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We present theory and experiments demonstrating the existence of invariant manifolds that im-
pede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent
in a hyperbolic fluid flow that block the swimming of both smooth-swimming and run-and-tumble
Bacillus subtilis bacteria. We identify key phase-space structures, called swimming invariant mani-
folds (SwIMs), that serve as separatrices between different regions of long-time swimmer behavior.
When projected into xy-space, the edges of the SwIMs act as one-way barriers, consistent with the
experiments.

Dynamically defined transport barriers [1, 2] impede
the motion of passive particles in a wide range of fluids,
from microbiological and microfluidic flows to oceanic,
atmospheric, and stellar flows. For steady and time-
periodic flows, transport barriers are identified with
invariant manifolds of fixed points and Kolmogorov-
Arnold-Moser surfaces [3–5]. More recently, these ideas
have been extended to aperiodic and turbulent flows [6–
10]. However, in many systems of fundamental and prac-
tical importance, the tracers are active rather than pas-
sive. Examples include propagating chemical reaction
fronts [11, 12], aquatic vessels [13], and artificial and bio-
logical microswimmers [14, 15], including Janus particles
[16, 17] and flagellated bacteria [18, 19].

Invariant manifold theory has previously been ex-
tended to incorporate propagating reaction fronts in a
flow [20–24]. This theory identifies analogs of passive
transport barriers, called burning invariant manifolds
(BIMs), which are one-way barriers to front propagation.
Experiments on front propagation in driven fluid flows
[25–28] demonstrate the physical significance of these
theories. Despite this success with reaction fronts, a com-
parable understanding for more general active systems is
lacking.

This Letter presents theory and supporting experi-
ments for a foundational and universal invariant manifold
framework that describes barriers for active tracers in
laminar fluid flows. We focus on self-propelled particles,
i.e. swimmers, and propose the existence of swimming in-
variant manifolds (SwIMs) that (i) act as absolute barri-
ers blocking the motion of smooth swimmers in position-
orientation space; (ii) project to one-way barriers in po-
sition space; and (iii) provide insight into the motion
of non-smooth (e.g. tumbling) swimmers. We also find
that (iv) one-way barriers exist even for tumbling swim-
mers, and these barriers turn out to be identical to the
BIMs that were previously shown to be barriers for reac-
tion fronts [20]. Our experiments use smooth-swimming
and run-and-tumble strains of Bacillus subtilis bacteria
(Fig. 1a inset) as active tracers in a laminar, hyperbolic
flow in a microfluidic cross-channel (Fig. 1a). Absent
Brownian motion, passive tracers in a linear hyperbolic
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Figure 1. (a) Cross-flow experiment; data is obtained in the
red square. Inset: 100X image of a fluorescent B. subtilis.
(b) SFPs and SwIM edges (in red/blue) of the hyperbolic
flow; α > 0. Arrows indicate the direction of n̂ (and the
blocking direction) for the equilibria and the SwIM edges.
Streamlines of the flow are plotted in black. (c) Stable SwIMs
(blue surfaces) of the qin

± SFPs for α = 1. The black (gray)
planes are stable (unstable) invariant surfaces. The yellow
curves are heteroclinic orbits connecting pairs of SFPs. (d)
Constant y cross-section of the swimmer phase space. The
blue orbits are cross-sections of the stable SwIMs.

flow cannot traverse the passive invariant manifolds (sep-
aratrices) forming a cross along the channel centerlines
(dashed lines in Fig. 1b), whereas self-propelled tracers
can. Nevertheless, we show that barriers to active par-
ticles still exist. We also present theory extending our
analysis to the mixing of swimmers in a vortex flow.

In our model, an ellipsoidal swimmer in two dimensions
(2D) is described by q = (r, n̂), comprising its position
r = (x, y) and swimming direction n̂ = (cos θ, sin θ). Ab-
sent noise and active torques, a swimmer with a fixed
swimming speed v0 in a fluid velocity field u(r) obeys
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[14, 15, 29, 30]

ṙ = u + v0n̂, θ̇ =
ωz

2
+ α n̂⊥ ·E · n̂, (1)

where ωz = ẑ · (∇ × u) is the vorticity, n̂⊥ =
(− sin θ, cos θ), and E = (∇u + ∇uT)/2 is the symmet-
ric rate-of-strain tensor. The shape parameter α equals
(γ2 − 1)/(γ2 + 1), where γ is the aspect ratio of the el-
lipse; α varies from −1 to 1, where α = 0 is a circle,
and |α| = 1 is a rod. Positive (negative) values of α
correspond to swimming parallel (perpendicular) to the
major axis. The case α = −1 coincides with the dynam-
ics of a propagating front element [20] and the optimal
(least-time) swimmer trajectories [13, 31].

