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In climate predictions, clouds are the leading source of uncertainty. This is partly because, to sim-
ulate the fluid dynamics of climate over the entire globe, a large grid spacing must be used, so clouds
are a subgrid-scale parameterization rather than a resolved feature. Here, a framework is investi-
gated with finer grid spacing of O(1) or O(10) km so that some clouds are not subgrid-scale; instead,
clouds evolve on the numerical grid. This cloud evolution is achieved using stochastic modeling.
Hence the framework is idealized in the sense that the full fluid dynamics of cloud circulations is
still not resolved, and simplified vertical structures are used. Nevertheless, the fluid dynamics model
includes evolving clouds that interactively adjust in size, shape, lifetime, and regional coverage. In
addition, different cloud types are included with different roles in the climate system, including
deep convective clouds and also boundary-layer clouds such as shallow cumulus and stratocumulus
clouds. Other basic aspects of the idealized climate system are planetary-scale circulations (e.g.,
Walker circulation) and radiation. With these ingredients (evolving clouds, planetary-scale circula-
tions, and radiation), the framework has the potential for idealized investigations of climate change
with interactive cloud–radiative feedback of individual clouds. Here, the formulation of the model
equations is presented, and numerical simulations are shown to illustrate the model dynamics and
climate change.
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FIG. 1. Schematic diagram of cloud regimes and associated large-scale circulations. Deep convective clouds are associated with
the ascending branch of the Walker circulation, and shallow clouds are associated with the descending branch of the Walker
circulation. From Ref. 8. Used with permission.

I. INTRODUCTION

Global climate is influenced by both radiation and fluid dynamics. In the simplest models of climate, radiative
transfer alone can be used to illustrate basic principles, such as the greenhouse effect due to carbon dioxide [1].
However, for more precise predictions of climate, the combined effects of radiation and atmospheric/oceanic fluid
dynamics are needed, as in, for instance, contemporary global climate models (GCMs) [2, 3].

In GCM predictions of future climate change, the leading source of uncertainty is clouds [4–7]. Clouds can potentially
have either a cooling effect or a warming effect. By reflecting solar radiation, clouds can have a cooling effect. On
the other hand, clouds can absorb the radiation that is emitted by the earth’s surface, and, in so doing, can produce
a greenhouse warming effect in much the same way as carbon dioxide. Furthermore, different types of clouds (see
Fig. 1) can have different effects on climate. For instance, shallow clouds near the earth’s surface tend to have a
greater cooling effect than warming effect. On the other hand, the deep clouds of a thunderstorm have both cooling
and warming effects, and the cooling and warming effects can cancel each other and result in a near-zero impact on
the radiation budget.

Moreover, it is important to emphasize that the difficulty is not only the clouds themselves but also their interaction
with large-scale atmospheric fluid dynamics [2–7]. As illustrated in Fig. 1, different cloud types are associated
with different components of large-scale circulations. For instance, deep convective clouds are associated with the
ascending branch of the Walker circulation, and shallow clouds are associated with the descending branch. Hence
the two phenomena—clouds and circulation—are inextricably linked, and uncertainties related to clouds are also
uncertainties related to cloud–circulation interactions.

To properly account for the effects of clouds on climate, one would like to perform numerical simulations of atmo-
spheric fluid dynamics. However, a major challenge is that clouds and climate operate across a vast range of scales.
In Fig. 1, the small-scale features include shallow cumulus and stratocumulus clouds, which require a grid spacing of
O(100) m or O(10) m or smaller in large eddy simulations (LES) [9–12]. On the large scales, on the other hand, is
the Walker circulation, which spans scales of O(106) or O(107) m [13, 14]. For such a vast range of scales, LES or
cloud-resolving models (CRMs) are computationally expensive. On a more limited scale, CRMs have been used to
explore clouds, precipitation, and climate change, although typically only over a limited area on regional scales and
not including large-scale circulations [15–18]. If restricted to 2D, a CRM could go as far as to simulate a Walker cir-
culation and deep convection [19], although to also resolve stratocumulus clouds would be computationally expensive.
Typically, to include large-scale circulations such as the Walker circulation, GCMs can be used, although the grid
spacing is typically O(104) or O(105) m, which is too large to resolve individual clouds, so clouds are parameterized as
a subgrid-scale process [2, 3] or resolved on fine scales as part of a multi-scale modeling framework [20]. In summary,
due to computational expense, it is difficult to simultaneously simulate the full range of important scales in Fig. 1,
from large-scale circulations to the individual cloud features of shallow clouds such as stratocumulus clouds.
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FIG. 2. Comparison of precipitation from (a) observational data and (b) stochastic model. Note that a stochastic model will
not reproduce the exact same locations of individual cloud clusters in observational data on a particular day. The statistics,
though, can be compared and are similar (in terms of, for instance, power spectral density and the pdf of cloud cluster area).
From Ref. 21. c© American Meteorological Society. Used with permission.

The goal of the present paper is to investigate another modeling framework, in addition to LES, CRMs, and GCMs,
as a way of potentially simulating both large-scale circulations and shallow clouds such as stratocumulus clouds. The
idea is to use a stochastic model for the spatiotemporal variability of clouds. Example snapshots from stochastic
models are shown in Figs. 2 and 3 for deep convective and shallow clouds, respectively, to illustrate the level of
statistical realism. Many cloud statistics can be simulated by stochastic models [21–25], including different regimes
of shallow clouds such as stratocumulus clouds, which have been identified as the main contributor to cloud feedback
uncertainties in GCM climate predictions [6]. Here, a stochastic model for shallow clouds [22] will be combined with a
model for deep convection and large-scale atmospheric fluid dynamics [26–32], thereby encompassing the phenomena
in Fig. 1, from shallow clouds on small scales to the Walker circulation on large scales.

A significant computational savings can be achieved by using stochastic models instead of LES. The computational
savings comes in part from an increase in horizontal grid spacing, since LES of stratocumulus clouds would require
a horizontal grid spacing of O(10) or O(100) m, whereas the stochastic models can use a horizontal grid spacing of
O(103) or O(104) m. In addition, the vertical grid also provides a significant computational savings, since LES of
stratocumulus clouds would require a vertical grid spacing of O(10) or O(100) m, whereas the stochastic models use
simplified vertical structures, as illustrated in Fig. 4. The vertical structures in Fig. 4 arise from a Sturm–Liouville
problem from the equations for atmospheric fluid dynamics [33, 34], and they are also the basic vertical structures
associated with the deep convective clouds and Walker circulation in Fig. 1. As a result of the simplified vertical
structure, the stochastic models have a computational grid with the number of dimensions reduced by one, from a
three-dimensional (3D) grid to a two-dimensional (2D) grid.

With atmospheric fluid dynamics partially represented, the present framework is intermediate in complexity be-
tween, on the one hand, LES/CRM/GCM frameworks, and, on the other hand, simplified models such as two-box
models that do not resolve detailed structures of atmospheric circulations (see Refs. 35 and 36 and references therein).
While a two-box model can represent the widths of entire regions (such as one single grid box for the entire ascending
branch of the Walker circulation and another grid box for the descending branch), the present framework can further-
more represent individual cloud clusters within those regions. It is also possible, within LES/CRM/GCM frameworks,
to simulate both shallow clouds and large-scale circulations by using mesh refinement or grid stretching, which has
been explored in a variety of different configurations [37–40], although at significant computational expense. While the
present stochastic framework is idealized in comparison to LES/CRM/GCM frameworks, the stochastic framework
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FIG. 3. Stochastic model representation [panels (e)–(h)] of four types of shallow cloud organization, as seen from satellite in
panels (a)–(d). Yellow lines indicate areas of 5◦ longitude by 5◦ latitude. The model domain size is also 5◦ by 5◦. From Ref. 22.
Used with permission.

brings a large computational savings that can be invested in, for instance, faster exploration of parameter space and
larger ensembles of simulations.
In the remainder of the paper, the model is described in section II, numerical simulations are presented in section III,

and conclusions are summarized in section IV.
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FIG. 4. Schematic diagram of the vertical structures of the atmospheric model variables. The height labels s, t, and m
correspond to the surface of the earth, the top of the atmospheric boundary layer, and the mid-troposphere. Adapted from
Ref. 41. c© American Meteorological Society. Used with permission.
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II. MODEL DESCRIPTION

In this section, the model equations are described. The basic components of the fluid dynamics are similar to other
models [26–32, 41–46] that have used simplified vertical structures as in Fig. 4. The main new aspect here is the
inclusion of stochasticity as in recent work [21–25] so that the stochastic models for shallow clouds and cloud clusters
are extended to be coupled with radiation and large-scale atmospheric fluid dynamics.
In what follows, the model variables are described in section IIA; the evolution equations are described in sec-

tions II B, II C, and IID, for the free troposphere, boundary layer, and ocean, respectively; and the numerical methods
are described in section II E.

