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Particles transported in fluid flows, such as cells, polymers, or nanorods, are rarely spherical.6

In this study, we numerically and theoretically investigate the dispersion of an initially localized7

patch of passive elongated Brownian particles in a two-dimensional Poiseuille flow, demonstrating8

that elongated particles exhibit an enhanced longitudinal dispersion. In a shear flow, the rods9

translate due to advection and diffusion and rotate due to rotational diffusion and their classical10

Jefferys orbit. The magnitude of the enhanced dispersion depends on the particle’s aspect ratio and11

the relative importance of its shear-induced rotational advection and rotational diffusivity. When12

rotational diffusion dominates, we recover the classical Taylor dispersion result for the longitudinal13

spreading rate using an orientationally averaged translational diffusivity for the rods. However,14

in the high-shear limit, the rods tend to align with the flow and ultimately disperse more due to15

their anisotropic diffusivities. Results from our Monte Carlo simulations of the particle dispersion16

are captured remarkably well by a simple theory inspired by Taylor’s original work. For long17

times and large Peclet numbers, an effective one-dimensional transport equation is derived with18

integral expressions for the particles’ longitudinal transport speed and dispersion coefficient. The19

enhanced dispersion coefficient can be collapsed along a single curve for particles of high aspect20

ratio, representing a simple correction factor that extends Taylor’s original prediction to elongated21

particles.22

I. INTRODUCTION23

Understanding the transport of particles in fluid flow has led to the development of novel particle separation24

techniques, mixing strategies, and lab-on-a-chip devices [1, 2]. In many practical cases of interest, the geometry of25

the particles themselves may be complex [3], and hence it is important to understand how their shape [4] influences26

their bulk transport. Herein, we study how the elongated shape of passive, rod-like Brownian particles affects their27

dispersion in a steady, two-dimensional Poiseuille flow.28

In a seminal paper [5], Taylor quantified the dispersion of spherical solute particles subject to Poiseuille flow in a29

cylindrical pipe. In Taylor’s original physical picture (see Figure 1), when a uniform patch of a solute is injected in30

a laminar flow, it spreads due to the combined effects of advection and diffusion. At early times, the solute patch31

mimics the shape of the parabolic flow profile, inducing lateral concentration gradients that drive net lateral transport32

by molecular diffusion. Ultimately, the shear flow enhances the spreading of the solute, a phenomenon now known as33

Taylor dispersion. Later, Aris expanded on Taylor’s results in more rigorous mathematical detail using the method34

of moments, and thus this phenomenon is also frequently referred to as Taylor-Aris dispersion [6]. Perhaps the most35

complete mathematical treatment is due to Frankel & Brenner [7], who derived a generalized theory of Taylor-Aris36

dispersion. This robust framework has since been used to solve a wide class of dispersion problems, including the37

dispersion of active matter systems in shear flow [8–11]. Of most relevance to the present work, Peng and Brady38

studied the upstream swimming and dispersion of active Brownian particles in a two-dimensional Poiseuille flow with39

one degree of rotational freedom for spherical and rod-shaped particles, demonstrating enhancement of the dispersion40

factor for active Brownian particles due to their swimming (i.e. activity) [12]. Such an enhancement was observed41

experimentally for bacteria in porous media [13]. Elsewhere, the effect of channel geometry on the dispersion of42

passive tracers has been well-documented to control or enhance the dispersion properties [14–17], while the effect of43

the dispersion factor on pulsatile flow has also been documented [18, 19]. Previous studies have also focused on the44

Brownian motion of ellipsoidal [20, 21] and boomerang-shaped particles [22] in the absence of external flow. However,45

despite these advances, the effect of a passive particle’s shape on dispersion in the presence of flow has received46

relatively little attention.47

It is now well-known that confined rod-shaped particles or fibres have the tendency to migrate towards channel48

walls when subject to a background shear flow [23–27]. This effect was characterized by Nitsche & Hinch [28], who49

studied the lateral migration velocity and resultant distribution of rod-shaped particles in quasi-two-dimensional50
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shear flow, assuming a uniform particle concentration in the longitudinal direction. In complement to this prior51

work, we characterize the longitudinal transport properties of an initial concentration of confined Brownian rods in52

two-dimensional Poiseuille flow, using both Monte Carlo simulations and theoretical considerations. The rods are non-53

interacting Brownian tracers and modeled as elongated ellipsoids, neglecting any wall-based hydrodynamic effects.54

Our study reveals and quantifies two main results: a reduced mean transport speed for the rods compared to the55

mean speed of the fluid, and an enhanced rate of longitudinal dispersion compared to spherical particles.56

As it pertains to the results presented herein, in the remainder of this section, we review Taylor’s classical analysis57

applied to spherical particles in two-dimensional Poiseuille flow [5], followed by a discussion of extra physical consid-58

erations relevant for elongated particles. In §II, we describe our Monte Carlo method for calculating the dispersion59

coefficient for ellipsoidal particles in a two-dimensional Poiseuille flow. We then turn to a simplified theoretical anal-60

ysis in the spirit of Taylor’s original calculation in §III, deriving semi-analytical expressions for the mean speed of the61

particles and the dispersion coefficient, in excellent agreement with the Monte Carlo simulations. We conclude with62

a summary of our results in §IV.63

FIG. 1. Illustration of the classical Taylor dispersion process. At early times (t ≪ td) a plug of non-interacting Brownian tracer
particles mimics the shape of the flow. The shear flow induces lateral concentration gradients that molecular diffusion tends to
minimize. The overall effect at late times (t ≫ td) is an enhanced diffusive-like longitudinal spreading of particles as the solute
patch is advected downstream at the mean speed of the fluid flow.