Equation (1) with v0 = 0 models passive transport.
The linear hyperbolic flow, u = (Ax,−Ay) has a passive
saddle fixed point at r = 0. The y- and x-axes are the
stable and unstable manifolds, respectively, defined as
invariant sets whose points approach the passive fixed
point forwards and backwards in time. Passive particles
cannot cross these passive manifolds (Fig. 1b).

For swimmers in the hyperbolic flow, Eq. (1) becomes

˙̃x = x̃+ cos θ, ˙̃y = −ỹ + sin θ, θ̇ = −α sin(2θ), (2)

with dimensionless variables r̃ = (A/v0)r and t̃ = At.
The natural analogs of the passive fixed point are the
fixed points of Eq. (2), called swimming fixed points
(SFPs) [32]. There are four SFPs. Two SFPs lie on the y-
axis with the swimmer facing outward: qout

± = (±ŷ,±ŷ).
The remaining SFPs lie on the x-axis with the swimmer
facing inward: qin

± = (±x̂,∓x̂). The SFPs are plotted in
Fig. 1b-d. These equilibria are saddles, for all v0 and α.

We set α = 1, approximating the shape of B. subtilis
as a rod. Since the SFPs are saddles, they possess stable
and unstable manifolds in the x̃ỹθ phase space, which
we call swimming invariant manifolds (SwIMs) to distin-
guish them from those for passive advection. For α > 0,
the inward SFPs have two stable and one unstable direc-
tion. Hence, they each possess a 2D stable SwIM (Fig. 1c)
which together form a warped sheet in phase space, re-
ferred to simply as the SwIM. The SwIM separates phase
space into two regions: to the left [right] of the SwIM,
all swimmer trajectories are ultimately leftward-escaping
(LE) [rightward-escaping (RE)] (Fig. 1d).

The SwIM is only a strict phase-space barrier for per-
fectly smooth-swimming tracers, which is not the case
for real swimmers. For example, tumbling bacteria ap-
ply brief active torques to suddenly change their swim-
ming direction; we expect these bacteria to be able to
cross the SwIM during their tumbles. Even for “smooth-
swimming” bacteria, the swimming direction fluctuates;
bacteria wiggle as they swim due to rotational diffusion
[33, 34] and the kinematics of swimming with helical flag-
ella [35]. Hence, bacteria near the SwIM may occasion-
ally cross it due to these small fluctuations in θ.

The SwIM seen in Fig. 1c produces one-way barriers to
swimmers when projected into the x̃ỹ plane, barriers that
are valid even for noisy swimmers. For a general 2D flow
u(r), a static, parametrized curve R(s) with local normal

vector N̂(s) is a one-way barrier to swimmers when the

swimmer velocity across the curve, [u(R(s))+v0n̂]·N̂(s),
is non-positive for all n̂. Hence, if the condition

− u(R(s)) · N̂(s)

v0
≥ 1, for all s, (3)

is met, then the curve R(s) is a one-way barrier with local

blocking direction N̂(s). For the hyperbolic flow, all non-
stationary trajectories along the line x̃ = −1 move left-
ward, regardless of θ (Fig. 1d). Evaluating the left-hand
side of Eq. (3) along this line [in dimensional variables,

R(s) = (−v0/A, s) and N̂ = x̂], we obtain identically 1.
Therefore, this line is a one-way barrier, preventing right-
ward motion but not leftward. Furthermore, because
Eq. (3) is independent of α and the time-dependence of
n̂, we expect any curve satisfying it to be a one-way bar-
rier for all swimmers, regardless of their shape or motility
pattern. In particular, we expect the line x̃ = −1 to be
a barrier to both the smooth-swimming and tumbling
strains of bacteria.

