
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dimensionless parameters for cloudy Rayleigh-Bénard
convection: Supersaturation, Damköhler, and Nusselt

numbers
Subin Thomas, Prasanth Prabhakaran, Fan Yang, Will H. Cantrell, and Raymond A. Shaw

Phys. Rev. Fluids 7, 010503 — Published 27 January 2022
DOI: 10.1103/PhysRevFluids.7.010503

https://dx.doi.org/10.1103/PhysRevFluids.7.010503


Dimensionless parameters for cloudy Rayleigh–Bénard convection:
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In steady-state Rayleigh–Bénard convection, heat is transported by turbulent thermal convection
from the bottom, hot surface to the top, cold surface, leading to a height-independent sensible heat
flux. When water vapor is present and cloud formation occurs, there is also an additional latent
heat flux. Heat transport in cloudy Rayleigh–Bénard convection depends on turbulent flow as well
as the microphysical state of the clouds: specifically, whether substantial supersaturations exist and
whether cloud liquid water is removed through sedimentation/precipitation. In this article we bridge
between the Rayleigh–Bénard convection literature and the atmospheric literature. We express the
governing equations for cloudy convection in dimensionless form, thereby explicitly identifying the
governing parameters relevant to the cloudy case, including Schmidt, Damköhler, supersaturation,
and sedimentation numbers. We further connect to the atmospheric literature by obtaining a Nusselt
number (dimensionless heat flux) for a cloud–convection system, directly from the conservation
equations for temperature and water vapor. This flux has the same form as that identified by Zhang
et al. [L. Zhang, K. L. Chong, and K.-Q. Xia, Journal of Fluid Mechanics 874, 1041 (2019)] for
convection with water vapor, but is extended to the cloudy case. For equal thermal and water vapor
diffusivities, the flux corresponds to the widely-used atmospheric quantities equivalent temperature
and moist static energy. Using large eddy simulation (LES) of an idealized cloudy Rayleigh–Bénard
convection system with fixed boundary conditions, we find that the equivalent heat flux (Nusselt
number) is only weakly dependent on the microphysical details of the system, such as liquid water
mixing ratio and cloud droplet number concentration. From the results, we show the vertical profiles
of sensible and latent heat fluxes depend on the liquid water content, whereas the equivalent heat
flux remains a constant throughout the height of the chamber.

I. INTRODUCTION

Classical Rayleigh–Bénard convection is described by
the Rayleigh number, Ra = gβ∆TH3/(νT ν), which cap-
tures the competing roles of buoyancy forcing and diffu-
sive losses, and the Prandtl number, Pr = ν/νT , which
is a material parameter defining the relative magnitude
of diffusion of momentum and thermal energy. Here, g is
the magnitude of gravitational acceleration, β is the coef-
ficient of thermal expansion, νT is the thermal diffusivity,
ν is the kinematic viscosity, and H is the vertical separa-
tion between surfaces with imposed temperature differ-
ence ∆T . For sufficiently large Ra, and Pr ∼ 1, relevant
to atmospheric flows, the convecting flow is strongly tur-
bulent. The hallmark of turbulent convection, in turn, is
efficient transport of energy. The non-dimensional heat
flux is given by the Nusselt number Nu, the ratio of the
total heat flux to the conductive heat flux (νT∆T/H)
across an identical, static fluid layer:

Nu =
w′T ′ + νT∇zT
νT∆T/H

, (1)

where w is the vertical component of velocity, overline
denotes ensemble average over a horizontal surface and
prime denotes fluctuations from the mean [1]. By def-
inition, in steady state this horizontally-averaged heat
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flux is constant with height within the convecting fluid.
Seeking an understanding of the Nusselt number and its
dependence on the Rayleigh number remains a challenge
even for single-fluid (‘dry’) convection [1, 2]. When phase
changes are included at the boundaries, even in idealized
laboratory convection experiments, the heat flux prob-
lem becomes much more complex [3]. Furthermore, the
flux problem becomes complex in the presence of phase
change effects in the bulk as it introduces an additional
heat source/sink via latent heat associated with the phase
change processes [4, 5]. Additionally, the amount of
condensate in the system depends on the rate at which
phase change effects (e.g., condensation/evaporation) oc-
cur. In the context of cloudy convection, the rate of
evaporation/condensation is strongly influenced by the
properties of the aerosols and cloud droplets including
size, number concentration, etc (henceforth, referred to
as ‘microphysics’). For example, if the condensate load
is fixed, plentiful small droplets allow for efficient conver-
sion of water vapor to the condensed phase compared to
a few large droplets. Additionally, small droplets have
lower sedimentation velocities and thus result in a higher
condensate load in the system [5].

The idealization of Rayleigh–Bénard convection has a
long history in guiding our understanding of cloud forma-
tion [6–11]. In the atmospheric context the conundrum
posed by the interaction between temperature, water va-
por and liquid water on large scales is circumvented by
using conserved variables derived from thermodynamics.
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In this work, however, we consider cloud formation in tra-
ditional, laboratory-scale Rayleigh–Bénard convection as
a model problem for mixing clouds. At the same time,
the fluid dynamics community has explored the param-
eter space for moist Rayleigh–Bénard convection in the
absence of any liquid water [3]. In Section II, we present
the governing equations for cloudy Rayleigh–Bénard con-
vection and introduce and discuss the associated dimen-
sionless parameters. Then in Section III we provide a
non-thermodynamic derivation of an equivalent heat flux
weakly dependent on the microphysics of the system and
subsequently a Nusselt number independent of any cloud
droplets analogous to and thus expanding the scope of
the Nusselt number proposed by Zhang et al.[3]. Fur-
thermore, under the assumptions of constant molecu-
lar/turbulent diffusivities of temperature and water va-
por, we retrieve the equivalent temperature and moist
static energy from the flux derivations that are widely
used in the atmospheric sciences community (see Section
III). Both of those are derived using only the first law
and therefore avoid problems of reversibility [12, 13]. It
should be noted that the equivalent temperature flux is
not limited to atmospheric applications but can be ex-
tended to systems with phase change and chemically re-
active systems (see Section VI).

