect of gravitational settling on the pair dynamics. We find that although there is

some slight vertical misalignment of the drops, due to the larger drop settling faster than

the smaller one, the drop pair only briefly reaches a maximum rotation of Θ ≈ 0.11, or 6°,

shown in figure 9. Calculation of the reduction in the interaction velocity because of this brief

off-parallel alignment shows only a 2 % difference in the calculated value (P2(cos(6.3°)) = 0.98

versus P2(cos(0) = 1), hence the effect of gravitational settling can be reasonably neglected.

While a more precise calculation should include gravitational effects on the drop pair, figure

9 shows that the asymptotic theory is able to capture the EHD component of the interactions

involved even when drops are of different sizes.

Unlike for differences in size shown above, small variations in material properties between
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the drops can lead to starkly different pair interactions. As first noted by Zabarankin [39]

for drops whose line of centers is parallel to the applied field, and here for drops in arbitrary

orientations via equation (11), two oblately deforming drops may repel along the axis of the

electric field if their conductivity ratios are larger and smaller than unity (i.e. Ri > 1 > Rj).

This counter-intuitive result is indicative of the fact that the interactions between materially

dissimilar drops cannot simply be predicted by knowing the interactions for identical drops

of each type. This repulsive interaction results from the direction of the polarizability of the

drops, determined by the Clausius-Mossotti factor (1−R)/(1+2R) [34]. For identical drops,

the Clausius-Mossotti factors are the same, and thus the DEP force on each drop along the

field axis is attractive. However, drops having Clausius-Mossotti factors of opposite sign will

instead experience a repulsive DEP force along the field axis. For drops with high viscosity

ratios (effectively rigid particles), or when the ratio RS ∼ 1, the DEP interaction dominates

and the drop pair will have a steady state configuration such that the drops are in contact

and aligned perpendicular to the field direction.

The interactions between drops become more complex when EHD is accounted for. Unlike

with DEP, the EHD interactions of the drops are non-reciprocal, such that the center of mass

of the drop pair moves in time. Additionally, as with equation (18) for identical drops, a

critical separation distance for dissimilar drops, where DEP and EHD balance, exists as well.

This critical separation distance can be written as

dc =

√

(αji + αij)a
2

i a
2

j + βia
4

i + βja
4

j

βia2i + βja2j
, (19)

where

αji =
3Mj

(2 + 3Mj)

Ri(1− SiRi)

(1 + 2Ri)2(1 +Mi)
+

20

3

(1 +Mj)

(2 + 3Mj)

(1−Rj)

(1 + 2Rj)

(1− Ri)

(1 + 2Ri)

and

βi =
Ri(1− RiSi)

(1 + 2Ri)2(1 +Mi)
.

(20)

Here, αji denotes the prefactor for the a
2

i a
2

j term in the velocity of drop j due to the presence

of drop i given in equation (11), and βi denotes the prefactor for the a2i and a4i terms in the

velocity of drop j due to the presence of drop i. As with equation (18), for real values of
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equation (19), the behavior of the drop pair will be drastically different depending on if

d0 < dc or d0 > dc. The importance of considering EHD in the interactions of electrically

dissimilar drops is showcased via simulations in figure 10. Figure 10 shows three cases

FIG. 10. Trajectories of drops in the plane made by the line connecting the centers of the drops

and the field direction. In all cases, Sblue = Sred = 1, Rblue = 10, Rred = 0.1. a) M = Mblue =

Mred = 106, d0/a = 4.1, Θ0 = 29°. b) M = 1, d0/a = 4.1, Θ0 = 29°. c) M = 1, d0 = 5.4, Θ0 = 22°.

d) Plots of separation distance versus time for the cases a) (solid line), b) (dashed line), and c)

(dot-dashed line). For cases b) and c), dc/a = 5.1.

exemplifying the behavior described above. Here, Si (blue) = Sj (red) = 1, Ri = 10, and

Rj = 1. The viscosity ratio and the initial position of the drops is varied between cases.