Geometrically, Figs. 1c and 1d show that the line
x̃ = −1 is the leftmost extent of the 2D SwIM projected
into the x̃ỹ plane, i.e. it is the left edge of the SwIM.
By symmetry, the right SwIM edge x̃ = 1 is also a one-
way barrier, which allows swimmers to pass through it
from left to right, but not vice-versa. Hence, the sta-
ble SwIM edges form barriers to inward-swimming par-
ticles. Similarly, the horizontal edges of the 2D unsta-
ble SwIMs of the outward SFPs form one-way barriers,
blocking outward-swimming particles (Fig. 1b).

We test our theoretical predictions with microfluidic
experiments on swimming bacteria. We fabricate poly-
dimethylsiloxane (PDMS) cells with channels of width
and depth 1 mm in a cross-shaped geometry (Fig. 1a).
Dilute bacteria suspensions are pumped into both ends
of the vertical channel and out both ends of the hori-
zontal channel using syringe pumps. Microscopy movies
are recorded in the center of the channel at 40X. Pas-
sive tracer analysis reveals that the flow in the cen-
ter (red square in Fig. 1a) is well-approximated by a
planar, 2D linear hyperbolic flow. The bacteria used
are B. subtilis, either a smooth-swimming strain OI4139
or a green-fluorescent-protein-expressing (GFP) run-and-
tumble strain 1A1266. The bacteria’s swimming speeds
v0 in the flow have a mean of 25 µm/s and 16 µm/s
and standard deviation 11 µm/s and 6 µm/s for the
smooth-swimming and tumbling GFP strains, respec-
tively. Though the bacteria swim in three dimensions,
we obtain trajectories only for those whose motion is pre-
dominantly 2D (according to the protocol described in
Supplemental Material Sec. 1.2 [36]), corresponding well
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Figure 2. (a) Experimental trajectories for smooth-swimming
B. subtilis; A = 0.44 s−1. Passive manifolds are shown with
dashed lines. (b) Right-swimming trajectories. Positions are
scaled by v0/A. The theoretically predicted SFP qin

− (blue
dot) and the SwIM edges (red and blue lines) are shown.
(c) Left-swimming trajectories and qin

+ . (d) Rectified plot
showing all trajectories as if leaving through the upper-right
quadrant. (e) All trajectories entering with |x̃| > 1 rectified
to enter the upper-left quadrant.

to the 2D theory.

Figure 2 shows trajectories of smooth-swimming bac-
teria, some of which overlap (Fig. 2a). Trajectories
of passive, non-swimming bacteria in the same exper-
iment (Supplemental Material Fig. S1 [36]) are blocked
by the vertical passive separatrix (dashed line in Fig. 2a).
Hence, the region in Fig. 2a where the LE and RE
swimmer trajectories overlap is a signature of the self-
propulsion of the swimmers. Our theory predicts that
the width of this region is the distance between the ver-
tical SwIM edges shown in Fig. 1b, i.e. 2v0/A. In the
experiments, v0 is approximately constant in time for
individual bacteria; however, different bacteria have dif-
ferent values for v0 [37]. Consequently, the width of the
overlap region is undetermined in Fig. 2a.

Variations in v0 are accounted for by rescaling the spa-
tial coordinates by v0/A, as in Eq. (2). The scaled, non-
dimensional trajectories are shown in Figs. 2b–e. The
location of the inward SFPs and their SwIM edges is
revealed by plotting trajectories for right-swimming and
left-swimming bacteria separately (Figs. 2b and 2c). The
behavior of inward-swimming bacteria near an inward
SFP is similar to a passive tracer moving near the hyper-
bolic fixed point. The key difference is that active tracers
moving near SFPs can cross the SwIM edge from |x̃| < 1
to |x̃| > 1, but not in the other direction.

(a) (b)

Figure 3. Experimental x̃θ trajectories for smooth-swimming
B. subtilis; A = 0.44 s−1. The theoretical SwIM (α = 1)
is plotted in blue. (a) All trajectories. Leftward-escaping
trajectories are green, and rightward-escaping trajectories are
magenta. (b) Selected trajectories; the beginning of each is
marked with an open square.