In this article we aim to connect the Rayleigh–Bénard
literature with the atmospheric science literature in two
ways. We present the equations for cloudy convection
in dimensionless form, making clear the relevant param-
eters describing the system. It is a curiosity of cloud
physics that the governing equations are rarely stated in
dimensionless form. Building on some of efforts that have
already been made in that direction [14–19] we carefully
identify all relevant dimensionless quantities for cloudy
Rayleigh–Bénard convection. As part of that, and as
described in the previous paragraph, we derive an equiv-
alent Nusselt number for cloudy Rayleigh–Bénard con-
vection, directly from the equations for temperature and
water vapor mixing ratio. Entropy conservation is not
assumed in the derivation and thus non-equilibrium con-
ditions can be adequately represented; nevertheless, the
derived heat flux is constant with height throughout the
convection system, independent of the dimensionless pa-
rameters related to the microphysical properties of the
cloud. We present Large Eddy Simulations (LES) of
cloudy Rayleigh–Bénard convection with varying aerosol
conditions to explore and illustrate the characteristics
and the utility of the approach. Specifically, we use
aerosol injection rate as a way to explore the dependence
of dimensionless parameters describing the cloud micro-
physics (e.g., Damköhler number and sedimentation or
Rouse number) and the heat flux (Nusselt number) at
constant Rayleigh number. In the final section, we dis-
cuss the prospective implications of the conserved flux
and its applications, as well as its connections to atmo-
spheric variables.

II. GOVERNING EQUATIONS AND
DIMENSIONLESS PARAMETERS FOR CLOUDY

CONVECTION

A. Governing equations in dimensional form

The momentum equation for cloudy Rayleigh–Bénard
convection can be written as (Kumar et al. [20])

∂U

∂t
+ U · ∇U = − 1

ρa
∇p+

[
β
(
T − T

)
+ ε
(
Qv −Qv

)
−QL

]
gẑ + ν∇2U, (2)

where U is the velocity vector, ρa is the density of air,
p is the pressure, and ν is the kinematic viscosity. The
buoyancy term contains three contributions multiplied by
the gravitational acceleration g, which acts in the vertical
ẑ-direction. First, the contribution from the difference
between the temperature T of the fluid parcel and the
average value T , multiplied by the thermal expansion
coefficient β. Second, a contribution from the density
difference of water vapor expressed in terms of mixing
ratio Qv (the ratio of the mass of water vapor to the
mass of the dry air) multiplied by term ε = md/mv −
1, where md and mv are the molecular weights of dry
air and water vapor, respectively. Third, a contribution
of the condensed liquid water expressed again in terms
of mixing ratio QL, which accounts for the drag force
applied to the fluid due to settling cloud droplets.

For Rayleigh–Bénard convection with phase change ef-
fects, the continuity equation, the energy equation and
the water vapor and liquid mass balance equations can
be written as

Dρ

Dt
+ ρ∇ ·U = 0 (3)

∂T

∂t
= ∇ · (−UT + νT∇T ) +

Lv
Cp
Q̇L (4)

∂Qv
∂t

= ∇ · (−UQv + νv∇Qv) − Q̇L, (5)

∂QL
∂t

= ∇ · (−UQL + wTQLẑ) + Q̇L, (6)

where ρ = ρa(1 + 0.61Qv − QL), νT and νv are thermal
and water vapor diffusivities respectively, Cp is the spe-
cific heat at constant pressure, Lv is the latent heat of
vaporization of water, wT is the terminal speed of a cloud
droplet, and Q̇L is the rate of condensation/evaporation
of water. It should be noted here that, while we include
the sedimentation term in equation 6, we have not in-
cluded a corresponding energy-loss term in equation 4
because the thermal inertia of droplets is negligible for
typical cloud conditions.
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B. Non-Dimensional formulation

It is instructive to consider the non-dimensional form
of the governing equations. We take the height of the
chamber (H) and the free-fall velocity for dry Rayleigh–
Bénard convection (w =

√
g β∆T H) as the scales for

length and velocity. The non-dimensional scaled vari-
ables (denoted by tilde on the top of the variable) of
length, time, velocity, temperature and water vapor for
moist Rayleigh–Bénard convection are L̃ = L/H, t̃ =

tw/H, Ũ = U/w, T̃ = T −T
∆T , Q̃v = Qv −Qv

∆Qv
. The ac-

celeration due to gravity is g, thermal expansion coeffi-
cient is β, ε is the ratio of dry air to water vapor gas
constants, and ∆T and ∆Qv are the temperature and
water vapor mixing ratio differences between the bottom
and top plates, respectively. Using these scales, the non-
dimensional momentum equation is written as

∂Ũ

∂t̃
+ Ũ · ∇̃Ũ =− 1

ρa
∇̃p̃+

(
T̃ +Bv Q̃v −BL

)
ẑ

+

√
Pr

Ra
∇̃2Ũ (7)

where, Ra is the Rayleigh number (Ra = g β∆T H3

νT ν
),

Pr is the Prandtl number (Pr = ν/νT ). The sec-
ond term grouped within brackets on the right side of
Eq. 7 is the buoyancy contribution to momentum, and
acts along the direction of gravity. Again, the buoy-
ancy contribution comes from temperature, water vapor
and the drag associated with the sedimentation of the
condensate. The dimensionless parameter for water va-
por is Bv = ε∆Qv/(β∆T ) and that for liquid water is
BL = QL/(β∆T ).