A. Variables and vertical structures

The model variables will have simplified vertical structures, as illustrated in Fig. 4, which brings a substantial
savings in computational cost. Note that the functional form of the vertical structures arises systematically from a
Sturm–Liouville problem [33], and the simplification (and computational savings) comes from using a superposition
of only two vertical modes rather than an infinite sum of vertical modes.
The form of the vertical structures can be derived from a Sturm–Liouville problem associated with the linearized

evolution equations,

∂uf

∂t
+

∂pf
∂x

= 0, (1)

∂vf
∂t

+
∂pf
∂y

= 0, (2)

∂pf
∂z

= g
θf

θreff

, (3)

∂uf

∂x
+

∂vf
∂y

+
∂wf

∂z
= 0, (4)

∂θf
∂t

+ wf
∂θbg
∂z

= 0, (5)

∂rf
∂t

+ wf
∂rbg
∂z

= 0. (6)

The subscript f indicates that the variables are associated with the free troposphere, where the components of the
velocity vector are uf , vf ), and wf , and the other variables are the (scaled) pressure pf , potential temperature θf , and
water vapor mixing ratio qf . The equations in (1)–(6) are a linearization of the hydrostatic Boussinesq equations, also
known as the primitive equations. Evolution equations will be discussed in further detail below. For the moment, the
evolution equations are introduced in (1)–(6) to explain the form of the vertical structures. In particular, in seeking
solutions of (1)–(6) based on separation of variables, a Sturm–Liouvile problem arises for the vertical structures [33].
Let Gj(z), for j = 0, 1, 2, 3, · · · , denote the vertical basis functions that arise from the Sturm–Liouville problem. A
generic variable φ(x, y, z, t) can then be expressed as an infinite series as

φ(x, y, z, t) =

∞
∑

j=0

φj(x, y, t)Gj(z), (7)

where the functions φj(x, y, t) are the expansion coefficients. For simplified models, it is common to truncate the
infinite series after the first terms as, for instance,

φ(x, y, z, t) ≈ φ0(x, y, t)G0(z) + φ1(x, y, t)G1(z). (8)

These first two terms are called the barotropic mode and the first baroclinic mode, respectively. It is common to
consider such a truncation since it embodies the essential features of atmospheric circulations [26–28, 47–51] and since
the first terms contain the most variability based on observational data analyses [52, 53]. For a Boussinesq system,
the basis functions Gj(z) are sines and cosines [33], as described in further detail next.
In the free troposphere, the three-dimensional velocity vector is partitioned into its two-dimensional horizontal

component, uf = (uf , vf ), and its vertical component, wf , with subscript f to denote the free troposphere. For
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FIG. 5. Illustrations of circulation cells that arise from the vertical structures from Fig. 4. Top: A deep circulation cell arises
from u1 and w1. Gray shading indicates deep convective clouds associated with upward motion, as in the Walker circulation
cells of Fig. 1. Bottom: Boundary-layer convergence from ub can create a circulation cell in concert with free-tropospheric,
barotropic u0, w0. Bottom panel is from Ref. 41. c© American Meteorological Society. Used with permission.

velocity, the expansion from (8) takes the form

uf (x, y, z, t) = u0(x, y, t) + u1(x, y, t)
√
2 cos

πz

HT
, (9)

wf (x, y, z, t) = w0(x, y, t)(HT − z) + w1(x, y, t)
√
2 sin

πz

HT
, (10)

where HT is the depth of the troposphere, and the vertical structures are shown in Fig. 4. For a Boussinesq system,
the incompressibility condition of ∂xuf + ∂yvf + ∂zwf = 0 leads to the relationships

w0 = ∂xu0 + ∂yv0, w1 = −HT

π
(∂xu1 + ∂yv1). (11)

If an anelastic atmosphere is assumed instead of Boussinesq, then the vertical gradient of density is taken into
account, and the vertical structures have a more complicated form [26], although in either case the basic features are
the same. One could include additional basis functions [29, 34], such as sin(2πz/HT ) or sin(3πz/HT ), etc., beyond
the first baroclinic mode structure sin(πz/HT ) used here, but the largest amount of atmospheric variance is in the
first baroclinic mode [52]. As an illustration, if the velocity structures in (9)–(10) are plotted as vector fields, then
a sinusoidal variation in x will produce a circulation cell as shown in Fig. 5. The deep circulation cell in Fig. 5 is
similar to the Walker circulation cells from Fig. 1, which indicates that the simple vertical structures in (9)–(10) are
sufficient to capture the basic aspects of deep convection and atmospheric circulations.
The thermodynamic variables in the free troposphere are the potential temperature, θf , and the water vapor mixing

ratio, rf . Their structures take the form

θf (x, y, z, t) = θreff + θbg(z) + θ1(x, y, t)
√
2 sin

πz

HT
, (12)

rf (x, y, z, t) = r0(x, y, t)e
−z/Hq , (13)
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which are similar to (9)–(10). In (12), θreff is a constant reference value, and θbg(z) is a background profile, with

θbg(0) = 0 and with dθbg/dz a positive constant. In (13), Hq is a decay height for the moisture profile, and r0 is the
value at the top of the boundary layer, z = 0. Layer parameters and thermodynamic parameters are listed in Table I,
and parameter values of the background states are listed in Table II.

TABLE I. Layer parameters and thermodynamic parameters

parameters value unit description
HT 16000 m Tropopause height
hb 500 m Atmospheric boundary layer thickness
ho 10 m Ocean mixed layer thickness
ρo 1000 kg/m3 Density of ocean water
ρb 0.885 kg/m3 Density of boundary layer air
ρf 0.37 kg/m3 Density of free troposphere air
co 4148 J/kg/K Heat capacity of ocean water
cp 1005 J/kg/K Heat capacity of dry air
Rd 287 J/kg/K Gas constant of dry air
Lv 2.4× 106 J/kg Latent heat of vaporization

TABLE II. Parameters of background states

parameters value unit description
Hq 2000 m Free troposphere moisture scale
Q0 3.848 × 10−2 m Background moisture stratification
Q1 5.328 × 10−3 m Background barotropic vertical moisture advection
T 0

f 258.94 K Background temperature in Tf

T 1

f 0.6844 Linear dependency of θ1 in Tf

θreff 300 K Reference temperature in free troposphere

dθbg/dz 3 K km−1 Vertical gradient of background potential temperature
qb,sat,0 -270 mm Background column water vapor in qb,sat
qb,sat,1 1 mm/K Linear dependency of Tb in qb,sat
qf,sat,0 -228 mm Background column water vapor in qf,sat
qf,sat,1 1 mm/K Linear dependency of Tf in qf,sat
Fo 0.0556 K/day Forcing strength on ocean temperature