The experimental data are consistent with the theo-
retically predicted one-way barrier property of the SwIM
edges. This is clearest when we use the symmetry of
Eqs. (2) [(ỹ, θ) 7→ (−ỹ,−θ) and (x̃, θ) 7→ (−x̃, π − θ)]
to rectify the trajectories, such that all trajectories are
displayed as though entering from the upper inlet and
escaping to the right. Under this transformation, Fig. 2d
shows that all trajectories are bounded from the left by
the SwIM edge at x̃ = −1, in agreement with the theory.
Indeed, any bacterium crossing this SwIM edge from left
to right would violate the one-way barrier property. Fur-
thermore, all bacteria that enter with |x̃| > 1 (Fig. 2e,
rectified such that initial x̃ < −1) are swept away from
the center of the cell, consistent with the SwIM edges at
|x̃| = 1 as barriers to inward-swimming bacteria. Note
that a single experiment with a fixed value of A inher-
ently probes a range of values of the key parameter v0/A,
owing to the natural heterogeneity of bacterial swimming
speeds. The data from an experiment in a slower flow are
also consistent with our theoretical predictions (Supple-
mental Material Fig. S2 [36]).

The delineation between LE and RE swimmers by the
SwIM in the x̃θ plane is shown experimentally in Fig. 3
(see [36] for the measurement of θ). Most of the trajec-
tories in Fig. 3a respect this barrier, although there is a
slight breach of the SwIM for some of the bacteria, due
to the variations in θ discussed previously. These vertical
fluctuations in individual trajectories (Fig. 3b) cause mo-
mentary crossings of the “horizontal” part of the SwIM.

Angular fluctuations are, of course, particularly pro-
nounced for the tumbling strain of bacteria (Fig. 4a),
leading to highly irregular x̃θ trajectories. However, for
bacteria with well-defined tumble events, the x̃θ trajec-
tories (Fig. 4b) give insight into the short-term direction
(right or left) of their x̃ỹ motion (Fig. 4c). The bacterium
in these two plots begins to the right of the SwIM; the
corresponding x̃ỹ trajectory moves to the right during
this period. The bacterium undergoes a significant tum-
ble at x̃ = 0.2, jumping above and to the left of the SwIM
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Figure 4. (a) Selected trajectories of run-and-tumble B. sub-
tilis; A = 0.44 s−1. Passive manifolds are shown with dashed
lines. (b) x̃θ plot and (c) x̃ỹ trajectory for a single bacterium
with well-defined tumbling events. (d) and (e) Scaled and
rectified trajectories for tumbling bacteria, as in Figs. 2d and
2e.

(Fig. 4b), with a corresponding change in direction in the
x̃ỹ plane (Fig. 4c).

Despite the dramatic fluctuations in their orientations,
the tumbling bacteria’s x̃ỹ trajectories respect the verti-
cal lines x̃ = ±1 as one-way barriers, as predicted. Any
RE swimmer must have entered with x̃ > −1 (Fig. 4d),
and any swimmer that enters with x̃ < −1 must move
leftward, away from the SwIM edge (Fig. 4e). Further-
more, though the trajectories in Fig. 4d cross the hori-
zontal passive manifold, they do not cross the lower red
line at ỹ = −1, respecting its outward-blocking nature.

In arbitrary flows, SwIM edges may not act as bar-
riers for tumbling bacteria because they do not satisfy
Eq. (3) in general. However, BIMs—which were intro-
duced as one-way barriers to front propagation—always
satisfy Eq. (3). In 2D time-independent flows, BIMs are
the one-dimensional SwIMs for the α = −1 case of Eq. (1)
(i.e. α = −1 trajectories q(t) that are asymptotic to
SFPs), which satisfy the condition −u(r(t)) · n̂(t)/v0 = 1
[21, 27, 36]. Therefore, we now recognize BIMs as one-
way barriers for all swimmers of a fixed swimming speed
v0, including those exhibiting rotational diffusion, tum-
bling, or other reorientation mechanisms. In particular,
BIMs are independent of the strength of the rotational
noise, i.e. the swimmer’s rotational Péclet number (Pe).
Their structure is completely determined by the flow ge-
ometry, flow strength, and swimming speed. The robust
bounding behavior occurs in our experiments because the
SwIM edges coincide with the BIMs for linear hyperbolic