The dimensionless equation for temperature (Eq. 4)
can be rewritten as follows

∂T̃

∂t̃
+ Ũ · ∇̃T̃ =

1√
RaPr

∇̃2T̃ +
Lv

Cp∆T

H

w

QL
τcond

. (8)

Here, we have taken Q̇L = QL/τcond, where τcond is
a characteristic time for the condensation process. We
then note that the terms Lv/(Cp∆T ) and τt/τcond, where
τt = H/w, are dimensionless numbers associated with
the cloud condensation process. The time scale for con-
densation can be conceptually understood by considering
the idealization of growth of a population of single-sized
cloud droplets in a supersaturated environment. The
growth rate of a cloud of droplets with number density
N and radius R is

Q̇L =
ρl
ρa

d

dt

(
4π

3
NR3

)
=

ρl
ρa

4πNR2 dR

dt
, (9)

where ρl is the density of water and ρa is the density
of air. Using an expression for the droplet growth rate
dR/dt, equation 9 can be written as [21]

Q̇L = 4πξNRs
ρl
ρa
. (10)

Here s = pv/ps − 1 is the water vapor supersaturation
(the excess water vapor pressure compared to the satu-
ration vapor pressure). The factor ξ is associated with
diffusion of water vapor to a growing droplet, and the
associated heat conduction away from the droplet due to
latent heat release during the droplet growth [21]. Thus,
the phase relaxation time (τc) can be understood as the
timescale at which droplets respond to any change in its
surrounding environment, defined as τc = (4πξNR)−1

[22]. Assuming the flux timescale, given by τt = H/w,
represents the scales at which environment changes, the
Damköhler number (Da) can be defined as τt/τc [15].
At very high Damköhler numbers, the droplets respond
quickly to any change in the surrounding environment
and conversely at small Damköhler numbers the envi-
ronment changes faster than the droplets can respond to
it. Hence, these regimes are called fast and slow micro-
physics respectively. Therefore, Eq. 8 can be rewritten
as

∂T̃

∂t̃
+ Ũ · ∇̃T̃ =

1√
RaPr

∇̃2T̃ +
1

Ste

ρl
ρa

Da s. (11)

We note that the expression on the right hand side con-
sists of dimensionless quantities Ste = Cp∆T/Lv, ρl/ρa,
Da and s, where Ste is the Stefan number. Similarly, the
equation for water vapor mixing ratio becomes

∂Q̃v

∂t̃
+Ũ·∇̃Q̃v =

1√
RaScLe

∇̃2Q̃v−
1

∆Qv

ρl
ρa
Das, (12)

where Sc is the Schmidt number (Sc = ν/νv) and Le is

the Lewis number(Le = Sc/Pr). Using Q̃L = QL/∆Qv,
the non dimensional form of liquid water mixing ratio
(equation 6) is,

∂Q̃L

∂t̃
+ Ũ · ∇̃Q̃L = Rou ∇̃Q̃Lẑ +

1

∆Qv

ρl
ρa

Da s. (13)

An additional dimensionless group appears, the ratio of
the droplet terminal speed and the convection free-fall
speed, which is sometimes referred to as the Rouse num-
ber Rou = wT /w [23, 24]. It is essentially a gravitational
settling parameter or, it can be expressed as the inverse
of a dimensionless droplet residence time τt/τres.

The dimensionless parameters appearing in these equa-
tions are summarized in Table I. The parameters
Pr, Sc, and Le describe material properties, so for a
water-air system as in Earth clouds, they are essen-
tially constants. Furthermore, for saturated boundaries
and a given mean temperature, the quantity ∆Qv can
be related to ∆T by the Clausius-Clapeyron equation
d ln ps/dT = Lv/(RT

2), where ps is the saturation wa-
ter vapor pressure. Therefore, Bv can be interpreted
as a material property for given mean temperature and
boundary conditions. It should be noted, however, that if
the assumption of saturated boundaries is relaxed, then
Bv becomes an independently determined quantity; for
example, consider experiments in which the lower bound-
ary contains a salt solution and therefore has reduced
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Dimensionless Parameter Definition Description

Ra gβ∆TH3/(νT ν) Buoyancy forcing and diffusive losses
Bv ε∆Qv/(β∆T ) Relative contribution of water vapor to buoyancy
BL QL/(β∆T ) Relative contribution of cloud water to buoyancy
Pr ν/νT Diffusion of momentum relative to thermal energy
Sc ν/νv Diffusion of momentum relative to water vapor
Le νT /νv Diffusion of thermal energy relative to water vapor

Da τt/τc
Rate of water vapor condensation in a cloud rela-
tive to rate of turbulent mixing

s Qv/Qs(T ) − 1 Excess water vapor driving condensation
Ste Cp∆T/Lv Latent heat compared to sensible heat

Rou wt/w
Rate of removal of cloud droplets by sedimenta-
tion relative to rate of turbulent mixing

Nuµ Eq. 22 Equivalent energy flux relative to conductive flux

TABLE I. Dimensionless parameters for the microphysical state in cloudy Rayleigh–Bénard convection.

vapor pressure [25]. The Stefan number Ste represents
the relative significance of sensible and latent heat ef-
fects due to phase changes; for plausible values of ∆T ,
water clouds always satisfy Ste � 1. The dimensionless
parameters that describe the cloud microphysical prop-
erties are s, Da, Rou, and BL. It can be noted that
BL connects the microphysics directly to the buoyancy
term in the Navier-Stokes equation, but in fact the phase
changes described by s and Da also influence the buoy-
ancy term through their contributions to the T and Qv
fields. Finally, the state of macroscopic convection is de-
scribed by the dimensionless parameter Ra, as well as a
Nusselt number Nu discussed in the next section.

