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A novel Wavelet-based Adaptive Wall–Modeled Large Eddy Simulation (WA-WMLES) method is
proposed for simulations of wall-bounded compressible turbulent flows. The new approach utilizes
the Wavelet-based Adaptive Large Eddy Simulation (WA-LES), incorporated into the Anisotropic-
Adaptive Wavelet Collocation Method, to resolve the outer region of turbulent boundary layer, while
the inner part is approximated by the equilibrium wall-shear-stress model. Such an approach for
modeling the inner layer is crucial for wavelet-based adaptive turbulent flow simulations because the
mesh resolution requirement for WA-LES to resolve inner viscous sublayer becomes computation-
ally prohibitively expensive as the Reynolds number increases. In the outer layer region WA-LES
computations take advantage of the wavelet-based local mesh refinement, which not only efficiently
captures the physical characteristics of flows on a nearly optimal adaptive computational mesh, e.g.,
massive boundary layer separation, but also actively controls the error of the solution using a priori
defined wavelet filtering threshold. A flat plate turbulent boundary layer flow and a separated flow
over NASA’s wall-mounted hump are tested to verify and validate the WA-WMLES approach. Good
agreement of the results predicted by the WA-WMLES method is achieved compared to the reference
data from experiments and simulations. The finest effective mesh resolution of the WA-WMLES is
consistently higher than the one used in the wall-modeled LES (WMLES) found in literature, but
comparable to the wall-resolved LES, while the similar accuracy is achieved with considerably fewer
degrees of freedom than in non-adaptive WMLES. These observations demonstrate both accuracy
and efficiency of the WA-WMLES method.

I. INTRODUCTION

The recent advancements in wavelet-based numerical methodologies to solve partial differential equations, com-
bined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically
dominant flow structures, allow the development of a hierarchical adaptive eddy-capturing framework for turbulent
flow simulation that fully captures spatial/temporal turbulent flow intermittency and tightly integrates numerics and
physics-based modeling [9, 10]. In the wavelet simulation, coherent flow structures are either totally or partially
resolved on dynamically adaptive computational meshes, while the effect of unresolved motions are represented by
the models. The separation between resolved (more energetic) eddies and residual (less energetic) components of the
flow is achieved by means of the nonlinear wavelet thresholding filter. The value of wavelet threshold controls the
relative importance of resolved field and residual background flow and, thus, the fidelity of turbulence simulations.
In the Wavelet-based Adaptive Large Eddy Simulation (WA-LES), the stochastic and the least energetic coherent

parts of the turbulent velocity field are discarded and only the most energetic coherent vortices are captured in the
resolved numerical solution [22]. It is found in Ref. [11] that the discarded subgrid-scale (SGS) coherent structures
dominate the total SGS dissipation, while the SGS incoherent modes have a negligible effect upon the large-scale
dynamics and the energy transfer. Therefore, similar to conventional LES methods, many standard LES closures
are applicable for the Adaptive LES method by modeling SGS coherent structures in terms of the resolved energetic
coherent vortices.
The effectiveness and efficiency of the Wavelet-based Adaptive Wall-Resolved LES (WA-WRLES) method has

been scrutinized for wall-bounded incompressible/compressible flows using either the volume-penalization boundary
condition [10, 12] or body-fitted curvilinear meshes [13]. For wall-bounded flows, the Anisotropic-Adaptive Wavelet
Collocation Method (A-AWCM) [6] with body-fitted meshes allows anisotropic mesh clustering and stretching in the
physical domain, and, thus, overcomes the difficulty in simulating the flow over complex geometries by traditional
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wavelet-based methods [31, 47–49] while preserving the efficiency and error control of wavelet transform and mesh
adaptation procedure over the uniform meshes in the computational domain.
Despite significant savings achieved by wavelet compression in the WA-WRLES, its application is still computa-

tionally prohibitively expensive for high Reynolds number wall-bounded flows. This is a wide and lasting issue for all
the efforts in the wall-resolved LES community and is mainly due to progressive decrease of the viscous length scales
in the inner region of a turbulent boundary layer requiring very fine wall-normal mesh spacing ∆y that scales with

Reynolds number as ∆y ∼ xRe−13/14
x [8]. In contrast, energy-containing length scales in the outer-region are usually

determined by the geometry of the flow or more precisely the boundary layer thickness δ, which decreases slowly with

the Reynolds number and scales as δ ∼ xRe−1/7
x . In fact, as estimated by Choi and Moin [8], the mesh resolution

for the wall-resolved LES approach scales as Nwr ∼ Re13/7. Alternatively, the wall-modeled LES [28, 43] requires the
mesh resolution scaling as Nwm ∼ Re. Therefore, the wall-modeled LES is more applicable to high Reynolds number
problems, despite some side-effects, such as the log-layer mismatch (LLM) with the error in skin friction of about 5%
to 15% [25, 42, 44], which is observed when the near-wall RANS model and the resolved LES away from the wall do
not quite match their interception constants, C (in U+ = log(y+)/κ+ C) in the log-law layers.
There are two well-known categories of wall-modeled LES methods: 1) the hybrid Large Eddy Simulation/ Reynolds-

averaged Navier-Stokes (LES/RANS) methodse that switch to the RANS formulations in the inner layer [27, 40, 42, 44]
and 2) the wall-shear-stress methods that model the wall shear stress directly on the wall [2, 7, 26, 36]. Recently
a novel Wavelet-based Adaptive Delayed Detached Eddy Simulation (WA-DDES) [19, 20] that incorporates hybrid
LES/RANS modeling framework into the Wavelet-based Adaptive Unsteady RANS (WA-URANS) [18, 21] formulation
has been proposed. The developed WA-DDES resolves the typical log-layer mismatch issue encountered in the
conventional non-adaptive DDES methods mainly due to the use of wavelet-based adaptive mesh refinement and have
been examined in a variety of wall-bounded flow configurations. WA-DDES achieves high grid compression relative
to the effective mesh resolution at the highest level while obtaining accurate solutions using relatively small wavelet
filtering threshold, especially in the wall modeling RANS region.
One major issue in the WA-DDES computations is the stringent restriction on step size for time integration caused

by very small wall-normal mesh spacings immediately adjacent to the wall, i.e., y+ < 1, despite the use of stretched
meshes with relatively large parallel grid spacings to reduce the total number of active nodes. The main objective of
this work is to overcome this restriction by developing the wavelet-based adaptive wall-modeled LES (WA-WMLES)
method. For the rest of context, the term “wall-modeled LES” is used for simplicity to refer to the aforementioned
wall-shear-stress modeled LES method. The key idea of the WMLES approach is to feed the information to a RANS
model at an exchange location (EL) from the LES flow field and then solve the RANS equations (either ordinary
differential equations (ODEs) for the equilibrium model [3, 4, 25] or partial differential equations (PDEs) with 3D
RANS computations for the non-equilibrium model [26, 36]). The RANS equations are then solved to find the
wall stresses (viscous fluxes) to impose the wall-stress boundary conditions back to the LES computation under the
assumption that the direction of the wall shear is aligned with the velocity vector at the EL. The EL is a user-defined
parameter and can be adjusted based on the boundary layer thickness. To prevent the log-layer mismatch it was
recommended in Ref. 25 that the exchange locations should be located in the lower portion of the log-layer and within
10% of the boundary layer thickness, which highlights one of the advantages of the WA-WMLES, namely the removal
of CFL restriction due to near-wall mesh spacing as the first mesh point away from the wall is located above y+ & 40.
As a result, considerably cheaper explicit time integration schemes can be used in the WA-WMLES computations. It is
important to emphasize that the adaptive wavelet-based methodology [31, 47–49] is capable to achieve not only sparse
data representation and high grid compression using the inherent adaptive mesh refinement capabilities, but also to
control the accuracy of the simulations through wavelet filtering threshold, which is very important for simulation of
unsteady turbulent flows with boundary layer separation that can be captured by spatio-temporally adaptive meshes
with nearly optimal number of degrees of freedom.
The rest of the paper is organized as follows. Section II introduces the WA-WMLES governing equations, including

the Favre-filtered Navier-Stokes equations for compressible flows, the SGS eddy viscosity model and the wall-modeled
LES boundary conditions. The A-AWCM and the implementation of the WA-WMLES into the A-AWCM framework
are described in Section III. Section IV presents the simulation results for the test cases using the novel WA-WMLES
method. Concluding remarks are given in Section V.

