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Abstract
When particle-laden freshwater is placed above clear saltwater, double-diffusive sedimentation can

arise. Navier-Stokes direct numerical simulations by Burns and Meiburg showed that this process

can be dominated by either Rayleigh-Taylor or double-diffusive fingering instabilities. Based on two-

dimensional simulations, those authors identify a single dimensionless parameter that can be em-

ployed to distinguish between these regimes. Here we develop a high-performance semi-Lagrangian

computational approach that enables us to extend these high Schmidt number simulations to three

dimensions, and to confirm the validity of their proposed scaling law for three-dimensional flows.

I. INTRODUCTION

When a less dense layer of warm and salty water is placed above a denser layer of cold

and less salty water, the unstable stratification of the more slowly diffusing salt can trigger

double-diffusive fingering instabilities [1, 2]. An interesting variation of this problem concerns

the situation when the more slowly diffusing scalar has a settling velocity associated with

it, such as when particle-laden freshwater overlies clear saltwater. These conditions may

give rise to double-diffusive sedimentation [3–10], which can strongly alter the effective

settling rate of the sediment. This situation was addressed in the linear stability analyses

by [11, 12] and in the subsequent fully nonlinear simulations by the same groups of authors

[13, 14]. For constant gradient base states, [15, 16] furthermore show that the presence of

the settling velocity can trigger an entirely new instability mode along with a secondary

layering instability, an issue that was addressed in further detail by the recent investigation

of [17].

Burns and Meiburg [14] use three-dimensional Navier-Stokes simulations at a diffusivity

ratio of 25 to demonstrate the emergence of an interfacial ‘nose region’ containing both salt

and sediment, and whose density can exceed that of the clear salt water below, cf. fig. 1.

Hence, there is the potential for Rayleigh-Taylor instabilities to evolve at the lower boundary

of the nose region. Depending on the ratio of the nose height H and the effective salinity

interface thickness ls, the authors argue that the flow is dominated by double-diffusive

fingering when H/ls < O (0.1), and by Rayleigh-Taylor instabilities when H/ls > O (0.1).
∗ meiburg@engineering.ucsb.edu
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FIG. 1: Particle-laden freshwater above clear saltwater: (a) Problem setup, governing

equations and boundary conditions; (b) Sketch of density profiles showing the particle

(dash-dotted line), salinity (dashed line) and total density (solid line). The particle settling

velocity can result in the formation of a nose region with a maximum total density.

Unfortunately, numerical resolution requirements limited these three-dimensional simula-

tions to unphysically low values of the Schmidt number Sc = ν0/κs, which reflects the ratio

of the kinematic viscosity ν0 to the diffusivity of salt κs. The three-dimensional simulations

of [14] employed values of Sc = 0.7 and 7, respectively, as opposed to a realistic value of

700 for salt in water. To access a larger but still somewhat low Schmidt number of 70,

the authors resorted to two-dimensional simulations. Results from these ensemble-averaged

simulations suggest that the ratio H/ls is a linear function of a single dimensionless group-

ing that can be interpreted as the ratio of the rates at which sediment flows into and out

of the nose region. However, because the proposed scaling law was obtained on the basis

of two-dimensional simulations, its validity for three-dimensional flows at realistic Schmidt

numbers remains an open question.

To address this issue, the present investigation develops a novel computational strategy

based on a semi-Lagrangian approach that allows for the efficient use of hardwarde acceler-

ators, which enables us to extend the fully three-dimensional simulations to more realistic

Schmidt number values. After a brief review of the physical problem, we will introduce

the semi-Lagrangian computational approach based on the vorticity-velocity formulation of
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the flow equations. The implementation of this approach on hardware accelerators such

as GPUs (Graphics Processing Units) will be discussed, along with performance data that

demonstrate its ability to simulate realistic double-diffusive flows at very moderate cost.

Subsequently, we will focus on how the physics of the three-dimensional double-diffusive

sedimentation process changes as we increase the Schmidt number.