III. HEAT FLUX AND AN EQUIVALENT
NUSSELT NUMBER

A defining aspect of convection is the efficient transfer
of energy, which can be expressed through the dimen-
sionless Nusselt number. Here we outline a simple route
to obtaining a Nusselt number for cloudy convection and
discuss its relationship to known variables of atmospheric
thermodynamics and the relevance of cloud microphysi-
cal properties. We proceed initially with the dimensional
forms of the equations for notational clarity.

Applying Reynolds decomposition, we write the in-
stantaneous variable as a sum of the mean and the fluc-
tuations represented by overbar and prime respectively,

U = Ui + u′i; T = T + T ′; Qv = Qv + Q′v , (14)

and it then follows from Eqs. 4 and 5 that the mean scalar
evolution equations are

∂T

∂t
= ∇ ·

(
−UiT − u′iT

′ + νT∇T
)

+
Lv
Cp
Q̇L (15)

∂Qv
∂t

= ∇ ·
(
−UiQv − u′iQ

′
v + νv∇Qv

)
− Q̇L. (16)

The two scalar equations can be combined together by

eliminating the net condensation/evaporation rate Q̇L by
adding Eq. 15 and Lv/Cp× Eq. 16:

∂

∂t

(
T +

Lv
Cp
Qv

)
=

∇ ·
(
− Ui

(
T +

Lv
Cp
Qv

)
− u′i

(
T ′ +

Lv
Cp
Q′v

))
+ ∇ · ∇

(
νT T + νv

Lv
Cp
Qv

)
.

(17)

Equation 17, steady in time and averaged over a plane
with normal along the direction of gravity is

∇z·
(
−w′T ′ + νT∇zT

)
+
Lv
Cp
∇z·
(
−w′Q′v + νv∇zQv

)
= 0.

(18)
Please note, the mean advection of temperature in the
vertical direction, WT is zero, since W = 0 from the con-
tinuity equation for Rayleigh–Bénard convection Chillà
and Schumacher [1]. From equation. (18), a constant
surface flux is obtained along the z-direction:

Φµ = w′T ′ +
Lv
Cp
w′Q′v − νT∇zT −

Lv
Cp

νv∇zQv. (19)

Thus, an effective Nusselt number can be defined as,

Nuµ =
w′T ′ + Lv

Cp
w′Q′v − νT∇zT − Lv

Cp
νv∇zQv

νT
∆T
H + νv

Lv

Cp

∆Qv

H

. (20)

This flux (Eq. 19) has been obtained from the tempera-
ture and water-vapor equations, and has no explicit de-
pendence on the rate and amount of condensation or
evaporation occurring within the flow. It depends only
on the temperature difference and water vapor differ-
ence imposed at the top and bottom boundaries across
the convecting system. This flux, referred to as equiva-
lent temperature flux, remains a constant throughout the
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height of the chamber. It is therefore internally indepen-
dent of any microphysical variations within the convec-
tion, for example due to gravitational settling or height-
dependent condensation rate. Any change in Φµ or Nuµ
due to a change in mean-microphysics properties must
come through the density of the fluid and the co-variance
terms w′T ′ and w′Q′v. Although, it cannot be shown the-
oretically that this flux is the same for all possible mi-
crophysical conditions, the LES studies presented in the
next section indicate that the flux in Eq. 19 does not vary
significantly with the condensation rate profile, and also
appears to be independent of the cloud microphysics in
the bulk. We note that Eq. 20 is identical to the Nusselt
number obtained by Zhang et al. [3] for moist convection
without phase change, here we have demonstrated that
it is identical for cases with phase change effects as well.

In fact, assuming temperature and water vapor to have
the same diffusivities, the Nusselt number can be writ-
ten solely in terms of the familiar atmospheric quan-
tity ‘equivalent temperature’ (e.g., refer to equation 6.74,
page 285 of Bohren and Albrecht [13]):

Te = T + (Lv/Cp)Qv. (21)

The equivalent temperature is defined as the temperature
a moist air parcel would have if all its water vapor were
to condense in an adiabatic, isobaric process. Such a
process is allowed by the first law of thermodynamics,
but is prohibited by the second law of thermodynamics
for a closed system [13]. This connection is discussed
further in section VI.

Following the same steps but using the dimensionless
forms of the governing equations, we get the flux (equa-
tion 19) in terms of non–dimensional quantities.

Φ̃µ = W̃ ·
(
T̃ +

Lv
Cp

∆Qv
∆T

Q̃v

)
− 1√

Ra

(
1√
Pr
∇̃T̃ +

Lv
Cp

∆Qv
∆T

1√
ScLe

∇̃Q̃v
)
z

(22)

The Nusselt number expressed in terms of other non-
dimensional numbers is

Nuµ =
Φµ

Lv

Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

(23)

Nuµ =
W̃ ·

(
T̃ + Lv

Cp

∆Qv

∆T Q̃v

)
Lv

Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

(24)

−
1√
Ra

(
1√
Pr
∇̃T̃ + Lv

Cp

∆Qv

∆T
1√
ScLe

∇̃Q̃v
)
z

Lv

Cp

∆Qv

∆T
1√

RaScLe
∆Q̃v + 1√

RaPr
∆T̃

− 1

From equations. 22 and 23, we note that the flux has no
explicit dependence on Damköhler number and supersat-
uration, the two microphysically-relevant dimensionless

parameters. As discussed above, however, the micro-
physics can affect the Nusselt number through density
of the fluid, and through the magnitude of co-variance
terms. The possible dependence on microphysics is fur-
ther explored in the next section. Compared to the dry-
convection Nusselt number, which depends only on Ra
and Pr, for cloudy convection the dimensionless param-
eters Sc and Le are also needed.