II. GOVERNING EQUATIONS

A. Favre-filtered Navier-Stokes equations

For conventional non-adaptive LES, the implicit or explicit linear lowpass filtering operator is usually defined a
priori and is tied to the corresponding computational mesh with under-resolved mesh spacings relative to DNS. In
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contrast to standard LES, the wavelet-filtering operator used in the Wavelet-based Adaptive LES is constructed by
using the wavelet thresholding filter, described in Section III, which is nonlinear and depends on the instantaneous

flow realization. Similarly to the conventional lowpass-Favre filter for variable density flows, denoted as φ̂ = ρφ/ρ

with the over-bar (·) representing the lowpass filter, the wavelet-Favre filter is defined as φ̂>ǫ = ρφ
>ǫ
/ρ>ǫ, where

the wavelet threshold filtering operator (·)>ǫ
is given by (18). In the wavelet-Favre filtered Navier-Stokes equations,

consequently, the primitive variables are ρ>ǫ, p>ǫ, ûi
>ǫ, T̂>ǫ and ê>ǫ, representing respectively the wavelet filtered

density of the fluid (gas) and pressure, the wavelet-Favre filtered velocity, temperature and total energy per unit
mass. For the sake of simplicity, the variables ρ, p, ui, T and e are used hereafter to denote all the primitive variables.
Subsequently, the wavelet-Favre filtered Navier-Stokes equations for conservation of mass, momentum, and energy in
compressible flows of calorically perfect gas with modeled turbulent terms can be written in the following form:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τ̂ij
∂xj

, (2)

∂ρe

∂t
+

∂

∂xj
[(ρe+ p)uj] =

∂

∂xj
[uiτ̂ij − qj ] , (3)

where

p = ρRT, (4)

e =
1

2
uiui +

p

ρ(γ − 1)
, (5)

qj = −cp
(
µ

Pr
+

µT

PrT

)
∂T

∂xj
, (6)

τ̂ij = 2µS̃ij − τij , (7)

−τij = ρ(unfi u
nf
ĵ

>ǫ

− uiuj) = 2µTS̃ij , (8)

S̃ij = dev(Sij) = Sij −
1

3

∂uk
∂xk

δij ,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The parameter R is the gas constant, while cv and cp are the specific heat constants at constant volume and pressure,
respectively. The specific heat ratio γ = cp/cv ≡ 1.4 for diatomic gases, and Pr = µcp/λ is the Prandtl number,
where λ is the thermal conductivity. The term qj is the sum of both the laminar and modeled turbulent heat fluxes
with Pr = 0.72 and PrT = 0.9 being the laminar and turbulent Prandtl numbers, respectively. The turbulent eddy
viscosity is denoted by µT, which is unknown and needs a turbulence model for closure. The term τ̂ij is the sum of

the molecular and SGS stress tensors, while Sij is the mean strain-rate tensor, S̃ij is the deviatoric tensor of Sij , δij
is the Kronecker delta, −τij is the SGS stress tensor, and the summation convention for repeated indices is assumed.

Note that the unclosed term unfi u
nf
ĵ

>ǫ

is defined by the unfiltered velocity unfi . The temperature dependent dynamic
molecular viscosity µ is given by the Sutherland’s law,

µ

µref
=
Tref + S

T + S

(
T

Tref

)3/2

, (9)

where the constants S = 110.4K and Tref is the user-defined reference temperature.

B. The Anisotropic minimum dissipation SGS model

In this paper the anisotropic minimum dissipation (AMD) model proposed by Rozema et al. [38] is chosen as the
SGS model for the WA-WMLES computations. The AMD eddy viscosity provides the minimum required dissipation
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to remove the SGS effects from the LES realizations and is given by

µT = ρCAMD

max

(
−
(
∆k

∂ui
∂xk

∆l
∂uj
∂xl

(
∂uj
∂xi

+
1

2

∂up
∂xp

δij

))
, 0

)

∂um
∂xn

∂um
∂xn

, (10)

where ∆k, k = 1, 2, 3 denotes the mesh spacing in the xk, k = 1, 2, 3, directions. Note an additional dilatation

term
∂up

∂xp
in the numerator, which is absent in the original formulation of Rozema et al. [38]. This term is added

for compressible flows to account for the density variation and the violation of divergence-free assumption on the
velocity perturbation of the original derivation of Verstappen [50]. Also note, that in the formulation (10) the effect
of turbulent kinetic energy transfer due to density stratification is neglected, i.e. in the derivation of Eq. (10) it is
assumed that |u∇ρ| ≪ ρ‖∇u‖.
The model coefficient is CAMD = 0.212 in most of the domain where the fourth-order central difference scheme

is used while it is tuned to CAMD = 0.3 for the first two wall-normal points away from the boundary where the
second-order one-sided or central difference schemes are used. The justification of use of the lower-order schemes are
discussed in Section III.

C. The inner-layer wall model

The separate inner-layer wall model used in this paper follows the work reported in Ref. [3, 25], i.e., the equilibrium
model. The model equations form a coupled system of ODEs, which read

d

dη

(
(µ+ µwm

T )
du||

dη

)
= 0,

d

dη

(
(µ+ µwm

T )u||
du||

dη
+

(
µ

PrL
+

µwm
T

Prwm
T

)
dT

dη

)
= 0, (11)

where η is the wall-normal coordinate, u|| the wall-parallel velocity component and T is the temperature. This system
of ODEs with specified boundary conditions is solved sequentially between η = 0 and η = ηEL (ηEL is the wall-normal
distance of the LES exchange location) using the Newton iteration method with the second-order central difference
discretization, which forms a tridiagonal system. The boundary conditions at the wall at η = 0 for the velocity and
temperature are no-slip and isothermal/adiabatic and at exchange location at η = ηEL are u|| = u||,EL and T = TEL.
All boundary values at the exchange location are obtained following an interpolation procedure [3] from the closest
LES mesh point to the exchange location using linear interpolation

uEL
i = uLES

i +
∂ui
∂xj

∣∣∣∣
LES

(
xEL
j − xLES

j

)
. (12)

The use of interpolation (12) provides the flexibility to the LES mesh, which does not need to be orthogonal at the
wall. An illustration is given in Figure 1 depicting the non-orthogonal LES mesh, the closest LES mesh points to the
exchange locations, and the boundary points for the RANS ODEs on the wall and the exchange layer.
The wall-model eddy viscosity µwm

T follows the mixing-length model adopted in Ref. [25] and is given by

µwm
T = κη

√
ρτw

(
1− exp

(
− η+

A+

))
, (13)

where A+ = 17 and κ = 0.41. The turbulent Prandtl number is Prwm
T = 0.9.

