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Abstract

This work presents a formalism to improve the predictive accuracy of physical models by learn-

ing generalizable model augmentations from sparse data. Building on recent advances in data-

driven turbulence modeling, the present approach, referred to as Learning and Inference assisted

by Feature-space Engineering (LIFE), is based on the hypothesis that robustness and generalizabil-

ity demand a meticulously-designed feature space that is informed by the underlying physics, and a

carefully constructed features-to-augmentation map. The critical components of this approach are:

(1) Maintaining consistency across the learning and prediction environments to make the augmen-

tation case-agnostic; (2) Tightly-coupled inference and learning by constraining the augmentation

to be learnable throughout the inference process to avoid loss of inferred information (and hence

accuracy); (3) Identification of relevant physics-informed features in appropriate functional forms

to enable significant overlap in feature space for a wide variety of cases to promote generalizability;

(4) Localized learning, i.e. maintaining explicit control over feature space to change the augmenta-

tion function behavior only in the vicinity of available datapoints. To demonstrate the viability of

this approach, it is used in the modeling of bypass transition. The augmentation - in the form of

model coefficient functions - is developed using skin friction data from two flat plate cases from the

ERCOFTAC dataset. Piecewise linear interpolation on a structured grid in feature-space is used as

a sample functional form for the augmentation to demonstrate the capability of localized learning.

The impact of using a different function class (neural network) is also assessed. The augmented

model is then applied to a variety of flat plate cases which are characterized by different freestream

turbulence intensities, pressure gradients, and Reynolds numbers. The predictive capability of the

augmented model is also tested on single-stage high-pressure-turbine cascade cases, and the model

performance is analyzed from the perspective of information contained in the feature space. The

results show consistent improvements across these cases, as long as the physical phenomena in

question are well-represented in the training.

∗Electronic address: vsriv@umich.edu
†Electronic address: kdur@umich.edu



I. INTRODUCTION

Traditional modeling of transition and turbulence has generally relied on theory and expert

knowledge to determine the model-form, and on data for the calibration of resulting param-

eters. Recent advances [6, 9, 49] have explored the possibility of using data to introduce

complex functional forms within existing models to improve their accuracy and applicabil-

ity. In the context of turbulence modeling, Oliver and Moser [26] were among the first to

quantify model-form uncertainties by introducing discrepancies in the Reynolds stresses as

spatially-dependent Gaussian random fields. Dow and Wang [5] applied a similar approach

to introduce discrepancies in the eddy viscosity field, and assimilated data from multiple

flow fields. These precursors to the current machine learning approaches in RANS modeling

are relevant as they treat model inaccuracies1 as fields instead of parameters.

Tracey et al., [41] in 2013, proposed the idea to transform such inaccuracies from a field

variable (a function of space) to a function of features (local functions of states and modeled

quantities). This was applied to learn the discrepancies in the eigenvalues of the Reynolds

anisotropy tensor between RANS and DNS results. A kernel regression ML model used the

following features - eigenvalues of the anisotropy tensor, ratio of production-to-dissiptaion

rate of turbulent kinetic energy and a marker function to mask the free shear layer regions

in the flow. Xiao and co-workers [46, 48, 50, 51] modeled the discrepancy in not just the

eigenvalues of the anisotropy tensor but also its eigenvectors and turbulent kinetic energy

while using a broader feature set. Since the values of features and the inaccuracy term

used to train the ML models are extracted from the DNS data, this approach is inherently

inconsistent and unsuitable for predictive use via the baseline RANS models. In addition to

this, the requirement of full field DNS data to create such ML models takes away from the

robustness and versatility of this method.

Ling and Templeton [18] introduced Tensor Basis Neural Networks (TBNNs) to learn the

coefficients of a Tensor Basis expansion (w.r.t. mean strain rate and vorticity tensors)

intended to approximate the Reynolds stress term. The features used for this work included

five invariants based on the mean strain rate and vorticity. TBNNs have, since, been used

to model turbulent heat and scalar fluxes [24, 25].

1 These are referred to as model inadequacies in the computational science community
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Another class of approaches, which attempts to optimize the functional form of the feature-

to-augmentation map, is symbolic regression. Weatheritt and Sandberg [47] employed ge-

netic programming to construct models for Reynolds stress anisotropy in terms of invariants

of the velocity gradient tensor. Schmelzer et al. [30] used sparse regression over a library

of candidate functions to obtain an algebraic Reynolds stress model. An advantage of such

approaches is that the resulting model form is simple, and presents the added benefit of

interpretability.

Techniques to extract model inaccuracy mentioned above do not explicitly enforce model

consistency, i.e. the inaccuracy information embedded in the modified model is extracted

from higher-fidelity data directly and can hence be inconsistent with the lower-fidelity model.

The importance of model consistency is discussed in a recent review [6]. To address model

consistency, Duraisamy and co-workers [27, 32, 34, 42] introduced the field inversion and

machine learning framework which aims to learn the inaccuracy in the same environment

as used for predictive purposes. To achieve this, one needs to solve an additional inverse

problem prior to the machine learning step to obtain a model-consistent inaccuracy field

which is optimal in the sense that the corresponding outputs from the model match the target

high-fidelity data as accurately as possible. While this framework mitigates inconsistency,

it also facilitates the use of sparse high-fidelity data from experiments in contrast to full

fields of direct numerical simulation data. To solve this so-called field inversion problem,

an adjoint-driven gradient-based optimization technique is used. The following subsection

focuses on the developments and applications that this framework has witnessed since its

inception. Other techniques and frameworks introduced later (e.g. [19, 40, 53]) also suggest

the use of model-consistent training, and present opportunities of bypassing the requirement

for adjoint-driven gradient computations by pursuing weakly-coupled inference.

The original formulation of FIML, hereafter referred to as the classic FIML, has been used

by several research groups, with applications including, but not limited to, predictive mod-

eling of adverse pressure gradients flows [20, 33], separated flows [13–15, 34], bypass tran-

sition modeling [8], natural transition modeling [52], hypersonic aerothermal prediction for

aerothermoelastic analysis [44], turbomachinery flows [11], shock-turbulent boundary layer

interactions [31], etc. Matai et al. [20] proposed a zonal version of FIML, where the aug-

mentation field obtained from field inversion was quantized into a set number of clusters,

following which a decision tree based architecture was used to classify corresponding features
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into appropriate clusters. The quantization reduced the number of classes that needed to

be accounted for by the learning architecture and hence improved the training performance

across a wide range of flow problems.

A significant evolution in the framework was proposed by Holland et al. [13, 14] in the con-

text of RANS, and Sirignano et al. [35] in the context of LES. These techniques integrate

the learning step in the inference process. This is an improvement over classic FIML for

two reasons - (1) the augmentation fields obtained using classic FIML may be non-unique

which means that two near-optimal augmentation fields might have completely different

functional representations in the feature space which might result in convergence problems

when learning augmentations from several field inversion problems simultaneously; and (2)

significant information loss might occur when learning an augmentation field (relatively

high-dimensional vector) to obtain ML-model parameters (relatively low-dimensional vec-

tor) which might result in a considerable loss in predictive accuracy. This tight coupling

between the two inverse problems, however, requires additional infrastructure for gradient

evaluation, and presents convergence challenges due to the additional non-linearity of the

learning algorithm. This framework is, hereafter, referred to as integrated inference and

learning.

In this work, we introduce another step in this evolution, viz. Learning and Inference as-

sisted by Feature-space Engineering (LIFE). The approach is developed on the hypothesis

that robustness and generalizability demand a low-dimensional feature space that is informed

by the underlying physics, and that the features-to-augmentation map has to be carefully

constructed. LIFE uses tightly coupled inference and learning to use data in order to locally

update regions of feature space and can potentially make the augmented model more gen-

eralizable, robust and reliable by inherently suppressing spurious behavior and offering the

modeler more control over the feature space. Note that, spurious behaviour, in the context

of this work, refers to the augmented model predicting non-baseline behaviour by virtue of

extrapolation to physical conditions which have not been encountered during training. In

addition, this work also introduces new constructs (guiding principles and techniques) across

different stages in the inference process that contribute towards boosting the efficacy and

generalizability of the resulting augmentation while underlining the importance of human

intuition and expert knowledge in the process.
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A. RANS models for bypass transition

To demonstrate the capability of LIFE, we choose the problem of developing a data-driven

bypass transition model. Transition modeling has been studied over the past two decades,

and several models are in existence. In this work, however, the aim is not to create a

universally accurate transition model. Rather, the goal is to develop and demonstrate LIFE

and examine the possibility of generalization in the low data limit using bypass transition

as an example.

The phenomenon of laminar-to-turbulent transition is of vital importance in the design of

aerospace vehicles and energy systems. Transition can occur either by the amplification and

non-linear interactions of 2-D instability waves (also known as Tollmien-Schlichting waves)

or via the perturbation of an otherwise laminar boundary layer by freestream turbulence,

surface roughness, impinging wakes, etc. The latter is referred to as the bypass mode of

transition, and is typically the preferred route for transition when freestream turbulence

intensities are more than 1% [21]. While Reynolds-Averaged Navier-Stokes (RANS) simula-

tions have remained the workhorse in the industry for design and optimization and a subject

of active research for decades, bypass transition models for RANS turbulence closures are

relatively in their infancy.

Two major categories of approaches exist in the literature to model bypass transition induced

by freestream turbulence, viz. (1) Data correlation based models, where the model predicts

the transition onset location based on some criteria (usually a correlation between momen-

tum thickness Reynolds number Reθt and freestream turbulence intensity Tu∞) and switches

from laminar to turbulent computation [1, 4, 21, 28]; and (2) transport equation based mod-

els, where the turbulence model is modified by introducing a new transport scalar, which

is solved for using an additional equation. Further, there are two major approaches within

transport equation-based models - laminar fluctuation models and intermittency function

models: a) Laminar fluctuation models are based on the modeling of the so-called laminar

kinetic energy, kL, i.e. the energy of fluctuations in laminar boundary layers corresponding

to Klebanoff modes; and the transfer of energy between the laminar disturbances and turbu-

lent eddies by introducing a transfer term in the transport equations of kL and k (modeled

turbulent kinetic energy) [17, 22, 45]; b) Intermittency function models, on the other hand,

model the intermittency γ (which is a statistical quantity referring to the fraction of the time
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the flow is turbulent and varies from 0 in laminar flow to 1 in fully turbulent flow) which is

usually multiplied to the production term in the transport equation for k or directly to the

eddy viscosity, thus, attenuating the production of turbulence in the regions supposed to be

laminar or transitional [3, 10, 12, 16, 23, 36, 38, 39].