IV. NUMERICAL SIMULATIONS OF MOIST
RAYLEIGH–BÉNARD CONVECTION WITH

VARYING CLOUD MICROPHYSICS

In this section, we explore the equivalent temperature
flux and the equivalent temperature derived in Section
III by simulating moist Rayleigh–Bénard convection un-
der varying microphysical conditions. The simulations
are motivated by prior observations from and simula-
tions of the Pi convection-cloud chamber [4, 5, 15]. The
convection is initiated by imposing an unstable gradi-
ent of temperature and water vapor between the top and
bottom plates. The bottom and top plates are main-
tained at saturated conditions at 290 K and 276 K re-
spectively. The sidewalls have adiabatic conditions for
both temperature and water vapor mixing ratio, and a
no-slip/no-penetration condition for velocity. The differ-
ent aerosol injection rates used in the current study are
listed in Table II, with a cloud-free case included for ref-
erence. They are selected so as to achieve Damköhler
numbers varying by a factor of approximately 20, cen-
tered on Da ∼ 1, thereby allowing both ‘fast’ and ‘slow’
microphysics regimes to be explored [15]. Corresponding
steady-state microphysical properties including the liquid
water mixing ratio, the cloud droplet number concentra-
tion, mean diameter, and water vapor supersaturation
are also listed in Table II. As the aerosol injection rate
is increased, the cloud droplet number concentration in-
creases and the mean diameter decreases. For the Da > 1
cases, we also note that the mean supersaturation is quite
small, so aerosol activation by fluctuations likely becomes
the dominant source of cloud droplets [26]. Finally, we
also observe an increase in the liquid water content as the
aerosol injection rate is increased, because smaller cloud
droplets have lower sedimentation rates. The result is
a monotonic increase in total water content, which has
implications for the effective temperature in the system
(discussed later).

Details of the model setup for the Pi convection-cloud
chamber are discussed by Thomas et al. [5]. A brief
description of the model is provided here for sake of
completeness. The simulations use the modified System
for Atmospheric Modeling (SAM) [27] combined with a
spectral bin microphysics (SBM) scheme [28]. The Sys-
tem for Atmospheric Modeling is a large eddy simulation
(LES) code that solves the equations of motion under
the anelastic approximation, and that uses a Smagorin-
sky model for the subgrid-scales. The equations are inte-
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Reference Injection Rate (s−1) QL (g/kg) QT (g/kg) N (cm−3) R̄ (µm) s (%) Rou Da

A 0.005 0.09 8.22 22.0 7.9 1.26 0.87 0.19
B 0.006 0.11 8.24 37.6 7.2 0.82 0.55 0.30
C 0.007 0.12 8.25 46.6 6.8 0.69 0.55 0.35
D 0.008 0.13 8.26 56.6 6.6 0.58 0.55 0.41
E 0.009 0.14 8.27 67.5 6.3 0.50 0.55 0.47
F 0.01 0.20 8.37 225.8 4.8 0.16 0.35 1.2
G 0.02 0.25 8.45 493.2 4.0 0.08 0.22 2.1
H 0.03 0.29 8.51 909.3 3.3 0.06 0.14 3.3
I 0.05 0.32 8.56 1541.2 2.8 0.05 0.09 4.6
J 0.0 0.0 8.53 0.0 0.0 10.48 - -

TABLE II. Varying microphysical conditions explored in the simulations of moist Rayleigh–Bénard convection. The table
shows aerosol (cloud condensation nucleus) injection rate, liquid water mixing ratio, total water (vapor plus liquid) mixing
ratio, cloud droplet number concentration, mean cloud droplet radius, mean supersaturation, Rouse (sedimentation) number,
and Damköhler number. Injection rate is number of particles per grid volume (linear dimension 3.125 cm) per model time step
(0.02 seconds). The simulations span a factor of ∼ 20 in Da, centered on Da ∼ 1.

grated using a third-order Adams-Bashforth scheme on
a fully staggered Arakawa C-type grid with uniform hor-
izontal and vertical grid sizes. The prognostic scalars
are advected using a multidimensional positive definite
advection transport algorithm [29]. Boundary fluxes
are calculated using Monin-Obukhov similarity theory
(MOST).

A SBM algorithm based on Chen and Lamb [28] is
implemented in SAM to simulate aerosol-cloud interac-
tions. In this study, monodisperse aerosol particles are
injected uniformly in the chamber at a constant rate.
Once aerosol particles take up water to become haze
(unactivated droplets with radii smaller than 1 µm) and
cloud (droplets with radii larger than 1 µm) droplets, we
use 40 mass-doubling bins starting from 0.1 µm to repre-
sent the droplet size distribution. One advantage of this
SBM algorithm is that it resolves several crucial micro-
physical processes such as deliquescence of dry aerosol
and condensational growth of haze and cloud droplets,
including solute and curvature effects (see details in sec-
tion 3 in [28]), thereby allowing proper representation of
the activation process. The present study focuses only
on warm clouds with droplet activation and diffusional
growth, and the effects of collisional growth is turned off.