Consider a parallel plate channel separated by a distance of 2a with a fully developed Poiseuille flow with a64

maximum velocity of U at y = 0, as depicted in Figure 1. For isotropic solute particles with a characteristic diffusion65

constant D, a diffusive time scale can be defined as td = a2/D, which is the characteristic time for a solute particle66

to travel from the center of the channel to the walls purely through molecular diffusion. There are two primary67

mechanisms of particle transport in this problem, namely advection and diffusion, the relative importance of which68

may be characterized by the Peclet number69

Pe =
Ua

D
. (1)70

For long times, specifically t ≫ td, and large Pe (advection dominated), Taylor characterized the laterally averaged71

concentration profile Cm(x, t) with an effective dispersion constant κs that depends on the properties of the flow,72

channel geometry, and particles [5]. Taylor’s original calculation was performed for a circular pipe, but the same73

analysis can be readily applied to describe dispersion in a two-dimensional channel (i.e. infinite parallel plates).74

Non-dimensionalizing time using the diffusive time scale, td, and x and y with the half-width of the channel, a, the75

dimensionless form of the laterally averaged transport equation for the two-dimensional channel is described by the76

one-dimensional advection-diffusion equation77

∂Cm
∂t

+
2

3
Pe

∂Cm
∂x

= κs
∂2Cm
∂x2

, (2)78

where the effective dispersion constant is79

κs =
16

945
Pe2, (3)80

or, in dimensional form,81

κ′
s = Dκs =

16

945

U2a2

D
. (4)82
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When Pe ≫ 1, equations (2) and (3) imply a significant increase in the longitudinal spreading rate resulting from the83

parallel shear flow. Relevant to more moderate Peclet numbers, Aris’s rigorous expansion introduced a correction to84

the expression of the effective dispersion constant, which accounts for the additional contribution due to the presence85

of molecular diffusion in the longitudinal direction, specifically:86

κ′
s∗ = D(κs + 1). (5)87

In the present study, we focus on the advection-dominated regime (Pe ≫ 1), coinciding with that originally considered88

by Taylor for spherical particles. We also note from equation (4) that the effective dispersion coefficient is in fact89

inversely related to the molecular diffusion constant of the particle. In Taylor’s analysis, the contribution of molecular90

diffusion to the expression for the effective dispersion, κs, arises strictly from the lateral (y) diffusion term in the91

advection-diffusion equation governing the concentration of particles. Thus, in scenarios where the diffusion may92

be anisotropic (for example, when the solute particles are non-spherical, or when their diffusivity depends on y),93

the lateral diffusion coefficient, Dy, is the appropriate value to consider in such a scaling to estimate the effective94

dispersion constant. We will now discuss important quantities pertaining to ellipsoidal particles in a fluid.95

The diffusion constants for an ellipsoidal particle constrained to translate and rotate in a plane follow from the96

Stokes-Einstein relation [20, 21, 29]. Rotational and translational diffusion for an ellipsoidal particle are decoupled97

due to its symmetry [30–32]. The translational diffusion constants D‖ and D⊥ for a prolate ellipsoid are labeled in98

Figure 2, and are given by [33, 34]99

D‖ =
kbT

16πµap
p

[

− 2p

p2 − 1
+

2p2 − 1

(p2 − 1)3/2
log

(

p+
√

p2 − 1

p−
√

p2 − 1

)]

, (6)100

D⊥ =
kbT

16πµap
p

[

p

p2 − 1
+

2p2 − 3

(p2 − 1)
3/2

log
(

p+
√

p2 − 1
)

]

, (7)101

where kb is Boltzmann’s constant, T is temperature, p ≡ ap/bp is the ratio of the semi-major and semi-minor axes102

of the particle, and µ is the dynamic viscosity. Note that for prolate ellipsoids, p > 1, and D‖ → 2D⊥ in the103

“slender-body” limit p → ∞. An orientationally averaged diffusivity can be computed as104

D̄ =
D⊥ +D‖

2
. (8)105

Figure 3(a) shows how D⊥ and D‖ depend on the aspect ratio. A particle diffuses more readily along its long axis106

than against it. The rotational diffusion constant is [35, 36]107

Dθ =
3kbT

16πµa3p

p4

p4 − 1





(

2p2 − 1
)

log
(

p+
√

p2 − 1
)

p
√

p2 − 1
− 1



 . (9)108

Equations (6), (7) and, (9) are commonly used to study the Brownian motion of ellipsoids confined to one degree of109

rotational freedom [20, 21].110

(a) (b)

FIG. 2. (a) Zoomed in schematic of a channel with a shear rate γ̇(y). The figure also depicts the coordinate axes for each
particle in the channel and its translational diffusivities along its perpendicular and parallel directions along with the rotational
diffusivity. (b) The definition of the semi-major axis ap and the semi-minor axis bp.