The results demonstrate that the scaling law proposed by [14] based on two-dimensional

simulations also hold for three-dimensional flows, so that a single dimensionless parameter

can predict whether a given flow will be dominated by double-diffusive fingering or by

Rayleigh-Taylor instabilities.

II. PHYSICAL PROBLEM

The problem set-up is identical to that of Burns and Meiburg [14], in that we consider

a less dense layer of particle-laden fresh water above a clear, denser later of salt water, as

shown in fig. 1. Here x and y refer to the horizontal directions, whereas z indicates the

vertical coordinate. Initially, the interface between the two layers is located at z = 0.

We assume that the overall density ρ(x, t) depends linearly on salinity S and sediment

concentration C, with associated density expansion coefficients α and γ, respectively. The

sediment consists of small monodisperse particles with negligible inertia, which are convected

by the superposition of the fluid velocity u(x, t) and the Stokes settling velocity Vst. The

current investigation aims to explore situations where the effective sediment diffusivity κc is

substantially smaller than that of the salinity κs. We invoke the Boussinesq approximation,

and consequently obtain the set of governing equations as

ρ = ρ0 + ρ′ = ρ0 (1 + αS + γC) ,

∇ · u = 0 ,

ρ0

[
∂u

∂t
+ (u · ∇)u

]
= ν0∆u−∇P + ρg ,

∂S

∂t
+ (u · ∇)S = κs∆S ,

∂C

∂t
+ (u · ∇)C − Vst

∂C

∂z
= κc∆C .

(1a)

(1b)

(1c)

(1d)

(1e)

Here, ρ0 is a constant that indicates the density of clear freshwater and t represents time.
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We follow the approach of Burns and Meiburg [14] to render the above equations nondi-

mensional. By taking the curl of the momentum equation, we thus obtain the set of governing

dimensionless equations in the form

ρ′ = RsS + C ,

ω = ∇× u ,

∇ · u = 0 ,

∂ω

∂t
+ (u · ∇)ω = ∆ω + (ω · ∇)u−∇× ρ′êz ,

∂S

∂t
+ (u · ∇)S =

1

Sc
∆S ,

∂C

∂t
+ (u · ∇)C − Vp

∂C

∂z
=

1

τSc
∆C ,

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

where ω(x, t) denotes the vorticity.

The governing dimensionless parameters are given as

Dimensionless parameters Terminology

Rs = αSmax/γCmax Stability ratio

τ = κs/κc Diffusivity ratio

Sc = ν0/κs Schmidt number

Vp = Vst/(ν0g′)
1
3 Dimensionless settling velocity

g′ = γCmaxg Reduced gravity

We consider a three-dimensional computational domain of size Ω = [0, 128] × [0, 128] ×

[−128, 64] in the x-, y- and z-directions. Periodic boundary conditions are applied in the

horizontal directions, along with slip walls at the top and bottom boundaries, Γt and Γb.

We impose vanishing wall-normal derivatives of the salinity at those walls, along with a no-

flux condition for the sediment concentration at the top wall and a vanishing wall-normal

derivative at the bottom wall. We remark that the simulations always terminate before any

sediment plumes encounter the bottom wall.

The flow is at rest initially, with salinity and sediment concentration fields in the form of

smooth error function profiles as shown on horizontally averaged densities in fig. 1.
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Initial fields are given as

u0(x, y, z) = 0 ,

ω0(x, y, z) = 0 ,

C0(x, y, z) =
1

2

[
1 + erf

(
z − δ(x, y)

l0

)]
,

S0(x, y, z) = 1− C0(x, y, z) .

(3a)

(3b)

(3c)

(3d)

We choose the initial profile thickness as l0 = 1.5, which represents less than one per cent

of the total domain height. A small horizontal random perturbation δ(x, y) of amplitude

±l0/20 is imposed on the interface location, in order to trigger the growth of unstable modes.

Only stability ratios Rs > 1 are considered, so that the system is initially gravitationally

stable.

