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Surface-driven flows are ubiquitous in nature, from subcellular cytoplasmic streaming to organ-
scale ciliary arrays. Here, we model how confined geometries can be used to engineer complex
hydrodynamic patterns driven by activity prescribed solely on the boundary. Specifically, we simu-
late light-controlled surface-driven active matter, probing the emergent properties of a suspension of
active colloids that can bind and unbind from surfaces of a closed microchamber, together creating
an active carpet. The attached colloids generate large scale flows that in turn can advect detached
particles towards the walls. Switching the particle velocities with light, we program the active sus-
pension and demonstrate a rich design space of flow patterns characterised by topological defects.
We derive the possible mode structures and use this theory to optimize different microfluidic func-
tions including hydrodynamic compartmentalisation and chaotic mixing. Our results pave the way
towards designing and controlling surface-driven active fluids.

INTRODUCTION

The ability of biological organisms to self-assemble
and organize has inspired new ideas in engineering and
physics. Unlike traditional materials, active matter con-
sumes energy at the scale of each individual particle,
and local interactions between such particles gives rise
to complex collective behaviors [1–12]. As such, the self-
organizing capability of active matter makes it a fertile
ground for new design principles and technologies. How-
ever, the realization of such devices is contingent upon
our currently limited ability to control or program them
[13–17].

As a strategy for designing tunable active matter, we
are inspired by the prevalence of surface-driven activity
in nature. Rather than programming activity in the bulk,
one could potentially prescribe what is on the boundary
which in turn modulates and controls bulk flows. For
example, in human airways the coordinated motion of
micron-scale cilia across the entire organ drives coher-
ent flows and is essential for mucus clearance [18–20].
Furthermore, cytoplasmic streaming in the Characean
algae is a salient example of surface-driven activity at
the subcellular scale – organelle-carrying myosin motors
walk along fixed actin tracks, resulting in macroscopic
circulation of the cytoplasm [15, 21–24]. Synthetic ex-
amples of active surfaces include artificial cilia [25–30],
phoretic pumps [31–35], self-propelled droplets and col-
loids accumulated on walls [36–40], Quincke rollers [41],
engineered bacterial carpets [42–44], flows generated by
gradients of interfacial tension [45], and molecular motil-
ity assays [46].

The ability to micro-manipulate flow structures is of
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great interest for applications such as microfluidics and
lab-on-a-chip devices [47, 48]. Yet, miniaturising self-
contained microfluidic devices that do not require exter-
nal macroscopic pumps and valves has remained a major
challenge in the field. A solution could be to instead
generate flows internally by injecting momentum from
patterned active surfaces [43], but little is understood
how such topological patterns affect the flow properties
and structures that can emerge across the scales. In
other words, while external pressure-driven microfluidics
are now ubiquitous in research and industrial applica-
tions, the design space of internally driven flows using
surface activity in confined geometries is almost entirely
unknown. As such, there are two questions to be ad-
dressed: the experimental parameters necessary for the
realization of surface-driven flows, and the elucidation of
the design space of active surface-patterning.

In the first half of the manuscript, we propose an ex-
perimental realization of surface-driven active flows using
light-controllable molecular motors (Fig. 1). Light has
proven to be a powerful experimental handle in living
systems due to its ability to target molecules with high
spatiotemporal resolution [16]. Of particular interest to
us, engineered cytoskeletal motors incorporating a pho-
tosensitive LOV2 domain have been shown to modulate
their speed or direction in response to blue light [49, 50]
(Fig. 1B). We develop an in-silico model consisting of
aligned filament tracks patterned across a single “active”
boundary of a closed rectangular flow chamber (Fig. 1A).
Viscous drag on cargo-carrying molecular motors – whose
direction along the tracks are switchable by light – impart
momentum into their surroundings, entraining the local
fluid. We demonstrate that our proposed system is capa-
ble of generating macroscopic, steady-state flows within
a regime of realistic motor properties. We then perturb
the system with light to explore the design space of pos-
sible flow structures using two fundamental modes we
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term the “head-on” and “shear” defects. In contrast with
other theoretical works involving cytoplasmic streaming
[23, 24], we explicitly consider stochastic dynamics of par-
ticles that can attach and detach from the active carpet.

In the second half of the paper, we introduce an ana-
lytical framework based on the interior squirmer model
to further generalize these flow structures and explore the
full design space of surface activity. We demonstrate that
surface-driven flows can achieve remarkably complex 3D
flow structures with properties like chaotic mixing and
particle confinement with no physical barriers. Overall,
our results provide insight into boundary-driven flows in
naturally occurring biological systems and pave the way
for using surface activity to program re-configurable bulk
flows at small scales.