111

112

Ellipsoidal particles rotate in a shear flow with a non-uniform rotational velocity in so-called Jeffery’s orbits [37].113

For a prolate spheroid confined to one degree of rotational freedom in the plane within a two-dimensional Stokes flow,114

the rotation rate ω is a function of its angle θ relative to the flow [38], specifically115

ω(θ) = γ̇
p2 sin2 θ + cos2 θ

p2 + 1
, (10)116
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(b)(a)

FIG. 3. (a) Plot of D⊥/D̄ (dash-dotted curve) and D‖/D̄ (dotted curve). (b) The rotation rate for different aspect ratios as
a function of the angle θ between the rod axis and the flow direction. In the absence of Brownian motion, the rods rotate the
fastest when aligned normal to the direction of flow and rotate most slowly when aligned in the flow direction, spending more
time in each revolution aligned with the flow.

where γ̇ is the local shear rate. Note in the slender-body limit (p → ∞), the expression of the rotation rate reduces117

to ω(θ) = γ̇ sin2 θ. Equation (10) is plotted in Figure 3(b), which shows that elongated particles (p > 1) rotate fastest118

along the direction of the flow and rotate slowest normal to the direction of flow. Therefore, rods tend to spend more119

time aligned with the flow during a complete orbit. For a parabolic velocity profile, the shear rate is a linear function120

across the channel with the largest magnitude at the walls, as depicted in Figure 2. The rotational degree of freedom121

prompts us to define a rotational Peclet number122

Per =
U

aDθ
(11)123

characterizing the ratio of the shear rate to rotational diffusion. For the case of a linear Couette shear flow, previous124

work has focused on describing how weak Brownian motion affects the three-dimensional Jeffery orbits [39]. More125

recent work has explored the purely rotational analog of Taylor dispersion in which shear leads to a higher dispersion126

coefficient for rotation [40, 41]. As mentioned previously, for the case of a Poiseuille flow, ellipsoidal particles (unlike127

spherical particles) are known to migrate to the channel walls due to anisotropic diffusivity and different alignments128

at different local shear rates [23, 26–28].129130

II. MONTE CARLO SIMULATION131

In this section, we model the dynamics of individual Brownian rods subject to a Poiseuille flow to deduce macroscopic132

statistical quantities using Monte Carlo simulation. The results uncover the presence of an enhanced dispersion133

for elongated particles and allow us to establish a simple physical picture for the phenomenon and its parametric134

dependencies. The system is assumed to be in the dilute limit where particle-particle interactions are neglected.135

We note the non-interacting assumption is only valid for sufficiently low particle concentrations, however the initial136

particle density is continuously diluted as time progresses in the Taylor dispersion process. To illustrate the dilute137

limit for a particular case, we consider the elongated Tobacco-Mosaic-Virus (TMV) whose major axis is ap = 300 nm138

and minor axis is bp = 20 nm, corresponding to a particle aspect ratio of p = 15. The TMV is considered to be in139

an isotropic phase when the volume fraction Φs / 0.1 [42], which, when appropriately converted, corresponds to a140

concentration of approximately C / 0.1 g/cm3.141

A. Method142

We employ a Monte Carlo method for simulating the statistics of the translational and rotational motion and for143

computing the dispersion coefficient and mean speed of the particles for ellipsoidal particles in a two-dimensional144
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channel with Poiseuille flow defined by145

u(y) = U

[

1−
(y

a

)2
]

x̂ = u(y)x̂. (12)146

We write the governing equations as stochastic differential equations since these equations directly correspond to147

our numerical approach (see also [15]), but our equations could equally well be written in Langevin form [20]. The148

translational displacements of the particle in the laboratory frame are given by149

dx = u(y(t))dt+
√

2D‖dW‖ cos θ(t) −
√

2D⊥dW⊥ sin θ(t) (13)150

dy =
√

2D‖dW‖ sin θ(t) +
√

2D⊥dW⊥ cos θ(t). (14)151

The white noise increments dW⊥ and dW‖ have zero mean, variance dt, and are independent at different times.152

Similarly, the stochastic differential equation for the particle orientation is153

dθ = ω(y(t), θ(t))dt +
√

2DθdWθ , (15)154

with the rotational velocity given by equation (10) for the flow (12), namely155

ω(y, θ) = −2U
y

a2
p2 sin2 θ + cos2 θ

p2 + 1
, (16)156

and with zero mean, variance dt, and white noise dWθ.157

We non-dimensionalize equations (12)–(16) via x̃ = x/a, t̃ = t/td = t/
(

a2/D̄
)