Figure 10a shows the spacial trajectories of the dissimilar drops just described, where both

drops have a viscosity ratio of M = 106. Thus, DEP interactions dominate the behavior of

the drop pair, and a symmetrical interaction where the drops eventually align perpendicular

to the field direction and make contact at their equators is observed. In figure 10b, initial
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conditions of the pair remain the same, however the drops are now equiviscous with the

suspending phase and EHD plays a considerably larger role. While the ending configuration

of the drop pair is the same as for the nearly rigid-particle case of figure 10a, the center of

mass of the pair moves in time. The paths taken by the drops illustrates the non-reciprocity

of their interaction. Importantly, the time required for the drop pair to reach its minimum

separation distance is more than halved when EHD is present, as shown in figure 10d. Here,

the DEP interaction of the drops drives the pair toward a perpendicular alignment with an

initial repulsion, while the effect of the EHD interaction suppresses that initial repulsion,

allowing the dynamics of the drop pair to occur at a closer separation distance where they

will be stronger. The competition between EHD and DEP is made clear in figure 10c,

where the initial separation of the drops d0/a = 5.4 is larger than the critical separation

dc/a = 5.1. Thus, the long range EHD interaction dominates, and the drops are driven

toward a perpendicular alignment where they repel instead of attract. Hence, as shown

in figure 10d, the drop pair will continue to repel after rotating above Θc without making

contact. Figure 10 exemplifies the complexity in dissimilar drop interactions under an applied

field. The interplay between EHD and DEP effects results in dynamics of the drop pair that

cannot simply be predicted based on the identical interactions of each drop phase.

C. Interaction of multiple drops

Pairwise interaction calculations are commonly used to approximate behavior of large

scale systems of drops or particles in various contexts [36, 46, 53–55]. In order to validate

the use of a pairwise theory for systems of more than two drops, we compare the model to

experiments of three and four identical drops. In figures 11 and 12, the center-to-center and

angular components of equation (17) are shown alongside the trajectories of multiple drops.

Qualitative agreement is observed between the pairwise theory and the 3-drop experiment

shown in figure 11. The success in capturing the separation distances and angles of the

vectors d12, d23, and d13 (indicated in figure 11c) shows that the evolution of the triangle

made by the centers of the drops can be predicted up to around 48 seconds when a doublet

between drops 2 and 3 is formed. After formation of the doublet, while still shown for the

sake of comparison, the theory is inapplicable, as any lubrication effects that would arise
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FIG. 11. (a) Separation distance between drop pairs for the three drop system. (b) Rotational

dynamics between drop pairs for the three drop system. Angles plotted are |Θ|. Vertical dotted line

indicates moment drops 2 and 3 came together to form a doublet in the experiment, after which

the theory is formally inapplicable. The kinks in the theoretical trajectories occur upon predicted

formation of the doublet. (c) Photos of initial and final configuration of drops, with a schematic

identifying the vectors plotted in (a) and (b).

upon near-contact of the drops are ignored, as well as higher order terms that would increase

the accuracy of the model as the drops become close. In any case, the 3-body dynamics of

this system are successfully captured. To explain this, it is noted that while equation (13)

is valid for remote separations, higher order terms for both EHD and DEP come in O(a/d)3

smaller than the terms they are reflected from. Three-body interactions scale similarly,

provided the drop sizes are similar, where a third drop of radius a3 would interact with drop

2 at leading order O(a3/d)
2, which would then reflect to drop 1 at O(a2

3
a3
2
/d5) [43]. Thus,

by only considering terms up to O(a/d)4, three-body interactions can be ignored, and the

pairwise theory of equation (17) is accurate to the same order for systems of 3 drops as it is

for a drop pair.

Comparison of the pairwise additive theory to experiments of four drops, as shown in

figure 12, also shows qualitative agreement. However, while the evolution of the system is
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FIG. 12. (a) Separation distance between drop pairs within the four drop system. (b) Rotational

dynamics between drop pairs within the four drop system. Angles plotted are |Θ|. Here the ex-

periment is stopped upon formation of the doublet between drops 2 and 3, however the theoretical

prediction of doublet formation occurs at about 48 seconds. (c) Photos of initial and final configu-

ration of drops, with a schematic identifying the vectors plotted in (a) and (b).