D. The LES boundary conditions

The shear stress at the wall is assumed to be aligned with the wall-parallel velocity at the EL, i.e., making the
assumption that the shear stress direction remains unchanged across the unresolved part of the boundary layer, which
gives,

(τ̂ijnj)
LES
w = τwm

w e
||
i , (14)
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FIG. 1. An illustration depicting the non-orthogonal LES mesh, the closest LES mesh points (blue) to the exchange locations,
and the boundary points for the RANS ODEs on the wall (black) and the exchange layer (red).

where e
||
i is the unit vector parallel to the wall and aligned with u

||,EL
i , nj is the unit vector normal to the wall and

τwm
w is the wall shear stress value returned from the equilibrium wall model. Similarly, the heat flux at the wall is
given by,

(qjnj)
LES
w = qwm

w , (15)

with qwm
w being the heat flux scalar returned from the equilibrium wall model. Note that the total stress and heat

flux terms τ̂ij and qj , defined by Eqs. (7) and (6), are used in these boundary condition formulations. Due to the
equilibrium assumption of the wall model the wall pressure is assumed to be the same as the pressure at the exchange
location, i.e., pEL, or equivalently

(
∂p

∂xj
nj

)LES

w

= 0, (16)

which can be rewritten as Robin-type boundary condition for the density. Thus, the WA-LES equations (1), (2)
and (3) are solved with density, velocity, temperature, and viscous/heat fluxes at the wall calculated from the no-
penetration ujnj = 0, shear stress (14), heat flux (15) boundary conditions and the equilibrium assumption for the
wall pressure.

III. NUMERICAL METHODS

A. Wavelet-based adaptive computations

The Wavelet-based Adaptive Wall-Modeled LES method described aboveis implemented using the Parallel Adaptive
Wavelet-based Collocation Method (PAWCM) [31]. The PAWCM is based on multi-resolution wavelet analysis to
construct time-dependent computational meshes with spatially varying resolution that is required to adequately resolve
the localized structures of the solution with a priori prescribed accuracy. From previous studies on different wavelet-
based turbulence modeling methods for linearly forced homogeneous turbulence [30] and supersonic channel flow [19]
the Reynolds number scaling of wavelet-based adaptive methods is considerably slower than cubic, i.e., Re3, required
for the non-adaptive DNS. The study of the Re scaling of the WA-LES and WA-MWLES at high Reynolds numbers
is the subject of future investigation, since the primary objective of the current work is to expand the application of
the wavelet-based algorithms to simulation of high Reynolds number flows.
The mesh adaptation in PAWCM is based on the analysis of wavelet decomposition of a spatially dependent field,

say u(x), sampled on a set of dyadic nested collocation points xj
k
at different levels of resolution j, formally written

as

u(x) =
∑

l∈L1

c1l φ
1
l (x) +

J∑

j=2

2n−1∑

µ=1

∑

k∈Kµ,j

dµ,j
k
ψµ,j
k

(x), (17)
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where n denotes the number of spatial dimensions, bold subscripts denote n-dimensional indices, while L1 and Kµ,j

are n-dimensional index sets associated with scaling functions φ1
l
and different family wavelets ψµ,j

k
, respectively. Each

of the basis functions, i.e., φ1
l
or ψµ,j

k
, has one-to-one correspondence with a mesh point l ∈ L1 or k ∈ Kµ,j . Scaling

functions φ1
l
carry the averaged signal, while the multi-dimensional second-generation wavelet functions ψµ,j

k
define

local, variational details. The amplitudes are given by the coefficients c1
l
and dµ,j

k
, respectively, and hence have a

unique correspondence to mesh points. The levels of resolution span over 1 ≤ j ≤ J , with 1 and J being respectively
the coarsest and finest levels of resolution present in the approximation. During the wavelet transform, detail (or

wavelet) coefficients dµ,j
k

are obtained recursively from scaling function coefficients cµ,j
k

from level J to 2. After the

wavelet transform, the coefficients c1
l
(l ∈ L1) and dµ,j

k
(k ∈ Kµ,j) are stored respectively at the mesh points of the

coarsest (j = 1) and higher (2 ≤ j ≤ J) levels of resolution. Note that for n-dimensional space, there are 2n − 1
families of wavelet functions, indexed by µ.
Wavelet threshold filtering arises naturally from the series expansion (17). The filtering operation is performed by

applying the wavelet transform to the original field u(x), zeroing the wavelet coefficients below a given threshold,
ǫ = ǫ(x, t) for generality, and transforming back to the physical space. The resulting approximate field, say u>ǫ(x),
composed of a subset of the original wavelets, represents the dominant modes and can be formally written as the
following conditional series:

u>ǫ(x) =
∑

l∈L1

c1l φ
1
l (x) +

J∑

j=2

2n−1∑

µ=1

∑

k∈Kµ,j

|dµ,j

k
|>ǫ‖u(x)‖

dµ,j
k
ψµ,j
k

(x). (18)

In many implementations, the filter threshold is taken to be relative to some characteristic scale, often represented
by either the L2 or L∞ norm of u(x) taken globally over the domain and denoted as ‖u(x)‖ [22]. The resulting
nonlinear filtering operation practically separates resolved flow structures and unresolved residual motions. For a
properly normalized threshold, the reconstruction error of the filtered variable is shown [15] to converge as

‖u>ǫ − u‖ ≤ Cǫ‖u‖, (19)

where C = O(1).
The dynamic mesh adaptation is tightly coupled with the wavelet filter. Due to the one-to-one correspondence

between wavelets and grid points, the nodes are omitted from the computational mesh if the associated wavelets are
excluded from the truncated approximation (18). The multilevel structure of this wavelet approximation provides a
natural way to obtain the solution on a nearly optimal numerical mesh, which is dynamically adapted to the evolution
of the main flow structures, both in location and scale, while higher resolution computations are carried out in the
regions where (and only where) steep gradients in the resolved flow field occur.
The multi-resolution wavelet decomposition (18) is used for both mesh adaptation and interpolation, while a

hierarchical finite difference scheme [47, 48], which takes advantage of the wavelet interpolating properties, is used to
numerically differentiate the local function approximations and to provide the values of derivatives at the adaptive
computational nodes.
Second-generation wavelet bases, described above, rely on topologically rectilinear mesh and inherently isotropic

mesh elements. This restriction puts some limitations on the applicability of the approach for simulation of complex
geometry wall-bounded turbulent flows. These limitations were recently overcome with the development of the
A-AWCM [6]. The A-AWCM preserves active error-controlling properties of the original AWCM [31, 47–49], but
provides an additional flexibility to control mesh anisotropy and to solve the problem in complex domains by separating
the computational space from the physical one and introducing a mapping between them, thus, allowing the use of
anisotropic curvilinear meshes in complex geometries. At the same time, the structured rectilinear assembly of
collocation points in the computational space is retained, which allows the use of computationally efficient discrete
adaptive wavelet transform and derivative approximations.

B. Numerical implementations for the WA-WMLES

1. Wall model implementation

The numerical implementation for the inner layer modeling computations in the WA-WMLES method consists of
the following steps:
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(i) Impose viscous/heat flux boundary conditions (14) and (15) using wavelet-based finite difference scheme on
curvilinear mesh, resulting in a linear algebraic system of equations that relates the velocity ui and temperature
T at the wall and neighboring internal points. These modified wall velocity and temperature are unphysical and,
hence, are not appropriate for evaluation of the convective fluxes for the density, momentum and energy as well as
the viscous power term uiτ̂ij in the energy equation. As suggested by Kawai and Larsson [25], these flux terms are
set to zero at the wall. In addition, the molecular viscosity at wall points is directly obtained from the equilibrium
wall-model computation rather than evaluated from the modified wall temperature values using Eq. (9).

(ii) Update the wall shear stress τwm
w and heat flux qwm

w returned from the equilibrium wall model before each LES
time integration. To minimize the computational cost the no-penetration and wall flux boundary conditions are
imposed on the solution fields only for the first stage of the 3-stage Runge-Kutta (RK3-TVD) time integration
scheme without performing the equilibrium wall-model computations for intermediate stages of the time integra-
tion. As pointed out in Ref. [3] the effect of this simplification on the accuracy is negligible. For the remaining
RK stages, conserved variables, i.e., density, momentum and internal energy on the wall are updated directly
using the RK3-TVD time integration scheme for the intermediate-stage solution fields. For the other regular
boundaries, such as inflow/outflow as well as inviscid or free-stream boundaries, the corresponding boundary
conditions are applied for all-three-stage solutions.