, ũ = u/U , ω̃ = ωa/U and D̃ = D/D̄.158

Dropping the tildes, equations (13) and (15) become159

dx = Peu(y(t)) dt+
√

2D‖dW‖ cos θ(t)−
√

2D⊥dW⊥ sin θ(t) (17)160

dy =
√

2D‖dW‖ sin θ(t) +
√

2D⊥dW⊥ cos θ(t) (18)161

dθ = Peω(y(t), θ(t))dt +

√

2
Pe

Per
dWθ , (19)162

where Pe = Ua/D̄ (cf. equation (1)) and Per = U/(aDθ) (equation (11)). The initial condition for the simulation163

is n = 106 particles uniformly distributed across y and across all orientations θ, but with a Gaussian distribution164

in x of unit variance centered at x = 0. The particles are non-interacting and evolve independently. The boundary165

conditions at the walls are billiard-like. For a collision at a wall, the center-of-mass trajectory of a particle has an166

angle of incidence equal to the angle of reflection, and the orientation is assumed unchanged. The influence of this167

orientation collision condition in Monte Carlo simulation on the global long time statistics is examined in detail in168

Appendix A. To solve the governing equations for each particle, we use Euler time-stepping with a dimensionless169

time-step of dt = 4 × 10−5. Consequently, the typical magnitude of the white noise is therefore much less than the170

width of the channel, so that it is exceedingly rare for there to be more than one wall collision in a time step. Since the171

Monte Carlo evolution is implemented at each time step on all the particles, the code is parallelized over many CPUs172

to reduce computational time. The complete Monte Carlo simulation code is included as Supplemental Material.173

Although it is a slow method with a convergence rate that scales with 1/
√
n, the gridless stochastic differential174

equation approach is convenient for combining and capturing all statistics [43–45].175

We compute ensemble averages by carrying out r runs of the motion of the n particles. For the results reported176

here we take r = 100. The time-dependent mean and the variance of the x components of all n/r particles in a given177

run are calculated as178

µi(t) =
r

n

n/r
∑

j=1

xi,j(t) and σ2
i (t) =

r

n

n/r
∑

j=1

(xi,j(t)− µi(t))
2

(20)179

and then these quantities are averaged over all runs yielding180

µ̄(t) =
1

r

r
∑

i=1

µi(t) and σ̄2(t) =
1

r

r
∑

i=1

(

σ2
i (t) + (µi(t)− µ̄(t))

2
)

. (21)181
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When n → ∞, the mean particle speed and dispersion coefficient are given by182

um =
dµ̄

dt

∣

∣

∣

∣

t→∞

and κ =
dσ̄2

dt

∣

∣

∣

∣

t→∞

, (22)183

respectively. In practice, there are transients in the dispersion that decay after a dimensionless time of approximately184

0.25td [14, 15]. Therefore, to calculate the effective diffusivity, we fit the computed variance to an expression of the185

form186

σ2(t) = s− a1(1− e−a2t) + κt, (23)187

using a least-squares method, where s = 1 is the initial variance in x. Likewise, we fit the mean speed of the particles188

to189

µ(t) = b0 + b1e
−b2t + umt, (24)190

to find the mean speed um at long times.191

B. Results192

(a) (b)

FIG. 4. (a) Monte Carlo results for the variance of the x-position of ellipsoidal particles (p = 1000) and spherical particles at
Pe = 104 for different Per as a function of dimensionless time. The rods disperse along x like spheres when rotational Brownian
motion dominates (Per ≪ 1). The dispersion of rods is larger when shear dominates (Per ≫ 1), i.e., when the rods’ orientations
follow Jeffery orbits. The complete theoretical prediction for the variance of spherical particles in a two-dimensional channel has
been reported previously and is also shown here for comparison (dashed line) [16]. (b) Monte Carlo results for the orientational
distribution Pθ(θ) for particles over the channel’s length. The rods spend more time aligned with the flow direction when
Per ≫ 1.

In Taylor’s original picture, flow enhances spreading due to differences in the flow speed across the channel. Our193

simulations reveal that this enhancement is, in fact, increased for rod-like particles, as shown in Figure 4(a). Phys-194

ically, spherical particles rotate uniformly in shear. However, rod-like particles have a non-uniform rotation rate195

(Figure 3(b)), and thus spend more time aligned with the flow than perpendicular to the flow. This alignment effect196

becomes stronger as the rotational Peclet number, Per, increases (see Figure 4(b)). For small values of Per, the rod197198

shaped particles rotate randomly and spread identically to spherical particles. As the shear rate increases, the strong199

alignment in the direction of the flow causes the perpendicular “side” of the particles (which has a lower diffusivity200

than spherical particles) to diffuse across the shear layers. We can be somewhat more quantitative by noting that201

the effective lateral diffusivity Dy (defined more precisely in the next section) is smaller for rods than spheres. Thus,202

since we expect κ′ ∝ U2a2/Dy, and since κ′
s ∝ U2a2/D, we have203

κ

κs
=

κ′

κ′
s

∼ D

Dy
. (25)204
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(b)(a)

FIG. 5. (a) Effective diffusivity κ of rod shaped particles, normalized by the effective diffusivity for spheres, as a function of
Per for various values of Pe. The triangles represent Monte Carlo simulations for Pe = 100, the circles represent Pe = 1000,
and the squares represent Pe = 10000. (b) Variation of normalized effective diffusivity with aspect ratio p. In both panels,
the dash-dotted line represents the maximum theoretical value of dispersion for the corresponding aspect ratio. The maximum
possible dispersion constant is estimated when all rod shaped particles are aligned in the direction of the flow and is defined as
per equation (26).