captured in this case, considerably faster dynamics are predicted compared to those observed

experimentally. For instance, the formation of a drop 2-3 doublet is predicted to occur about

twice as fast as seen in the experiment, and observe a similar difference in timescale between

the theoretical predictions of the trajectories between the other drops. Considering the

quality of agreement in figure 11, a likely source of the observed discrepancy in timescale is

considered. Based on the observed increase in magnitude of the vector connecting drops 1 and

4, it is possible that the distances from drop 1 to drops 3 and 4, and likewise drop 4 to drops

1 and 2, are large enough such that the interaction along those vectors are small compared

to noise from impurities or errant charge in the bulk. Thus, the interactions between drops 1

and 3, drops 1 and 4, and drops 2 and 4 that would in sum be attractive enough to pull drops

1 and 4 together are screened, and the pair of drops 1 and 2 initially repels with minimal

interference from the other drops. Combined with the clockwise rotation of the pair of drops

1 and 2 and counterclockwise rotation of the pair of drops 3 and 4, respectively, drops 1 and
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4 are driven apart. As a result, as the pair of drops 1 and 2 and the pair of drops 3 and

4 rotate toward parallel, their center-to-center attraction get stronger, slowing the time it

would take for drops 2 and 3 to meet. Provided this is the case, the fact that the dynamics

of four drops is qualitatively predicted bodes well for prediction of n-body systems of drops,

which we plan to address in future work. These results thus show that equations (11), (13),

and (17) provide a framework for the approximation of the behavior of large-scale systems

of leaky dielectric drops using low cost simulations compared to more expensive boundary

integral codes or multipole expansions incorporating large numbers of terms.

VI. CONCLUSIONS

The three-dimensional interactions of leaky dielectric drops are analyzed using asymptotic

analysis and experiments. The theory presented by Sorgentone et al. [42] is generalized to

consider dissimilar and multiple drops. The interaction parameter Φ is examined, the sign of

which is predictive of the direction that a drop pair will rotate relative to the field direction.

In discussing the possibility of exploring the phase space of Φ in practical systems, it is

noted that inherent physical limits on S immediately reduce accessible regions of the Φ phase

diagram. Constraints of immiscibility, high surface tension, comparable densities, and similar

conductivities in concert make practical realization of predicted yet so far experimentally

unobserved drop pair behaviors unlikely in relevant applications.

The theory for identical drops of Sorgentone et al. is compared to experiments of silicone

oil drops suspended in castor oil, and it is shown that physics dominant in leaky dielectric

drop interactions are captured. The theory is found to accurately predict the trajectories of

drop pairs at separation distances as low as 3.5 radii; however, noise in experimental mea-

surements of drop pair interactions may dominate over interaction dynamics at separations

larger than 5 radii. Results are shown exemplifying the importance of the angle the drop

pair makes with the field direction in determining how quickly drops will attract or repel.

Drops are shown to not always interact in a monotonic manner, and the positions of drops

at long times are heavily dependant on their initial placement. We find that the theory is

successful in qualitatively predicting the dynamics observed in the experiments.

The theory of Sorgentone et al. is generalized to consider the asymmetric interactions of
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widely separated dissimilar drops, and systems of multiple drops through a pairwise additive

approximation. Neglecting gravitational effects, it is shown that the theory is capable of

predicting the trajectories of drops of different sizes. Simulated trajectories of drops of

electrically dissimilar drops are also shown. These non-reciprocal interactions non-trivially

impact the predicted trajectories of a drop pair. In cases of three and four drops, a summation

of pairwise interactions between drops is shown to qualitatively predict the evolution of the

many-body systems. The error in ignoring three-body interactions is of similar scale as the

truncation error of O(a5/d5) in the pairwise theory, allowing the use of the pairwise theory

to predict the interactions of multiple drops. Although a more rigorous consideration of drop

interactions via twin multipole re-expansions or boundary integral computations may provide

more accurate resolution of drop interactions at close distances [39, 42, 52], the simple theory

presented here provides a means for qualitatively accurate descriptions of drop interactions

at comparatively minuscule computational cost.

While the theory was able to capture the qualitative behavior of drops, our methods can

be improved and more accurate prediction of drop interactions can be made. Experimentally,

we were unable to fully control for migration of the drops or be sure of no errant charges.