In addition to the mixing ratio rf , it is also sometimes convenient to work with the column water vapor (CWV),
which we denote by qf and define as

qf (x, y, t) =
ρf
ρo

∫ HT

0

rf (x, y, z, t) dz, (14)

which is the integral of the mixing ratio over the atmospheric column. The density ρf is the average density of
the atmosphere in the free troposphere, and it could be replaced by a height-dependent ρ̃(z) and brought inside the
integrand, although the version in (14) will serve the present purposes. The parameter ρo is the density of liquid
water (or ocean water), and one can see that (14) transforms rf with units of kg water per kg dry air (or kg kg−1 for
short) to qf with units of mm. Physically, the CWV qf represents the height of liquid water that would result if all
water vapor in the column were condensed to liquid form.
Since both r0(x, y, t) from (13) and qf (x, y, t) from (14) will be useful in different contexts, it is helpful to define

the relationship between them. To do so, insert (13) into (14) to find

qf = HT Q̂0

ρf
ρo

r0, with Q̂0 =
Hq

HT

(

1− exp(−HT /Hq)
)

. (15)

For short, we will sometimes refer to the water vapor mixing ratio (rf or r0) or the column water vapor as simply the
“water” or the “moisture.”
In addition to the potential temperature θf , it is also useful to define other temperature quantities. The temperature

itself will be denoted by T tot
f to indicate that it is the total temperature as opposed to an anomaly, and it is related,
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by definition, to potential temperature via

T tot
f (x, y, z, t) = θf (x, y, z, t) ·

(

p̃(z)

p0

)Rd/cp

(16)

where Rd is the gas constant for dry air, cp is the specific heat at constant pressure, p̃(z) is the background pressure
profile, and p0 is a reference pressure that is taken to be the surface pressure—i.e., p0 = p̃f (0).
For later use with radiative transfer, with simplified vertical structures, it is convenient to define the mass average

of the temperature in the free troposphere, which we will call Tf :

Tf =
1

∫HT

0
ρ̃(z)dz

∫ HT

0

T tot
f (x, y, z, t)ρ̃(z)dz = T 0

f + T 1
f · θ1. (17)

In the second equality above, the mass-averaged temperature Tf has been related to the first-baroclinic-mode potential
temperature θ1, by evaluating the integral in (17) and using (16) and (12); the constants T 0

f and T 1
f arise from the

integration. This relationship will be useful later in moving between the variable θ1, which is useful for the fluid
dynamics, and the variable Tf , which is useful for radiative transfer. One other temperature quantity that will be of
use later is the equivalent potential temperature,

θef (x, y, z, t) =

(

T tot
f (x, y, z, t) +

Lv

cp
rf (x, y, z, t)

)(

p0
p̃(z)

)Rd/cp

, (18)

where the subscript f indicates that θef is the value of θe within the free troposphere. In (18), we use a linearization
of the exponential function that arises in the more comprehensive definition of θe ≈ θ exp[Lvqv/(cpT )] [8], since the
linearization allows simpler transformations between the variables θef , T

tot
f , and rf , and is reasonably accurate for

present purposes. Of use later on is the value of θef at the top of the boundary layer,

θ0ef (x, y, t) = θreff +
L̃f
v

cp
Q̂−1

0 qf , with L̃f
v =

Lvρo
HTρf

, (19)

which arises from (18) by evaluating at z = 0.
In the boundary layer, all variables are height-averaged and therefore independent of height, as illustrated in Fig. 4.

The one exception is the vertical velocity, wb, which is linear-in-height:

wb(x, y, z, t) = −(z + hb)∇ · ub(x, y, t), (20)

where the horizontal divergence ∇ · ub appears here so that the velocity field satisfies the divergence-free constraint:

∇ · ub +
∂wb

∂z
= 0. (21)

The thermodynamic variables in the boundary layer are analogous to their counterparts in (12)–(18) from the free tro-
posphere. Water will be partitioned into water vapor mixing ratio rvb(x, y, t) and liquid water mixing ratio rlb(x, y, t),
and their sum, the total water mixing ratio rtb(x, y, t), where the subscript b denotes the boundary layer. The
boundary-layer CWV and column total water are defined as

qvb(x, y, t) =
ρb
ρo

∫ 0

−hb

rvb(x, y, t) dz = hb
ρb
ρo

rvb(x, y, t),

qtb(x, y, t) =
ρb
ρo

∫ 0

−hb

rtb(x, y, t) dz = hb
ρb
ρo

rtb(x, y, t).

(22)

The temperature Tb, potential temperature θb, and equivalent potential temperature θeb are related to each other via

Tb(x, y, t) = T ref
b + θb(x, y, t), (23)

θeb(x, y, t) =

(

Tb +
Lv

cp
rvb

)(

p0
pb

)Rd/cp

= Tb +
L̃b
v

cp
qvb, (24)

where T ref
b = 300 K is a constant reference value of the atmospheric temperature near the ocean surface, where

we have used pb ≈ p0 in the θeb definition above, and where L̃b
v is a scaled latent heat in the boundary layer, with
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L̃b
v = Lb

v/hb and Lb
v = Lv(ρo/ρb). The definitions for the boundary layer in (22)–(24) are similar to (14)–(18) for the

free troposphere.
The presence of clouds will be described by cloud indicator functions σf and σb for the free troposphere and

boundary layer, respectively. To define the presence of a cloud, we compare the moisture value qf to a threshold value
qf,sat and define

σf (x, y, t) = H(qf − qf,sat), σb(x, y, t) = H(qtb − qb,sat), (25)

where H(q) is the Heaviside function, so that H(q) = 1 if q ≥ 0 and H(q) = 0 if q < 0, and where similar expressions
are used above for both σf and σb. The threshold or saturation values qb,sat and qf,sat are taken here to be linear
functions of temperature:

qb,sat = qb,sat,0 + qb,sat,1Tb, qf,sat = qf,sat,0 + qf,sat,1Tf , (26)

where qb,sat,0, qb,sat,1, qf,sat,0, and qf,sat,1 are constant parameters. The use of saturation values that are linear in
temperature can be viewed as a linearization of the type of saturation mixing ratio that arises from the Clausius–
Clapeyron equation of thermodynamics [54]. Alternatively, since these cloud indicators are defined on somewhat large
scales, the saturation values could be viewed as empirical definitions that can be defined based on observational data
[55]. Note that the values of these parameters (qb,sat,0, qb,sat,1, qf,sat,0, and qf,sat,1) should tacitly depend on other
parameters, such as boundary-layer height hb and free troposphere height HT , since qtb and qf are integrated over
these heights, respectively. These cloud indicators will act as nonlinear switches that turn on or off certain physical
processes, such as rainfall or cloud–radiation interactions, as described further below.