(a) (b)

Figure 5. Bounding properties of SwIM edges and BIMs in a
vortex flow; v0/U = 0.1, α = 1. (a) Initial positions (black
dots) of smooth-swimmers that enter the grey square from
the upper side and exit it on the right side (magenta arrow).
The stable SwIM edge and stable BIM of the lower-right SFP
are shown as solid blue and dotted blue curves, respectively.
(b) Same as panel (a) for swimmers with rotational diffusivity
Dr; DrL/U = 0.86.

flows, which are always the colored vertical and hori-
zontal lines plotted in Fig. 1b at a distance v0/A from
the passive saddle point. In general nonlinear flows, on
the other hand, SwIM edges and BIMs depart from each
other. Thus, the SwIM edges are the more relevant bar-
riers for perfect smooth swimmers, whereas the BIMs are
more relevant for noisy swimmers, as we illustrate with
the following example.

We consider the swimmer dynamics Eq. (1) in
the vortex-lattice flow [14, 15, 32, 38] u =
(sin(2πx̃) cos(2πỹ),− cos(2πx̃) sin(2πỹ)), where we use
non-dimensional coordinates r̃ = r/L and t̃ = tU/L for
a flow with maximum speed U and length scale L. Near
r = 0, the flow is approximately the linear hyperbolic
flow, with A = 2π. Thus, the origin is surrounded by
SFPs (Fig. 5a) analogous to those of Eq. (2) [32].

In analogy with the preceding microfluidic experiments
that identified the positions of RE trajectories, we per-
form the following numerical experiment. We integrate
the initial conditions of swimmers selected at random
inside a single vortex cell but outside the grey square
shown in Fig. 5a. We then plot only those initial posi-
tions for which the swimmer trajectory enters the grey
square at the upper edge ỹ = 0.25 and subsequently ex-
its through the right edge at x̃ = 0 (see [36] for anima-
tions). These trajectories are analogous to the RE tra-
jectories in the experimental hyperbolic flow. Figure 5a
shows the result of the calculation for perfect smooth
swimmers, along with the SwIM edge for the 2D sta-
ble SwIM of the vortex flow (solid curve) and the cor-
responding BIM (dotted curve). Clearly, these initial
conditions are bounded by the SwIM edge, showing that
the SwIM edge again bounds those trajectories that exit
right, even in a nonlinear flow. We repeat the calcula-
tion with a moderate-intensity white noise term added to
θ̇ in Eq. (1) to simulate rotational diffusion for realistic
smooth-swimming bacteria [34]. The resulting set of ini-
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tial conditions (Fig. 5b) breaches the SwIM edge, but it
remains bounded by the BIM, consistent with the abso-
lute one-way barrier property of BIMs for all swimmers,
regardless of their reorientation mechanism or Pe.

In summary, we have shown theoretically and experi-
mentally that the trajectories of self-propelled particles
in externally-driven fluid flows are constrained by the
presence of one-way barriers, i.e. SwIM edges and BIMs.
Despite the simplicity of our model, we are able to fully
explain certain properties of the trajectories of swim-
ming bacteria in an externally-driven microfluidic flow.
Our SwIM framework provides a foundation for under-
standing the critical barrier structures that dominate the
mixing of a wide range of self-propelled tracers in lami-
nar flows. For example, BIMs must also block gyrotactic
[39, 40] and chemotactic swimmers, since these barriers
are independent of biases on the swimming direction. We
further expect that the SwIM approach can be general-
ized to more complicated, time-periodic, time-aperiodic
and weakly turbulent flows. It remains an open question
how our approach may apply to the trajectories of self-
propelled agents in active matter systems featuring self-
driven flows, such as individual bacteria within a swarm
[41] or motile defects in active nematics [42–44].

These studies were supported by the National Sci-
ence Foundation under grants DMR-1806355 and CMMI-
1825379. We thank Nico Waisbord and Jeff Guasto for
providing the smooth-swimmer strain used in these ex-
periments, Jack Raup and Joe Tolman for assistance with
milling, Matt Heinzelmann for assistance with the incu-
bation techniques, and Brandon Vogel for guidance on
PDMS techniques.
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