Our Monte Carlo results for the effective diffusivity are shown as a function of rotational Peclet number in Figure 5205

for various values of the Peclet number (Figure 5(a)) and aspect ratio (Figure 5(b)). Since all of the curves collapse206

in Figure 5(a), we can conclude that the Pe2 scaling holds for rod-shaped particles at Pe & 100, as is the case for207

spherical particles (equation (3). Figure 5(b) demonstrates that at low Per, rod shaped particles behave like spherical208

particles as rotational diffusion dominates, and the rods are oriented randomly. Furthermore, as the Per increases,209

we see the rods tend to align themselves in the direction of the flow due to their Jeffery’s orbit and ultimately spread210

more. Rods with larger aspect ratios have a stronger alignment and a lower perpendicular diffusion constant (D⊥),211

and thus spread more.212

For a given set of parameters, the maximum possible value of dispersion anticipated, κm, can be estimated by213

simply assuming all of the particles maintain perfect alignment with the flow. Thus Dy = D⊥ and214

κm

κs
=

D̄

D⊥
. (26)215

The ratio κm/κs depends solely on the aspect ratio of the rod, p, and increases monotonically from κm/κs = 1 when216

p = 1 (spherical particle) to κm/κs = 3/2 as p → ∞ (slender body limit). Figure 6 shows the maximum possible217

dispersion as a function of the aspect ratio and allows us to define a region where we expect to find values of κ in218

practice.219220

We note that the results of the Monte Carlo simulations presented here only make physical sense for Per < Pe, as221

we now describe. The ratio of Per = U/aDθ and Pe = Ua/D̄ is the ratio of the rotational and translational diffusive222

time scales223

Per
Pe

=
D̄

a2Dθ
∼

a2p
a2

≪ 1. (27)224

Since we focus on the physically relevant regime where ap ≪ a, this condition suggests restricting our attention225

to Per ≪ Pe, a fact we will exploit in the following section to derive semi-analytical expressions for the dispersion226

coefficient, κ, and mean particle speed, um. For example, an elongated TMV particle with ap = 300 nm and p = 15227

in a channel with a = 2 µm flowing in water with a velocity U = 1 mm/s, will have Per = 10 and Pe = 750, and is228

therefore likely to exhibit enhanced dispersion.229

III. THEORETICAL ANALYSIS230

In this section, we generalize Taylor’s continuum analysis of the dispersion of spherical particles in a shear flow231

to ellipsoidal particles. We write the Fokker-Planck equation for the probability density function for the particles’232
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FIG. 6. The maximum possible dispersion κm normalized by κs as a function of aspect ratio p. The shaded area corresponds
to the region of possible values of κ/κs for all p and Per.

positions and orientations. We then use an asymptotic analysis to determine an effective one-dimensional transport233

equation with an effective dispersion coefficient and the longitudinal transport speed analogous to equation (2). We234

note that alternative analytical approaches could be employed to arrive at similar quantities of interest [7, 10]. In the235

present work, we restrict our attention to the physically relevant regime where Per ≪ Pe which facilitates a simpler236

analysis in the spirit of Taylor’s original calculation, while still demonstrating excellent quantitative agreement with237

the full Monte Carlo simulation.238

A. Conservation equation: the Fokker-Planck model239

We define the probability distribution by P (x, θ, t) = C(x, θ, t)/N , where C(x, θ, t)∆x∆y∆θ gives the number of240

solute particles in a small region of dimensions ∆x∆y∆θ about (x, y, θ) at time t, and N is the total number of241

particles. Conservation of particles implies the probability distribution obeys the Fokker-Planck equation242

∂P

∂t
+∇ · J+

∂

∂θ
Jθ = 0, (28)243

where the translational flux is J and the rotational flux is Jθ. Each of these fluxes has contributions from both244

advection and diffusion:245

J = uP−D ·∇P, and Jθ = ωP−Dθ
∂P

∂θ
, (29)246

with u given by the flow in equation (12), and ω given by the rotation rate of the Jeffery orbit in equation (10). The247

diffusion tensor D is given by [46]248

D(θ) = e eD‖ + (I− e e)D⊥, (30)249

where e = cos θ ex + sin θ ey. In the xy (laboratory) basis, the components of the translational diffusion tensor are250

[

Dxx(θ) Dxy(θ)
Dxy(θ) Dyy(θ)

]

=

[

D‖ cos
2 θ +D⊥ sin2 θ (D‖ −D⊥) sin θ cos θ

(D‖ −D⊥) sin θ cos θ D‖ sin
2 θ +D⊥ cos2 θ

]

. (31)251

Thus, the conservation equation (28) can be written as252

∂P

∂t
= −u(y)