In order to mitigate these issues, the needles and oil in the cell were grounded before the

experiment and when the drops were inserted and moved, however this was not enough to

fully eliminate these effects. It has been suggested that the migration of leaky dielectric drops

in a steady field could be electrophoretic in nature [56], and thus could be avoided using

an AC field. In terms of the model, we introduce inaccuracy by considering non-deforming

drops and ignoring the possibility for charge convection, which we know is relevant at the

field strengths used in this study. Additionally, emulsion surfaces are rarely clean, and

the presence of surface active species can impact the EHD deformation and interactions of

drops [57–59]. Nonetheless, in predicting the interactions of drops in various scenarios using a

simple asymptotic theory, a considerable step is taken toward modeling more complex many-

body systems. Analogies to our methodology exist in electrocoalescence [36], electrorheology

[53], active matter [46, 55], and electrokinetics [54], where many-body simulations show a

rich depth of behavior not yet quantified for leaky dielectric materials.
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[3] A. M. Ganán-Calvo, J. M. López-Herrera, M. A. Herrada, A. Ramos, and J. M. Montanero,

Review on the physics of electrospray: from electrokinetics to the operating conditions of single

and coaxial taylor cone-jets, and ac electrospray, Journal of Aerosol Science 125, 32 (2018).

[4] R. T. Collins, J. J. Jones, M. T. Harris, and O. A. Basaran, Electrohydrodynamic tip streaming

and emission of charged drops from liquid cones, Nature Physics 4, 149 (2008).

[5] J. S. Eow and M. Ghadiri, Electrostatic enhancement of coalescence of water droplets in oil:

a review of the technology, Chemical Engineering Journal 85, 357 (2002).

[6] K. Aida, Y. H. Na, T. Nagaya, and H. Orihara, Droplet coalescence process under electric

fields in an immiscible polymer blend, Physical Review E 82, 031805 (2010).

[7] J.-W. Ha and S.-M. Yang, Rheological responses of oil-in-oil emulsions in an electric field,

Journal of Rheology 44, 235 (2000).

[8] X.-D. Pan and G. H. McKinley, Characteristics of electrorheological responses in an emulsion

system, Journal of Colloid and Interface Science 195, 101 (1997).

[9] T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of

Modern Physics 77, 977 (2005).

[10] T. Ward and G. Homsy, Electrohydrodynamically driven chaotic mixing in a translating drop,

Physics of Fluids 13, 3521 (2001).

[11] Z. Rozynek, A. Mikkelsen, P. Dommersnes, and J. O. Fossum, Electroformation of janus and

patchy capsules, Nature Communications 5, 1 (2014).



32

[12] J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S.

Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, High-resolution

electrohydrodynamic jet printing, Nature Materials 6, 782 (2007).

[13] S. N. Jayasinghe, A. N. Qureshi, and P. A. Eagles, Electrohydrodynamic jet processing: an ad-

vanced electric-field-driven jetting phenomenon for processing living cells, Small 2, 216 (2006).

[14] O. A. Basaran, H. Gao, and P. P. Bhat, Nonstandard inkjets, Annual Review of Fluid Me-

chanics 45, 85 (2013).

[15] G. I. Taylor, Studies in electrohydrodynamics. i. the circulation produced in a drop by an

electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences 291, 159 (1966).

[16] S. Torza, R. Cox, and S. Mason, Electrohydrodynamic deformation and bursts of liquid drops,

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Phys-

ical Sciences 269, 295 (1971).

[17] J. Sherwood, Breakup of fluid droplets in electric and magnetic fields, Journal of Fluid Me-

chanics 188, 133 (1988).

[18] O. A. Basaran, T. W. Patzek, R. E. Benner Jr, and L. Scriven, Nonlinear oscillations and

breakup of conducting, inviscid drops in an externally applied electric field, Industrial & En-

gineering Chemistry Research 34, 3454 (1995).

[19] P. K. Notz and O. A. Basaran, Dynamics of drop formation in an electric field, Journal of

Colloid and Interface Science 213, 218 (1999).

[20] E. Lac and G. Homsy, Axisymmetric deformation and stability of a viscous drop in a steady

electric field, Journal of Fluid Mechanics 590, 239 (2007).