(iii) Use second-order one-sided and central difference schemes on the first and second points away from the wall,
respectively, when calculating the viscous flux terms. The wall values of ui and T obtained in step (i) are only
used to impose the desired viscous fluxes at the wall and not accurate for calculating the gradients invoked in the
viscous fluxes for the wall-adjacent points. Therefore, as suggested by Kawai and Larsson [25], the second-order
one-sided and central difference schemes are used on the first and second points away from the wall respectively.
At other points, the standard wavelet-based hierarchical fourth-order central difference scheme is used. Although
the second-order schemes reduce the accuracy of viscous flux calculation at the first and second points away from
the wall, the solution at these points is always highly under-resolved due to the coarse mesh in the wall-normal
direction no matter how accurate the numerical scheme is. The key point for WMLES is that the wall viscous
fluxes are intended to be accurate away from the wall and the LES solution at the exchange layer is well resolved
and uses high-order numerical scheme.

(iv) Impose the no-penetration boundary condition for the wall velocity after the final stage of the RK3-TVD for
each time step.

(v) Map the points within the LES domain closest to the exchange-location (EL) points to the wall points.

(vi) Distribute the equilibrium wall-model calculations evenly among all the parallel processes to guar-
antee load-balancing for the equilibrium wall-model computations. The CPU time of the equilibrium wall-model
computation including the MPI communication is around 10% of the total CPU time required for each time step
integration.

(vii) Synchronize the results of equilibrium wall-model calculations between all the parallel processes. After the
wall stress and heat flux are returned from the equilibrium wall-model solver, these data are redistributed to
corresponding processors that contain wall points for the LES computation.

(viii) Enforce the non-adaptive under-resolved mesh near the wall below the exchange location to reduce the total
degrees of freedom effectively and to turn-off mesh adaptation in the inner layer region.

2. Parallel algorithm

The parallel algorithm for the A-AWCM [31] is also briefly introduced in this section. The domain is partitioned
using the Zoltan partitioning library [14] from Sandia National Laboratories. Zoltan geometric (Recursive Coordinate
Bisection) and Zoltan hypergraph parallel partitioning algorithms are used. Dynamic load balancing is implemented
via domain repartitioning during the grid adaptation step and reassigning tree data structure nodes to the appropriate
processes. The user provides an imbalance tolerance vector to trigger the repartitioning if necessary. The type of
repartitioning depends on the imbalance of the wavelet distribution. Highly imbalanced data are partitioned without
considering current decomposition, moderately imbalanced data are repartitioned while trying to stay close to the
current decomposition, and nearly balanced data are refined by small changes only. For detailed discussions about
the parallelization the reader is referred to Ref. [31].
To demonstrat the scalability of the parallel A-AWCM implementation, a 3D WA-WMLES of a flat pate turbulent

boundary layer (TBL) flow with inflow Reθ = 7000 and Mach number Ma = 0.3 is tested. The simulations with
approximately 10 million adaptive mesh points have been performed on the Bridges system at Pittsburgh Supercom-
puting Center, part of the Extreme Science and Engineering Discovery Environment (XSEDE). Details of the mesh
setup are given in Section IVA. The corresponding strong scaling data are shown in Table I. The deterioration of the
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TABLE I. Strong scalability test for the three-dimensional WA-WMLES simulations of flat plate turbulent boundary layer
with approximately 10 million adaptive mesh points. Data are based on CPU time for fixed time steps.

# cores # points/core Speed up Efficiency
28 371K 28 1
56 186K 56 1.00
112 93K 101 0.90
224 46K 187 0.84
448 23K 251 0.56

performance is observed when the number of grid points per core drops below 2 × 104, which is also consistent with
the results reported in Ref. [31] for linearly forced homogeneous turbulence.

IV. SIMULATIONS AND RESULTS

A. Zero pressure gradient flat plate turbulent boundary layer flow

1. Numerical setup

To demonstrate the effectiveness and accuracy of the WA-WMLES method we start by considering a subsonic
zero pressure gradient flat plate turbulent boundary layer flow, which also used for validation of inflow conditions,
required for more complex flow presented later. The computational domain size is 28δ × 14δ × 4.8δ in streamwise,
wall-normal and spanwise directions, respectively, where δ is the boundary layer thickness at the inflow plane. The
effective mesh resolution for the WA-WMLES is 2560× 192× 512 with seven levels of resolution, base (coarsest level)
resolution of 40× 3× 8, uniform mesh spacing in the wall-tangential directions, and stretched mesh with a hyperbolic
tangent distribution in the wall-normal direction. The wall-parallel mesh spacings at the finest level are ∆x+ ≈ 23
and ∆z+ ≈ 20. The smallest allowed wall-normal mesh spacing is about ∆y+ ≈ 17. Note that, in the actual
implementation, the initial adaptive mesh is either generated starting from a uniform coarse mesh at a user-defined
lowest allowed level of resolution jmin (usually 2) and is recursively refined wherever it is necessary up to the finest
allowed level based on the user-defined initial condition or imported from existing wavelet-based adaptive simulations
so that the initial mesh is usually even coarser than the final adaptive mesh when the flow is fully developed. In other
words, the initial mesh is already adaptive and does not use unnecessary mesh points.
A locally non-adaptive under-resolved mesh region at level j = 6 is specified between the wall and the wall-parallel

plane at y/δ = 0.035 with the height of the EL points being 0.092δ (about y+ = 180 at the inlet). To test the
sensitivity of the results to the EL height the value of 0.035δ (about y+ = 60 at the inlet) is also tested, but a
significant log-layer mismatch is observed (not shown). As explained by Kawai and Larsson [25] this is mostly due to
feeding into the equilibrium wall model the under-resolved LES solution with only two mesh points present between
the wall and the EL location at level j = 6.
Freund’s sponge zone [17] is imposed for the nonreflective conditions at the top and outflow boundaries, with zone

thicknesses of 1.0δ and 2.0δ, respectively. For the Freund’s zone parameters, in order to accelerate the convection of
the flow structures out of domain the artificial convective velocity is chosen to be at supersonic speed 1.2a∞, where
a∞ is the free-stream speed of sound. The damping term coefficient is set to be 2a∞/D, where D is the characteristic
length of the domain. The higher this parameter, the more backflow structures are dissipated out before entering the
physical domain. The target fields for the sponge zones at these two boundaries are the ensemble-averaged fields of
the resolved solutions. The periodic condition is imposed in the spanwise direction.
At the inflow, the local one-dimensional inviscid (LODI) relations [37] of the Navier-Stokes characteristic boundary

conditions (NSCBC) are used for derivation of a linearised Navier-Stokes equation for the evolution of the density
fluctuation with the characteristic out-going velocity and other linear coefficients being evaluated by the ensemble-
averaged solution. This provides a soft boundary condition for the density. Note that in the actual implementation,
the ensemble-averaged solution uses the initial condition (a RANS solution as described later) during the early stage
of the simulation and then it switches to the calculated running time-average solution, once the time-average fields
sufficiently converge. The velocity inflow conditions are the mean profiles plus the fluctuation components obtained
from a synthetic turbulence generator (STG) [41]. The mean velocity profiles at the inflow are obtained from an
incompressible LES solutions [16] at Reθ = 7000. A low free-stream Mach number Ma = 0.3 is assumed for this case
and therefore a uniform temperature with an error of about 1.5% is imposed at the inflow plane. The inconsistency
of the incoming pressure perturbations with zero temperature fluctuation and outgoing acoustic waves with nonzero
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FIG. 2. Wall-normal profiles at a streamwise location x/δ = 24 downstream of the inlet of the flat boundary layer case with
uniform and zonal variable ǫ for the WA-WMLES method.

temperature fluctuations is absorbed in the characteristic-based density fluctuations at the inflow. For moderate and
high Mach number simulations, this method should be improved by introducing the temperature fluctuations using
the Morkovin’s strong Reynolds analogy [29].