In this work, we utilize the idea of LIFE to create a data-driven intermittency-based bypass

transition model using data from only two flat plate cases, and predict the bypass transition

triggered by freestream turbulence across different flow conditions and geometries.

The outline of this paper is as follows: The formal problem description of model augmenta-

tion, and a background of the Field Inversion and Machine Learning Framework is laid out

in section II. In section III, the methodology of LIFE, which includes its philosophy, the

required infrastructure and related algorithms is presented. Section IV begins with relevant

background of the bypass transition modeling problem necessary for, and followed by, the

description of baseline model-form used in this work, how the augmentation is introduced

and what features are used to express the functional form of the augmentation. In section V,

the training and testing results of the transition model augmentation is shown and analyzed.

Section VI summarizes the work. The appendices details the impact of modeling choices on

the results of the modeling augmentation.

II. PROBLEM STATEMENT & BACKGROUND

A. Premise

1. The closure problem

Consider a physical system described on a spatial domain Ω, the governing equations for

which can be represented with appropriate boundary conditions as follows

∂q

∂t
+ R(q) = 0 ∀ x ∈ Ω (1)

where q(x, t) represents the highly resolved spatio-temporal field of state variables. For prac-

tical problems, like flow over an aircraft wing or inside a gas turbine combustor, direct simu-

lations of the underlying physics with the required spatio-temporal resolution are presently

infeasible. In turbulence modeling, the state variables are decomposed into coarse-grained

and unresolved parts, represented by q̃ and q̂, respectively. Performing the coarse-graining
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operation on the equations representing the high-fidelity system results in an unknown clo-

sure term N (q), arising from any non-linearities in the operator R and the unaccounted

contribution from q̂. Note that the following representation is not an approximation.

∂q̃

∂t
+ R̃(q) = 0 ⇒ ∂q̃

∂t
+ R(q̃) + N (q) = 0 (2)

In a generic sense, a closure model can be written as Nm(q̃m, s̃m), where q̃m refers to the

state variables for the reduced-fidelity model which will be different from the coarse-grained

variables q̃ because of a modeled closure term. s̃m represents the vector of any secondary

variables (e.g. turbulent kinetic energy and other scale providing variables) which might

need to be solved for by using an additional system of equations as shown below.

∂s̃m
∂t

+ Gm(s̃m, q̃m) = 0 ∀ x ∈ Ω̃ (3)

where Ω̃ represents the appropriately discretized version of the original domain Ω. In this

work, the focus is restricted to steady-state reduced-fidelity models, which, using the termi-

nology described above, can be represented as

R(q̃m) + Nm(q̃m, s̃m) = 0 ; Gm(s̃m, q̃m) = 0 (4)

For ease of notation, we shall refer to this system of equations in a compact manner

Rm(ũm; ξ) = 0, with the state variables and secondary variables combined into a single

vector of model variables ũm =
[
q̃Tm s̃Tm

]T
, and the inputs to the model (discretized do-

main, boundary conditions, etc.) embedded into the notation via ξ.

2. A surrogate measure of model inaccuracy

Reduced-fidelity models of turbulence and transition can be insufficiently accurate for use in

predictive simulations that aid design and optimization owing to model-form inaccuracies in

the representation of the operators Nm and/or Gm. To address these inaccuracies, one can

“augment” the model which involves appropriately introducing an inaccuracy field, β(x) in

the model-form of Rm, giving rise to the following augmented model.

Rm(ũm; β(x), ξ) = 0 (5)

Examples of how such inaccuracy terms have been introduced into turbulence models in the

available literature include multiplication with the production term of the Spalart-Allmaras
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model by Singh et al. in [34], addition to the eigenvalues of the Reynolds anisotropy tensor

by Xiao et al. [41, 51]. Indeed, β can represent the vector of coefficients in the tensor basis

expansion for the Reynolds anisotropy tensor as proposed by Ling et al. [18].

3. Model consistency and data

The task of quantifying the model inaccuracy now reduces to inferring some ideal β(x) field,

that when used in this augmented model, minimizes a chosen measure of discrepancy (e.g.

L2 norm) between the data and corresponding predictions for quantities of interest. Note

that, even if the full high-fidelity field of state variables is available, data alone should not

be used to obtain β values by simply plugging values into the reduced-fidelity model at

different locations, as this could result in a field which is inconsistent with the model and in

a general case may lead to prediction inaccuracies [6]. In other words, the inferred β(x) field

is only a surrogate measure of the inaccuracy, and that the true model inaccuracy might be

slightly different than this field, as q̃ and particularly s̃ may be different from q̃m and s̃m,

respectively.

For a dataset (a dataset in the present context refers to a unique combination of domain

geometry and flow conditions) referred to by the index i, a discrepancy between the vector

of high-fidelity data for these observables, yi, and the corresponding vector of predictions

using the augmented model, yim(ũim), can be used to formulate the cost function for this case

as Ci(yi,yim(ũim)). Since the field ũim necessarily satisfies Rm(ũim; βi, ξi) = 0, it implicitly

depends on the augmentation field, βi(x), and so, the cost function is ultimately a function

of βi(x). Thus, a gradient-based optimization can, potentially, be used to infer βi(x). A

rudimentary candidate for the cost function can be the square of L2-norm of the difference

between the two vectors. This process of inference will be explained in greater detail in the

section II B.

4. Representing inaccuracies via augmentation functions

While the augmentation field, β(x), provides information about the local inaccuracy in the

model, it cannot be used for predictive improvements on its own. However, if a consistent

functional relationship could be extracted between β(x) and some carefully-chosen features,
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η(ũm, ζ), this function could replace the β(x) field in the reduced-fidelity model equations

for predictive use. Here ζ denotes local quantities independent of the state or secondary

variables which are used to design features. Note that, for the augmentation to be usable in

a predictive setting with a wide range of applicability, it should ideally have no dependence

on the domain geometries or boundary conditions used for inference. The augmentation

is assumed to be dependent only on local quantities in the present work as including non-

local information in the features requires a more sophisticated, and potentially less general

treatment. The features must be invariant [6, 48] to appropriate transformations (e.g. ro-

tation, as they must not depend on the orientation of the coordinate axes.) Given the

features-to-augmentation map, the model can be written as

Rm(ũm, β(η(ũm, ζ);w); ξ) = 0. (6)

It should be mentioned here that, once the model class of the augmentation (e.g. a neural

network) is chosen, the goal is to infer the parametersw. The section II B focuses on variants

of the FIML framework to obtain the parameters w from sparse data.

B. Field Inversion and Machine Learning (FIML)

The field inversion and machine learning framework, originally proposed by Duraisamy and

co-workers, [27, 42], was formulated to reduce inaccuracies in a given reduced-fidelity model

by inferring optimal augmentations such that the predictive accuracy of the model is im-

proved. Point-wise and integrable data of variable sparsity across multiple cases can be used

from experiments and higher-fidelity simulations. The two main variants of this framework

are been discussed in the following sections.

1. Classic FIML

FIML seeks the optimal augmentation into two steps: Firstly, a “field inversion” problem

is solved separately over each dataset to infer optimal augmentation fields, β(x), in the

respective discretized domains. Then, the step of machine learning uses these inferred aug-

mentation values and respective features for all spatial locations across all datasets and infers

the optimal augmentation function parameters w. These two steps are described below.
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a. Field Inversion

β∗i(x) = arg min
βi(x)

{
Ci(yi,yim(ũim)) + λiβT iβ (βi(x))

}
s.t. Rm(ũim; βi(x), ξi) = 0 ∀ i = 1, 2, . . . , N

(7)

Equation 7 represents the field inversion problem which is solved individually over each

of the N training cases (cases for which available high-fidelity data is to be used to infer

the augmentation function parameters) to obtain optimal augmentation fields β∗i(x) in the

respective domains, where i is the case index. The augmentation field is optimal in the

sense that it minimizes an objective function which consists of a cost function, Ci, and a

regularization term, T iβ , with λiβ as the regularization constant.

Ci = ‖yi − yim(ũim)‖2
2 ; T i = ‖βi(x)− β0‖2

2 (8)

Note here that an additive inaccuracy term which is non-dimensionalized with the same

turbulent length and time scales as the source term, can also be viewed as a multiplicative

inaccuracy term.

Given the very high-dimensional nature of the augmentation fields that need to be inferred,

the field inversion problem is usually solved using a gradient-based optimization technique.

b. Supervised Learning

Once the field inversion problem is solved for all available datasets, the supervised learn-

ing problem can be solved using the augmentation fields and correspondingly calcu-

lated feature fields from all datasets to optimize for the function parameters w as w =

arg minw′ L(β∗, β(η∗;w′)) where, β∗ refers to the stacked vector containing optimal aug-

mentation fields across all datasets, and η∗ contains the respectively stacked feature values.

Note that, while the inferred augmentation from the field inversion step is fully consistent

with the underlying model, the augmentation field provided by the field inversion process is

not necessarily learnable as a function of the chosen features [14]. This can lead to a loss of

information extracted in the field inversion step. A simple measure of learnability can be

defined as follows.

Learnability = 1.0− 1

n

N∑
i=0

|β(ηi;w
∗)− β∗i |

|β(ηi;w
∗)|+ |β∗i |

where w∗ is the globally optimal set of parameters that minimizes the discrepancy between

the augmentation values obtained using field inversion and corresponding machine learning

predictions, and n is the number of datapoints. This measure can assume values between
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0 and 1 such that higher value refers to higher learnability. As discussed previously, the

augmentation field obtained from field inversion is not unique, it is possible that the field

inversion results obtained from two different datasets correspond to different features-to-

augmentation mappings. This inconsistency can also degrade the learnability of the model.

The more recent variant of FIML, referred to as integrated inference and learning addresses

these concerns.