We consider a convection chamber of dimensions 2 m
× 2 m × 1 m along the x, y and z directions respectively,
motivated by the geometry of the Pi Chamber [5]. The
computational domain is discretized uniformly with cu-
bic boxes of side length 3.125 cm yielding 64 × 64 × 32
grid boxes. The time step is 0.02 s, and the system is
initialized with an unstable temperature and water va-
por gradient. For the current study, we allow the system
to evolve in a cloud-free state and reach a steady super-
saturation of 10.48%. Monodisperse salt particles with
a radius of 62.5 nm are injected uniformly in the vol-
ume of the chamber at a constant rate. Dry aerosols be-
come haze droplets if the environmental saturation ratio
is larger than the specified deliquescent relative humidity
(set to be 75%). The cloud reaches a steady state after

about an hour of simulated time when activation of cloud
droplets due to condensational growth of haze droplets
is balanced by the removal of cloud droplets due to sed-
imentation. On reaching a steady state with respect to
microphysics after 1 hour, the system is allowed to evolve
for another 2 hours (for comparison, the free-fall time is
of order 1 s and the large-scale circulation time is of order
1 min).

After one hour of physical time, 3D fields are output
at every five minutes for the next three hours to obtain
statistically independent droplet size distributions within
the simulated cloud chamber (this time is chosen so as
to be larger than the large-scale circulation time so as
to ensure independence). Each grid point thus has a
cloud droplet number concentration sorted into 33 differ-
ent bins according to their sizes. The fluxes are evaluated
from 3D fields of velocity u, v, w, temperature, water va-
por and liquid water mixing ratio.

V. RESULTS: LES OF CLOUDY CONVECTION
WITH VARYING MICROPHYSICS

A. Vertical profiles of scalars

The injection of aerosols into the supersaturated sys-
tem described in Section IV results in the formation of
cloud droplets. The liquid water content in the cham-
ber reaches a steady state through a dynamic equilib-
rium between condensational growth and gravitational
sedimentation. As shown already in Table II, and as ob-
served in both experiments and prior simulations [5, 15],
increasing the aerosol injection rate results in a corre-
sponding increase in the steady-state liquid water con-
tent in the cloudy Rayleigh–Bénard convection system.
Vertical profiles of liquid water mixing ratio for five of
the cases are shown in Figure 1, further demonstrating
that mean QL increases with increasing aerosol injection
rate. More significantly, they show a nontrivial spatial
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FIG. 1. Vertical profiles of liquid water mixing ratio for five of the cases. These profiles were obtained by horizontal averaging
of the 3D output obtained every 5 minutes within a span of 2 hours, after reaching a steady state. The colors refer to different
CCN injection rates; for details refer to Table II.

variability, emphasizing the significance of the internal
microphysics independence of the equivalent temperature
flux Φµ.

Figure 2 shows vertical profiles of temporally- and
horizontally-averaged temperature, water vapor mixing
ratio and equivalent temperature (Eq. 21) for the dif-
ferent aerosol injection rates. As stated in Eq. 10, the
condensation rate is proportional to N Rs, where N is
the number concentration of droplets and R is the mean
droplet radius, and therefore generally increases with
aerosol injection rate (cf. Table II). That leads to an
increase in the bulk temperature due to the enthalpy
change associated with condensation (latent heat), as
shown in Fig. 2(a). The mean water vapor mixing ratio,
shown in Fig. 2(b), is reduced from the zero-aerosol case
denoted by the green line. In spite of the net decrease
from the zero-aerosol case, Qv increases monotonically
with increasing aerosol injection rate, which is a direct re-
sult of the increasing temperature in the bulk, given that
the humidity is always close to 100%. Taken together,
the reduction in the mean water vapor mixing ratio and
the increase in the mean temperature result in a much
lower supersaturation for cloudy conditions compared to
moist conditions without any aerosols. Therefore, as evi-
dent from Table II, the mean bulk supersaturation shifts
towards zero as the number concentration and liquid wa-
ter content increase. We observe a monotonic increase
of equivalent temperature in Fig. 2(c) with increasing
cloud droplet number concentration. From a parcel point
of view, i.e., for a closed system, one would expect the
equivalent temperature to be a constant for a given total
water content. However, the system is not closed and the
total water content inside the cloud chamber is not nec-
essarily a constant for different aerosol injection rates.
As the number of cloud droplets increases, the droplet
radius decreases, thereby increasing the droplet lifetime.
Thus, with a reduced precipitation efficiency, the total

water content and consequently the equivalent tempera-
ture increases (cf. Table II).

B. Sensible heat flux, latent heat flux and
equivalent temperature flux

The sensible heat flux (SHF), latent heat flux (LHF)
and equivalent temperature flux defined in equation (19)
are plotted in Fig. 3. The boundary flux contributions are
discussed later, and only the turbulent fluxes are consid-
ered in this figure. In the bulk, the turbulent transport
terms for scalars are of the form, u′iφ

′, where φ′ is the
fluctuation component of a scalar. The turbulent sen-
sible heat flux and latent heat flux at any height z are
given by:

SHFturbulent = ρz Cpu′zT
′ (25)

LHFturbulent = ρz Lvu′zQ
′
v. (26)

The height-dependent density ρz has to be multiplied to
account for non-OberbeckBoussinesq (NOB) effects as-
sociated with strong temperature gradients. Again, the
sub-grid-scale fluxes and boundary contributions are not
considered here, therefore these equations alone are ap-
plied along the height of the chamber to generate Fig. 3.
As mentioned in Section IV the boundary fluxes are
parameterized using MOST; such parameterizations are
used in atmospheric models due to insufficient resolution
of the grids close to the walls. The MOST parameters
have been tuned to simulate a convective cloud chamber
in Thomas et al. [5]. The effect of these parameteriza-
tions are confined to the boundaries, and hence are not
plotted in Fig. 3 and leave some residual fluctuations.
Further, the focus of the current study is the bulk flow,
where the turbulent fluxes are more significant than the
diffusive fluxes. Hence, for consistency we have plotted
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FIG. 2. Averaged profiles of (a) temperature, (b) water vapor mixing ratio and (c) equivalent temperature (Eq. 21). These
profiles were obtained by horizontal averaging of the 3D output obtained every 5 minutes within a span of 2 hours, after
reaching a steady state. The colors refer to different CCN injection rates; for details refer to Table II.