SYSTEM DESCRIPTION

Our in-silico experiment of surface-driven flows focuses
on a closed rectangular chamber, where surfaces can be
patterned by actin tracks that are parallel and polarized
in orientation (Fig. 2A). Active particles in our system
consist of colloids coated with molecular motors (Fig. 2A,
green particles). These particles are suspended in bulk
and can attach to the surface, after which they walk bal-
listically from the minus to the plus end of the tracks in
the absence of light, and reverse direction in the pres-
ence of light. As these particles move along the surface,
they entrain the local fluid and may generate long-ranged
circulating flows. Particles in the bulk are advected by
these flows which, in turn, can transport them towards
the surface, to which they can bind and unbind through
probabilities of attachment or detachment.

In previous experiments, aligned tracks have been re-
alized in various settings for over two decades. For ex-
ample, F-actin can be aligned with electric fields [51].
The polar alignment of microtubules on glass surfaces
has also been achieved using hydrodynamic flows [52] or
aligned polymerization [53]. Furthermore, the field of
engineering molecular motors is becoming more estab-
lished. Different types of motors have been engineered
to walk backwards [54], to respond dynamically to cal-
cium signals [55] or to light [49]. Most recently, Ruijgrok
et. al. have demonstrated the directional switching of
processive myosin motors in response to blue light [50].
Engineered molecular motors have already found various
applications in other synthetic systems, such as the op-
togenetic control of cytoskeletal suspensions [16, 56, 57].

Our methods are described in detail in the Supple-
mentary Information (SI) [58]. In brief, to solve for the
system dynamics, we alternate between (1) computing
the flow field u(r) at position r using a CFD solver [59],
(2) integrating the bulk particle motion with Brownian
dynamics, and (3) updating the surface particle density
and dynamics. For the first step, inspired by Lighthill
and Blake [60, 61], we implement a slip velocity on the
active surface due to the motion of the bound particles

(Fig. 2B). In the dense particle limit, the surrounding
flow will saturate to the particle speed, but in the sparse
limit the velocity vanishes. In between, we ignore inter-
particle interactions and assume that the flow magnitude
is approximately linear with respect to particle concen-
tration (see Fig. S1). We have additionally validated our
CFD solver against a few simple benchmarks (Fig. S2-5).

Detached particles in the bulk are subject to advec-
tion and diffusion. Their relative strengths are set by
the Péclet number Pé = LV/D, where V is the charac-
teristic velocity of the motors, L is the longest chamber
length and D is the diffusion constant. We solve for par-
ticle trajectories in the bulk by integrating the Langevin
equation in the overdamped limit:

ri(t+ dt) = ui(t)dt+
√

2Ddt ηi(t), (1)

where i refers to components of the position r = {x, y, z}
in Cartesian coordinates, the time step is dt and η(t) is
uncorrelated Gaussian white noise defined by 〈ηi(t)〉 = 0
and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′) in terms of the Kronecker
and Dirac delta functions.

Particles that approach the surface closer than a cut-
off ε can attach with rate Pon, modelled as a linearly
decreasing function of particle density (Fig. 2C). We as-
sume that the particles are otherwise non-interacting. On
the boundary, particles walk ballistically with a direction
specified by the orientation of the tracks and the pattern
of light. Conversely, bound particles can detach from the
surface with a constant rate Poff (Fig. 2D). Initially, the
boundary is uniformly populated with a density equal
to half the surface coverage, and no motile particles are
initialized in the bulk.

In our model, the important parameters to vary are
Pé and Poff. The former sets the diffusivity of the active
colloids while keeping chamber geometry and particle ve-
locity constant, and the latter has a nice interpretation
in terms of motor processivity (average run length be-
fore detachment). The other parameters Pon and the
Reynolds number Re = ρV L/µ (with ρ and µ the density
and dynamic viscosity of water, respectively) are fixed
throughout our simulations, with Re ∼ 0, well in the
viscous regime. Unless explicitly mentioned otherwise,
we report all results in the paper with nondimensional-
ized units, u∗ = u/V , r∗ = r/L, t∗ = t/(L/V ), and for
simplicity we drop the asterisks.

For typical values of both the motor speed V and the
motor detachment rate Poff, there is a wide spectrum
of biological variation. On the one hand, load-carrying
myosin motors in Chara corallina can sustain fluid flows
of speeds up to 100µm/s over distances of a single cell
that can be up to 10cm long [21, 22], whereas inside an
oocyte the flows can be as small as 0.1µm/s [15, 62].
Thus, for an active particle with speed V = 0.1−100µm/s
and radius R = 0.1 − 1µm, in a microfluidic chamber
of length L ∼ 100µm, the Péclet number ranges from
Pé ∼ 1 − 104. On the other hand, the detachment rate
Poff is related to the motor run length (also known as
the processivity), which in our simulation corresponds to
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λ = V/Poff, with Poff having units of probability per time.
For processive myosin motors, approximate run lengths
can range between λ = 100 − 1000 nm [63–66], which
yields a detachment rate of Poff ∼ 1− 10 s−1 (assuming
a speed of 1µm/s). Engineered motors can reach proces-
sive run lengths approaching 10µm [67], with multi-motor
complexes expected to reach even higher run lengths.