B. Evolution of free troposphere

Now that the variables have been described above in section IIA, the dynamical equations of motion can be
presented. The evolution equations for the free troposphere will be described first, followed by the evolution equations
for the boundary layer and ocean.
The dynamics of the free troposphere is given by

∂u1

∂t
− α1∇θ1 = − 1

τR
u1, (27)

∂θ1
∂t

− α2∇ ·
(

u1 −
√
2u0

)

= Sθ1 , (28)

for the first-baroclinic-mode velocity u1 and potential temperature θ1, and

∂qf
∂t

+∇ ·
(

Q1u1 −Q0u0

)

= Sqf (29)

for the free-tropospheric moisture. The barotropic velocity u0 will be described further below due to its coupling with
the boundary layer. In essence, (27)–(28) describes a shallow-water system for u1(x, y, t) and θ1(x, y, t), and a similar
type of equation for qf . Note that it is not the same as the traditional, single-layer shallow water equations, but it
has connection to multi-mode or multi-layer shallow water equations, as mentioned further below. The fluid flow
will be driven by the heat source/sink Sθ1 , which is described further below and includes cloud latent heating that is
interactive and evolving based on individual cloud clusters.
The left-hand side of (27)–(29) is the dynamical core, and it can be derived from the 3D fluid dynamics equations

as follows [26, 28, 29, 33, 34, 46]. The starting point is the hydrostatic primitive equations

∂uf

∂t
+

∂pf
∂x

= 0, (30)

∂vf
∂t

+
∂pf
∂y

= 0, (31)

∂pf
∂z

= g
θf

θreff

, (32)

∂θf
∂t

+ wf
∂θbg
∂z

= 0, (33)

∂rf
∂t

+ wf
∂rbg
∂z

= 0. (34)



11

Note that the hydrostatic assumption is a helpful assumption for deriving simplified equation sets although for grid
spacings in the range of O(1) to O(10) km it may not be the complete description of phenomena on the smallest
model scales. Also note that nonlinear advection terms have been neglected, while advection of the background state
θbg(z) is included, and advection of q has been linearized with respect to a background state rbg(z) = r00 exp(−z/Hq).
Nonlinear advection could possibly be included in the future [28, 29, 34], although a careful investigation is still needed
for the interactions of nonlinear advection and stochasticity in the present type of framework, and numerical methods
should therefore be chosen appropriately. Nonlinear advection is presently represented statistically via the eddy
diffusion and stochastic forcing in (29) as a parameterization of turbulent advection–diffusion. Some other climate
components that will be neglected in the idealized simulations here are spherical geometry of Earth, rotation, and the
diurnal cycle, although these and other features could be added in the future.
To derive the shallow water system in (27)–(29), the vertical structures arise from a Sturm–Liouville problem and

were described in (9)–(14). It then follows from (12) and from hydrostatic balance in (32) that the vertical structure
of the (scaled) pressure is

pf (x, y, z, t) = pbg(z) + p0(x, y, t) + p1(x, y, t)
√
2 cos

πz

HT
, p1 = − g

θreff

HT

π
θ1. (35)

Then the evolution equations in (30)–(34) are projected onto the vertical structures from the Sturm–Liouville problem
using the inner product

〈f, g〉 = 1

HT

∫ HT

0

f(z)g(z) dz. (36)

Since the vertical structure functions in (9)–(12) are sines and cosines as in a Fourier series, the projections and inner
products are straightforward [28, 29, 33, 34, 46]. By projecting the momentum equations in (30)–(31) onto the basis

function
√
2 cos(πz/HT ), one arrives at the shallow-water momentum equations in (27) with α1 = gHT /(πθ

ref
f ) ≈ 170

m2 s−2 K−1. Similarly, by projecting the θf evolution equation in (33) onto the basis function
√
2 sin(πz/HT ), one

arrives at the shallow-water θ1 equation in (28) with α2 = (HT /π)(dθbg/dz) ≈ 15 K, where dθbg/dz = 3 K km−1 is
assumed constant. Finally, for the moisture, the rf evolution equation in (34) is projected onto a constant function
in order to obtain the column water vapor from (14); the result is the shallow-water moisture equation in (29) with

Q0 = −ρf
ρo

∫ HT

0

drbg
dz

(

HT − z
)

dz,

Q1 = −ρf
ρo

∫ HT

0

drbg
dz

HT

π

√
2 sin

πz

HT
dz,

(37)

where recall that rbg(z) = r00 exp(−z/Hq). The values of parameters Q0 and Q1 are listed in Table II. Note that the
system in (27)–(29) is not the traditional, single-layer shallow water equations, but it can be viewed as one mode of
multi-mode shallow water equations if additional vertical basis functions are considered [34]. Also, this connection
with shallow water systems can be seen to arise because the primitive equations in (30)–(34) can be viewed as a
multi-layer shallow water system; see Ref. 56, chapter 2, sections 18 and 19. This completes the derivation of the
dynamical core on the left-hand side of the shallow-water-like system in (27)–(29).
On the right-hand side of (27)–(29) are the source/sink terms, which are interactive and evolving and defined as

follows. In the momentum equation, the sink −u1/τR is a Rayleigh damping term. In the moisture equation, the
source/sink Sqf is defined as

Sqf = − 1

τq

[

qf − qf,sat(Tf )
]+

+
σb

τt

(

qtb − qf
hbρb
HTρf

Q̂−1

0

)

+ bq∇2qf +DfẆf , (38)

and the four terms represent precipitation from deep-convective clouds, a moisture source from cloud-top mixing
of boundary-layer clouds, eddy diffusion, and stochastic forcing, respectively. The precipitation term includes a
superscript + that indicates a nonlinear switch, so that precipitation turns on only when qf exceeds the threshold
value qf,sat, which is a function of temperature according to (17) and (26). The cloud-top mixing term is proportional
to the difference between the water content in the free troposphere and boundary layer, and the cloud indicator σb

is a coefficient that turns on cloud-top mixing only when boundary-layer clouds are present. The eddy diffusion and
stochastic forcing are a parameterization of turbulent advection–diffusion [57–60] and are similar to earlier models
of spatiotemporal stochastic clouds. The value of, for instance, the eddy moisture diffusivity bq may appear to be
large when written in units of m2 s−1, but it is more nearly O(1) in magnitude when written in terms of equatorial
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TABLE III. Parameters of physical parameterizations

parameters value unit description
τs 6 hours Sensible heating time scale
τm 8 hours Momentum entrainment time scale
τq 12 hours Convection time scale
τt 6 days Cloud top mixing time scale
τe 6 days Sea surface evaporation time scale
τR 75 days Rayleigh drag time scale
Cd 0.025 Surface drag coefficient
Up 2 m/s Strength of turbulent coefficient

D̃b 3.67 m/
√
s Stochastic strength in qtb

D̃f 1.84 m/
√
s Stochastic strength in qf

bv 6.25 × 102 m2/s Eddy viscosity
bT 6.25 × 102 m2/s Eddy diffusivity in temperatures
bq 6.25 × 105 m2/s Eddy diffusivity in moisture

synoptic scales, and its value was calibrated based on the power spectrum from observational data [21, 46]. The

stochastic forcing Ẇf is a spatiotemporal white noise with mean zero and covariance E[Ẇf (x, y, t)Ẇf (x
′, y′, t′)] =

δ(x − x′)δ(y − y′)δ(t − t′), or a discretized version as described below in section II E. The values of the parameters
from the source/sink terms are listed in Table III.
Note that parameters of various types have been defined here, ranging from fundamental constants of nature such as

cp and Lv in Table I to parameters from physical parameterizations in Table III. For the parameters that are related
to physical parameterizations, such as cloud and precipitation processes, the values of the parameters are chosen to be
in line with other studies and observational constraints (see, e.g., Refs. 22 and 36 and references therein). Sensitivity
studies have also been carried out for many of these parameters and presented in other studies (e.g., Refs. 22 and 36),
and some additional sensitivity studies are presented below. While many parameters appear in the present idealized
modeling framework, it is a relatively small number of parameters in comparison to comprehensive models such as
LES, CRMs, and GCMs, since comprehensive models account for additional aspects, such as cloud microphysics and
varying structures in the vertical direction, which require additional parameters [2, 61].
As the last part of the shallow-water system, in the shallow-water equation for θ1 in (28), the heat source/sink term

is given by

Sθ1 =
π

2
√
2

hb

HT

σb

τt

(

θeb − θ0ef

)

− π

2
√
2

L̃f
v

cp

σb

τt

(

qtb − qf
hbρb
HTρf

Q̂−1
0

)

+
1

τq
· L̃

f
v

cp

[

qf − qf,sat(Tf )
]+

+
1

Cf
Frad,f ,

(39)

where Cf = cpρfHT is a scaled version of the specific heat capacity. The first two terms represent the effects
of boundary layer cloud-top mixing of equivalent potential temperature and water, respectively, defined below in
section II C. The third term is the cloud latent heating that is associated with precipitation in (29), and the coefficient