2. Integrated Inference and Learning

The integrated inference and learning approach, proposed by Holland et al. [13, 14] and

Sirignano et al. [35] replaces the two-step inference problem introduced in classic FIML by

just one inverse problem, mentioned as follows

w = arg min
w′

N⊔
i=1

(
Ci(yi,yim(ũim)) + λiβT iβ (β(ηi(ũim, ζ);w′))

)
s.t. Rm(ũim, β(η(ũim, ζ

i);w′); ξi) = 0 ∀ i = 1, 2, . . . , N,

(9)

where
⊔

is a generic assembly operator to build a composite objective function using the

individual objective functions calculated for each dataset. It can be as simple as a sum, if

all datasets are equally important for the inference, or it could be a weighted sum, if some

datasets are to be assigned more importance than others, or it could be something even

more complex as designed/needed by the user. Notice here that using several cases at once

adds an implicit regularization to the problem. Similar to the field inversion problem, the

required sensitivities can be obtained using discrete adjoints as described in Appendix A.

Benefits over classic FIML

• Classic FIML can suffer from a loss of information during the machine learning step

owing to the inability of the chosen functional form to accurately approximate the

augmentation inferred during the field inversion step as a function of the specified

features. Integrated inference and training bypasses this problem as the weights are

directly updated and consequently, the obtained augmentation field remains consistent

with the functional form of the augmentation. Thinking in terms of the augmentation

field, this constrains the optimization to minimize the objective function to find an

augmentation field which is realizable w.r.t. its functional form.
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• Since integrated inference and learning can infer the function parameters w while si-

multaneously assimilating data from multiple datasets, the augmentation fields for all

datasets is constrained to be realizable w.r.t. the functional form of the augmentation

as explained in the previous point. This has an added advantage that this proce-

dure, unlike classic FIML, is by design prevented from learning augmentation fields

from different datasets that behave differently in the feature space. In other words,

consistency in the features-to-augmentation mapping across datasets is automatically

enforced when using integrated inference and learning.

• Building on the previous point, this means that if we have even a handful of

DNS(Direct Numerical Simulation) fields from which true augmentation values can

be extracted (or are readily available), they can be used to enforce a near-physical re-

lationship between the features and augmentation by simultaneously using a plethora

of other sparse field data from experiments or higher fidelity simulations. This is

critical from the viewpoint of generalizable and physical augmentations.

Limitations

• Unlike the classic FIML approach, the task of designing an appropriate feature space

must precede the inference from data. This, at times, could be difficult for the modeler

and demonstrates the preliminary need of an independent field inversion step which

can lend crucial information about the quantities correlated to the augmentation field

that may then be used to formulate features.

• In its original form, integrated inference and learning does not consider the signifi-

cance of localized learning. For practical problems, the data being used might not

populate the entire feature space, which means that if the optimization problem is not

constrained to change the augmentation only in the vicinity of the feature space loca-

tions for which data is available, it might lead to spurious predictions in other regions,

which might not only result in worse accuracy compared to the baseline model but

also severely affect the stability of the numerical solver.

• When using complex learning algorithms such as neural networks or decision trees, the

augmented model inherits non-linearities from the baseline model and the learning
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algorithm. This, combined with the previous point, can lead to a disorderly optimiza-

tion behavior when solving the inference problem, in addition to the aforementioned

potential deterioration in accuracy and/or numerical stability with every successive

optimization iteration.

III. MODEL-CONSISTENT LEARNING AND INFERENCE ASSISTED BY

FEATURE-SPACE ENGINEERING (LIFE)

To alleviate the limitations in integrated inference and learning, and to make the augmen-

tation robust and generalizable we present a set of guiding principles to choose features

along with the notion of localized learning in the feature space which requires controlling

how learning takes place in different parts of the feature space. Since a significant effort

is put into how features are chosen and how the learning takes place in different parts of

the feature space, we call this version of integrated inference and learning as “Learning and

Inference assisted by Feature-space Engineering (LIFE)”.

This section is structured as follows. Section III A and III B propose guiding principles to

take into consideration when designing the augmentation and features. Section III C deals

with the notion of localized learning and provides three different ideas on how to make it

work. Finally, III D deals with the algorithm and practical concerns of implementing the

LIFE framework.

A. How should a model augmentation be designed?

The following aspects could be considered to decide how to introduce an augmentation in

the baseline model:

1. Efficacy: The augmentation should be capable of effectively addressing the inaccuracy

in consideration. For instance, augmenting the coefficient of an isotropic diffusion term in

a model cannot correct for an inaccuracy caused as a consequence of the anisotropically

diffusive behaviour in the corresponding true system.

2. Spurious behavior: The augmentation should be introduced such that it does not

corrupt model behavior in regions where the inaccuracy under consideration is not a concern.

For instance, a RANS model augmented to predict transition should not change the model
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behavior outside the boundary layer or in regions inside the boundary layer in which the

flow is fully turbulent.

3. Sensitivity: In practice, the predicted augmentation values might have small errors

which can have significant adverse effects on the stability and accuracy of the model if it is

highly sensitive to the augmentation. Hence, the augmentation should be introduced in a

manner that mitigates this as much as possible.

B. What features should the augmentation depend on?

To decide the features that the augmentation function would depend on, one should use the

following guiding principles.

1. Choice of features using expert knowledge

The choice of features has a major role to play in how effective the augmentation function can

be at addressing the model inaccuracy in consideration. While automated feature selection

techniques exist in literature, they heavily (if not prohibitively) depend on data to find

the best features from amongst hundreds/thousands of possible candidate functions of local

quantities for a complex problem like transition or turbulence. The authors, hence, believe

that human intuition and expert knowledge can lead the way in feature selection as it

has proven effective for traditional modeling. This is one of the major reasons why the

LIFE framework is aimed towards use by expert modelers. While choosing features, it is

desired that there exists a causal relationship between the chosen features and the inaccuracy

targeted by the augmentation function. However, for steady-state models, the augmentation

in turn influences the features by virtue of feedback, and hence quantities which do not share

a causal relationship with the inaccuracy and, rather are only correlated with it, can also

serve as features.

2. Physics-based non-dimensionalization

Once the quantities to be used as features are chosen, they must be non-dimensionalized in

order to be generalizably used for prediction. This is because similar physical phenomena

can occur for significantly different magnitudes of dimensional model quantities and, since

the LIFE framework aims at using as little data as possible to discover generalizable aug-

mentation functions, properly non-dimensionalization of the features becomes imperative.

While statistics from the training datasets can be used to non-dimensionalize features, the
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available data might not be sufficiently representative of the complete range of values that

could be encountered during prediction on an unseen case. Thus, it is better to make use of

model quantities to non-dimensionalize features.

A simple example can be used to illustrate this point. Let us consider that the eddy viscosity

νt is intended for use as a feature. Technically speaking, 0 ≤ νt <∞. With limited data, it

seems hopeless that the value of νt can be used as a feature in a generic predictive setting.

However, simply using the turbulent Reynolds number νt/ν can immediately improve the

quality of results. This is because we take some burden of discerning physical conditions

for a given combination of features off of the learning algorithm and make the integrated

inference and learning problem better-posed. Note that one can also non-dimensionalize

νt as νt|Ω|/|U |2, but the physical conditions represented here will be different than the

ones represented by νt/ν. Which non-dimensionalization is chosen depends on its relevance

w.r.t. the inaccuracy to be alleviated. While the example shown here seems trivial, physics-

based non-dimensionalization can prove to be a challenge in some scenarios which might

require domain-specific theoretical knowledge and/or experimentally obtained correlations

to resolve.

3. Effectively bounded feature-space

While non-dimensionalization is critical, it should be remembered that a non-

dimensionalized feature can still be unbounded (e.g. νt/ν). Since the data used to learn the

augmentation is limited, this can lead to extrapolated predictions by the augmentation func-

tion for features outside the range of values available from the training data. To circumvent

this, the functional form of the non-dimensionalized feature must be chosen such that either

the feature is mathematically bounded or it takes non-baseline values (baseline value is 0

for an additive augmentation and 1 for a multiplicative augmentation) only in a bounded

part of the feature space. We shall call such a feature as “effectively” bounded, hereafter.

Effective boundedness minimizes extrapolation errors and makes the augmentation more

robust and generalizable.

4. Appropriate functional forms for features

Several functional forms of a non-dimensionalized feature can offer effective boundedness.

But, only a few of these forms might address the inaccuracy in a major part of the feature

space. For instance, the part of the feature space covered by the feature ν/(νt + ν) between

the values of 0 and 0.3 reduces to being covered between the values 0 and 0.000729 for a
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different form of the same feature, viz. (ν/(νt+ν)6). Note that, both features have the same

mathematical range between 0 and 1. However, by the virtue of different functional forms,

the regions denoting the same physical conditions span very differently in the feature space.

For an augmentation which is predominantly affected within the said range, the feature

ν/(νt + ν) offers a better-conditioned learning problem. Hence, the choice of which among

different effectively bounded non-dimensional functional forms of a feature to use can play

a significant role in setting up a well-conditioned learning problem.

5. Parsimonious combination of features vs. one-to-one features-to-

augmentation mapping

Finally, the augmentation should be a function of as small a number of features as possible

to maintain simplicity, as a simpler augmentation could mean better generalizability when

training on limited data. On the other hand, the features should be chosen such that, there

exists a one-to-one feature-to-augmentation mapping. While a perfect one-to-one mapping

might be exceedingly difficult to achieve in the entire feature space, the property should

be virtually preserved (i.e. if more than one, all possible augmentation values should be

close to each other) in as large a region of the effectively bounded feature space as possible.

More features imply a better chance of ensuring such a mapping. Note that “mapping” here

refers to the true relation between features and corresponding optimal augmentation values

for all locations in the feature space. It does not refer to the augmentation function (which

is one-to-one by definition and tries to approximate this mapping). If the mapping is not

one-to-one, then during the inference and learning process, sensitivities from two different

datapoints might try to pull the augmentation value at some location in the feature space

in opposite directions and the so-obtained optimal augmentation function would predict a

compromise between two significantly different values which are optimal w.r.t. each of the

two datapoints. Physically, this translates to the feature space being inadequate to uniquely

represent distinct physical phenomena corresponding to significantly different augmentation

values. Thus, a balance has to be attained by choosing just enough features to ensure a

virtually one-to-one mapping in most of the effectively bounded feature space.
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C. Which class of functions should be used to model this augmentation?