The above description gives us a range of parameters
that are relevant for a motor-actuated system. For the
entirety of the main text, unless otherwise mentioned, we
fix the length scales of our system at L = 50µm and V =
1µm/s, and we use an active particle size of radius R =
400 nm (see Supplementary Section II and Table I for an
extended discussion on parameter choices and relating
them to motor properties). To ensure convergence of
our simulations, we use discretized time steps of dt ≈
10−6(L/V ). We report rates with respect to discrete time
steps. For instance, a detachment rate of Poff = 1s−1

corresponds to Poff ∼ 10−4 per time step.

RESULTS

Optimal transport and flow topology

As a benchmark for us to compare our results in con-
finement, we first consider the simplest set-up without
any surface defects and periodic boundary conditions in
x and y. A single active surface lies in the z = 0 plane
with tracks aligned along x, and a glass slide sits with
a no-slip condition at z = H. In this case, the uniform
flow profile is u = umax(z − H)x̂, where the maximum
flow near the surface is umax = 2〈u〉 in terms of the av-
erage streaming magnitude, 〈u〉 :=

∫
u(z)dz/H = φV/2

(Fig. S5, Movie S1). This flow strength is directly de-
termined by the motor speed V and the surface coverage
fraction φ, which is set by the motor processivity. Thus,
if we use highly processive and fast motors, the maxi-
mum flow speed near the surface can approach the motor
speed itself, of order umax ∼ 10−100µm/s, for the fastest
natural cytoskeletal motors [22]. The engineered proces-
sive myosin motors [67] that are currently available are
somewhat slower, up to V ∼ 10µm/s, but still capable of
strong advection.

Next, we consider a slightly more complex geometry:
a closed rectangular chamber with one uniform active
surface, as before, but with five no-slip surfaces (Fig. 2E-
F, Movie S3). The steady state on the boundary for one
particular choice of parameters shows an accumulation of
particles at the right wall (at the plus end of the actin fil-
aments) and a depletion of particles on the left (Fig. 2E).
The fluid at the right boundary is forced upwards, creat-
ing a steady state vortex in the xz-plane (Fig. 2F). Vary-
ing the Péclet number and detachment rates shows that
higher streaming magnitudes occur for lower values of Pé
and an intermediate value of Poff (Fig. 2G and Fig. S4).
This optimum is explained as follows. On the one hand,
attached particles will tend to accumulate at the chamber

edges within a timescale τw ∼ L/V . Overly processive
motors will therefore on average reach the opposite wall
before they detach into the bulk, reducing the streaming
velocity away from the edges. This sets a lower bound on
the detachment probability, τdetach = 1/Poff ≤ τw, so we
require that Poff ≥ V/L in order to establish nontrivial
streaming velocities in confined volumes. On the other
hand, particles that are not processive enough do not
spend enough time on the surface to contribute signifi-
cant momentum injection. A large diffusion coefficient
(i.e. small Péclet number) helps to offset particle accu-
mulation at edges and also homogenises density fluctu-
ations, which increases the streaming strength and sta-
bility, allowing for the establishment of steady-state flow
structures (Movies S2-3). This is maximized in the limit
Pé→ 0, when diffusion dominates advection, and motors
spread through the box uniformly.

In summary, the flow velocity can be optimized with
a high diffusivity and an intermediate processivity. Note
that experimental realizations place constraints on these
parameters, as discussed in Supplementary Information
§ II. We further note that the properties of the phase
space diagram are particular to the geometry we have
considered, and other cases (such as periodic boundary
conditions, Fig. S5) may yield very different results.
Moreover, uniform motion in confined chambers will lead
to recirculating streamlines that can transport particles
in the ẑ direction, despite that activity on the surface
is directed uniquely along x̂ (Fig. 2F). Recirculation of
streamlines due to the presence of defects in the surface
is important when considering the design of fluid struc-
tures, which we do in later sections.

Light-modulated surfaces

One way to engineer different fluid structures would be
to manipulate the orientation of tracks on a surface, an
experimental perturbation made difficult by the fact that
these tracks are often permanent when laid out. Instead,
advances in optogenetics have enabled a simpler means
of dynamic control via light. Engineered motors whose
direction along an actin filament are switchable by light
provide a mechanism to reprogram the same surface by
changing how the motors interact with it [50]. We now
explore this regime to see how we can program and pat-
tern bulk flow with variable surface light patterns.

Consider the same active surface as in Fig. 2A with
all tracks oriented along the x̂ direction. Suppose the
x > 0.5 (right) half of the box is now illuminated, redi-
recting the optically controllable particles in that region
toward the minus end (Fig. 3A,C). We term the resulting
structure the “head-on” defect, since now two popula-
tions of motile particles are walking into each other at a
line defect formed by the light pattern. This gives rise to
two distinct vortices on either side of the domain junction
(Fig. 3C). Similarly, we can also choose to illuminate the
y > 0.5 half of the box, giving rise to a “shear” defect
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configuration (Fig. 3B,D). On a surface patterned with
uniformly oriented tracks, the head-on and shear defects
are the two fundamental modes patterned by light.