the horizontally averaged vertical profile of ρzCpw′T ′ for

SHF and ρzLvw′Q′v for LHF in figure 3.
The variability inherent in the turbulent flow is shown

with shading, obtained from the standard deviation of
the average values of 12 samples, with each sample rep-
resenting a 10-minute average (roughly 10 large-scale cir-
culation times). It can be considered the uncertainty in
the flux profiles, given the finite sample time. The aver-
aged equivalent temperature flux, as predicted, remains
constant within turbulent variability compared to SHF
and LHF under different aerosol injection rates. Specif-
ically, the sensible and latent heat flux profiles for cases
A, B, C, D and E are strongly sloped, and the curves lie
outside the uncertainty envelopes near the top and bot-
tom boundaries (not all curves are shown, for the sake
of clarity). The equivalent temperature fluxes calculated
for different aerosol injection rates, however, fall within
the inherent turbulent variability.

The profiles of SHF (Figure 3(a)) and LHF (Figure
3(b)) can be interpreted by considering the governing
equations for temperature and water vapor in the pres-
ence of cloud droplets, Eqs. 4 and 5. For a steady state
system the left sides of Eqs. (4) and (5) are zero. On ap-
plying Reynolds decomposition and horizontal area av-
eraging, the first term in Cp× Eq. (4) is the sensible

heat flux Cp
(
u′zT

′ − νT∇zT
)
, and the first term in Lv×

Eq. (5) is the latent heat flux Lv
(
u′zQ

′
v − νv∇zQv

)
. Un-

der these assumptions, Cp× Eq. (4) and Lv× Eq. (5) can
be written as

d
(
SHF

)
dz

= LvQ̇L (27)

d
(
LHF

)
dz

= −LvQ̇L. (28)

From equation (27) and equation (28) it is clear that a
net condensation rate results in vertical gradients of SHF

and LHF, and that horizontally-averaged vertical profiles
of SHF and LHF have opposite slopes for the low cloud
droplet number cases A-E with Da < 1, as illustrated in
Fig. 3 (not all shown, for the sake of clarity). Figure 4
shows vertical profiles of nRs as a proxy for condensa-
tion rate. This illustrates the low- and high-Da regimes,
in which condensation rate is distributed throughout the
volume versus condensation rate being stronger near the
boundaries. We see that though condensation rate for
Case A and I are identical in the bulk, near the top
and bottom boundaries they vary substantially. For high
Da number such as Case I, any supersaturation is con-
sumed by the presence of the large concentration of cloud
droplets. Hence, any supersaturation variation occurs
only close to the boundaries. Further, the nonlinear be-
havior of number concentration, radius of the droplets
and supersaturation (e.g., see Chandrakar et al. [15] and
[30]) between low Da and high Da causes the LHF, and
SHF to behave nonlinearly with Da. However, as the
number of cloud droplets in the bulk increases, the su-
persaturation approaches water vapor saturation (see Ta-
ble II). In such cases, any supersaturation is produced
at the boundaries due to the mixing of plumes from the
boundary with the bulk parcels thus localizing conden-
sation predominantly to the boundaries. Therefore, the
slope of SHF and LHF in the bulk of the chamber, char-
acterizing the condensation rate, reduces as shown by
the SHF and LHF profiles of cases F-I with Da > 1,
illustrated in Fig. 3 (again, not all profiles are shown,
for clarity). As noted previously, from the derivation we
expect the equivalent temperature flux Φµ to remain a
constant along the height of the chamber. Panel (c) of
Fig. 3 demonstrates that, indeed, Φµ remains within the
turbulent variability for different cloud droplet number
cases.
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FIG. 3. Time averaged profiles of (a) sensible heat flux (ρCp w′T ′), (b) latent heat flux (ρLv w′Q′v) and (c) equivalent
temperature flux Φµ, as defined in Eq. 19, from 3D outputs sampled at a frequency of 5 minutes for 2 hours. The shaded region
shows the turbulent variability in the data. The line colors refer to the different CCN injection rates, as defined in Table II.

FIG. 4. Averaged profile of nRs. These profiles were obtained by horizontal averaging of the 3D output obtained every 5
minutes within a span of 2 hours, after reaching a steady state. The colors refer to different CCN injection rates; for details
refer to Table II.

VI. DISCUSSION

The theoretical analysis and LES results presented so
far confirm that the equivalent temperature flux Φµ in
cloudy convection is constant within the convection flow,
and therefore can serve as the basis for defining a Nusselt
number. The LES results further suggest that, at least
for the conditions investigated, it is only weakly depen-
dent on the microphysical details and the resulting rate
of condensation/evaporation in the fluid. Additionally,
the theoretical analysis implies that Φµ is independent of
the nature of the cloud droplet formation: heterogeneous
(aided by aerosols, as in the current study) or homoge-
neous, e.g., [31]. Indeed, Φµ is only a function of Ra,
Pr, Sc and Le. The fact that this equivalent tempera-
ture flux is independent of the form of phase change aids
in generalizing the present work to any form of phase

change in the bulk. This would indicate that convective
system with a heat source/sink in the core of the flow,
similar to effects of a first order phase transition, will
have an equivalent temperature flux similar to the one in
Eq. (19).