L̃f
v/cp is a latent heating factor, defined above in (19). Note that no stochastic forcing term was included for potential

temperature in (39), for simplicity, whereas stochastic forcing was included for moisture in (38); additional stochastic
forcing terms could be included, although they would increase the complexity of the model via the introduction of
additional parameters and their calibration, and prior work has suggested that the minimal addition of stochasticity
to only the moisture equation is sufficient for generating reasonable variability [46]. The fourth term is radiative
heating/cooling; it is given by

Frad,f = S(1−Afσf )asf + S(1−Afσf )(1 − asf )asfAbσb

+ alfalbσT
4
b + alf (1− alb)σT

4
o − 2alfσT

4
f ,

(40)

and it is composed of five terms: absorption of downwelling solar radiation (∝ S), absorption of upwelling solar
radiation that has reflected off of boundary layer clouds (∝ Sσb), absorption of longwave radiation that was emitted
by the boundary layer (∝ σT 4

b ) and ocean (∝ σT 4
o ), and emission of longwave radiation (∝ σT 4

f ), respectively. The

radiative parameters are the solar constant S (averaged over a diurnal cycle); the Stefan–Boltzmann constant σ;
the albedos Af and Ab of deep convective and boundary layer clouds, respectively; the shortwave absorptivities asf
and asb of the free troposphere and boundary layer, respectively; and the longwave absorptivities alf and alb of the
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free troposphere and boundary layer, respectively. The physical interpretation of the first solar radiation term, for
instance, is that it represents a fraction of S that is absorbed by the free troposphere, after a fraction 1 − Afσf is
reflected at cloud-top by deep convective clouds in the free troposphere. The absorptivity asf defines the fraction of
incoming radiation that is absorbed by the free troposphere. Further details of the radiation scheme are described in
Ref. 36, which has been extended here in a straightforward way to include the effects of an evolving free troposphere
and deep convective clouds.
Cloud–radiative feedbacks and water vapor feedback are included the radiation scheme in (40). As mentioned

above, Af and Ab are the albedos of deep convective and boundary layer clouds, respectively. Notice that these
albedos always appear along with cloud indicators as Afσf and Abσb, so that cloud–radiative feedback is turned on
only when a cloud is present. Water vapor feedback is present in (40) through the absorptivities, alf and alb, which
are defined as

alf = a0lf + a1lf

[

qf
qf,sat

+ σf

(

1− qf
qf,sat

)

]

,

alb = a0lb + a1lb

[

qvb
qb,sat

+ σb

(

1− qvb
qb,sat

)

]

.

(41)

These absorptivities will increase when the water vapor content increases, since water vapor is a greenhouse gas, and
the effect is capped at a maximum value upon cloud formation. The parameter values for radiation are listed in
Table IV.

TABLE IV. Radiation parameters.

parameter value unit physical description
S 436 W m−2 Solar flux at top of free troposphere
σ 5.67 × 10−8 W m−2 K−4 Stefan-Boltzmann constant
Ac 0.6 Albedo of shallow cloud
Af 0.4 Albedo of deep cloud
asb 0.1 Shortwave absorptivity of boundary layer
asf 0.25 Shortwave absorptivity of free troposphere
a0

lb 0.24 Longwave absorptivity of boundary layer (dry air)
a1

lb 0.66 Longwave absorptivity of boundary layer (water vapor)
a0

lf 0.4 Longwave absorptivity of free troposphere (dry air)
a1

lf 0.5 Longwave absorptivity of free troposphere (water vapor)

C. Evolution of boundary layer and barotropic mode

For the atmospheric boundary layer, the velocity ub is coupled to the barotropic velocity u0 of the free troposphere
as

∂ub

∂t
+

1

ρref
∇pb = − σb

hbτt

(

ub − (u0 +
√
2u1)

)

− CdUp

hb
ub, (42)

∂u0

∂t
+

1

ρref
∇p0 =

σb

HT τt

(

ub − (u0 +
√
2u1)

)

, (43)

hb∇ · ub +HT∇ · u0 = 0, (44)

p0 = pb +
√
2θ1 +

π

2

hb

HT
θb, (45)

where θb is the anomalous potential temperature in the boundary layer. In this coupling, divergence in the boundary
layer is coupled with convergence in the barotropic mode in the free troposphere, as defined in (44) and following
earlier work [41, 42]. Also, as illustrated in Fig. 4, at the top of the boundary layer, the vertical velocity is continuous.
The pressure relationship in (45) is also a continuity condition at the top of the boundary layer. Taken together, the
dynamical core of (42)–(45) involves two pressure variables, pb and p0, although the pressure variables are related to
each other, which leaves one pressure quantity to be associated with the single incompressibility condition in (44).
Also, recall from section IIA that all boundary-layer variables are depth-averaged and therefore are functions of x, y,
and t.



14

radiative

cooling

~1 km

Warm, dry,

subsiding air

Longwave
Reflected

solar

radiation

Sea surface

Entrainment

heat & moisture
Surface fluxes:

Solar

radiative

heating

Cloud latent heating
and evaporative cooling

and mixing

FIG. 6. Schematic diagram of the physical processes related to the atmospheric boundary layer, including interactions with
the ocean, free troposphere, and radiation. From [36]. Used with permission.

The source terms in (42)–(43) are related to mixing, drag, and dissipation. The surface drag in the boundary layer
is −(CdUp/hb)ub, where Up is a measure of turbulent velocity strength and Cd is the non-dimensional surface drag
coefficient. The source terms proportional to σb are a representation of momentum entrainment at the top of the
boundary layer. They are functions of the difference in velocity between the boundary layer (ub) and the bottom of

the free troposphere (z = 0), where the velocity uf takes the value u0 +
√
2u1 and has contributions from both the

baroclinic mode u1 and barotropic mode u0.
For the thermodynamic variable evolution in the boundary layer, two quantities are used: total water mixing ratio

qtb and equivalent potential temperature θeb. The evolution of qtb is given by

∂qtb
∂t

=
1

τe

(

qb,sat(To)− qtb
)

− σb

τt

(

qtb −
hbρb
HTρf

qf · Q̂−1
0

)

+ bq∇2qtb +DbẆb. (46)

Fig. 6 is a schematic illustration of the physical processes of the boundary layer. The first term on the right-hand
side of (46) represents surface evaporation, and it is a source of moisture for the boundary layer. The second term is
proportional to σb and represents a transfer of moisture from the boundary layer to the free troposphere via cloud-top
mixing. It is proportional to the difference in mixing ratio values between the boundary layer and free troposphere
at the top of the boundary layer (z = 0). This mixing term also introduced an associated moistening term for the
free troposphere in (38) and an associated cooling term for the free troposphere in (39), under the assumption that
boundary layer cloud liquid water will evaporate upon mixing into the free troposphere. The last two terms on the
right-hand side of (46) are a stochastic representation of turbulent advection–diffusion of moisture, as in Ref. 22 and
also used for free tropospheric moisture in (29).
The evolution of the equivalent potential temperature in the boundary layer, θeb, is given by

∂θeb
∂t

= −σb

τt

(

θeb − θ0ef
)

+
1

τs

(

To − θb
)

+
1

τe
· L̃

b
v

cp

(

qb,sat(To)− qtb
)