Depending on the complexity of the behavior of the augmentation in feature space, there

exist different alternatives to choose the functional form of the augmentation prior to the

inference and learning procedure. If the behavior is very simple and the feature space is very

low-dimensional, one can hand-fit a function on the inferred set of augmentation values. If

the behavior is not intractably complex, a user-defined functional form can be used. Lastly,

if the behavior is highly non-linear, a class of functions available in the machine learning

literature (decision trees, neural networks, etc.) could be used.

This choice becomes even more important when the available data does not span/represent

all parts of the effectively bounded feature space. In such a scenario the augmentation

function might extrapolate to predict values for feature space regions corresponding to which

no data was available. This could lead to spurious model behavior and could make the

prediction capabilities of the augmented model worse than its baseline counterpart. To

preempt this complication the idea of localized learning can be used.

Localized Learning, here, refers to the class of learning techniques that modifies the

augmentation function behavior only in the vicinity of available data without perturbing

augmentation values in regions far from available datapoints. Thus, the augmentation value

at any point in the feature space could be either “influenced” by one or more datapoints, or

remain “uninfluenced”. Three different ways to perform localized learning are mentioned as

follows:

1. Discretizing the feature space into subdomains and representing the augmentation

function as a piecewise combination of local augmentation functions corresponding to

each of these subdomains. Here, a datapoint influences only those points in the feature

space that lie in its own subdomain.

2. Introducing artificial datapoints in the learning process by sampling from the

existing augmentation field in regions where no datapoints are available. Here, the

sampling strategy determine the influenced regions in the feature space.

3. Superposing finite support functions (e.g., truncated Gaussians) centered at

available datapoints can be added on top of the existing augmentation to update

it. Here the support width of these individual functions characterize the influence of
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the datapoints in the feature space.

Choosing how fine/coarse the discretization is (in case of method 1), or the strategy used to

sample points from existing augmentation field (in case of method 2), or the support width

(in case of method 3) in order to control the influence of datapoints in the feature space

requires the user to make a trade-off. If, for a given datapoint, the region of influence is very

small, the augmentation would behave as an over-fitted function which, while performing

accurately on the training cases, will not be able to generalize well. On the other hand, if the

region of influence is too large, the augmentation will be over-regularized and the predictive

accuracy will suffer, again resulting in a loss of generalizability.

Localized learning forces the augmentation function to retain the baseline behavior for fea-

ture space regions which remain uninfluenced throughout the LIFE process. The certainty

that the augmented model reverts back to its baseline behavior when faced with feature

combinations (physical conditions) not encountered during the LIFE process means that

the performance of the augmented model would always be better than or equal to the base-

line version.

Also note that, for steady-state models like RANS, the feature values obtained in one solver

iteration influence the feature values obtained in the next iteration. The inference and

learning process, however, works with the feature values obtained at solver convergence

only. Hence, uninfluenced feature space regions (according to the converged solutions) could

be accessed by the solver when the residuals are not converged. So, if the augmentation

function is modified in these regions, it could consequently affect the converged result, which

is undesirable. Thus, it is even more important that in uninfluenced feature space regions,

the augmentation function does not learn from data, and rather predict from the unaltered

existing augmentation behavior.

Clearly, there exists ample scope to explore different localized learning techniques (along

with strategies to optimally choose regions of influence). However, our main motive in this

work w.r.t. localized learning is to introduce it in the LIFE framework and emphasize on

its importance in creating robust and generalizable augmentations, and so we choose to deal

with these explorations in future works.
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Algorithm 1 Simultaneous Integrated Inference and Learning

Inputs: w0, y1, . . . , yN , n, α

Outputs: wn

1: for i = 1 : N do [N is number of datasets]

2: Solve for ũim s.t. Rm(ũim;β(η(ũim, ζ
i);w0), ξi) = 0 [Forward problem]

3: J i := Ci(yi,yim(ũim)) + λiβT iβ (β(η(ũim, ζ
i);w0)) [Objective evaluation]

4: end for

5: J :=
N⊔
i=1

J i [Assembly operator (e.g., weighted sum)]

6: for k = 1 : n do [n is number of LIFE iterations]

7: for i = 1 : N do

8: ψT :=
dCi

dũim

[
dRm

dũm

∣∣∣∣
ξi

]−1

where
d

dũim
=

∂

∂ũim

∣∣∣∣
β

+
∂

∂β

∂β

∂η

∂η

∂ũim
[Adjoints]

9:
dJ i

dwk−1
:= 0 [Set sensitivities to zero]

10: for all j s.t. xj ∈ Ω̃ i do

11:
dJ i

dwk−1
=

dJ i

dwk−1
+ λiβ

∂T iβ
∂β

[
∂β

∂wk−1

]i
j

−ψT
[
∂Rm

∂β

]i [ ∂β

∂wk−1

]i
j

12: end for

13: end for

14:
dJ

dwk−1
:=

N∑
i=1

∂J
∂J i

dJ i

dwk−1
[Sensitivity assimilation from all cases]

15: wk = wk−1 − α dJ
dwk−1

∥∥∥∥ dJ
dwk−1

∥∥∥∥−1

∞
[Steepest gradient descent update]

16: for i = 1 : N do

17: Solve for ũim s.t. Rm(ũim, β(η(ũim, ζ
i;wk)); ξi) = 0 [Forward problem]

18: J i = Ci(yi,yim(ũim)) + λiβT iβ (β(ηi(ũim, ζ);wk)) [Objective evaluation]

19: end for

20: J =
N⊔
i=1

J i

21: end for

D. Implementation details

To be able to evaluate different functional forms for the augmentation, the solver has to be

made agnostic of how the augmentation is implemented. To do so, the solver must interact
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with only a linearized version of the augmentation function, β`. In other words, given feature

values η0, an implementation of the augmentation function should internally compute the

numerical values β0 = β(η0;w) and gβ =
∂β

∂η

∣∣∣∣
η0

. These numerical values should then be

passed to the solver which should construct the linearized augmentation using AD variables

η and non-AD type numerical values for η0 as β`(η) = β0 + gβ(η − η0). Notice here, that

the value of β` at η = η0 (which is the value the direct solver uses in the model) remains β0

and the second term involving gβ is present only to record
∂β

∂η

∣∣∣∣
η0

in the AD tape. Notice

that this also presents the advantage of making the AD tape shorter.

The detailed algorithm for the LIFE formulation is presented in Algorithm 1. The jacobians

presented in the algorithm can be calculated using hard-coded analytic derivatives or using

an automatic differentiation (AD) package. In the transition modeling demonstration pre-

sented in this work (section IV), the in-house solver makes use of the open-source automatic

differentiation package ADOL-C to calculate these jacobians.

IV. AUGMENTING A BYPASS TRANSITION MODEL

A. Relevant ideas from bypass transition modeling literature

1. The Praisner-Clark estimate of transition momentum-thickness Reynolds number

Praisner and Clark [28], in 2004, presented a correlation that can approximate the transition

momentum thickness Reynolds number over a wide range of pressure gradients, freestream

turbulence intensities and Mach numbers. This correlation is given as follows.

Reθ,t = A

(
Tu∞

θt
λ∞

)B
(10)

where A = 8.52 and B = −0.956. Approximating B to be -1, recasting this correlation and

assuming Cµω = u′/λ for the Wilcox k − ω model one can write this correlation as

θ2
t = A1

νλ∞
u′∞

=
A1

Cµ

ν

ω∞
(11)

where A1 = 0.07 ± 0.011. The universality of this estimate across such a varied set of flow

conditions, even though the dataset comes predominantly from turbomachinery setups, is

adopted in the model presented in this work.
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2. A brief review of recent intermittency-based models

Langtry and Menter [16] proposed one of the most widely used intermittency-based tran-

sition models with transport equations for intermittency (γ) and an estimate of transition

momentum thickness Reynolds number (R̃eθ,t) to supplement the SST turbulence model

equations. The additional transport equation for R̃eθ,t is used to diffuse the values cal-

culated using algebraic correlations from outside the boundary layer to regions inside the

boundary layer. This quantity is then used to evaluate the critical momentum thickness

Reynolds number, Reθc , which when compared with the vorticity Reynolds number, d2Ω/ν,

can be used to predict the transition onset and hence trigger intermittency production. The

intermittency takes effect in the solver by scaling the production term of the TKE transport

equation.

In 2012, Durbin [10] proposed a simple transition model with a single production term

which is directly proportional to the local vorticity, Ω and (γmax − γ)
√
γ, where γmax = 1.1,

to supplement the Wilcox’s 1988 k − ω turbulence model. The (γmax − γ) term would give

a trivial solution of γ = γmax in the entire field if the model is used as it is. For this reason,

the author proposed to set the intermittency to zero for all mesh locations where the eddy

viscosity was very small compared to the local molecular viscosity and the vorticity Reynolds

number is less than a pre-defined threshold, after every solver iteration. After every solver

iteration, the values of γ is set as min(γ, 1.0) as γmax > 1 helps the intermittency to rapidly

increase, but at the same time, results in a non-physical growth in turbulent production. As

in the Langtry-Menter model, the intermittency is multiplied to the production term in the

transport equation for k.

Ge and Durbin [12] proposed another transition model based on the structure of the previous

model in 2014 which attempts to predict bypass transition due to freestream turbulence and

flow separation. Separation effects were accounted for by multiplying the production term

in the transport equation for k with a separation modification. It is noteworthy, here, that

the presence of a dissipation term in this equation removes the requirement of setting the

intermittency to zero, externally.

In the models mentioned above, one can see a common theme. All of these models attenu-

ate the production of turbulent kinetic energy using the intermittency function rather than

attenuating the eddy viscosity directly. This is justified as turbulent kinetic energy should
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be very low in the laminar regions of the flow, something which is hard to implement by

just altering the eddy viscosity term. Secondly, one of the most important terms in all these

models is the vorticity Reynolds number, the maximum value of which approximates the mo-

mentum thickness Reynolds number fairly well for a zero pressure gradient boundary layer,

as shown by van Driest and Blumer [43]. Even in the presence of favorable/adverse pressure

gradients, the approximation still provides an excellent tool for modeling the transition onset

as a function of a local quantity, as opposed to the momentum thickness Reynolds number

which is an integral quantity. These ideas were instrumental in designing the transition

model presented in this work.