STG inflow conditions consist of a superposition of spatio-temporal Fourier modes with random amplitudes and
phases. It should be noted that the lateral size of the energy containing structures, created by the STG at the
inflow, is small in the inner layer and large in the outer layer. In addition, the time-dependent synthetic velocity
fluctuations, imposed at the inflow plane are convected with a global (bulk) velocity, which results in roughly the
same streamwise size for all the vortical structures downstream of the inflow. The combination of these two features
determines the formation of strongly anisotropic (elongated) eddies near the wall and nearly isotropic eddies away
from the wall. Note that the invoked global (uniform) velocity is a macro-scale velocity parameter in the formulation
of this STG approach [41] to artificially construct desired flow structures and is intentionally chosen to be considerably
larger than the streamwise convective velocity, which varies in the wall-normal direction. One significant advantage
of STG approach [41] is that the transition length, required for the incoming turbulent boundary layer to become
fully developed, is about 2 to 4 boundary layer thicknesses compared to 5 to 20 boundary layer thicknesses required
in the digital filter-based (DFB) approach adopted in Ref. [24].

A nonlinear CFL-type restriction based on the sum of the local flow velocity and speed of sound is used to control
the integration time step for the RK3-TVD scheme.

With exception of the non-adaptive under-resolved mesh region near the wall, the mesh adaptation in the rest of
the domain is based on magnitude of wavelet coefficients of control variables satisfying criteria |dµ,j

k
| > ǫ‖u(x)‖ as

in Eq. (18) with a relative wavelet filtering threshold ǫ and the L2 norms of the corresponding variables used as an
absolute threshold. A zonal distribution of the wavelet threshold ǫ field used for adaptation on momentum and total
energy fields with distinct values of ǫ = 0.01 and ǫ = 0.05 in the inviscid and viscous zones is shown in Figure 2(a).
These two specific values of ǫ are conservatively chosen based on previous work [5, 10, 13], where a systematic grid
convergence and parameter study for ǫ was conducted for the WA-LES approach. For the wall-bounded turbulent
flows the wavelet threshold parameter in the range ǫ ∈ [0.01, 0.1] with the similar grid spacing in the wall-parallel
directions was recommended.

The variation of pressure is much smaller than that of the momentum and total energy in the low Mach number
flow, and hence to resolve the pressure more accurately smaller values of ǫ = 0.005 and ǫ = 0.001 are used in the
viscous and inviscid zone, respectively. A relatively small value of the ǫ outside of the boundary layer is used to remove
unphysical perturbations associated with the ǫ-bounded relative error in the inviscid region. These perturbations are
present if a uniform wavelet threshold is used. This is illustrated in Figure 2(b), where the streamwise velocity root
mean square u′′rms ' 0.01Uref outside of the boundary layer is observed when a uniform ǫ = 0.05 for momentum is used
throughout the domain as opposed to approaching zero when smaller value of ǫ is used outside the boundary layer
region. Moreover, this zonal treatment of ǫ also improves the result in the boundary layer region, which is depicted
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FIG. 3. Result comparison of the flat plate turbulent boundary layer case with uniform and different zonal variable ǫ for the
WA-WMLES method.

in Figure 3 (a) showing the difference between two WA-WMLES computations with uniform ǫ = 0.05 (the blue line)
and zonal distribution of ǫ (the red line). Better correspondence of the WA-WMLES results using the zonal wavelet
threshold with the reference WA-URANS results is observed. Finally, it should be pointed out that in addition to
adapting on flow variables the mesh is also adapted on the physical coordinates with uniform ǫ = 0.005.

2. Simulation results

The resulting adaptive mesh contains about 7.0 million points for the zonal ǫ with the corresponding compression
ratio of 97.2%, defined as the percentage of discarded wavelets with respect to the non-adaptive case. It is interesting
to note that the adaptive mesh with uniform ǫ uses about 6.5 million nodes, which is just slightly coarser than the
former, thus, justifying the efficiency of using smaller ǫ in the inviscid region where solution is relatively smooth. The
zonal treatment of ǫ for the newly developed WA-WMLES method is consistent with previously published studies on
WA-WRLES with variable thresholding [12] and WA-DDES [19, 20], where different values of wavelet threshold were
used in WA-URANS and WA-LES regions. A similar issue in identifying the height of the exchange-layer exists for
all prevailing WMLES methods, where an a priori defined boundary layer thickness is used to determine the the EL
height. Further investigation on the use of variable threshold ǫ that depends on the solution, e.g., the vorticity field,
and identifies the inviscid/viscous flow regions is deferred for a future work.
Note that due to adaptive nature of the PAWCM, marginally resolved simulations as the non-adaptive WMLES

case result in aliasing errors that spread and considerably increase the number of adaptive mesh points used in the
simulations, as opposed to the well-resolved calculations with very fine mesh at the effectively highest resolution.
Therefore, for the grid convergence study, the non-adaptive WMLES requires adjustment of grid spacings while the
WA-WMLES usually uses different values of wavelet threshold since the grid spacings at the effectively highest resolu-
tion are already very small and even at the level comparable to some non-adaptiveWRLES. Meanwhile, the adaptation
induced error between the wavelet-based adaptive mesh and the full mesh at the highest resolution is controlled by
the wavelet threshold (cf. Eq. (19)). To demonstrate the grid convergence of WA-WMLES, the simulations for the
flow configuration shown in Figure 2(a), but with doubled and halved wavelet thresholds ǫ are conducted. A summary
of different wavelet thresholds with corresponding numbers of adaptive mesh points to demonstrate the sensitivity of
the results on ǫ in the viscous zone is given in Table II. The wavelet threshold in the inviscid zone is kept unchanged.
Figure 3(a) plots the mean skin friction distributions over the wall predicted by different wavelet threshold ǫ. The

time averaged statistics are accumulated within a period of about 25δ/Uref . The spanwise averaged statistics are
computed by interpolating the continuous wavelet basis onto 2D, non-adaptive sampling mesh at level j = 5, and
averaging across multiple slices in the streamwise and wall-normal plane. As mentioned above, the uniform ǫ case
produces relatively poor results due to the error related to the presence of acoustic waves in the inviscid zone, despite
the use of the same value of ǫ in the viscous zone as the baseline case. The results for the doubled ǫ case are similar to
the uniform ǫ case since high ǫ used in the viscous zone induces large errors, but, in turn, results in fewer adaptive mesh
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TABLE II. Wavelet thresholds ǫ used in different variables for the hump flow.

Threshold ǫ
Momentum

Inviscid/Viscous
Energy

Inviscid/Viscous
Pressure

Inviscid/Viscous No. mesh points
Uniform 0.05/0.05 0.05/0.05 0.005/0.005 6.5 million
Baseline 0.01/0.05 0.01/0.05 0.001/0.005 7.0 million
Doubled 0.01/0.10 0.01/0.10 0.001/0.010 4.2 million
Halved 0.01/0.025 0.01/0.025 0.001/0.0025 18.2 million

points. The halved ǫ case corresponds to the smallest error associated with the mesh adaptation and hence predicts
the most accurate results compared to the reference WA-URANS simulation results at the expense of substantial
increase of the adaptive mesh points (18.2 million), which, in general, is too large to be considered as an effective
WMLES computation. However, since the error in the prediction of skin friction coefficient for the baseline zonal ǫ
case is within 5%, it is sufficiently acceptable to compromise between the accuracy and the computational efficiency.
The comparison of mean streamwise velocity profiles in the inner-region at a station 10δ downstream of the inflow

plane is given in Figure 3(b). The following notations for averaged and fluctuating components are adopted in this
paper: {φ} = 〈ρφ〉/〈ρ〉 and φ′′ = φ − {φ} denote, respectively, Favre average and fluctuating quantities, while a
Reynolds average quantity is denoted as 〈φ〉. Good agreement between the WA-WMLES results and the reference
WA-URANS data validates both the WA-WMLES approach and the STG inflow conditions. The results of the
simulation demonstrate that computational domain with about 10 times the boundary layer thickness of the inflow
plane is sufficient for turbulent boundary layer simulations with the STG inflow conditions, which is consistent with
the prior STG studies [41, 45] for the wall-resolved LES and DNS.
Moreover, the difference between results using different zonal ǫ is minimal, especially for the baseline and low ǫ

cases. This also suggests that the use of the baseline ǫ is appropriate in terms of accuracy and efficiency.
The maximum CFL number is set to be 0.7 over the entire domain with the resulting time step ∆t ≈ 1.0×10−3δ/Uref ,

where Uref is the free-stream reference velocity. This time step is around one to two orders of magnitude larger than
that of the WA-DDES method [19] for a boundary layer flow at the same Reynolds number, which implies a significant
reduction of total numbers of time integration steps and, hence, the overall computational cost. For the current WA-
WMLES simulation, 224 cores as shown in Table I are used, which results in 10 seconds per time integration. It
requires about 25δ/Uref time interval for statistical convergence. Therefore, it takes about 15.5× 103 CPU core hours
(224 cores ×

[
10/3600× 25/(1× 10−3)

]
hours).