∂P

∂x
+Dxx(θ)

∂2P

∂x2
+ 2Dxy(θ)

∂2P

∂x∂y
+Dyy(θ)

∂2P

∂y2
+Dθ

∂2P

∂θ2
− ∂

∂θ
[ω(y, θ)P ] . (32)253
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The symmetry of the rod-shaped particles makes the probability distribution periodic in θ, with P (x, θ + π, t) =254

P (x, θ, t). We also demand no-flux boundary condition at the walls [28, 47], hence255

(J · ŷ) = Dxy(θ)
∂P

∂x
+Dyy(θ)

∂P

∂y
= 0 at y = ±a. (33)256

257

We consider dispersion of solute relative to a frame traveling with an a priori unknown mean particle speed um,
prompting the change of variables X = x − umt. In classical Taylor dispersion for spherical particles, um coincides
with the mean speed of the flow, specifically um = 2U/3. In preparation for the asymptotic procedure outlined in
§III B, equations (32) and (33) in the Lagrangian frame are non-dimensionalized via the following scalings (as in the
Monte Carlo):

t =
a2

D̄
t̂, u = Uû, Dij = D̄D̂ij , (X, y) = a(X̂, ŷ), ω =

U

a
ω̂.

Employing these scalings leads to the dimensionless conservation equation258

ε
∂P

∂t̂
= −Per(û(ŷ)− ûm)

∂P

∂X̂
+ εD̂xx(θ)

∂2P

∂X̂2
+ 2εD̂xy(θ)

∂2P

∂X̂∂ŷ
+ εD̂yy(θ)

∂2P

∂ŷ2
+

∂2P

∂θ2
− Per

∂

∂θ
[ω(ŷ, θ)P ] (34a)259

and zero-flux boundary condition260

εD̂xy(θ)
∂P

∂X̂
+ D̂yy(θ)

∂P

∂ŷ
= 0 at ŷ = ±1, (34b)261

where we have defined ε = Per/Pe ≪ 1, consistent with the physically relevant regime (27). Recall that our focus in the262

present work is on Taylor’s regime wherein Pe ≫ 1. Henceforth, we drop the hat decorations denoting dimensionless263

quantities to reduce clutter.264

B. The dispersion coefficient and mean particle speed265

Our goal is to derive an effective transport equation for long times, analogous to equation (2), for the particle266

concentration valid long after transverse diffusion has spread the solute across the width of the channel. Taylor’s267

original result [5] similarly describes the concentration evolution in long time, specifically after the dispersing plug’s268

length is much larger than Utd = aPe. Consistent with Taylor’s condition and our assumptions hitherto, we introduce269

the slow space variable ξ = ε2X for our modified Taylor dispersion analysis. Our Monte Carlo simulations indicate270

an enhanced dispersion factor that scales with Pe2 (as in classical Taylor dispersion) and when combined with the271

selected slow space variable scaling, suggest a long time scale T = ε2t. Finally, we observe that (34a) suggests that the272

timescales for the different relaxation processes are well-separated when ε ≪ 1 and Per = O(1), with the orientational273

dynamics occurring most rapidly. In the long-time regime considered here, we assume that these rotational degrees274

of freedom have relaxed to their steady-state values [28]. Amalgamating these considerations suggests that we seek275

solutions of the form276

P (x, y, θ, t) =
1

N
g(θ; y)C(ξ, y, T ), (35)277

where g represents the orientational distribution of the particles at each shear layer, y, and C is the net concentration278

of particles at position (ξ, y). We then expand the concentration, C, and unknown mean particle speed, um, in powers279

of ε as follows280

C(ξ, y, T ) = C(0)(ξ, y, T ) + εC(1)(ξ, y, T ) + ε2C(2)(ξ, y, T ) +O(ε3), um = u(0)
m + εu(1)

m +O(ε2). (36)281

After inserting the expansions (36) into equations (34) and gathering like powers of ε, at leading order we find the282

following periodic boundary-value problem for g:283

∂2g

∂θ2
− Per

∂

∂θ
(ω(y, θ)g) = 0,

∫ 2π

0

g dθ = 〈g〉 = 1, (37)284
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(a) (b)

FIG. 7. (a) Plot of the orientational distribution, g(θ; y), for Per = 10 and (b) plots of ḡ versus the orientation angle, θ,
for several values of Per. When Per is small and rotational Brownian motion dominates, the orientational distribution of the
particles is approximately uniform; the particles have a greater propensity to align themselves with flow as Per increases. The
laterally averaged orientationally distribution compares well with the particles distribution from Monte Carlo simulations as
seen in Figure 4(b). In both (a) and (b), we choose p = 1000, while the form of the rotation rate, ω, allows us to restrict our
plotting domain to 0 ≤ θ ≤ π.