[21] A. Esmaeeli and P. Sharifi, Transient electrohydrodynamics of a liquid drop, Physical Review

E 84, 036308 (2011).

[22] P. F. Salipante and P. M. Vlahovska, Electrohydrodynamics of drops in strong uniform dc

electric fields, Physics of Fluids 22, 112110 (2010).

[23] J. A. Lanauze, L. M. Walker, and A. S. Khair, Nonlinear electrohydrodynamics of slightly

deformed oblate drops, Journal of Fluid Mechanics 774, 245 (2015).

[24] R. Sengupta, L. M. Walker, and A. S. Khair, The role of surface charge convection in the elec-

trohydrodynamics and breakup of prolate drops, Journal of Fluid Mechanics 833, 29 (2017).



33

[25] D. Das and D. Saintillan, A nonlinear small-deformation theory for transient droplet electro-

hydrodynamics, Journal of Fluid Mechanics 810, 225 (2017).

[26] P. M. Vlahovska, Electrohydrodynamics of drops and vesicles, Annual Review of Fluid Me-

chanics 51, 305 (2019).

[27] B. W. Wagoner, P. M. Vlahovska, M. T. Harris, and O. A. Basaran, Electric-field-induced

transitions from spherical to discocyte and lens-shaped drops, Journal of Fluid Mechanics 904

(2020).

[28] A. Marin, The saturnian droplet, Journal of Fluid Mechanics 908 (2021).

[29] D. Das and D. Saintillan, A three-dimensional small-deformation theory for electrohydrody-

namics of dielectric drops, Journal of Fluid Mechanics 914 (2021).

[30] M. Ouriemi and P. M. Vlahovska, Electrohydrodynamic deformation and rotation of a particle-

coated drop, Langmuir 31, 6298 (2015).

[31] H. A. Pohl, Dielectrophoresis, The behavior of neutral matter in nonuniform electric fields

(1978).

[32] N. Rivette and J. C. Baygents, A note on the electrostatic force and torque acting on an

isolated body in an electric field, Chemical Engineering Science 51, 5205 (1996).

[33] M. Washizu and T. B. Jones, Dielectrophoretic interaction of two spherical particles calculated

by equivalent multipole-moment method, IEEE Transactions on Industry Applications 32, 233

(1996).

[34] T. B. Jones, Electromechanics of particles (Cambridge University Press, 2005).

[35] P. Atten, Electrocoalescence of water droplets in an insulating liquid, Journal of Electrostatics

30, 259 (1993).

[36] X. Zhang, O. A. Basaran, and R. M. Wham, Theoretical prediction of electric field-enhanced

coalescence of spherical drops, AIChE Journal 41, 1629 (1995).

[37] C. Sozou, Electrohydrodynamics of a pair of liquid drops, Journal of Fluid Mechanics 67, 339

(1975).

[38] J. C. Baygents, N. Rivette, and H. A. Stone, Electrohydrodynamic deformation and interaction

of drop pairs, Journal of Fluid Mechanics 368, 359 (1998).

[39] M. Zabarankin, Small deformation theory for two leaky dielectric drops in a uniform electric

field, Proceedings of the Royal Society A 476, 20190517 (2020).



34

[40] Q. Dong and A. Sau, Electrohydrodynamic interaction, deformation, and coalescence of sus-

pended drop pairs at varied angle of incidence, Physical Review Fluids 3, 073701 (2018).

[41] S. Mhatre, S. Deshmukh, and R. M. Thaokar, Electrocoalescence of a drop pair, Physics of

Fluids 27, 092106 (2015).

[42] C. Sorgentone, J. I. Kach, A. S. Khair, L. M. Walker, and P. M. Vlahovska, Numerical and

asymptotic analysis of the three-dimensional electrohydrodynamic interactions of drop pairs,

Journal of Fluid Mechanics 914 (2021).

[43] S. Kim and S. J. Karrila, Microhydrodynamics: principles and selected applications (Courier

Corporation, 2013).

[44] G. Hetsroni and S. Haber, The flow in and around a droplet or bubble submerged in an

unbound arbitrary velocity field, Rheologica Acta 9, 488 (1970).

[45] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and H. Löwen, Statistical mechanics
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