B. Chosen baseline model and proposed augmentation

The transport equations that constitute the chosen baseline model have been shown below.

This model is a variation of the model proposed by Durbin in 2012 [10] which used Wilcox’s

1988 k-ω model as the underlying turbulence model. The source term for the intermittency

transport equation in Durbin’s model is expressed as Fγ|Ω|(γmax − γ)
√
γ, where |Ω| is the

local vorticity magnitude, γmax = 1.1 and Fγ is a piecewise linear function that modulates

the source term. Instead, we consider the baseline source term as ρ(1.0 − γ)
√
γ|Ω| (the

additional ρ is attributed to the compressible formulation of the model). The version of

Wilcox’s 1988 turbulence model containing a vorticity-based production term is used for

this work, in contrast to the strain-rate based production term.

Dρk

Dt
= ∇ ·

((
µ+

µT
σk

)
∇k

)
+ µtΩ

2 − 2

3
ρk∇ · u− Cµkω (12)

Dρω

Dt
= ∇ ·

((
µ+

µT
σω

)
∇ω

)
+ Cω1

ω

k

(
µtΩ

2 − 2

3
ρk∇ · u

)
− Cω2ω

2 (13)

Dργ

Dt
= ∇ ·

((
µ

σl
+
µT
σγ

)
∇γ

)
+ ρ(1.0− γ)

√
γ|Ω|, (14)

with the eddy viscosity given by µt = ρk/ω. Clearly, this model will give a fully turbulent

solution, as the intermittency equation has a trivial solution with the value 1.0 throughout

the domain. Multiplying the value 1.0 in the intermittency transport equation with the

augmentation β, we have an augmented intermittency transport equation as follows

Dργ

Dt
= ∇ ·

((
µ

σl
+
µT
σγ

)
∇γ

)
+ ρ(β − γ)

√
γ|Ω|. (15)
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This particular form of baseline model and augmentation was chosen for the following rea-

sons:

• For most cases, the range for this augmentation is bounded between 0 and 1.

• Any discontinuities in the predicted augmentation field will be smoothed over by the

intermittency transport equation and will not require any special attention. While

augmenting the production term in the k-equation directly would produce similar

results, using the intermittency transport equation, in general, exhibited slightly better

residual convergence characteristics (solver stability) and hence was retained in the

formulation.

• The knowledge of correlations between the intermittency field and other flow quantities

can be readily used to formulate this augmentation, as the converged intermittency

field would closely resemble a smoothed augmentation field.

C. Choice of features and limiters for the augmentation

A clear understanding of the effect of intermittency term γ on the modeled turbulent kinetic

energy k played a vital role in the choice of features. A brief explanation of this effect is

given as follows.

From equation 12, it can be observed that the production of k is directly proportional to

eddy viscosity (νt) and vorticity (Ω), and inversely proportional to the modeled specific

dissipation (ω). Ω, for external flows, is usually the highest at the wall and decreases away

from the wall. Also, the freestream eddy viscosity (which is usually the initial condition

for νt in RANS solvers) is very small (around an order of magnitude higher than molecular

viscosity). Hence, the production of k starts in a region very close to the wall at a distance

where ω has sufficiently decreased and Ω remains high enough to enable a net production

of k (for a fully turbulent boundary layer, this region lies within the inner layer but outside

the viscous sublayer). By the virtue of diffusion, k starts increasing slightly farther from

the wall relative to where it is being produced, thus increasing local νt and triggering a net

production of k. This process keeps spreading away from the wall until Ω drops so low that

a net production is no longer possible. Also, the convective term in equation 12 ensures

that a downstream production of k has minimal effect on upstream locations. Using all this
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information, it can be concluded that in order to laminarize the upstream of the transition

location, the production of k needs to be attenuated by sufficiently reducing γ only in a

region close to the wall. Doing this requires - (1) feature(s) that can indicate the transition

onset (the location up to which the augmentation should be effective); (2) feature(s) to

uniquely identify the regions close to the wall where the augmentation should be active.

The following sections describe the rationale behind the choice of three such features.

Feature 1: Ratio of Vorticity Reynolds Number and an estimate of Reθ,t

Traditional models have used experimentally obtained correlations for transition momentum

thickness Reynolds number (Reθ,t) to predict transition by comparing it with the local

momentum thickness Reynolds number Reθ. As mentioned in section IV A 2, the vorticity

Reynolds number, ReΩ, provides a good surrogate to use instead of Reθ, which is an integral

quantity. The vorticity Reynolds number, as defined in [10], is given as follows.

ReΩ =
d2Ω

2.188ν
(16)

The transition momentum thickness Reynolds number, Reθ,t, is given as follows using the

Praisner-Clark estimate [28] of transition momentum thickness described in section IV A 1.

Reθ,t =
U∞θt
ν
≈ U∞

ν

√
7ν

9ω∞
= Reθ,t (17)

Note that this correlation does not depend on k∞ which is physically inconsistent and

might render it ineffective in certain scenarios. However, in their study, Praisner and Clark

found this correlation seems to work quite well on a range of turbomachinery configura-

tions across different Reynolds numbers, Mach numbers, pressure gradients and freestream

turbulence intensities. Hence, this correlation is currently being used as a physics-based

non-dimensionalization for the first feature which is formulated as the ratio ReΩ/Reθ,t. A

conservative upper-bound for this ratio is assumed to be 3. Hence, the feature can be

reformulated as follows to strictly bound the feature space as follows.

η1 = min

(
d2Ω

2.188νReθ,t
, 3.0

)
(18)

Note here, that the augmentation resulting from this feature would be considerably sensitive

to the far-field boundary condition of ω, and hence the boundary conditions for ω must be

set carefully to simulate the decay of the freestream turbulence intensity as accurately as

possible.
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The remaining issue is to extract Reθ,t from the freestream. In the current work, this is

done as follows. A preset distance interval [r− δr, r+ δr] is chosen for every case. For every

discrete element on a wall boundary, ∂Ω̃w
k , the volume element inside the domain located

at the minimum normal distance within the preset distance interval, is chosen to be the

corresponding freestream cell, Ω̃∞k . If no such element is present, δr needs to be increased.

Now for every volume element, Ω̃j inside the domain which is at a minimum distance from

the wall boundary element ∂Ω̃w
k among all such wall boundary elements, any freestream

quantity is set as the corresponding quantity in Ω̃∞k . While this can be inaccurate at large

distances from the wall, it works fairly well inside the boundary layer with appropriate choice

of the distance interval. In the interest of clarity, it should be noted that the quantities ω∞

and U∞ are not constants throughout the entire domain. Instead, these freestream quantities

are extracted from locations which are at some preset distance normal to the wall. Thus,

for instance, in a turbomachinery configuration, U∞ extracted relative to a point on the

rotor will be very different compared to the U∞ extracted relative to a point on the stator.

Features 2 and 3 distinguish between the volume elements within the boundary layer where

the augmentation needs to be significantly lower than the baseline value and volume elements

elsewhere. Hence, the freestream estimate of quantities being poor far from walls is of no

concern. The distance interval is usually chosen to be as close to the wall and as small as

possible, such that the maximum boundary layer thickness should remain within the lower

bound of this interval. It was also noted that the augmentation is not very sensitive to small

changes in the choice of this interval as demonstrated in appendix C.

Note that although ω∞ and U∞ seem to be non-local quantities at a first glance, but since

the augmentation mainly affects the flow only within the boundary layer, the freestream

quantities virtually remain constant across LIFE iterations. Thus, ω∞ and U∞ can be

thought of as frozen quantities local to each volume element in the discretized domain.

Finally, while U∞ can be used in moderate pressure gradient problems, the quantity could

be ambiguous for very high pressure gradients. Also, note that the maximum value of ReΩ in

the wall-normal direction approximates Reθ for zero pressure gradients and hence, max
dw

ReΩ

would also poorly estimate Reθ for very high pressure gradients.

Feature 2: Ratio of wall distance and turbulent length scale

To identify laminar regions within the boundary layer, one can compare the local turbulent

length scale
√
k/ω with the wall distance d. A predominantly laminar region is characterized
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by an overwhelmingly larger wall distance compared to the turbulent length scale. A mod-

ified functional form for the ratio of these two quantities which is mathematically bounded

between the numerical values of 0 and 1 can be written as,

η2 =
d

d+
√
k/ω

(19)

The laminar regions in the flow are denoted by values of η1 that are significantly close to 1.

Note here that, the value of this feature will be close to 1 for regions outside the boundary

layer as well.

Feature 3: Ratio of laminar viscosity and eddy viscosity

Since the magnitude of νt in the freestream is usually greater than ν, the following modified

functional form for the ratio of these two quantities would be less than 0.5 in the freestream

while being close to 1 in the laminar boundary layer and the viscous sublayer in the turbulent

boundary layer.

η3 =
ν

νt + ν
(20)

Together with feature 2, this feature can distinguish regions within the boundary layer for

locations upstream of the transition location. Note here, that the feature design in this case

is inspired from the augmentation being correlated to (and not caused by) the features.

Limiter for flows without separation

As we are not considering flows with separation, where the intermittency might be allowed

to attain higher values in order to match the physical behavior, the resulting intermittency

is simply limited to values between the theoretical bounds of 0 and 1.

D. Augmentation function as Piecewise Linear Interpolation on Uniformly Struc-

tured Grid in Feature-space

One of the simplest class of functions that can perform localized learning while approxi-

mating sensitivities w.r.t. features is linear interpolation on a uniform grid. While this is

not the most sophisticated class of functions to approximate an augmentation, it certainly

demonstrates the capability of localized learning. Note that the discretization need not

be uniform, or structured for that matter, but these assumptions have been made to sim-

plify calculations, implementation and embedding of the augmentation function within the

numerical solver.
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In this method, the effectively bounded feature space is discretized into a uniformly spaced

structured grid. An augmentation value can be attributed to the center of each grid cell.

These values can then be linearly interpolated using second order finite difference approxi-

mations inside every cell, to obtain the augmentation for any feature space location. Hence,

these cell-centered values serve as the augmentation function parameters, w.