These two flow structures have different properties that
may be useful for different applications. Suppose, for
example, that at subsequent stages of a chemical pro-
cess two particle transport procedures are needed. Figs.
3E,F show that the shear and head-on defects prefer-
entially transport tracer particles in different directions.
The head-on defect is most effective at spreading parti-
cles along the ẑ-coordinate, as evidenced by the concen-
tration profile of tracers initially in the bottom half of
the box being spread uniformly along ẑ by the end of
the simulation (Fig. 3E). On the other hand, the shear
defect is more effective at spreading along the ŷ coordi-
nate (Fig. 3F). Note that in both cases the direction of
motion along the boundary is strictly in the x̂ direction –
it is the geometry of the confined chamber (i.e. the loca-
tion of walls and defects) that gives rise to recirculating
streamlines.

A significant advantage of light-controlled surface pat-
terning is the ease of transitioning from one flow struc-
ture to another. As a proof of principle, we conducted
a simulation (see Movie S4) where we transition from a
shear defect to a head-on defect, and back to a shear de-
fect again, with period 2 × 106 time steps, detachment
rate Poff = 10−4 per time step and Pé = 1 (the optimum
in Fig. 2G). In our model, we assume that the behavior
of the motile particles switch instantaneously with the
external light perturbation. Figs. 3G,H show that with
each transition, the flow relaxes to its unique steady state
for each boundary condition after a short relaxation time
which is set by Pe. Interestingly, the shear defect gen-
erates a slightly lower streaming velocity despite having
on average more particles attached to the boundary.

Systematic design of flow patterns in confined
geometries

Next, we consider the challenge of designing bulk flow
patterns via surface activity, and consider the breadth
of design space that is available. To speed up our simu-
lations, we continue in the optimal limit Pé → 0 where
active particles cover all surfaces uniformly and simu-
late the steady state flow structure in chambers of size
Nx × Ny × Nz = 40 × 40 × 40. Hence, we no longer
simulate the particle dynamics explicitly and study the
steady-state flow structures obtained by patterning sur-
faces directly with constant slip velocities. In reality,
when Pe is nonzero, the magnitude of the flows will be
more concentrated around defects (as shown in the pre-
vious section), but the streamlines will be similar (Fig.
S4). Though these surface velocities can be patterned
arbitrarily, the resulting bulk flows must still obey the
constraints set by the Stokes equations and incompress-
ibility. The question arises how the optogenetic design
can be optimized to alleviate those constraints in terms

of transport and streamline connectivity.

For surface patterning, we utilize the language of de-
fects that refer to zones where surface bound active parti-
cles dramatically change behavior. Starting with a single
active surface with uniformly oriented filaments, differ-
ent regions of left- or right-moving fluid can be created
with light, as depicted for the head-on, shear, and patch
defects (Fig. 4A, i-iii). Again, all three patterns are inter-
changeable by dynamically changing the pattern of light.
We can add an additional handle by no longer subject-
ing the filaments to be uniformly oriented. Alternating
orthogonal patches of tracks, in tandem with a light pat-
tern on the surface, can give rise to flow structures such
as a vortex (Fig. 4A, iv).

Integrated streamlines of the patch defect in Fig. 4C,i
highlights the separatrix formed by a small region of
oppositely moving flow. Streamlines shown in red tra-
verse clockwise (CW) and are centered on top of the
patch, whereas all other streamlines travel counterclock-
wise (CCW). The head-on and patch defects therefore
have a compartmentalizing effect, with regions of stream-
lines that do not mix. Conversely, Fig. 4C,ii shows that
the streamlines of the vortex defect traverse the xy-plane
as well as a distance of over half the height of the grid
in z. The shear and vortex defects are therefore effective
fluid mixers. These countervailing properties of compart-
mentalizing and mixing can guide the design of numerous
functions useful in self-driven microfluidics.

We can further build upon the complexity of our de-
signs by patterning multiple surfaces at once. Fig. 4B
approaches this systematically by considering only head-
on (i-ii, v) or shear defects (iii-iv, vi) on 2 or 4 sur-
faces. Interpreting the resultant flow structures created
by head-on defects is straightforward: two stable vortices
will form on either side of a defect, where the flow either
moves toward (→←) or away (←→) from each other.
Integrated streamlines of the flow field of Fig. 4B,v in
Fig. 4C,iii shows that the streamlines are two dimen-
sional: each of the 8 vortex compartments remain un-
mixed in y. On the other hand, patterning with shear
defects can lead to mixing within each compartment. Fig.
4B,vi depicts four consecutive active surfaces, with each
pair of opposite faces patterned with shear defects of op-
posite signs (↑↓ and ↓↑). In the xz-plane, this gives rise to
head-on defects at the four corners, creating four stable
vortices. However, recirculation in the yz and xy-planes
cause the streamlines within the four vortices to traverse
along the y-coordinate, as depicted in Fig. 4C,iv.