+
1

Cb
Frad,b, (47)

where Cb = cpρbhb is a scaled version of the specific heat capacity. The first term on the right-hand side represents
cloud-top mixing; it turns on only when a boundary layer cloud is present (i.e., when σb = 1), and it is proportional
to the difference between θeb and θ0ef , which is the free-tropospheric value of equivalent potential temperature at the

top of the boundary layer (z = 0), as defined in (19). The second term is sensible heat transfer from the ocean,
and it is proportional to the difference between ocean temperature To and boundary-layer temperature or potential
temperature θb. The third term is due to evaporation of water at the ocean surface, as also included in (46), and

where L̃b
v = (Lv/hb)(ρo/ρb) here is a scaled version of the latent heat of vaporization. The fourth term is due to

radiation and is given by

Frad,b = S(1−Afσf )(1 − asf )(1 −Abσb)asb + alfalbσT
4
f + albσT

4
o − 2albσT

4
b , (48)

with terms that are similar to the free tropospheric radiation terms in (40). In particular, note that cloud feedbacks
enter via Afσf and Abσb, and water vapor feedback enters through the absorptivities alf and alb, which were defined
in (41).
Note that the radiation scheme is formulated for simplicity in its definition, which is useful for ease of understanding

the details of the model formulation. On the other hand, the simple formulation brings complications for comparisons
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with other models, which commonly use more comprehensive radiation schemes. For example, in climate-change
experiments, it is common to change the concentration of carbon dioxide, which may be straightforward in a compre-
hensive radiation scheme, but which is less straightforward for a simplistic radiation scheme as used here, where the
concentration of carbon dioxide is represented in a hitherto unspecified way through its influence on the absorptivity
parameters alb and alf . By specifying these types of relationships between physically observed quantities and model
parameters, one could pursue in the future a more quantitative comparison between the present idealized framework
and more comprehensive model results.

D. Evolution of ocean temperature

Finally, the ocean temperature evolves according to

∂To

∂t
= − 1

τe
· L̃

o
v

co

(

qb,sat(To)− qtb
)

− 1

τs
· Cb

Co

(

To − Tb

)

+ Fmerid,o +
1

Co
Frad,o, (49)

where L̃o
v = Lv/ho is a scaled version of the latent heat of vaporization, and Co = coρoho is a scaled version of

the specific heat capacity. This type of model is sometimes called a slab ocean model since it describes the oceanic
mixed-layer as a slab that interacts thermodynamically and radiatively with the atmosphere above it. A schematic
diagram is shown in Fig. 6 to illustrate the physical processes of the ocean and the atmospheric boundary layer. The
four terms on the right-hand side of (49) correspond to the physical processes of evaporation, sensible heat transfer,
meridional heat transport, and radiation, respectively. Evaporation and sensible heat transfer typically cause a loss
of heat in the ocean, whereas radiation is typically a heat source. The meridional heat transport is defined as

Fmerid,o = Fo sin
2πx

Lx
, (50)

where Lx is the length of the domain in the x direction, and the value of parameter Fo is given in Table II. Fol-
lowing earlier work [62], the prescribed meridional heat transport Fmerid,o is used to represent the effects of oceanic
circulations in nature. The radiation term takes the form

Frad,o = S(1− asf )(1 − asb)(1 −Afσf )(1 −Abσb) + alf (1 − alb)σT
4
f + albσT

4
b − σT 4

o , (51)

and it is composed of four terms: absorption of solar radiation (∝ S), absorption of longwave radiation that was
emitted by the free troposphere (∝ σT 4

f ) and boundary layer (∝ σT 4
b ), and emission of longwave radiation (∝ σT 4

o ),
respectively. The physical interpretation of the solar radiation term, for instance, is that it represents a fraction of S
that reaches the ocean surface, after a fraction 1−Afσf is reflected by deep convective clouds in the free troposphere,
a fraction 1 − asf is absorbed by the free troposphere, a fraction 1 − Abσb is reflected by boundary layer clouds,
and a fraction 1 − asb is absorbed by the atmospheric boundary layer. Further details of the radiation scheme are
described in Ref. 36, which has been extended here in a straightforward way to include the effects of an evolving free
troposphere and deep convective clouds.

E. Numerical methods

The evolution equations of the model are (27)–(29), (42)–(45), (46), (47), and (49), and they are solved numerically
using an operator splitting method. The splitting involves three parts. The first part is the fluid dynamical core,
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which is

∂u1

∂t
− α1∇θ1 = − 1

τR
u1, (52)

∂θ1
∂t

− α2∇ ·
(

u1 −
√
2u0

)

= 0, (53)

∂qf
∂t

+∇ ·
(

Q1u1 −Q0u0

)

= 0 (54)

∂ub

∂t
+

1

ρref
∇pb = −CdUp

hb
ub, (55)

∂u0

∂t
+

1

ρref
∇p0 = 0, (56)

hb∇ · ub +HT∇ · u0 = 0, (57)

p0 = pb +
√
2θ1 +

π

2

hb

HT
θb, (58)

with qtb, θeb, and To held fixed. This fluid dynamical core is a linear, constant–coefficient system, and it can be solved
semi-analytically using the Fourier transform. It is semi-analytical rather than analytical only because a numerical
Fourier transform is used and because the eigenvalues and eigenvectors of the linear system are found numerically.
The time integration can be solved analytically without the need for a numerical integration in time. To eliminate
the constraints in (57)–(58), we use a Helmholtz decomposition to replace ub and u0 by streamfunction and velocity
potential variables. In other words, rather than using (55)–(56) directly, we use the divergence and curl of (55)–(56),
written in terms of streamfunction and velocity potential.
The second part of the splitting is the stochastic representation of turbulent advection–diffusion from (29) and (46),

∂qf
∂t

= bq∇2qf +DfẆf , (59)

∂qtb
∂t

= bq∇2qtb +DbẆb, (60)

which evolves qf and qtb while holding all other variables fixed. For this part of the evolution, a Fourier transform is
used, and (59)–(60) becomes a system of independent Ornstein–Uhlenbeck processes that can be solved analytically
[21, 63].
Lastly, the third part of the splitting includes all of the other terms in the system, which are mostly interactive

source/sink terms such as radiation, etc., and which are a system of ordinary differential equations (ODEs) at each
(x, y) location. As a numerical integration scheme, the forward Euler method was used, in line with the first-order
splitting scheme. This method offers computational efficiency, which is advantageous for the present goal of long-time
simulations of climate.
The domain size here is 10,000 km in the zonal (x) direction and 400 km in the meridional (y) direction. These

choices allow the model to represent one branch of the global Walker circulation, such as the circulation cell over
the Pacific ocean, and also to represent mesoscale convective systems as stochastic cloud clusters. Doubly periodic
boundary conditions are used in the x and y directions. Alternatively, another reasonable choice for boundary
conditions could be a channel domain with boundaries at the north and south edges of the domain. One disadvantage
of channel boundaries is that the simulation features may be influenced by the boundaries, and the region near the
boundary may need to be neglected when calculating statistics. For this reason, periodic boundary conditions can
be desirable instead, since the statistics are homogeneous in space and are not influenced by any boundaries. The
grid spacing is ∆x = ∆y = 5 km, which is chosen to be the same as in earlier studies with spatiotemporal stochastic
models for clouds [21, 22]. The time step is ∆t = 1 minute, and it is chosen to resolve all time scales involved in the
system, including wave oscillation time scales and physical parameterization time scales. As a brief summary of the
analysis of all such time scales, it is the wave oscillations that are the limiting factor, or possibly eddy diffusion if the
eddy diffusivity is large. The wave propagation speed of the first baroclinic mode (u1, θ1) is roughly cwave ≈ 50 m/s,
so that the time step should be smaller than roughly ∆x/cwave ≈ 100 s. With such a time step, to simulate 2 years
of weather and climate evolution will require roughly 106 time steps.
The initial conditions are chosen to be near a climate equilbrium state, in order to help reach a statistical equilibrium

with a minimal amount of transient spin-up time. The initial guess for a climate equilibrium state is based on an
earlier version of the model [36] which was spatially uniform. In particular, the spatially uniform component of the
initial conditions is To = 300 K, Tb = 290 K, Tf = 265 K, qf = 10 mm, and qtb = 25 mm, and other variables
are either derived from these or are set to zero. On top of this spatially uniform component is a spatially varying
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perturbation, which helps to initiate waves, cloud clusters, and other weather fluctuations. The spatially varying
perturbations were chosen with large-scale wavelengths in both the x and y directions, and with randomly selected
amplitudes. For the ocean temperature, the spatially varying perturbation was chosen to have a form that is similar
to the prescribed ocean heat transport/forcing term, Fmerid,o(x).
The computer code used here is written in the Fortran programming language, and it is parallelized using message

passing interface (MPI). It is based on an earlier parallel code that solves the stochastic heat equation or the quasi-
geostrophic (QG) equations using domain decomposition [64].