Given a vector of feature values, η, and a value of the augmentation function at the center

of each grid cell βc` , a linearized approximation of the augmentation can be obtained as

described below. Note that the vector of values βc` , viz. βc, here represents the function

parameter vector w mentioned in the previous sections.

1. Find the grid cell ` which η belongs to. Let the features at the center of this grid cell

be ηc` .

2. Based on the augmentation value at the centers of the neighboring grid cells, calculate

a gradient approximation ∇FD
η β` for the `th grid cell using a second order accurate

central finite difference scheme along each feature.

3. Return the following linearized approximation of the augmentation function

β`(η) = βc` + (η − ηc`) ·∇
FD
η β` (21)

The sensitivity approximation of the augmentation function in a locally linear fashion is

sufficient for use in method of adjoints which is used to evaluate the sensitivities
dJ

dw
to

perform integrated inference and learning as sensitivities by definition only require the lin-

earized functional form. Note here, that the chosen structure of the feature space, i.e.

the uniform discretization characterized by ∆η1 and ∆η2, and the functions parameters

w = {β00, β01, . . . , β21, β22} are sufficient to determine the linearized approximation of the

augmentation as shown above, at any point in the feature space. The sensitivities
dβ`
dη

and

dβ`
dw

, which are used in the algorithm given for integrated inference and learning in Algorithm
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1 (also refer Appendix A for the adjoint method), are given as follows:

∂β`
∂η

= ∇FD
η β`

∂β`
∂wm

=
∂β`
∂βcm

=



1 if ` = m

ηj − ηc`,j
2∆ηj

if ηcm,j = ηc`,j + ∆ηj

ηc`,j − ηj
2∆ηj

if ηcm,j = ηc`,j −∆ηj

0 otherwise

(22)

FIG. 1: Schematic of feature space discretization

For instance, given a feature pair (η1, η2) for the above schematic, such that the feature pair

lies in the cell with center (1.5∆η1, 1.5∆η2), the augmentation value can be calculated as

β(η1, η2) = β11 +
β12 − β10

2∆η1

(η1 − 1.5∆η1) +
β21 − β01

2∆η2

(η2 − 1.5∆η2) (23)

For this specific function class, a trade-off is required in deciding the feature space grid

resolution while learning the augmentation. If the resolution is too high, the augmentation

might not be learned for a majority of grid cells as they might not be used during the

optimization process, which can lead to a loss of generality of the augmentation. If the

resolution is too low, the augmentation would not have enough resolution in the feature space

and might lead to sub-optimal learning of the augmentation. This is further complicated

by the curse of dimensionality, which restricts the resolution per feature with increasing

number of features. Thus, this particular technique of approximating local augmentations

using linear interpolation cannot be practically used for a “large” number of features.
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V. RESULTS

We use the datasets for the T3 series of experiments conducted by ERCOFTAC [29] to study

bypass transition over flat plates across a range of inflow freestream turbulence intensities

and pressure gradients. The T3A and T3B cases from this dataset have zero pressure

gradient along the length of the flat plate. The freestream turbulence intensity at the inflow

for T3B is significantly higher when compared to T3A. Other cases in the dataset include

T3C1, T3C2, T3C3, T3C4 and T3C5. Out of these, T3C4 exhibits flow separation and

since we are not considering separation-induced transition in this work, this case has been

ignored. All of the T3C cases have a favorable pressure gradient near the leading edge

which gradually decreases in magnitude along the length of the plate and turns into an

increasingly adverse pressure gradient. T3C1 and T3C5 exhibit bypass transition in the

favorable pressure gradient region of the flow, while T3C2 and T3C3 exhibit transition in

regions with mild and strong adverse pressure gradients respectively.

Training data: The augmented model presented below is obtained by inferring the augmen-

tation from the T3A and T3C1 cases only. Hence, the following results should be observed

in the context of generality of the augmentation obtained in the low data limit. To examine

sensitivity of the results to the training data, a model trained on just T3A is also shown in

appendix B.

Test cases: To test the model on unseen data, the T3B, T3C1, T3C2 and T3C3 cases are

used from the ERCOFTAC dataset. Further, to test the model on unseen geometries, the

VKI dataset [2] for single-stage high-pressure-turbine cascade is used. Specifically, MUR116,

MUR129, MUR224 and MUR241 are used from the VKI dataset.

A. Training the model on T3A and T3C1 simultaneously

1. Mesh for T3A and T3B

The length of the flat plate is 1.5 m with the inlet being 0.04 m upstream of the leading

edge of the flat plate. The mesh resolution next to the wall is on the order of y+ ≈ 1.
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FIG. 2: Mesh used for RANS simulation of T3A and T3B cases

2. Mesh for T3C cases

The length of the flat plate is 1.7 m with the inlet being 0.15 m upstream of the leading

edge of the flat plate. The contouring of the upper wall follows the correlations given in the

work by Suluksna et al [37], which results in the trends of U∞/Uin along the length of the

plate as shown in figure 4. Here U∞ is calculated using the surface pressure, pw, at the flat

plate wall assuming incompressible flow as

U∞(x) =
√

2 (pin + (1/2)ρU2
in − pw(x)) /ρ

The mesh resolution next to the wall is on the order of y+ ≈ 1.

FIG. 3: Mesh used for RANS simulation of T3C cases

3. Inflow conditions

The information needed to characterize the inflow for both the training cases has been

presented in table I. The turbulence intensity decay plots shown in figure 5 verify the ω

boundary conditions.
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FIG. 4: U∞/Uin vs x for T3C1

Cases T3A T3C1

Tuin 0.035 0.1

νtin/ν 14.0 50.0

L(in m) 1.5 1.65

ReL,in 520000 660000

ωin(in s−1) 9.1 24.0

TABLE I: Inflow conditions for the T3 cases used for training

(a)T3A (b)T3C1

FIG. 5: Decay of freestream turbulence intensity

4. LIFE on T3A and T3C1

To obtain the augmentation, LIFE was used to infer the functional parameters (see IV D)

in the feature space using the T3A and T3C1 cases simultaneously. The cost function for

this inference is defined as follows.

C =

nwall∑
iwall=0

‖Cf,iwall
− Cf,data,iwall

‖2
2 (24)
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where nwall is the number of faces corresponding to the flat plate in the mesh and Cf refers

to the local skin friction coefficient. The two different problems and the discretization of

the feature space acts as an implicit regularizer. Figures 6 and 7 show the optimization and

residual histories. Figure 8 shows the Cf of the baseline (β = 1 throughout the domain)

and optimal skin friction coefficient distributions compared to data. The initial residual

convergence for the direct solver is much better compared to the subsequent optimization

iterates. This is due to the change in the feature-to-augmentation relationship, which affects

the convergence. However, the magnitude of the residual suggests sufficient convergence.

Also, one does not see a significant drop in the residuals because each optimization iterate is

restarted from the converged state of the previous iterate. The effectively bounded feature

space was uniformly discretized into a cartesian grid with 30, 10 and 10 cells along the

features η1, η2 and η3, respectively. It should be noted that the discretization of the feature

space presented here is not necessarily the most efficient one. The objective rather is to

demonstrate the capability of localized learning. Further, the discretization need not be

in the form of a uniform grid as shown here and could be made adaptive. Finally, as

mentioned in section IV D, the discretization needs to be just enough to characterize the

augmentation satisfactorily. We found that the discretization presented here predicts the

transition location well.

(a)T3A (b)T3C1

FIG. 6: Field Inversion: Optimization plots

As can be seen in the plots above, the transition locations are inferred with a reasonable

accuracy for both the cases. Notice, that in the T3C1 case, the skin friction coefficient
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(a)Residual convergence for energy (b)Residual convergence for energy adjoints

FIG. 7: ρE Residual histories for all optimization iterates

(a)T3A (b)T3C1

FIG. 8: Skin friction coefficients along the length of the flat plate

deviates from the data in the vicinity of transition. The same happens for T3A, though the

effects there are much subtler. Also, it can be noticed that the laminar part of the flow does

not show fully laminar friction coefficients as can be seen when compared to data. This can

be attributed to the predicted intermittency having low values in a very narrow region in

the flow field. Better results may be obtained by using good limiters on features and/or the

predicted augmentation values. For instance, the augmentation value can be set to zero if

it is below a certain threshold (e.g., 0.3). Given that such a threshold would have to be

extracted using training cases and might not work for certain test cases, these limiters might
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be ad hoc.

(a)T3A (Flat plate length: 1.5 m) (b)T3C1 (Flat plate length: 1.7 m)

FIG. 9: Intermittency contours (White line marks U = 0.95U∞), 40x scaling in the y-direction

The contours of augmentation w.r.t. the feature space (slices of η1) are shown in Figure 10.

As can be seen in the feature space contours, the augmentation varies w.r.t. η1 until only

around η1 ≈ 0.75 above which it has a virtually constant value of 1.0 (Baseline). This

happens because the augmentation is trained using cases involving transition occurring in

regions of zero/favorable pressure gradients. Training the cases for the adverse pressure

gradient regions would potentially populate some region with higher values of η1. The

augmentation assumes small values only in regions of high η3 because low intermittency

correlates to laminar regions in the flow where η3 will be high. However, this is also the

case in the viscous sub-layer and some parts of the buffer layer in the fully turbulent parts

of the flow. In such a scenario, η2 distinguishes between the laminar and turbulent parts of

the flow. This is a clear example of how adding an extra feature can help in differentiating

physical regions where the augmentation must take different values.

For the purpose of comparing different learning techniques, three different set of results

obtained - (1) using only the T3A case for training, (2) without using localized learning (i.e.

using Neural Networks), and (3) using a finer discretization have been shown in appendices

B, D and E, respectively. Looking at these results, we can make the following observations:

1. As seen from the augmentation obtained by only using data from the T3A dataset for

training in appendix B which performs worse compared to the augmentation obtained
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(a)η1 = 0.05 (b)η1 = 0.15 (c)η1 = 0.25

(d)η1 = 0.35 (e)η1 = 0.45 (f)η1 = 0.55

(g)η1 = 0.65 (h)η1 = 0.75 (i)η1 = 0.85

FIG. 10: Augmentation contours on feature space slices after training on T3A and T3C1 datasets

using both the cases T3A and T3C1, adding more datasets which exhibit different

physical phenomena compared to the already existing training datasets consistently

improves predictive accuracy.