III. SEMI-LAGRANGIAN COMPUTATIONAL APPROACH

The computational approach is based on the velocity-vorticity form of the Navier-Stokes

equations in the Boussinesq approximation, and a discretization of the advection-diffusion

equations for the vorticity, salinity and sediment concentration fields by a semi-Lagrangian

particle method, as will be described in the following.

Particle methods for advective systems discretize the advected quantities via Lagrangian

computational elements, referred to as ‘particles’ (not to be confused with the sediment

particles) that move with their respective local velocities [18]. The use of particle methods

for simulating variable-density flows dates back to at least [19], who considered the case of a

vortex sheet coinciding with a density jump. To handle general flows while ensuring accuracy

at all times, the Lagrangian particles can be remeshed on a regular grid via interpolation

kernels with strong conservation properties [20]. By remeshing at each time step, we obtain

a forward, conservative, semi-Lagrangian method [21, 22]. These methods were applied

to various flows including porous media [23, 24]. In the present investigation we employ

particles to solve equations (2d), (2e) and (2f), where the quantities carried by the particles

are ω, S and C. If V = (ω, S, C), one advective step can be written as

Vn+1
i =

∑
j

Vnj Λ

(
xi − xn+1

j

∆x

)
.
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Here the superscripts n and n + 1 refer to two successive time steps, xj,Vj respectively

denote the grid points along with the values of V at those points, xn+1
j is the location at

time n+ 1 of the particle initialized at xj at time n, and Λ denotes the interpolation kernel

used to remesh the particles. The regular Cartesian grid with mesh size ∆x on which the

particles are remeshed is also used to compute at the end of each time step the velocity from

the vorticity, and to calculate vortex stretching, diffusion and the right hand side of (2d).

Following [21], we use a direction-by-direction splitting for the advection of particles and

the following one-dimensional formula for the remeshing kernel

Λ(x) =



1− 5

4
|x|2 − 35

12
|x|3 +

21

4
|x|4 − 25

12
|x|5 if 0 ≤ |x| < 1

−4 +
75

4
|x| − 245

8
|x|2 +

545

24
|x|3 − 63

8
|x|4 +

25

24
|x|5 if 1 ≤ |x| < 2

18− 153

4
|x|+ 255

8
|x|2 − 313

24
|x|3 +

21

8
|x|4 − 5

24
|x|5 if 2 ≤ |x| < 3

0 if |x| ≥ 3

Lagrangian particle advection is performed by an explicit fourth order Runge-Kutta

method combined with trilinear velocity interpolation, while remeshing is carried out with

the formula given above. This accounts for the advective part of (2d), (2e) and (2f). The

stretching term in the right hand side of equation (2d) is discretized by fourth order explicit

central finite differences. The diffusion terms present on the right hand sides of equa-

tions (2d), (2e) and (2f) are solved through an unconditionally stable Fourier-based spectral

method adapted to each individual boundary conditions. A similar spectral solver is used

to recover vorticity from velocity at the end of each iteration.

For performance reasons, the directional splitting approach used in the semi-Lagrangian

particle method to deal with the advection part of the system is further generalized to

all finite-difference based operators for vortex stretching and the buoyancy term. These

operators can be readily split directionally, as they do not introduce spatial cross-derivatives.

Between the treatments of the individual directions, the data are rearranged in memory so

that the next direction to be computed becomes contiguous in memory. Data permutation

improves the achieved memory bandwidth of the numerical routines and is particularly

beneficial when implementing numerical methods with low arithmetic intensity [25, 26].
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FIG. 2: Comparison of horizontally averaged interface location z• (left) and thickness l•

(right), between the present study (solid lines) and the investigation of [14] (dashed lines).

Narrow dotted lines represent (a) the location z = −Vp t moving with the Stokes settling

velocity; and (b) the least-squares fit of the interface thickness to a κ t1/2 diffusive behavior.

IV. IMPLEMENTATION ON HARDWARE ACCELERATORS, PERFORMANCE

DATA AND VALIDATION

GPU implementations of vortex particle methods for 2D flow simulations were first pro-

posed in [27–29]. The present numerical method was implemented within a Python-based

library dedicated to 3D flow simulations with semi-Lagrangian particle methods, on various

types of accelerators such as GPUs [30]. Within this library, an iteration of the solver is

described as a sequence of discretized mathematical operators that are solved successively.