Spatiotemporal white noise terms, of the form DẆ (x, y, t) with strength parameter D, are included in (59)–(60).
For a continuum model, it is well-known that the stochastic heat equation with spatiotemporal white noise forcing
will not generate an evolution with finite variance in two spatial dimensions; as a result, to obtain an evolution with
finite variance, Ẇ (x, y, t) must be regularized or discretized. Here we discretize DẆ (x, y, t) in the natural way as

D̃Ẇij(t), which is an independent white noise at each grid point (xi, yj), and where D̃ = D/(∆x∆y)1/2. By scaling

D̃ with factors of ∆x1/2 and ∆y1/2, the covariance of D̃Ẇij(t) will approximate the covariance of DẆ (x, y, t).

III. NUMERICAL SIMULATIONS

Numerical simulations are now presented to investigate the level of realism in the idealized climate system and
changes under global warming. The standard parameter values used here are listed above in Tables I–IV, and other
aspects of the setup of the simulations were described above in section II E.

FIG. 7. The mean climate state (i.e., time-averaged quantities) from the simulation with standard parameters. (A) Ocean
temperature. (B) Shallow cloud fraction, from boundary-layer cloud indicator, σb. (C) Deep convective cloud fraction, from
free-tropospheric cloud indicator, σf . (D) Column water vapor, from summation of qtb and qf .

The mean climate state is illustrated in Fig. 7. The simulation was run for 10 years, and the first 7 years involve
a transient spin-up period, followed by the final 3 years that are in an approximate statistical equilibrium. By
calculating time averages over the final 3 years, the mean climate state in Fig. 7 is obtained. First, in Fig. 7A, the
ocean temperature is shown, and it illustrates the warm pool in the western side of the domain and the cold pool in
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the eastern side of the domain, which arises from the model’s meridional ocean heat transport and is an idealization
of the sea surface temperature distribution of the tropical/subtropical Pacific Ocean. The other features of the mean
climate state are also in the form of idealizations of the tropical/subtropical Pacific Ocean climate, with a western
warm pool region that has excess moisture and deep convection, and an eastern cold pool region that has a dearth of
moisture and deep convection. In more detail, some of the values are in reasonable agreement with nature, such as
warm-pool ocean temperatures of roughly 300 K and column water vapor of roughly 65 mm (see, e.g., Ref. 55). On
the other hand, some values are not in agreement with nature, such as the large value for shallow cloud fraction1 of
0.8 in the warm pool region, and they could indicate aspects where parameter changes or parameterization changes
would be beneficial. For shallow cloud fraction in Fig. 7B, the eastern cold pool region has a cloud fraction of roughly
0.95 and is an idealization of a stratocumulus cloud deck. In summary, the simulation displays some of the basic
features of the tropical/subtropical Pacific Ocean climate, in idealized form.
Cloud structures are illustrated in white color in Fig. 8. Two example snapshots are shown, at times of 8 years and

10 years, for each of the two cloud indicators: the boundary-layer cloud indicator, σb, in panels A and B, and the
free-tropospheric (deep) cloud indicator, σf , in panels C and D. In order to fit the plots on the page in a way that
illustrates the cloud structures, the domain has been rotated counterclockwise by 90◦. As a result, the top of the page
is the location of the eastern cold pool region, and the bottom of the page is the location of the western warm pool
region.
The shallow clouds cover almost the entire eastern cold pool region (top of the page) in Fig. 8A,B. This is an

idealization of a stratocumulus cloud deck, as in earlier versions of spatiotemporal stochastic cloud models for shallow
clouds [22]. The shallow clouds dissipate and break up over many portions of the western warm pool (bottom of
the page), where many regions are black in color, indicative of the ocean surface and the absence of clouds. The
shallow cloud fraction in the warm pool region is larger here in this idealized climate system than in nature, as
mentioned above along with a caveat about comparisons with observational analyses, and the cloud fraction could
change depending on various factors. Overall, these snapshots illustrate that the model framework is able to produce
spatiotemporal variations in shallow clouds, and also in the regional extents of shallow cloud coverage.
Cloud clusters of various sizes can be seen in the deep convective cloud indicator σf in Fig. 8C,D. While deep

convection is most active over the western warm pool region (bottom half of page), deep convective clouds can occur
intermittently in the eastern cold pool region as well (top half of the page), although they are rare enough that the
average deep convective cloud fraction is nearly zero over the eastern cold pool (Fig. 7C). The sizes of the cloud
clusters can vary substantially, as in earlier versions of spatiotemporal stochastic cloud models [21] and observational
data [65]. Many clusters have small length scales of roughly O(10) km, whereas a few clusters have large length
scales of roughly O(100) km and extend over a large portion of the 400-km span of the domain in the meridional
direction. This ability to represent cloud clusters is one of the advantageous features of the present model framework,
in comparison to other models, such as traditional GCMs, that require a larger grid spacing to simulate climate over
planetary scales.
The interannual variability is illustrated by the space–time evolution plot in Fig. 9. The same model variables as in

Fig. 7 are plotted, and they are plotted for the last two years of the simulation, with all variables averaged over the
meridional (y) direction. From this plot, one can see that the climate state is not a fixed, steady equilibrium state but
a statistical equilibrium with variability and dynamic evolution. For instance, in panel A, the ocean temperature To

has fluctuations in time, including fluctuations within the warm-pool region in the western side of the domain. The
other variables (in panels A, B, and C) also have substantial fluctuations, including fluctuations in cloud fraction that
cover the full range of values from 0 to 1.
Next, a climate-change experiment is performed to investigate the sensitivity of temperature and clouds to an

increase of carbon dioxide content. We set up a scenario of enhanced carbon dioxide by increasing the longwave ab-
sorptivity of both the boundary layer and free troposphere, following Ref. 36. Specifically, the absorptivity parameters
a0lb and a0lf were increased by a factor of 1.2 to bring them to their new values of a0lb = 0.288 and a0lf = 0.48. All other
parameters were left unchanged, and a new simulation was run with the same setup as the standard simulation.
In the climate-change simulation, the mean climate state has changed in several ways, as illustrated in Fig. 10.