The expectation that shear defects give rise to three
dimensional streamlines is a general but not very robust
rule, however. If one were to flip the signs of the ve-
locity patterned on the two walls with surface normal
to the x-axis, the head-on defects at the corners would
be eliminated, leading to a continuous current that runs
CCW in the y < 0.5 region of the box and CW in the
other (Fig S7). Interestingly, the resulting streamlines
are again co-planar.

Until now we have focused entirely on steady state,
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constant flows, harnessing only the spatial programming
of light. We want to highlight the fact that temporal pat-
terning opens up an even greater design space (Movies
S5-6). Consider, for example, a continuous transition
from a head-on to shear defect by smoothly varying the
angle of the light pattern with the y-axis (Movie S5).
We can also assign an angular velocity to the light an-
gle, generating a rotating light field. Although at low
Reynolds numbers the fluid will relax instantaneously to
the new boundary conditions, there is still a finite relax-
ation time associated with the redistribution of motile
particles. In addition, the path taken by tracer patterns
in a non-constant Stokes fluid is not obvious. Further in-
vestigation into the effects and possible functionality of
non-constant flows will be explored in future work.

The interior Squirmer model

Given the quickly increasing complexity of the result-
ing flows and the myriad possibilities of surface patterns,
it is clear that adopting a more analytical approach to
understanding the design space of boundary-driven flows
is required. For this we turn to solutions of the squirmer
model on a sphere [61, 68–71]. Initially adopted to study
the external flow fields of microswimmers, we invert the
problem and study instead the flow structure within the
sphere [31–35, 72], subject to the condition that flows
normal to the surface vanish on the boundary. The re-
sulting general solution for incompressible Stokes flow in-
side a sphere is given by:

ur(r, θ, φ) =

∞∑
n=1

n∑
m=0

nrn−1Pmn (cos θ)×
(

1− r2

R2

)
×

(bmn cosmφ+ b̃mn sinmφ), (2)

uθ =

∞∑
n=1

n∑
m=0

rn+1 sin θP̂mn (cos θ)×
(

n+ 3

(n+ 1)R2
− 1

r2

)
×

(bmn cosmφ+ b̃mn sinmφ)

+
mrn

sin θ
Pmn (cos θ)× (c̃mn cosmφ− cmn sinmφ), (3)

uφ =

∞∑
n=1

n∑
m=0

mrn+1Pmn (cos θ)

sin θ

(
1

r2
− (n+ 3)

(n+ 1)R2

)
×

(b̃mn cosmφ− bmn sinmφ)

+ rn sin θP̂mn (cos θ)× (cmn cosmφ+ c̃mn sinmφ), (4)

where Pmn (x) are the associated Legendre polynomials

indexed by integers n,m, P̂mn (x) = ∂xP
m
n (x) is its deriva-

tive, and the radius of the sphere is R. For the sake of
simplicity we set bmn = b̃mn and cmn = c̃mn, which fixes
the phase of φ whilst keeping the topology the same. The
modes are thus denoted by two variables, bmn and cmn.

The first few axisymmetric modes are shown to match
with the simulated flow structures on a grid (Fig. 5).
We observe that the b-modes are aligned longitudinally
across the sphere, whereas the c-modes run along lines
of latitude and form closed streamlines. Cross sections
of the box and sphere reveal the similarities between the
internal flow structures. The topological equivalence be-
tween a sphere and a box dictates that these flow struc-
tures should be compatible. We do note, however, that
corner effects can give rise to eddies that are unique to the
geometry of a box [73]. Most interestingly, the b20 and
c20 modes have built-in defects analogous to topologies
proposed earlier: the former consists of a line of head-on
defects at the equator, while the latter consists of two
oppositely rotating hemispheres, giving rise to a shear
defect along the equator. The spherical solutions there-
fore present a natural framework in which to embed the
design space of surface-driven flow structures.

Plots of higher order modes and their streamlines
(Fig. 6A and Figs. S8-12) show that these general rules
of thumb still apply: b modes give rise to patches of
oppositely moving flow on the surface, while c-modes
give rise to closed vortices. Higher order modes give
rise to more patches or more vortices, corresponding to
smaller compartments in which tracer particles can tra-
verse (Figs. S11-12). The b-modes are better at mix-
ing particles radially within their compartments due to
streamlines that redirect particles toward the z = 0 axis,
whereas particles move along concentric closed curves at
approximately constant radius in c-modes (Figs. S8-10).
These properties can be combined and used when design-
ing microfluidic devices that require specific bulk flow
patterns.