The per point cost of adaptive simulations is 3 times more expensive for the PAWCM compared to the non-adaptive
simulations, which makes the adaptive method in principle outperform the corresponding non-adaptive one when less
than 33% of the mesh points are retained in the calculation. Therefore, once the compression ratio exceeds 67%, the
computation on the adaptive mesh becomes cheaper than on the non-adaptive finest mesh. For the results reported
in both previous [5, 10, 13, 19, 21] and current work the compression ratios above 90% are observed for most of
three-dimensional cases. However, due to inherent overhead from the buffer zone communication among cores in the
parallel algorithm proposed in Ref. [31] the MPI synchronization procedures during parallel wavelet transform and
derivative calculations may be the bottle neck for efficiency of the PAWCM compared to other non-adaptive and
simple data structure methods in practice. Further improvement of the PAWCM is under investigation and out of
scope of this work.
The adaptive mesh colored by the levels of resolution is presented in Figure 4. Figure 5 displays the Q-criterion

isosurface colored by the instantaneous spanwise momentum. A zoom-in slice in the streamwise and wall-normal
plane of the adaptive mesh with the streamwise momentum contours on the background is illustrated in Figure 6.
WA-WMLES results demonstrate that most of the adaptive mesh points in the lower part of the boundary layer are
on level j = 6 with few scattered nodes on the finest level J = 7. In the upper region of the boundary layer due to
significant increase in the length scale of the flow structures most of the adaptive grid points belong to levels j = 4
and 5.
The mean velocity profile and the turbulence statistics at a streamwise location x/δ = 24 downstream of the inlet

are plotted in Figure 7. The WA-WMLES results are compared with non-adaptive WMLES results of Iyer and Malik
for the flat plate turbulent boundary layer upstream of a wall-mounted hump with the same inflow Reθ (case fWM3
in Ref. [24]). The agreements of these profiles between the WA-WMLES and the reference WMLES are fairly
acceptable. The discrepancies may be attributed to the different free-stream Mach numbers (Ma = 0.3 vs. Ma = 0.1
in Ref. [24]) and inflow turbulence generation techniques. In addition, there is an artificial hump or plateau in the
profile of streamwise turbulent normal stress {u′′u′′} around the edge of the boundary layer, as shown in Figure 7(c).
This attributes to the sudden switch of wavelet thresholds as demonstrated in Figure 2(a) with the same issue also
observed in Figure 2(b).
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FIG. 7. The mean velocity profile and the turbulence statistics at a streamwise location x/δ = 24 downstream of the inlet.
Comparisons are made with the results of the inflow flat plate turbulent boundary layer in Ref. [24].

B. Separated flow over NASA’s wall-mounted hump

The second flow configuration used for demonstration of the WA-WMLES method involves a wall-mounted hump
geometry, also known as the 2D NASA hump case, representative of the upper surface of an airfoil. It represents the
NASA Revolutionary Computational Aerosciences (RCA) standard test case. The original experimental study of this
problem is reported in Ref. [23]. The computational configuration in this work mainly follows the NASA 2004 CFD
Validation Workshop [39] and represents the baseline validation case with no plenum for flow control. An adverse
pressure gradient downstream of the hump causes the boundary layer separation. The experimental setup includes
end plates attached to both sides of the wall hump model. Following most of numerical studies for this test case,
the flow blockage effect of the end plates is mimicked by a specially contoured inviscid top wall. The top wall profile
is suggested and provided by the NASA Turbulence Modeling Resource (TMR) [32] website in form of discretized
coordinates. The low speed flow upstream of the hump corresponds to a fully developed turbulent boundary layer
flow with hump-chord (c) based Reynolds number of Re = 936, 000. To minimize computational resources caused
by CFL time step limitation the incoming free stream Mach number of Ma = 0.2 for WA-WMLES is used instead
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of Ma = 0.1, observed in the experiment. The reference static pressure (pref) is located at x/c = −2.14, while the
leading edge of the hump is defined at x/c = 0.

1. Numerical setup

The domain size and the boundary conditions are as follows. The streamwise domain spans from x/c = −2.14
to x/c = 4 with the contoured hump located between x/c = 0 and x/c = 1. Following the non-adaptive WMLES
simulation in Ref. [24], the spanwise size is chosen to be 0.3c.
A standard k−ω SST model based steady RANS auxiliary computation is performed with the mesh size 817× 217

posted on the TMR [33] website using the open source NASA code CFL3D[34]. This RANS solution is then utilized
as the initial condition for the WA-WMLES computation. The CFL3D RANS results are first interpolated on to a
2D dyadic nested wavelet collocation mesh in the x − y plane, then extruded to the 3D domain along the spanwise
direction. The time integration step is around 5.4× 10−5c/Uref using the RK3-TVD scheme with the maximum CFL
number set to 1.0.
The boundary conditions are similar to the flat plate turbulent boundary layer flow presented in Section IVA.

Freund’s sponge zone of thickness c is imposed for the nonreflective conditions at the outflow boundary. The target
fields for the sponge zones at these two boundaries are the initial RANS fields. The periodic condition is imposed in
the spanwise direction. At the inflow, the LODI NSCBC are used with the mean velocity and temperature profiles
from the RANS solution. Note that the RANS solution extends its inflow plane upstream of the leading edge of the
flat plate. The inflow profiles for the WA-WMLES computation are directly extracted at location x/c = −2.14. Due
to different Mach numbers between the auxiliary RANS and the experiments, the slight difference of the streamwise
velocity between these two is depicted in Figure 8. The sensitivity of the inflow velocity profile has been discussed in
Ref. [46], showing that its effect is minimal. In addition, velocity fluctuations obtained from the STG approach are
imposed at the inflow plane.
The top wall follows the special profile modeled as an inviscid slip wall. The Euler equations are integrated at the

top wall, where the no-penetration condition is explicitly imposed. The pressure and density are corrected based on
the pressure balance of the centrifugal force and constant entropy condition, i.e.,

∂p

∂n
= κρ|uτ |2, (20)

p

ργ
=
p∞

ργ∞
, (21)
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TABLE III. Grid information used for the hump flow simulations. Both wall and chord units are listed. The wall unit is
normalised by the kinematic viscosity over the friction velocity. All wall unit numbers in this table are evaluated at the inflow
flat-plate turbulent boundary layer. The subscript “1” denotes the first wall-normal mesh spacing.