Given a single compute node, each operator can run either on the CPU or on an available

coprocessor, so that multiple operators can run concurrently in a hybrid CPU-GPU fashion.

This sequence of operators is obtained from the topological sort of a direct acyclic graph

of operators described by the user [31]. Here we use a single GPU configuration so that

each iteration of the solver is driven by the CPU, while the computations take place on the

GPU by following the OpenCL standard [32]. All variables such as velocity u, vorticity ω,

salinity S and sediment concentration C are discretized on Cartesian grids.

Our library deploys an automatic performance-tuning strategy for most operators to en-

sure performance portability [33]. Spectral operators are implemented by using the clFFT

library, which makes use of its own auto-tuning techniques. Nonperiodic boundary condi-

tions are handled via sine and cosine transforms, implemented on top of clFFT by using
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efficient O (N) input pre-processing and output post-processing capabilities of the library.

On a GPU with 32GB of dedicated memory, the above implementation is able to solve

single-precision, two-dimensional problems with discretizations up to 32768x16384 (536M

grid elements), and three-dimensional configurations up to 1537x512x512 (402M grid ele-

ments). Those three-dimensional simulations take 10.9s per time step on a single Nvidia

Tesla V100 GPU. By comparison, a quad socket Intel Xeon E7-8860 v4 CPU-only plat-

form needs 24 minutes per time step for the same OpenCL implementation coupled to

the Intel MKL-FFT library for the spectral transforms and memory mapping. Three-

dimensional problems addressed below typically require about 1500 time steps, which take

around 5 hours in our single GPU configuration.

Semi-Lagrangian particle methods have been validated in [34, 35] for passive scalar trans-

port at high Sc-values, and in [31] for the classical periodic, incompressible Taylor-Green

vortex benchmark at Re = 1, 600. To demonstrate that the solver captures the sedimenta-

tion dynamics of interest here, fig. 2 gives a comparison of the flow statistics with results

obtained by [14]. In this figure horizontally averaged flow profiles and interface locations

and thickness are computed following [14]. Horizontally averaged profiles are computed by

integrating each scalar field of interest •(x, t) in the horizontal plane

〈•〉 (z, t) =

∫ xmax

xmin

∫ ymax

ymin

•(x, y, z, t)dxdy .

We can then track the scalar interfaces for the salinity and sediment concentration fields

as follows. Since the error function solves the laminar diffusion equation with constant

diffusivity, we compute the least-squares fit of the above horizontally averaged profiles to an

error function. For a given time t,

1. We fit 〈C〉 (z, t) against 〈C〉fit (z, t) = 0.5

[
1 + erf

(
z − zc(t)
lc(t)

)]
2. We fit 〈S〉 (z, t) against 〈S〉fit (z, t) = 0.5

[
1− erf

(
z − zs(t)
ls(t)

)]
This gives zc, lc, zs and ls as functions of time, with the interface position z• defined as the

location where 〈•〉fit = 0.5, and the interface thickness given by l•. In our implementation

this fit is performed every few time steps and takes as input the last known interface location

z∗• and thickness l∗•, with the initial values set to zc = zs = 0 and lc = ls = l0.

Figure 2 indicates that the temporal evolution of these four quantities agrees well with

the results of [14]. Further validation results are discussed in [31].
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V. RESULTS

For purely double-diffusive fingering instabilities we would expect to observe a nearly

symmetric flow pattern, with slender, low-salinity, clear fluid fingers rising upwards, and

corresponding narrow, salty, particle-laden fingers descending from the interfacial region.