Chaotic mixing by mode superposition

Inspired by previous work showing that Stokes flows
within droplets can give rise to chaotic streamlines [74–
77], we ask whether our surface-driven flow patterns can
do the same. Whereas the individual b and c modes do
not feature chaos, we do find evidence of chaotic mixing
in superpositions of these modes (Fig. 6). To quantify
this, we consider the trajectories of tracer particle pairs
that are initially spaced a distance dr0 = 10−6 apart (in
dimensionless units). Fig. 6B depicts 10 such trajectories
subject to the b21 flow field only. The blue dots denote
the starting positions of one pair of particles, which can-
not be visually resolved. The green dots denote their
final positions after integrating to time t = 500. The red
curve in Fig. 6F plots the separation dr as a function of
time, averaged over 1000 randomly seeded trajectories,
and shows that the particle pairs remain close together
throughout their trajectories, with a final separation less
than dr = 10−3. Similarly, the blue curve in Fig. 6F
suggests that the c21 mode is also not chaotic.

Trajectories of the b21 +c21 modes combined, however,
will on average diverge rapidly to a distance comparable
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to the system size (R = 1). Fig. 6C depicts a single
pair of trajectories that begin at the blue dot near the
center of the sphere. After a time t = 500, the green dots
show the separation of these two particles at a distance
comparable to the sphere diameter. This chaotic mixing
is further illustrated by the Poincare sections at x = 0 for
the b21 and b21 + c21 modes (Fig. 6D-E), each built from
1000 randomly seeded trajectories. The Poincare section
of b21 is notably sparser than that of b21 + c21, showing
that the superposition of modes is far more effective at
mixing.

To understand this better, we map out the entire phase
space of mixing potential by superpositions of the n = 2
modes (Fig. 6G). This heat map shows the exponent of dr
for each pair of superposed modes. Only the modes con-
sisting of b superposed onto c lead to chaotic advection,
suggesting that fundamental properties from each mode
are necessary ingredients. Somewhat surprisingly, the
axisymmetric mode b20 showed moderate signs of mix-
ing when superposed with the c21 and c22 modes, but
the b21 + c22 mode combination did not. Though we can
predict the flow structures of simple surface patterns, it
is not obvious which of the more complex topologies will
lead to chaotic mixing and which do not. Prior theoreti-
cal work has shown that fluid properties such as stretch-
ing, twisting, and folding are essential for chaotic mixing
[74, 75, 77–79].

Moreover, we have also examined the effect of Brown-
ian motion on top of chaotic mixing (see Fig. S13). These
results show that chaotic flows always significantly re-
duce the mixing time, up to tens of times faster than
non-chaotic flows and orders of magnitude faster than
diffusion alone, for sufficiently large chambers or suffi-
ciently fast flows.

DISCUSSION

In this paper, we have proposed a new class of flow pat-
terns that utilize surface-driven flows rather than exter-
nally applied pressure gradients in confined geometries.
We first consider a realization of such active boundaries
using a suspension of light-controllable molecular motors.
These particles can bind to directional tracks grafted onto
the surfaces of a microfluidic chamber, and hence gener-
ate surface-driven flows. We demonstrate that these cur-
rents can be optimized by tuning the motor processiv-
ity and the motor velocity. This non-equilibrium trans-
port is augmented further by optogenetic perturbations,
whereby the same active surface can be reprogrammed
to generate a myriad of different flow structures. We
then generalize the problem of designing fluid structures
by moving from numerical to analytical analysis, embed-
ding the language of our surface patterns in terms of
the squirmer modes. Different classes of topological de-
fects created by light patterning give rise to flow struc-
tures that each have different functions, such as hydro-
dynamic compartmentalisation, translation and rotation,

and chaotic mixing.

Importantly, the concept of active boundaries is much
more general than any specific implementation. That is,
besides molecular motors, surface-driven flow structures
may equally be driven by other microfluidic technologies,
and fluid design concepts have been developed for these
systems as well [15, 21–23, 25–39, 41–43, 45]. For exam-
ple, artificial cilia [25–30] could also be used to create a
patterned active surface, but dynamic local control can-
not be achieved since the ciliary patterning cannot be
moved once established, and miniaturization remains a
challenge. Phoretic pumps [31–35], where a surface is
coated with fixed patches of chemical catalysts, also suf-
fer from a lack of dynamic control. Additionally, the
chemicals used (typically H2O2) may not be biocompati-
ble or interfere with other desired lab-on-a-chip reactions.
Induced-charge electrokinetics (ICEK) is another impor-
tant means of creating boundary-driven flows by apply-
ing an electric field to an ionic solvent [80, 81], which has
proved to be effective in many microfluidic applications
including chaotic mixing. However, similar to the arti-
ficial cilia and phoretic pumps, the electrodes are fixed
in place, and the high voltages used can affect sensitive
biochemistry near the electrodes.