Grid WA-WMLES WMLES [1] WMLES [35] WMLES [24] WRLES [46]
∆x+ 90 600 300 360 25
∆x/c (3.8 ∼ 38)×10−4 (12 ∼ 180)×10−4 (12 ∼ 200)×10−4 (15 ∼ 100)×10−4 7.2×10−4

∆z+ 40 100 120 180 12.5

∆z/c 1.2×10−3 3.1× 10−3 3.8× 10−3 5.0× 10−3 3.6×10−4

∆y+

1 13 20 50 36 0.8

∆y1/c 3.6× 10−4 5.5× 10−4 13× 10−4 (2.0 ∼ 33) ×10−4 2.2 × 10−5

Span size/c 0.3 0.4 0.6 0.3 0.4
Total size/million 7.5 9.4 12.9 11 420

TABLE IV. Wavelet thresholds ǫ used in different variables for the hump flow.

Zone Momentum Energy Pressure
Physical

coordinates
Inviscid 0.01 0.01 0.001 0.005
Viscous 0.05 0.05 0.005 0.005

where
∂p

∂n
=

∂p

∂xj
nj is the pressure gradient with respect to the inward normal direction pointing into the fluid, κ is

the signed local curvature, uτ is the tangential velocity at the inviscid wall, and p∞ and ρ∞ are the reference upstream
pressure and density, respectively. In terms of numerical implementation, the finite difference form of Eq. (20) and
algebraic equation Eq. (21) are solved together iteratively for pressure and density at a local slip-wall mesh point. To
suppress the acoustic resonance between the top and bottom walls, as discussed in Ref. [46], a Freund’s damping
term with the time-averaged pressure as the target pressure is applied in the vicinity of the top wall. Prior to the
time-average pressure converges to a relatively smooth field, the RANS initial condition is used as the target pressure
field.
At the bottom wall, a non-adaptive mesh on level j = 6 with two layers of mesh cells adjacent to the wall is used as

discussed in Section III B. The finest level is J = 7 and further details about the mesh resolution are discussed below.
The height of the exchange layer is chosen following the same principle as mentioned in Section IVA and is located at
the wall-normal distance d/c = 3.27×10−3 close to the 4th point from the wall mesh point at j = 6. At the inlet, this
height corresponds to y+ ≈ 100 with the inflow boundary layer thickness δ/c = 0.062. Again, this complies with the
suggestion in Ref. [25] to locate the EL below 10% of the boundary layer and that at least three LES cells below the
EL are required to prevention from using the under-resolved LES solution that is highly contaminated by numerical
and modeling errors as the wall-model input. This height is also close to what is chosen in Ref. [24, 35]. The wall
boundary conditions are imposed as described in Section III B.
The underlying base (coarsest level) mesh size is 60 × 4 × 4 in the streemwise, vertical, and spanwise directions

and the finest allowed level of resolution is J = 7. Therefore the effective dyadic nested wavelet collocation mesh
consists of 3840 × 256 × 256 ≈ 252 million points at the finest level of resolution. Hyperbolic tangent distributions
in vertical direction are used for mesh clustering in the vicinity of the bottom and top walls. The former is aimed to
resolve the boundary layer above the LES/RANS exchange layer while the latter is to resolve the shape of the top-wall
profile with large curvature. In the streamwise direction, a mild mesh clustering is also made around the separation
point while relatively large mesh spacings are set at the inflow and outflow regions using different coefficients in the
hyperbolic tangent functions.
The mesh spacings at the finest level in wall and chord units are summarized in Table III along with corresponding

mesh information for selected simulations in the literature. Note that the finest effective mesh resolution of the
WA-WMLES is consistently smaller than the one used in non-adaptive WMLES, but relatively close to the WRLES,
while the similar accuracy is achieved with considerably fewer degrees of freedom than in non-adaptive WMLES. The
combination of small mesh size with aggressive compression ratio and effective fine mesh spacing with controlled error
are the key attractive points of the WA-WMLES.
As discussed in previous section different levels of wavelet threshold ǫ are used in the inviscid and viscous regions,

whose sizes are estimated by the boundary layer thickness and the size of the separation bubble. The relative threshold
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FIG. 10. The instantaneous Q-criterion isosurface colored by instantaneous streamwise momentum for the hump flow.

values used for adaptation of the momentum, temperature and pressure variables in different regions are summarized
in Table IV. Note that as in previous section in addition to adapting on flow variables the mesh is also adapted on the
physical coordinates with uniform ǫ = 0.005 and chord length c as an absolute threshold to resolve the geometry and
the curvilinear Jacobian. The size of the resulting adaptive mesh based on the above mentioned variable threshold
configuration is around 7.5 million with a compression ratio of 97%. It should be noted that the values of ǫ used
in WA-WMLES are conservatively smaller compared to a typical range of [0.01, 0.1] used in WA-WRLES [10, 13].
Numerical experiments demonstrate that the reduction of ǫ for the pressure in the inviscid zone leads to better
resolution of the acoustic waves and fewer mesh points compared to larger values of the threshold that result in finer
meshes due to contamination of the solution by unphysical disturbances.

2. Simulation results

The adaptive mesh refinement over the separation region is presented in Figure 9, where the adaptive mesh colored
by the levels of resolution is shown. As can be seen from the figure, the mesh resolution throughout most of the
boundary layer corresponds to levels j = 5 and j = 6 with significant adaptive mesh refinement in the separation shear
layer region. The flow structure is shown in Figure 10, where the Q-criterion isosurface colored by the instantaneous
streamwise momentum is displayed. Along the front of the hump, stream-wise streaky and small scale vortices are
observed, while downstream the hump, larger scale horse-shoe shape vortices are present indicating the strong-intensity
turbulent shear layer over the separation recirculation region.
The effect of the wall model is demonstrated in Figure 11, where the contours of the instantaneous skin friction

coefficient Cf , calculated from the wall shear stress returned from the wall model, are plotted on the streamwise
and spanwise plane. Note that in the region of flat plate boundary layer the reasonably high skin friction due to
streamwise streak structures is properly predicted by the RANS model. It should be emphasized that without the
wall model the viscous flux would be underestimated by the under-resolved WA-LES mesh employed near the wall.
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FIG. 11. The instantaneous skin friction coefficient on the streamwise and spanwise plane for the hump flow.

FIG. 12. The instantaneous streamwise momentum on the streamwise and wall normal plane for the hump flow.

FIG. 13. The time and spanwise averaged pressure on the streamwise and wall normal plane for the hump flow.

FIG. 14. The time and spanwise averaged streamwise momentum on the streamwise and wall normal plane for the hump flow.
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FIG. 15. Time and spanwise averaged skin friction and pressure coefficients over the wall for the hump flow. Comparison are
made with the wall resolved LES data [46], non-adaptive WMLES results [35] and [24], the RANS data using the k − ω SST
model by CFL3D i.e., the initial condition of WA-WMLES, and the experimental data [23].

The separation region can be identified by the negative dominant values of Cf with subsequent growth of the skin
friction coefficient with the resolved fluctuations after the flow reattachment.

The instantaneous field of the streamwise momentum on a streamwise and vertical plane is presented in Figure 12.
In addition to the flow over the bottom slip wall and the separation region, the local flow acceleration and deceleration
on the contracted and then expanded top wall are also resolved well by the inviscid boundary condition (21) using
the wavelet-based adaptive finite difference scheme with anisotropic adaptive body-fitted mesh.

The time average is performed after 5 chords flow-through times from the RANS initial condition and accumulates for
10 chords flow-through times. The spanwise averaged statistics are computed by interpolating the continuous wavelet
basis onto 2D, non-adaptive sampling mesh at level j = 5 and averaging across multiple slices in the streamwise
and vertical plane. The time and span-wise averaged pressure and streamwise momentum contours are plotted in
Figures 13 and 14. Due to the relatively low Mach number, the pressure deviation from the free-stream reference
value is much smaller than that of the momentum, which implies the need of using relatively small wavelet threshold
for better resolution of the pressure field, especially in the inviscid region.