which is solved using a truncated Fourier series of the form [28]285

g =
1

2π
+

M
∑

n=1

{an(y) cos(2nθ) + bn(y) sin(2nθ)} . (38)286

To solve for the Fourier coefficients an(y) and bn(y), we insert the Fourier series (38) into equation (37), imposing the287

differential equation at every point θi = πi/I where i = 1, . . . , I. The result is an overdetermined, linear system of288

dimension I × 2M . For each value of yk = −1+ 2k/K where k = 0, . . . ,K, the solution vector containing the Fourier289

coefficients was found by a standard QR least-squares algorithm in MATLAB [48]. For the computations reported290

here, we take I = 501, M = 100, and K = 1001, providing more-than-sufficient accuracy for all values of Per reported291

here.292

In Figure 7, we plot both the orientational distribution, g, for varying y and the laterally averaged orientational293

distribution294

ḡ =
1

2

∫ 1

−1

g dy (39)295

for several values of the rotational Peclet number, Per. We observe that as we move from a Brownian motion to296

shear-dominated regime (increasing Per), the particles have a propensity to align themselves with the flow direction,297

a feature quantitatively consistent with the results of our Monte Carlo simulations shown in Figure 4. Indeed, as298

Per → ∞, the solution to (37) develops a boundary layer near θ = 0, although this limit technically violates the299

assumptions under which the present asymptotic analysis is valid.300301

Proceeding to O(ε), equation (34a) yields302

∂

∂y

(

Dyyg
∂C(0)

∂y
+Dyy

∂g

∂y
C(0)

)

= 0. (40)303

After averaging equation (40) over particle orientations, we find the following steady advection-diffusion equation304

∂

∂y

(

Dy(y)
∂C(0)

∂y
+ vd(y)C(0)

)

= 0, (41)305
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where the flux term on the left-hand side of (41) consists of an orientationally averaged lateral diffusion coefficient306

and migration velocity307

Dy(y) = 〈Dyyg〉 and vd(y) =

〈

Dyy
∂g

∂y

〉

=
∂Dy

∂y
, (42)308

respectively [28]. Hence, the solution of the advection-diffusion equation (41) is of the form309

C(0)(ξ, y, T ) = Cm(ξ, T )/Dy. (43)310

The brace notation in (42) is the same as that used in equation (37) to denote the orientational average of the311

contained quantity. Due to the form of Dyy(θ) given by equation (31), Dy can be expressed as a Fourier sine series312

of the form313

Dy =
1

2
+ a2(y)

ζπ

2
−
∑

n,odd

2an(y)

n (n2 − 4)

(

n2 (ζ − 1) + 4
)

sin
(nπ

2

)

where ζ =
D⊥ −D‖

D⊥ +D‖
. (44)314

315

Figure 8(a) shows how the preferential alignment in regions of high shear near the wall reduces the lateral diffusion316

coefficient, in contrast to the center of the channel where they behave like spherical particles. As shown in Figure317

8(b), particles near the center of the channel (y = 0) migrate towards regions of high shear (y = ±1) with a migration318

velocity vd. Simultaneously, the particles close to channel walls diffuse less strongly back into the bulk as shown in319

Figure 8(a).320

(a) (b)

FIG. 8. Plots of (a) the orientationally averaged lateral diffusion coefficient, Dy, and (b) the lateral migration velocity, vd, for
p = 1000 as a function of the position along the width of the channel. As we move from a Brownian motion (Per ≪ 1) to a shear
dominated regime (Per ≫ 1), the particles migrate more strongly from y = 0 to the channel walls, where they simultaneously
experience lower diffusion back into the bulk.

321

322

After averaging over particle orientations once more and using equation (43), at O(ε2) we find from equation (34a)323

−D−1
y Per(u − u(0)

m )
∂Cm
∂ξ

+
∂2

∂y2

(

DyC(1)
)

= 0 (45a)324

and, from equation (34b), the corresponding boundary condition325

∂

∂y

(

DyC(1)
)

= 0 at y = ±1. (45b)326

We obtain an expression for the leading-order mean particle speed, u
(0)
m , by first taking the lateral average of equation327

(45a) and then by demanding that the advective flux vanishes in the traveling frame, ξ. Hence, we find that328

u(0)
m =

D−1
y u(y)

D−1
y

, (46)329
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where the bar notation denotes the lateral average, as was introduced in equation (39). Finally, integrating (45a)330

subject to the boundary condition (45b), we find331

C(1) = PerD
−1
y G(y)

∂Cp
∂ξ

where G(y) =

∫ y

−1

dz

{
∫ z

−1

D−1
y (y′)

(

u(y′)− u(0)
m

)

dy′
}

. (47)332

At O(ε3), equation (34a) averaged over particle orientations gives333

D−1
y

∂Cm
∂T

= −Pe2rD
−1
y (u− u(0)

m )G(y)
∂2Cm
∂ξ2

+D−1
y Peru

(1)
m

∂Cm
∂ξ

+ 2
∂

∂y

( 〈Dxyg〉
Dy

)

∂Cm
∂ξ

+
∂2

∂y2

(

DyC(2)
)

, (48a)334

where we have substituted equations (43) and (47) for C(0) and C(1), respectively. The boundary condition (34b)335

averaged over particle orientations is336

1

Dy
〈gDxy〉

∂Cm
∂ξ

+
∂(DyC(2))