2. Reducing spurious behavior using localized learning can not only make the augmenta-

tion more robust but is at times essential to infer a usable augmentation from available

data. This is clearly evident when comparing the results presented in this section with

the training results presented in appendix D (which do not use localized learning and

use neural networks as the functional form for the augmentation and fail miserably by
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predicting partially/fully laminar flow at all locations along the flat plate).

3. During localized learning, correctly setting the range of influence that the datapoints

have in the feature space is crucial in order to obtain a generalizable augmentation

as mentioned in section III C. Also, as mentioned in section III C, this work does not

deal with a method to optimally set the range of influence and instead focuses on why

localized learning is necessary to improve generalizability and reduce spurious behav-

ior arising from extrapolation within the bounded feature space. Nevertheless, the

comparison between the test results for augmentations using different grid resolutions

in the feature space (see appendix E where a finer grid leads to the augmentation being

learnt in a smaller region of the feature space which results in limited generalizability)

demonstrate the importance of setting an optimal range of influence.

B. Testing the model

1. Mesh for VKI turbine cascade cases

The mesh used for the turbine cascade cases can be seen in Figure 11. The blade chord is

0.067 m in length and makes a 55◦ angle with the streamwise direction. The inlet is situated

0.055 m upstream of the leading edge, while the outlet is located 0.242 m downstream of

the leading edge. The mesh resolution next to the wall is on the order of y+ ≈ 1.

FIG. 11: Mesh used for RANS simulation of VKI turbine cascade
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2. Inflow conditions for T3 test cases

The information needed to characterize the inflow conditions for the T3 test cases has been

mentioned in table II. The turbulence intensity decay plots shown in figure 12 verify the ω

boundary conditions.

Cases T3B T3C2 T3C3 T3C5

Tuin 0.065 0.037 0.034 0.043

νtin/ν 100.0 12.0 8.0 17.0

L(in m) 1.5 1.65 1.65 1.65

ReL,in 940000 550000 418000 946000

ωin(in s−1) 7.943 11.4083 10.982 18.70738

TABLE II: Inflow conditions for the T3 test cases

(a)T3B (b)T3C2

(c)T3C3 (d)T3C5

FIG. 12: Decay of freestream turbulence intensity
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3. Inflow, wall and outflow conditions for VKI test cases

The information needed to characterize the inflow conditions for the VKI turbine cascade

test cases along with pressure at outflow boundary and temperature at the isothermal wall is

presented in table III. The boundary condition for ωin was set to ensure that the viscosity

ratio νtin/νin remains between the range from 1.5 to 50.

Cases MUR116 MUR129 MUR224 MUR241

Tuin 0.008 0.008 0.06 0.06

νtin/νin 3 1.556 43.537 15.465

p0,in(in bar) 3.269 1.849 0.909 3.257

T0,in(in K) 418.9 409.2 402.6 416.4

pout(in bar) 1.550 1.165 0.522 1.547

Twall(in K) 300.0 300.0 300.0 300.0

ωin(in s−1) 1.5× 104 1.5× 104 1.5× 104 1.5× 105

TABLE III: Inflow, wall and outflow conditions for VKI test cases

Notice here, that MUR116 is a case with high pressure differential and low Tu∞, MUR129

is a case with low pressure differential and low Tu∞, MUR241 is a case with high pressure

differential and high Tu∞, and finally MUR224 is a case with low pressure differential and

high Tu∞. This distinction will be important later.

The comparison of velocity profiles at three different locations on the turbine blade along

the wall normal direction is shown in figure 13 for verification.

4. Predictions using the augmented model on the same geometries

Figure 14 shows results obtained by applying the model trained on T3A and T3C1 to

the T3B, T3C2, T3C3, and T3C5 cases. The transition locations for T3B, T3C2 and T3C5

cases are predicted reasonably well in the results shown below. This is because the transition

occurs in all of these cases in either zero, favorable or very mild adverse pressure gradient

regions. The model fails to predict the transition location correctly for T3C3 for this reason

and instead assumes the baseline value for β = 1 in the adverse pressure gradient regions,

thus predicting premature transition. Once again, it can be noticed that the laminar part
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(a)Normalized coordinates (b)Wall coordinates

FIG. 13: Verification of velocity profiles for MUR224 using LES data [54] (Cax refers to chord

length in the x-direction)

of the flow does not show fully laminar friction coefficients as can be seen when compared

to data. This can be attributed, as explained before, to the predicted intermittency having

low values in a very narrow region of the flow field.

5. Predictions using the augmented model on a different geometry

Figure 18 shows the heat transfer coefficients predicted by the model trained on T3A and

T3C1 on the VKI high pressure turbine cases, which are not only geometrically different

from the training set, but also involve combinations of pressure gradients and freestream

turbulence intensities not seen in the training data. Predictions with two different preset

distance intervals to extract Reθ,t information from the freestream are shown in Appendix C

to assess the sensitivity of the solution to such modeling choices. For MUR224 and MUR129,

the transition location is predicted fairly accurately and consistently with both the preset

distance intervals. For MUR241, the transition location on the suction side is predicted very

well. On the pressure side, however, the data shows a gradual transition to turbulence, while

the model predicts a sharp transition at different locations within this gradual transition

range when using different preset distance intervals. For MUR116, transition is premature

for on either sides of the blade.

To diagnose the behavior in the MUR116 case, Figure 16 shows contours of two features and
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(a)T3B (b)T3C2

(c)T3C3 (d)T3C5

FIG. 14: Predicted Skin friction coefficients for flat plate cases using the model trained on T3A

and T3C1.

the intermittency near the transition location. The intermittency is seen to grow rapidly

in the region 0.1 ≤ η1 ≤ 0.2 and η2 ≤ 0.8. This corresponds to a region in the feature

space in which the augmentation does not learn significantly from the available data, lead-

ing to the augmentation reverting to its baseline behavior of β = 1. It should be recognized

however, that there is a strong feedback loop between the features, augmentation and trans-

port processes . This means that all these quantities can influence each other in the model

irrespective of the physical cause-effect relationships. This behavior can be improved by

bringing in more data to populate a larger part of the feature space. For comparison pur-

poses, η1, η2 and γ contours for MUR241 are shown in figure 17 which exhibit a physically

intuitive growth of the intermittency in a region of high η1 and η2.

In addition, it can also be observed that - while the coefficient values are close to the data in

laminar regions - there are large discrepancies between the two in the fully turbulent regions.
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(a)MUR116 (b)MUR241

FIG. 15: Zoomed out views to indicate predicted transition locations on upper surface

(a)η1 = min

(
ReΩ

Reθ,t
, 3

)
(b)η3 =

ν

ν + νt
(c)Intermittency (γ)

FIG. 16: Contours near the transition location on suction surface for MUR116

This is because the turbulence model is imperfect These discrepancies are not related to the

transition phenomena and hence, are beyond the scope of the current augmentation.

VI. SUMMARY

This work presents a methodology that can be used to build data-driven augmentations to

physics-based models. Building on recent work in data-driven turbulence modeling, this ap-

proach develops generalizable features-to-augmentation mapping across multiple datasets in

a model-consistent manner. The proposed framework, referred to as “Learning and Inference
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(a)η1 = min

(
ReΩ

Reθ,t
, 3

)
(b)η3 =

ν

ν + νt
(c)Intermittency (γ)

FIG. 17: Contours near the transition location on suction surface for MUR241

(a)MUR116 (b)MUR129

(c)MUR224 (d)MUR241

FIG. 18: Predicted heat transfer coefficients for VKI turbine cases using model trained on T3A

and T3C1.

assisted by Feature-space Engineering (LIFE)” places particular emphasis on the design of

the feature space and control of the augmentation behavior in the feature space. Choosing

features (along with appropriate physics-based non-dimensionalization) to create an “effec-
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tively” bounded feature space is indispensable as this boundedness ensures the tractability

of the learning problem. In an ideal scenario, if an augmentation is learnt in this entire

bounded region, an extrapolation in geometry/boundary conditions would translate to an

interpolation in feature space. Given the availability of a limited number of datasets, human

intuition and expert knowledge is essential, in the authors’ opinion to formulate such fea-

tures. Although automated feature selection techniques do exist, they are heavily (and often

prohibitively) expensive to find a parsimonious combination of features that can address the

augmentation, especially for complex physical problems like transition and turbulence. To

address the issue of the possible lack of data in certain significantly sized regions of the

feature space, the notion of localized learning becomes critical to avoid spurious learning

outputs. Localized learning refers to the modification of the augmentation function behav-

ior at every learning step only in the vicinity of available datapoints in the feature space.

Additional measures, such as preventing a region in the feature space from representing

different regions in the physical space where the augmentation must assume different values

(i.e. ensuring a one-to-one features-to-augmentation mapping) by selecting an appropriate

combination of features, also helps improve robustness. The LIFE framework offers a

framework along with guiding principles and techniques that are intended for

use by modelers to develop data-driven augmentations for low-fidelity models

using high-fidelity data.

To demonstrate LIFE in practice, a simple intermittency-based bypass transition model-form

based on Wilcox’s k-ω turbulence model was augmented appropriately with a careful choice

of features. This augmentation function is inferred from two benchmark cases of flat plate

transition from the T3 series of experiments. These two cases are characterized by transition

under zero pressure gradient and favorable pressure gradient regions respectively, with an

inflow freestream turbulence intensity significantly greater than 1%. Linear interpolation

on uniformly structured feature-space discretization was used as the functional form for the

augmentation in order to implement a very crude variant of localized learning. Though

more sophisticated ways to perform localized learning are possible, this implementation is

showcased to demonstrate how effective and capable the notion of localized learning can

be. This augmented model is then used to predict transition on four other flat plate cases

and four single-stage high-pressure-turbine cascade cases. The augmented model is shown

to be able to predict the transition locations for problems in which similar physics was

42



encountered in the dataset. It is noted that the focus of this work is not to develop the

ultimate bypass transition model, rather to present a formalism that can be used to develop

physics-constrained, data-enabled models. More comprehensive training datasets, especially

involving higher pressure gradients and turbulence intensities can help in improving the

accuracy and applicability of the model.