As an example, we consider the simple case of a boiling
system [32]. A similar formulation is applicable in the
context of a two-phase boiling convection system (e.g.
boiling of water), where the roles of vapor and liquid are
reversed with reference to the current study. The sign
of the phase change term in the temperature, water va-
por and liquid water equation is reversed. Furthermore,
the rate of boiling in the bulk of the fluid will depend
on the number concentration of the bubbles and their to-
tal surface area, similar to the observations discussed in
Section V. Thus, the net heat flux in a boiling convec-
tive system will have the exact form as Eq. 19, assuming
the latent heat of condensation and the latent heat of
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vaporization are identical.

Additionally, this analysis can be extended to chemi-
cally reacting systems, where the heat release/absorption
associated with the reaction is analogous to the latent
heat of condensation/evaporation in a cloudy system. In-
deed, the Damköhler number discussed in the present
work is borrowed from studies involving chemically re-
acting systems, and is used for identifying slow, moder-
ate and fast reaction with respect to the flow timescale
[33]. Thus, a chemically reacting system is analogous
to a cloudy convection system, and will have an equiv-
alent temperature flux that will be independent of the
Damköhler number. This is typically accomplished by
using an enthalpy-based treatment.

The discussion so far suggests that in a convection sys-
tem, the heat released/absorbed in the bulk of the fluid
due to phase change effects or chemical reactions does not
influence internal changes in the equivalent temperature
flux, which only depends on the boundary contributions.
Thus, this flux is conserved and could be used for identi-
fying the effects of non-conservative contributions to the
flow, such as, entrainment effects in a cloudy boundary
layer flow (see the next paragraph on atmospheric impli-
cations for additional details) and evaporating jets. Ad-
ditionally, the properties of the equivalent temperature
flux are applicable in the context of extrasolar planetary
atmospheres that have cloud systems composed of fluids
with properties very different from that of water [31, 34].

The current work has several connections to the at-
mospheric thermodynamics literature. Equation 17 re-
duces to an advection–diffusion equation for the equiva-
lent temperature Te given by Eq. 21 when the molecular
diffusivities of temperature and water vapor are identi-
cal. As typically derived, equivalent temperature (e.g.,
Equation 6.74 of Albrecht and Bohren [13]) does not re-
quire isentropic assumptions, hence can represent non-
equilibrium conditions such as those illustrated in the
previous section. Additionally, the equivalent tempera-
ture has an adiabatic definition that can be connected to
the equivalent potential temperature. The corresponding
derivation, however, assumes saturated conditions, which
limits its utility for conditions far from equilibrium. Re-
placing Qs with Qv,

θe = θ exp(LvQv/CpT ) ≈ θ + LvQv/Cp. (29)

The second equality is not an approximation when defin-
ing the first-law version of the equivalent temperature
[21]. Finally, multiplying the second equality in Eq. 29
with Cp, gives another familiar atmospheric quantity, the
moist static energy Se = Cp T + g z + Lv Qv. The moist
static energy is obtained from the first law and is essen-
tially equivalent to the enthalpy [35]. It has been widely
used to study the energy budget in deep convective clouds
as well as the response of clouds to entrainment [36–39].

VII. SUMMARY AND OUTLOOK

In an effort to help in connecting the fluid dynam-
ics and cloud physics literature, we began this paper by
non-dimensionalizing the governing equations for cloudy
Rayleigh–Bénard convection. Specifically, the equations
of temperature and water vapor mixing ratio include
terms related to the rate of condensation, which is tied
to the microphysical properties of the cloud, such as
droplet number concentration and mean radius. Tradi-
tional dry Rayleigh–Bénard convection can be described
by the Rayleigh number and the Prandtl number. When
cloud formation is included, the dimensionless space be-
comes vastly more complex. We identify the additional
dimensionless parameters of Damköhler number, Rouse
number (also known as the settling parameter), Stefan
number, Schmidt number, and Lewis number as relevant
for cloudy Rayleigh–Bénard convection. Dimensionless
terms that related to the relative contributions of wa-
ter vapor (Bv) and condensed cloud (BL) water to the
buoyancy are also identified.

In Section III, we have derived a flux Φµ that is in-
dependent of microphysical details, and should therefore
remain a constant throughout the height of a convection–
cloud chamber. Subsequently, we use this flux to expand
the definition of Nusselt number to include the effect of
cloud condensation. It turns out to be identical to the
Nusselt number proposed by Zhang et al. [3] for cloud-
free convection. We show that Φµ and the resulting Nus-
selt number can be related to the equivalent temperature,
as well as to the moist static energy, commonly used in
atmospheric thermodynamics.

In Section V we demonstrate that the equivalent tem-
perature flux is nearly constant for different aerosol injec-
tion cases using an atmospheric LES modified to simulate
cloudy Rayleigh–Bénard convection. One of the caveats
associated with atmospheric models is that they assume
the same turbulent diffusivities for temperature and wa-
ter vapor. We demonstrate the increase in latent heat
flux and a commensurate decrease in the sensible heat
flux with height from the bottom surface, as a result of
the volumetric heating due to condensation. Further,
we demonstrate that these profiles of latent heat flux
and sensible heat flux within the chamber change as a
function of the condensation rate within the bulk of the
chamber, depending on the Damköhler number.

In Section VI, we point out that the non-
dimensionalization presented here may lend itself to ap-
plication in cloudy convection in other contexts, such
as extra-solar planetary atmospheres. Furthermore, we
explore the possibility of using fluxes analogous to the
equivalent temperature flux for other phase change sys-
tems such as boiling convection systems and for chem-
ically reacting systems. Ideally, investigations using
particle-resolved direct numerical simulations would al-
low for a more detailed investigation of the behavior of
the equivalent temperature flux. Thus a parameter space
varying Ra , Pr , Sc ,Da can be explored from a fluid
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dynamics perspective and from an atmospheric context.
Further aspects can also be explored, for example the
effect of roughness and surface flux parameterizations.
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