Broadly speaking, figure panels A and C show that with increased carbon dioxide concentration, we would have a
warmer ocean and more moisture in the warm-pool region, in comparison to the standard simulation from Fig. 7.
For instance, the ocean temperature over the warm pool increased from 300 K to 304 K, and the maximum value of
column water vapor has increased from roughly 65 to roughly 70 mm.
The deep convection also undergoes substantial changes in the climate-change simulation. In Fig. 10C a larger

cloud fraction of 0.4 is seen over the warm pool, in comparison to 0.3 in the standard simulation, which indicates

1 Note that the model’s cloud indicator quantity σb may differ from the shallow cloud or low cloud indicators that are often presented in

analyses of observational data, since σb could be activated here even when a deep convective cloud is simultaneously present, which is

a scenario that would be labeled as deep convective rather than low cloud in some observational analyses. Hence σb here could provide

an overestimate of low cloud amount.
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FIG. 8. Snapshots of (A,B) shallow clouds and (C,D) deep convective clouds. Two snapshots are shown for each quantity, one
at the time of 8 years and one at the time of 10 years. White color indicates the presence of cloud, and black color indicates
the absence of cloud. The domain has been rotated counterclockwise by 90◦ to fit on the page, and the western warm pool
region appears in the bottom and the eastern cold pool region appears on the top.
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FIG. 9. Space-and-time evolution plot of model variables (meridionally-averaged) from the simulation with standard parameters
during the last two years: (A) Ocean temperature. (B) Shallow cloud fraction. (C) Deep convective cloud fraction. (D) Total
column water vapor.

that deep convection is more common. Furthermore, the region of deep convection has expanded significantly in
its area; in the climate-change simulation in Fig. 10C, the region where time-averaged σf > 0.3 is roughly 40%
of the domain, in comparison to roughly 10 to 20% of the domain in the standard simulation in Fig. 7C. While
the deep convective patterns change, the circulation did not show any substantial change between the standard and
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FIG. 10. The mean climate state (i.e., time-averaged quantities), as in Fig. 7, except from the climate-change simulation with
enhanced longwave absorptivity parameters a0

lb = 0.288 and a0

lf = 0.48. The climate state here has an expanded warm pool
region in the western part of the domain, associated with more deep convection (panel C) and more moisture (panel D) in
comparison to the standard simulation in Fig. 7.

climate-change scenarios, which is consistent with the mixture of evidence from nature of small or inconclusive changes
[13, 66, 67]. Another interesting change is that deep convection is now forming everywhere in the domain in the
climate-change simulation, since the time-averaged σf is greater than 0.1 essentially everywhere in Fig. 10C, whereas
a region of essentially zero deep convection could be seen within the cold pool region in Fig. 7C in the standard
simulation.
Meridional averages—i.e., averages over the y coordinate—are shown in Fig. 11 for comparison of the mean climate

states of both the standard parameter simulation and climate-change simulation. In Fig. 11A and D, one can see that
the ocean is warmer and the atmosphere is more moist in the climate-change scenario. Also, the enhancement of deep
convection over both the warm pool and cold pool is shown in Fig. 11B, while the shallow cloud fraction decreased
globally at the same time. In the climate-change scenario, the shallow cloud fraction decreased, which decreases the
cooling effect of shallow clouds (by allowing more solar radiation to reach the boundary layer), and is consistent with
a warming of the boundary layer and ocean temperature.
As another comparison, Fig. 12 shows time series of domain-averaged quantities from both the standard simulation

and the climate-change simulation. The domain-averaged quantities shown are (A) ocean temperature, (B) boundary-
layer temperature, (C) free-tropospheric temperature, (D) shallow cloud fraction, and (E) deep convective cloud
fraction. The most substantial difference between the two simulations is a large global warming in the ocean and
boundary layer temperatures. The free-tropospheric temperature is slightly colder in the climate-change simulation,
although the difference is small; it could be due to the simplistic treatment here of radiation and in particular cloud
feedbacks and would be interesting to investigate further in the future. Deep convection is more active, as also
mentioned above, and the shallow cloud fraction, on the other hand, has decreased. Hence the model simulations
show some of the basic feedbacks involved in climate change. In addition, the model framework includes substantial
fluctuations in time, and the system is not in a fixed equilibrium state but in a statistical equilbrium.
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FIG. 11. Mean climate states in the standard simulation versus climate-change scenario, presented as functions of the zonal
coordinate x after a time-average and meridional-average. (A) ocean temperature, (B) shallow cloud fraction, (C) deep cloud
fraciton, (D) column water vapor.
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FIG. 13. Sensitive study involving the two cloud albedo parameters Ab and Af . Statistics of model variables are time-
averaged and meridionally-averaged. Solid lines show the simulation result with standard parameters, dashed lines show results
under modification ±∆Ab of the shallow cloud albedo, and dash–dot lines show results under modification ±∆Af of the deep
convective cloud albedo. The adjustment values are ∆Ab = ∆Af = 0.05.

Finally, we explore parameter space and assess the sensitivity to the two cloud albedos, Ab and Af . To do so,
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we run several simulations under the standard parameters, except with modified values of the shallow cloud albedo
Ab ±∆Ab and deep convective albedo Af ±∆Af , with adjustment values of ∆Ab and ∆Af both equal to 0.05. For
each single simulation experiment, we only modified one of these parameters. All simulations were run for 3 years
with the first year to reach an approximate statistical equilibrium and the last 2 years to collect time-averaged data.
The time-averaged data were further meridionally-averaged and are shown in Fig. 13. The first three panels show the
influence on temperatures, panel D shows the change of moisture, while the last two panels E and F present changes
in the cloud fractions. From this plot, one can see that the broad features are essentially the same in the standard
case and the sensitivity studies, in terms of the positive versus negative anomalies in the western versus eastern sides
of the domain (or vice versa). One can also see some differences arising, such as a greater sensitivity to shallow cloud
albedo perturbation ∆Ab rather than deep cloud albedo perturbation ∆Af , and a greater sensitivity to the positive
perturbation +∆Ab than the negative perturbation −∆Ab in the eastern half of the domain. The greater sensitivity to
shallow cloud albedo is reminiscent of studies that have identified the key role of shallow clouds in climate sensitivity
and uncertainties in climate models [6, 7].
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IV. CONCLUDING DISCUSSION

Amodeling framework was investigated here for the possibility of idealized climate simulations with individual clouds
and stratocumulus clouds on planetary-scale domains. To achieve computational efficiency, the clouds are modeled
stochastically, and simplified vertical structures are assumed to reduce the number of gridded spatial dimensions
from three to two. The basic structure of the model is a combination of a large-scale fluid dynamics model that
resolves weather/climate variability but not individual cloud circulations, and spatiotemporal stochastic models for
smaller-scale turbulent advection–diffusion of water vapor and clouds.
Numerical simulations were presented to test whether an idealized climate state can be generated with evolving

and interactive clouds. The basic regional differences were seen in different cloud types, including a warm pool region
with a higher level of deep convection and a cold pool region with a lower level of deep convection and an expansive
stratocumulus cloud deck. Individual clouds can form and decay and have different lifetimes and sizes, and the climate
state is not a fixed equilibrium state but a dynamic evolution in a statistical equilibrium.
It would be interesting in the future to consider additional processes in the model, to potentially bring in an even

higher level of realism. For example, upper tropospheric clouds such as stratiform or cirrus or anvil clouds have their
own distinctive radiative effects which can influence the climate, and they were not included here but could be added
in the future. In the boundary layer as well as the free troposphere, nonlinear advection of moisture was not included
here but could be added for further realism. Also, by including a more complex treatment of deep convection or
ocean dynamics, it may be possible to include additional aspects of climate variability such as convectively coupled
equatorial waves (CCEWs), the Madden–Julian oscillation (MJO), and the El Niño–Southern Oscillation (ENSO).
A benefit of simplified models is that it is relatively easy for different physical processes to be included, excluded,

or modified, and the impact can be measured. In the present paper, several sensitivities were explored, including
changes to cloud albedo and their impact on cloud–radiative feedbacks. In the different sensitivity studies here,
the climate-scale circulations showed minimal sensitivity, and it would be interesting in the future to explore their
sensitivity to other processes. For instance, in addition to the other processes mentioned in the previous paragraph,
it would also be interesting to consider different formulations of the stochastic clouds, such as stochastic entrainment
or additional cloud types.
Given that the simulations displayed some of the basic features of climate-change scenarios, it would also be

interesting in the future to investigate questions about individual clouds, their statistics, and global warming. For
example, in this model framework, it is not only bulk averaged cloud properties (such as area fractions) that are
available, but also individual cloud properties such as lifetimes and areas. It is then possible to examine cloud–
radiative feedback processes related to these individual cloud properties. As another example, extreme events can
be quantified in this model framework in terms of cloud cluster areas or rain event sizes. It would be interesting to
investigate changes in extreme events in this model under different global warming scenarios.
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