Currently, there are three major challenges in the LIFE framework - (1) Feature design for

a given application; (2) Deciding the range of the vicinity in which a datapoint updates

the augmentation; and (3) Formal uncertainty quantification. Designing features that can

capture the behavior of an augmentation function in the simplest possible manner is a

challenge that modelers have been dealing with for decades now. While there exist numerical

diagnostics and techniques to assist and/or automate feature selection and engineering, the

authors feel that domain expertise and intuition is the best way forward for problems as

complex as turbulence and transition, at least given the prevailing constraints on data and

computational power which render automatic feature selection infeasible. As far as the

range of influence that a datapoint has in the feature space is concerned, a trade-off needs

to be made between over-fitting and predictive accuracy. If the influence is very limited, the

augmented model will perform very well on the training cases, but can revert to baseline

behavior for test cases which lie outside the influence of these datapoints. On the other hand,

if the influence is too wide, the augmentation behavior might not be sufficiently resolved and

hence could adversely affect predictive accuracy. Finally, formal uncertainty quantification

techniques need to be developed for use in design of experiments to extend the capability of

the LIFE framework.
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Appendix A: Sensitivity evaluation using discrete adjoints

In a field inversion problem, the objective function J = C(ũm) + λβTβ(β) is a function of

both ũm and β, and since ũm is dependent on β via R(ũm; β, ξ) = 0, we can write the

following.
dJ
dβ

=

[
∂J
∂β

]
ũm

+

[
∂J
∂ũm

]
β

[
∂ũm
∂β

]
R=0[

∂R

∂β

]
ũm

+

[
∂R

∂ũm

]
β

[
∂ũm
∂β

]
R=0

= 0.

Now, using the above representations one can write,

dJ
dβ

=

[
∂J
∂β

]
ũm

−
[
∂J
∂ũm

]
β

[
∂R

∂ũm

]−1

β,ξ

[
∂R

∂β

]
ũm,ξ

Here, the sensitivities of a single objective function w.r.t. several variables need to be

evaluated. In such a case, it is cheaper to solve for
∂J
∂ũm

[
∂R

∂ũm

]−1

compared to solving

for

[
∂R

∂ũm

]−1
∂R

∂β
and the solution to the former is referred to as the vector of adjoint

variables. An algorithmic differentiation (AD) package is used to evaluate the different

jacobians involved in the above discrete adjoint approach. The in-house solver [7] used in

this work makes use of the ADOL-C package for AD.

The integrated inference and learning framework, however requires additional infrastructure

for this to work. Since, there is an additional dependence of β(η(ũm, ζ);w) on ũm to ac-

count for, this pathway needs to be included in the calculation of any jacobians w.r.t. states

ũm. Inclusion of the entire augmentation function in the AD calculation is unnecessary and

expensive, however, as one only requires sensitivities of the augmentation w.r.t the features.

The calculation of features from states can be implemented within the AD framework rela-

tively easily. Thus, calculating a linear approximation for the augmentation in feature space

and using AD for this linearized function is a better and efficient alternative to evaluate this

Jacobian. Any other jacobians w.r.t. the augmentation can be converted to the jacobians

w.r.t. function parameters w using
∂β

∂w
, which the learning framework being used must
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be able to calculate. The sensitivity calculation for an integrated inference and learning

approach can, thus, be calculated similar to what has been shown above for field inversion

dJ
dw

=

{[
∂J
∂β

]
ũm

−
[
∂J
∂ũm

]
w

[
∂R

∂ũm

]−1

w,ξ

[
∂R

∂β

]
ũm,ξ

}
∂β

∂w
.

Appendix B: Results when training only with T3A

The main issue with training only with T3A is that the behavior in the augmentation is

learnt only on the basis of data from a zero pressure gradient case. The more cases are

added to the mix, the stronger is the consistency of an optimal augmentation for different

problems.

Optimization convergence and feature space contours: Although the convergence

(Figure 19(a)) appears similar to that observed when both T3A and T3C1 were simulta-

neously used to learn the augmentation, the skin friction predictions (Figure 19(b)) and

augmentation contours in the feature space (figure 20) have significant differences between

the two cases. The effect of this difference between the two augmentations can be seen in the

following sections. It is however, noteworthy how a single additional case with unseen phys-

ical behavior can make a considerable difference in the predictions. This suggests the ability

of the framework to effectively extract information about the features-to-augmentation func-

tional relationship.

(a)Optimization convergence (b)Skin friction prediction

FIG. 19: Augmentation training using data from T3A only

Predictions on T3 cases: It can be seen in Figure 21 that the prediction is completely

wrong for T3C1 and T3B, while it appears reasonable for the other cases. Another important

observation is that the transition locations for T3C1, T3C2 and T3C3 are over-predicted.
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(a)η1 = 0.05 (b)η1 = 0.15 (c)η1 = 0.25 (d)η1 = 0.35 (e)η1 = 0.45

(f)η1 = 0.55 (g)η1 = 0.65 (h)η1 = 0.75 (i)η1 = 0.85 (j)η1 = 0.95

FIG. 20: Feature maps (x-axis: η2, y-axis: η3, uniform color-bar range [0,1] across all plots)

This is due to the fact that the augmentation remains at a lower value for a longer distance

spuriously as the augmentation has no way of differentiating between how η1 changes for

different pressure gradients as the training is performed only for a zero pressure gradient

case.

(a)T3B (b)T3C1 (c)T3C2

(d)T3C3 (e)T3C5

FIG. 21: Skin friction coefficients for T3C cases

50



Prediction on VKI cases As can be seen in Figure 22, training a model only on the

T3A data results in significantly inaccurate transition location predictions on at least one

side of the blade except MUR224 when compared to the results presented in the main text

where both T3A and T3C1 cases were used for training. This is in accordance with the

explanation provided in the last section. Since the transition model has little information

on how the features behave in the presence of non-zero pressure gradients, additional data

which can highlight such behavior (in the main text as the T3C1 case) is required to extract

information about the behavior of the augmentation in feature space.

(a)MUR116 (b)MUR129

(c)MUR224 (d)MUR241

FIG. 22: Heat transfer coefficients for VKI cases

Appendix C: Results with varying preset distance intervals for Reθ,t extraction

As shown in Figure 23, we found that varying the preset distance usually has a small effect

on the predictions for the turbine blades. A minor discrepancy is observed in MUR116

(characterized by a small bump in the heat transfer coefficient), whereas a major discrepancy,

resulting in considerable different transition behavior, is seen for MUR241.
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(a)MUR116 (b)MUR129

(c)MUR224 (d)MUR241

FIG. 23: Comparison between different preset distance intervals

Appendix D: Results without localized learning (Neural Networks)

Three different fully connected neural network architectures were utilized as shown in table

IV. Owing to the simple nature of augmentation behavior in feature space, a simple neural

network with two hidden layers containing seven nodes each was tested. The results obtained

during training, as shown in figure 24, are clearly poor as they partially laminarize the entire

flow rather than laminarizing the flow only before the transition location. Further, two other

architectures with 1 hidden layer containing 600 nodes, and 2 hidden layers containing 45

and 60 nodes respectively were tried out but yielded similarly poor results as shown in figure

24. The number of parameters (weights and biases) for the latter two architectures was kept

around 3000 to match the number of parameters used in the main text during localized

learning via feature-space discretization.
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Network # of hidden layers Nodes in hidden layer 1 Nodes in hidden layer 2

Neural Network 1 2 7 7

Neural Network 2 1 600 -

Neural Network 3 2 45 60

TABLE IV: Description of neural network architectures

The results demonstrate that localized learning is essential to both, better condition the

optimization problem and also to aid the optimization trajectory in the correct direction in

the augmentation space. The second point is especially important, as in several applications

(including transition prediction), changing the augmentation behavior in regions where no

data is available can in fact lead to spurious model behavior as these parts of the feature

space can be accessed before the solver converges. This is further worsened by any feedback

present between features and augmentation. It has to be mentioned that using the same

software framework, neural networks have been used in the context of integrated inference

and learning more successfully in Refs. [13, 14] on a less challenging problem. The authors

acknowledge that more sophisticated training methods may yield better results.

Appendix E: Results with a finer discretization in the feature space

For comparison purposes, a finer feature-space discretization was also used to obtain the

augmentation function, the training results and augmentation contours on feature-space

slices for which have been shown in figures 25 and 26. The feature space was divided

into subdomains of size 1/30 along all three feature space directions (90, 30, and 30 cells

along the first, second, and third features respectively). As can be noticed in figure 26, the

influence of the changes made be the data have been restricted to smaller regions owing to

the smaller cell sizes. Figures 27 and 28 show the results from testing the augmentation on

the T3B, T3C2, T3C3, T3C5, MUR116, MUR129, MUR224, and MUR241 cases. As can

be seen from the results, while the augmentation learned on the finer grid seems to predict

the transition locations for T3 cases with nearly similar accuracy (with little laminarization

in the T3B case and slightly premature transition in T3C5) as its counterpart trained on

the coarser grid, almost all results from the VKI cases exhibit premature transition. This
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(a)Objective reduction (T3A) (b)Skin friction profile (T3A)

(c)Objective reduction (T3C1) (d)Skin friction profile (T3C1)

FIG. 24: Training results with Different Neural Network Architectures

happens because the limited region of influence that the available data has in the feature

space allow some feature space locations to exhibit baseline behavior (which did not happen

when using the augmentation learned on a coarser grid as the region of influence covered a

larger part of the feature space).
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(a)Optimization history (T3A) (b)Optimization history (T3C1)

(c)Skin friction profile (T3A) (d)Skin friction profile (T3C1)

FIG. 25: Training results on a finer feature-space grid

(a)η1 = 0.05 (b)η1 = 0.15 (c)η1 = 0.25 (d)η1 = 0.35

(e)η1 = 0.45 (f)η1 = 0.55 (g)η1 = 0.65 (h)η1 = 0.75

FIG. 26: Augmentation contours on feature-space slices
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(a)T3B (b)T3C2

(c)T3C3 (d)T3C5

FIG. 27: Skin friction coefficient profiles for the T3 test cases

(a)MUR116 (b)MUR129

(c)MUR224 (d)MUR241

FIG. 28: Heat transfer coefficient profiles for the VKI test cases
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