Another key advantage of a microfluidic system driven
by molecular motors is that the active particles are cou-
pled, rather than permanently attached, to the boundary.
A region of the boundary will not be active unless a mo-
tor binds to it. Thus, the activity at a local patch of the
boundary is dependent on the local concentration cen-
tered on that patch. Therefore, the energy consumption
can be localised to a region of the surface by concentrat-
ing particles (i.e. with a head-on defect) and thus concen-
trating activity. Moreover, while we focused on control-
ling active particles in one direction, multiple channels
can be combined to enable full orthogonal control of the
active carpet. For example, myosin motors tuned by one
wavelength of light can generate surface flows via actin
tracks along the x direction, while kinesins tuned by a
different wavelength of light can walk on microtubules
grafted along y.

The generality of the concept of surface-driven flows
led us to develop an analytic theory that reveals the
possible flow structures in terms of fundamental modes,
which may be superposed spatiotemporally. Switching
dynamically from one mode to another enables the gener-
ation of multiple flow structures from a single active sur-
face, without the need for physical channel fabrication.
The simplicity of such a microfluidic design platform is
the minimal amount of experimental manipulation re-
quired during operation. Hence, highly complex and dy-
namic time-varying protocols may be designed with these
internally driven flows. It would be very interesting in
the future to ask whether or not these units can be used
to create logic gates [13, 82], microfluidic assembly lines
[48], or for other applications such as sorting particles of
difference sizes [83]. Instead of spherical active particles
that move along the surface, one could also consider ac-
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tive filaments [84, 85]. Overall, this platform provides
a fertile testing ground for understanding and designing
active carpets from first principles.
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FIG. 1. An experimental proposal for surface-driven flows in confined volumes. (A) In-vitro reconstitution of cytoplasmic
streaming as a basis for engineering flows. Load-carrying molecular motors walk along polarized and aligned actin filaments
pinned to a surface. The viscous drag on the load (colloidal particles) imparts momentum in the surrounding fluid, and the
action of many such particles can lead to emergent bulk flows. (B) Top: molecular motors have been genetically engineered to
switch their direction of motion along a filament in response to blue light (see Ruijgrok et. al. 2021[50]). Bottom: by patterning
the boundary with light, one can dynamically control the flow structure of a chamber with spatio-temporal precision.
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FIG. 2. Model for surface-driven flows in confined volumes. (A) A confined chamber of size Nx × Ny × Nz = 20 × 20 × 10
that consists of a single active surface at z = 0, uniformly coated with parallel and polarized actin filaments. The gray lines
denote the orientation of particle trajectories on the surface. Active colloidal particles (green) bind and unbind from the surface
with rates Pon and Poff. Bound particles walk ballistically in a fixed direction along the tracks, imparting momentum on the
surrounding fluid and creating macroscopic flows. Unbound particles are free to advect and diffuse in the bulk, with relative
strength set by the Péclet number Pé. (B) The velocity at each grid point v∂Ω(x) on the boundary increases linearly with
particle concentration and saturates to the particle speed V . (C) The attachment rate Pon decreases linearly to zero at the
saturating concentration ρsat, a value which is set by the grid and particle size, while (D) the detachment rate Poff is modeled
as a constant. (E-G) Simulation results for a simple case: uniform flow in a closed chamber. All results are from shapshots
of simulations recorded after simulating for 2 × 106 time steps to approach steady state, with each time step dt ≈ 10−6L/V
sec. (E) The magnitude of the velocity at each point on the boundary for a specific choice of parameters (the optimum in Fig.
2G) shows an accumulation of particles toward the right edge of the chamber. The color bar depicts the flow magnitude on
the surface, scaled by V to a maximum of one. (F) The existence of a wall forces the fluid at the edge upward, creating a 2D
vortex in the xz-plane. (G) Phase diagram of Poff and Pé, showing that high streaming velocities in a confined volume favors
low Pé and an intermediate detachment rate. The average streaming velocity, 〈|u|〉/V , is shown at z/H = 0.2 averaged in the
x and y directions across the chamber. Pé is varied by changing D and keeping L and V constant. Poff is reported in units of
probability per time step.
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FIG. 3. Static and dynamic surface-patterned defects using light-controlled active colloidal particles in confined volumes.
(A,B) Schematic of a light-pattern on the z = 0 surface of a chamber with dimensions Nx ×Ny ×Nz = 20× 20× 10. In (A),
the x > 0.5 half of the plane is illuminated by light, and in (B), the y > 0.5 half is illuminated. (C,D) Resulting steady state
flow patterns. In (C), the line defect on the active surface at x = 0.5 causes fluid to be pushed upward, creating two distinct
vortices. In (D), the line defect along y = 0.5 creates vortices of opposite chirality in distinct regions of the chamber (y < 0.5
and y > 0.5). Confinement of the fluid additionally gives rise to recirculating streamlines in the xy-plane. (E,F) The head-on
and shear defects preferentially mix passively advecting particles (Pétracer = 104) in different directions. Plotted on the y axis