The time and spanwise averaged skin friction and pressure coefficients over the wall are respectively plotted in
Figure 15(a) and (b), where the WRLES data [46], non-adaptive WMLES results [24, 35], the CFL3D results of
k−ω SST RANS model used as the initial condition for WA-WMLES, and the experimental data [23] are plotted for
comparison. Note that all WMLES results are obtained with the same equilibrium wall model (11). As seen in the
Figure 15(a), the upstream Cf is slightly low for the current simulation because the applied RANS inflow velocity
profile from the CFL3D calculation has slightly lower momentum. Nevertheless the upstream Cf for the WA-WMLES
is very close to the results of RANS computation, which validates the WA-WMLES method along with the synthetic
turbulence generator for the inflow boundary conditions and RANS velocity inflow profile. In the flow acceleration
region, only the WRLES results agree well with the experimental Cf . The skin friction coefficient curves over the
hump surface are close for all WA-WMLES and non-adaptive WMLES, but differ from other three sets of data. In the
region after reattachment, the WA-WMLES Cf deviates from the non-adaptive WMLES reference results and gets
close to the RANS, which is consistent with the inflow RANS velocity profile with slightly lower momentum than the
other reference data. As to the surface pressure distribution shown in Figure 15(b), all cases are very close to each
other upstream the half way of the hump front and deviate from each other after that. Overall the WA-WMLES and
both WMLES results for pressure coefficient are close to each other and the discrepancies among all cases are smaller
than those of the Cf results.

The separation and reattachment locations for the current simulation and the reference data are compared in
Table V. Note that the listed data of the non-adaptive WMLES results correspond to case “EQWM G2” in Ref. 35
and case “fWM3” in Ref. 24. The bubble length and the error in bubble length are also compared. Overall the
WA-WMLES results are similar to results of the other simulations, especially taking into account that many aspects
of numerical simulations may affect the predicted separation bubble. Some factors include but not limited to detailed
implementations of the wall-modeled viscous flux boundary conditions, the upstream turbulent boundary layer in
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TABLE V. Comparison of separation and reattachment locations. Note that all WMLES cases use the equilibrium wall model.

Case
Separation

(x/c)
Reattachment

(x/c)
Bubble length

(∆x/c)
Error in
bubble

WA-WMLES 0.677 1.138 0.461 6.0%
WMLES [35] 0.680 1.084 0.404 -7.1%
WMLES [24] 0.655 1.105 0.450 3.4%
WRLES [46] 0.641 1.09 0.449 3.2%

Experiment [23] 0.665(±0.005) 1.10(±0.005) 0.435 –
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FIG. 16. Time and spanwise averaged streamwise velocity profile at x/c = −0.81 for the hump flow compared with the non-
adaptive WMLES case [24] (a) and the velocity profile, scaled by wall units, compared with the RANS data using the k − ω
SST model by CFL3D(b).
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FIG. 17. Time and spanwise averaged profiles (lines) of turbulence fluctuation statistics at x/c = −0.81 for the hump flow
compared with the non-adaptive WMLES case [24] (symbols).
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FIG. 18. Time and spanwise averaged velocity profiles at different streamwise locations. The experimental data [23] and those
of the non-adaptive WMLES [24] are shown for comparison.

terms of momentum thicknesses, treatment of the outflow boundary conditions, and spatial and temporal discretization
errors. These factors can hardly be exactly the same depending on the limitation of each solver.
The time and spanwise averaged streamwise velocity profiles {u} at x/c = −0.81 are plotted in Figure 16. This

location is a proper station to compare the solution of upstream turbulent boundary layer flow. The mean velocity
agrees well with the non-adaptive WMLES result [24] as shown in Figure 16(a). In Figure 16(b), the same profile
in wall unites is compared with the RANS data using the k − ω SST model by CFL3D. This good agreement shows
that the WA-WMLES resolves the fully developed turbulent boundary layer. Note that the y+ value at the crossing
point between the WA-WMLES and the log-law profiles is the exchange location of the WA-LES solution with the
equilibrium wall-model computation.
Similarly, the time and spanwise averaged turbulent stress profiles {u′′u′′}, {v′′v′′} and {u′′v′′} at the same location

are shown in Figure 17. The slight differences between the present WA-WMLES and non-adaptive WMLES [24]
may attribute to different effective mesh resolution applied in the two methods, the error introduced by the wavelet
filtering threshold as well as other different flow configurations such as the free-stream Mach number (0.2 vs. 0.1) and
inflow turbulence generation techniques (Fourier modes method vs. digital filtering method). As already discussed
in Section IVA, the zonal wavelet thresholds cause an artificial plateau in {u′′u′′} around the edge of the boundary
layer, as observed in Figure 17.
The time and spanwise averaged velocity profiles in the streamwise (a) and vertical (b) directions at multiple

streamwise stations are shown Figure 18. These stations are chosen upstream from the separation location downstream
to the reattachment region mainly due to poor predictions of the RANS computations [39] in this part of the flow. The
present WA-WMLES results are in satisfactory agreement with the experimental data. Slightly larger discrepancies for
the vertical velocity profile are observed at stations between x/c = 0.9 and x/c = 1.1 are also generally seen in other
non-adaptive WMLES simulations [24, 35]. One explanation for the larger discrepancies in the vertical velocity for
the WA-WMLES is that the grid adaptation based on the momentum is actually performed based on the momentum
magnitude instead of independently for each component. Considering the vertical velocity is one order of magnitude
smaller than the stream-wise velocity, the relative errors controlled by the wavelet threshold result in a larger absolute
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FIG. 19. Time and spanwise averaged turbulent stress profiles at different streamwise locations. The experimental data [23]
and those of the non-adaptive WMLES [24] are shown for comparison.

vertical component error.
The turbulent stress profiles {u′′u′′}, {v′′v′′} and {u′′v′′} at different stations are plotted in Figure 19. All results

agree fairly well with the experimental data except those with over-prediction at x/c = 0.65, where the turbulence
stress values are relatively small. This is also observed in other non-adaptive WMLES simulations [24, 35]. As
seen in Figure 19 the turbulent stresses at the other considered stations in general are in closer agreement with
the experimental data than the non-adaptive equilibrium WMLES results of case “fWM3” in Ref. 24. Overall, the
performance of the WA-WMLES method with the equilibrium wall model for this particular challenging separated
flow problem is satisfactory, especially taking into account the relatively small number of adaptive mesh points despite
fairly fine effective mesh resolution as summarized in Table III.
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V. CONCLUSIONS

A novel Wavelet-based Adaptive Wall–Modeled Large Eddy Simulation method is proposed for simulations of
wall-bounded compressible turbulent flows. The new approach utilizes the Wavelet-based Adaptive Large Eddy
Simulation, incorporated into the Anisotropic-Adaptive Wavelet Collocation Method, to resolve the outer region
of turbulent boundary layer, while the inner part is approximated by the wall-shear-stress model. For the first
time, the novel WA-WMLES method extends the application of the wavelet-based adaptive method to a realistic
wall-bounded turbulent flow configuration at a relatively high (order of a million) Reynolds number based on the
length scale of the body shape. Previously reported wavelet-based methods, such as WA-LES and WA-DDES, would
have required substantially larger computational resources to solve the same problem. The WA-WMLES method
with the considered equilibrium wall model performs fairly well for wall-bounded flows with zero, mild (with flow
deceleration) and moderate (with shape induced flow separation) pressure gradients, as demonstrated by the two
test cases: the flat plate turbulent boundary layer flow and the separated flow over the NASA wall-mounted hump.
The combination of small mesh size with aggressive compression ratio, the effective fine mesh spacing with controlled
error through carefully chosen wavelet filtering threshold, and ability to reliably predict turbulent flow characteristics
for practically challenging problems are attractive features of the WA-WMLES method. Further development of
WA-WMLES may include the use of variable threshold ǫ that depends on the solution, e.g., the vorticity field, and
identifies the inviscid/viscous flow regions. Finally, in order to improve the performance of the WA-WMLES method
for problems with strong pressure gradients (e.g., shock wave induced separation) the approach needs to be extended
to the non-equilibrium wall model.
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