On the other hand, Rayleigh-Taylor instabilities centered at the density overhang associated

with the lower nose boundary should result in strong, downward moving plumes, while any

upward propagating plumes should be capped by the stable density stratification at the

upper nose boundary. Figure 3 shows the temporal evolution of the C = 0.5 contour of the

sediment concentration field, for Vp = 0.04, Rs = 2, and τ = 25. Results are presented for

Schmidt numbers Sc = 3.5, 7, 14 and 28 (from left to right), and for times t = 100, 125

and 150 (from top to bottom). For the lowest Sc-value (left column) these figures indeed

show slender, up- and downward moving fingers of roughly equal strengths, indicative of a

double-diffusive fingering. At the largest value of Sc (right column), on the other hand, we

observe plumes moving only in the downward direction. The concentration contour exhibits a

nearly flat top, where upward plume motion is suppressed by the stable density stratification

associated with the upper boundary of the nose region. This confirms the scenario that we

had outlined above, in that the flow transitions from being primarily double-diffusive at low

Sc-values to being dominated by Rayleigh-Taylor instabilities at large values of Sc.

A detailed analysis of these three-dimensional simulation data demonstrates that the

horizontally averaged salinity and sediment concentration profiles can be approximated quite

well by error function profiles. We take the inflection point of the error function profile as the

effective interface location, and the width of the error function profile as the effective interface

thickness. In this way, we can evaluate effective interface locations and the thicknesses for

salinity and sediment concentration as functions of time. Similar to the two-dimensional

simulation profiles in fig. 2, the profiles from the three-dimensional simulations indicate that

the center of the salinity interface rises upwards, while that of the sediment concentration

descends, so that an effective nose region forms that contains both salt and sediment. The

error function fits allow us to evaluate both the nose height H = zs − zc and the thickness

ls of the salinity interface as functions of time. While both H and ls individually grow with

time, after an initial transient phase the ratio H/ls tends towards a constant value that

depends on the governing dimensionless parameters of the flow.
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        Sc = 3.5                  Sc = 7                 Sc = 14                Sc = 28       

t=100

t=125

t=150

FIG. 3: C(x, y, z) = 0.5 contours of the sediment concentration, for Schmidt numbers 3.5,

7, 14, 28 (left to right) and times 100, 125, 150 (top to bottom). Vp = 0.04, Rs = 2, τ = 25.

Fig. 4 compares results for this ratio H/ls of the nose height to the salinity interface

thickness, as a function of the dimensionless grouping Vp Sc1/2/Rs. Data from the present,

three-dimensional simulations (plus-signs) are seen to closely match the two-dimensional

results of [14]. This confirms that the scaling law proposed by those authors based on

two-dimensional simulations remain valid for fully three-dimensional flows.

VI. CONCLUSION

We have developed a semi-Lagrangian computational approach suitable for being effi-

ciently implemented on hardware accelerators. In this way, we were able to conduct fully

resolved three-dimensional simulations of double-diffusive sedimentation at high Schmidt

numbers. Consistent with the earlier two-dimensional results of [14], the present three-

dimensional simulations demonstrate the emergence of an interfacial nose region that con-

11



FIG. 4: Ratio H/ls of nose height to salinity interface thickness as function of Vp Sc1/2/Rs.

The two-dimensional results of BE 2015 [14] (◦, ���, MMM and 6 symbols) closely match the

present, three-dimensional results (:) for Sc ∈ {3.5,7,14,28}, Vp = 0.04, Rs = 2, τ = 25.

tains both salt and sediment. While the height H of the nose region and the thickness ls

of the salinity interface individually grow with time, the ratio H/ls approaches a constant

value that depends only on the governing dimensionless parameters. Depending on whether

this ratio is smaller or larger than O(0.1), the sedimentation process is dominated either by

double-diffusive fingering or by Rayleigh-Taylor instabilities. The scaling law proposed by

[14] for H/ls as function of Vp Sc1/2/Rs on the basis of two-dimensional simulations, is seen

to remain valid for three-dimensional flows.

As a next step, we plan to implement the semi-Lagrangian computational approach on

hardware platforms with multiple GPUs that have recently become widely available. This

will allow us to investigate considerably larger systems involving stratified turbulence and

double-diffusive phenomena at increasingly realistic Schmidt numbers, in the context of

applications in oceanography, limnology and astrophysics.
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