is the fraction of tracer particles in the initially empty portion of the box as a function of time. Here N> denotes the number
of particles at x, y, z > 0.5, 0.5, 0.25 for each of the three curves, respectively. (E) For the head-on defect, particles are nearly
evenly distributed between the z < 0.25 and z > 0.25 halves of the box, but mostly remain in the x < 0.5 and y < 0.5 regions,
showing that there is little mixing in x and y. (F) On the other hand, the shear defect is less effective at mixing in ẑ but is able
to mix particles along ŷ due to recirculation. (G,H) An optically controllable system allows easy temporal switching from one
flow structure to another. As proof of principle, we switch between head-on and shear defects, with period 2 × 106 timesteps
and parameters Poff = 10−4 and Pé = 1. (G) Shows the distribution of motile particles, where time moves from blue to green
to red. (H) (In red) The average streaming magnitude, computed as the spatially averaged fluid magnitude as a function of
time, and (in blue) the average number of particles attached to the boundary as a function of time. Interestingly, the average
streaming magnitude of the head-on defect is greater even though the number of attached particles on the boundary is slightly
less than that of the shear-defect.
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FIG. 4. Design space of surface-driven flows using mainly head-on and shear defects. All flow structures are solved on a
Nx × Ny × Nz = 40 × 40 × 40 grid. (A) Each panel depicts a pattern of light on a single active boundary (top) and the
corresponding 3D flow structure (bottom). Note that panels i-iii are interchangeable by light, whereas panel iv introduces
additional complexity where the orientation of actin on the surface is no longer fully uniform. (B) Panels i-ii, and v pattern
2 or 4 surfaces with head-on defects. Since the resulting streamlines are effectively 2D, only xz cross sections of the flow
structures are plotted. Panels iii-iv, vi considers the same but with shear defects, and with the full 3D flow structure to
highlight the recirculating streamlines. (C) Select streamlines from Fig. 4A-B are plotted to enhance visualization of the flow
structures. Note the red-streamlines in panel i, which highlights the particles trapped in the clockwise vortex established by
the oppositely-moving patch in Fig. 3A,iii. Contrasting panel iii with iv shows the effect of the recirculating streamlines –
particles in the former remain advected in the xz-plane whereas particles in the latter circulate in xy.
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FIG. 5. Fundamental Modes of the Squirmer Model: an analytical approach to boundary driven flows. Shown in panels (A-D)
are comparisons between theory (left) and simulations (right) for the first four axisymmetric modes. The green ± symbols
at the corners of the box indicate the polarity of the actin filaments patterned on the boundary. The top row of each panel
depicts the surface patterning, and the bottom row depicts the internal flow structures taken at some cross section. (A,C) The
surface patterns of the b10 and b20 modes lie on longitudinal tracks. The b10 mode consists of uniform (in direction) motion
from the north to the south pole, while the b20 mode naturally encodes a line of head-on defects at the equator. All interior
flow structures are taken at the cross section y = 0. (B,D) Conversely, the surface patterns of the c10 and c20 modes lie on
lines of latitude. Similar to the b20, the c20 mode naturally encodes a shear defect along its equator. The interior cross-sections
of c10 for both the sphere and the box are taken at x = 0, while the pair of cross sections of c20 are taken at θ = π/3, 3π/4 for
the sphere and at z = 0.25, 0.75. Cross sections of the sphere and box in all four panels show that the interior flow structures
are analogous. This shows that the language of head-on and shear defects are intrinsically built into the squirmer model.
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FIG. 6. Emergence of chaotic mixing. (A) The surface streamline structure of the modes (i.e. the fluid velocity at r/R = 1)
is plotted as a function of the spherical angles θ and φ. Note that the b modes give rise to patches of oppositely moving
flow, whereas the c modes comprise of closed-vortices. (B) Examples of 10 separate trajectories of the b21 mode. The blue
dots denote the starting points of two particles, spaced dr/R = 10−6 apart, a distance that cannot be resolved by eye. The
green dots denote the ending positions after integrating for t = 500, which are still very closely spaced, showing that the two
trajectories do not substantially diverge. (C) Example of a single chaotic trajectory of the b21 +c21 mode. Note the positions of
the green dots, which now span a distance comparable to the size of the droplet. (D) The Poincare section at x = 0 for the b21

mode computed from 1000 trajectories. Note that the plane is only sparsely populated. (E) The Poincare section of b21 + c21,
on the other hand, nearly fills the entire plane. (F) The evolution in time of the logarithmic displacement between pairs of
particles initially spaced dr/R = 10−6 apart, averaged over 1000 randomly seeded trajectories. These plots show that of the 3
modes in (a), only the superposed mode shows evidence of chaotic mixing on the scale of the droplet size. (G) Exponents of
the time evolution of dr after integrating for t = 500 for various superpositions of modes, indicated by the row r and column
c of the element in the matrix. (r, c) = (2, 3) denotes the c21 + b22 mode, for example. The matrix shows that the only modes
that show evidence of chaotic mixing are the b and c superposed modes. However, not all such modes are chaotic, as evidenced
by the b21 + c22 mode.
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