∂y
= 0 at y = ±1. (48b)337

After taking the lateral average of equation (48a), using the boundary condition (48b), and choosing338

u(1)
m = − 1

2PerD
−1
y

[

D−1
y 〈Dxyg〉

]

y=±1
(49)339

so as to again nullify the advective flux, we find340

∂Cm
∂T

= κPe2r
∂2Cm
∂ξ2

(50)341

where342

κ = −
D−1

y G
(

u− u
(0)
m

)

D−1
y

(51)343

is the effective dispersion coefficient.344

Finally, after returning to the laboratory frame (x, t), we obtain345

∂Cm
∂t

+ Peum
∂Cm
∂x

= κPe2
∂2Cm
∂x2

, (52)346

where the mean speed particle speed, um, is347

um =
D−1

y u(y)

D−1
y

− 1

2PeD−1
y

[

D−1
y 〈Dxyg〉

]

y=±1
. (53)348

In this final step, we have arrived at the sought-after effective transport equation, analogous to equation (2), for349

ellipsoidal particles. We note that for spherical particles, where p = Dy = 1, we find that um = 2/3 and κ = 16/945,350

the latter consistent with equation (3).351

As shown in Figure 9(a), even for elongated particles (p > 1), the mean speed of the particles is approximately the352

mean speed of the flow (um ≈ 2/3) when Per ≪ 1. As Per is increased, the particles migrate towards the channel353

walls where the local fluid velocity is smaller. The different orientational distributions at each shear layer cause the354

particles to have different local Dy values which is balanced by a net lateral migration velocity, as seen in Figure 8.355

There is a local minimum in the mean speed of the particles around Per ≈ 10, as seen in Figure 9. Beyond Per & 10,356

the orientational distributions are quite similar at each shear layer away from the center of the channel making the357

local diffusion constant Dy very similar across y. As a result, the overall lateral migration is actually smaller for large358

values of Per.359

Figure 9 demonstrates that the theoretical predictions and the Monte Carlo simulations show excellent agreement.360

Furthermore, in Figure 10, by normalizing the dispersion factor κ with respect to its maximum possible value κm and361

minimum possible value κs, the curves for different p approximately collapse along one master curve. As p decreases362

from approximately 10 to 1, the results diverge from the master curve and approach the flat line corresponding to363

Taylor’s case of p = 1. This observation suggests that in the limit of large p and large Pe, the asymptotic dispersion364

coefficient for elongated particles can be captured by a single curve, which depends only on Per. This curve ultimately365

may serve as a simple and accessible correction factor to extend Taylor’s result to the case of highly elongated rods.366

The same asymptotic calculation can be readily to extended to the more general case when the rods are not confined367

to rotate strictly in the xy-plane, and is presented in Appendix B. While the quantitative results differ, the tendency368

for the particles to align with the flow results in an enhanced dispersion via the same underlying physical mechanism.369
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(a) (b)

FIG. 9. Plots of (a) the mean speed of the particles, um, and (b) the effective dispersion coefficient, κ, as a function of Per for
different aspect ratios, p at Pe = 1000 . Circles are the results of our Monte Carlo simulations; solid lines are the theoretical
predictions of κ and um given by equations (51) and (53), respectively.

FIG. 10. The fraction of the maximum possible dispersion enhancement achieved for a rod of aspect ratio p as a function of
the rotational Peclet number Per. The data approximately collapses along a single curve for p & 10.

IV. CONCLUSION370

In this study, we have examined the dispersion factor of elongated rods in a two-dimensional pressure-driven371

shear flow at high Peclet number using Monte Carlo simulation and a simplified Taylor dispersion theory. For low372

rotational Peclet number, where rotational diffusion dominates rotational advection, the rods behave identically to373

spherical particles with similar values of the dispersion constant and mean particle speed. As the rotational Peclet374

number increases, the shear induced rotation starts dominating rotational diffusion and the rods align themselves more375

(on average) in the direction of the flow. This alignment effect makes it more difficult for them to diffuse across the376

streamlines as compared to spherical particles. This reduced lateral diffusion directly results in an enhanced spreading377

of particles longitudinally, characterized by a larger value of the dispersion factor, as is demonstrated in Monte Carlo378

simulations and quantitatively captured by a simplified model inspired by Taylor’s original work. Furthermore, the379

same theory allows us to characterize the mean speed of the particles, which always remains below the mean speed380

of the flow, and exhibits a distinct minimum as the rotational Peclet number is varied. Our work reveals both when381

the non-spherical shape of the particle has an appreciable influence on the bulk dispersion properties as well as the382

conditions under which an elongated particle can be safely approximated as spherical (isotropic) in application.383
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The present study focuses on two-dimensional flows but could be extended to three-dimensional parallel shear384

flows in future work. While the quantitative details will inevitably differ, we similarly expect an enhanced spreading385

in three-dimensional flows due to the physical mechanism of flow alignment highlighted within the present work.386

The subtle roles of channel geometry, more detailed particle shapes, and other more physically relevant boundary387

conditions on the dispersion process also deserve future attention.388

Appendix A: Influence of rod orientation wall collision condition in Monte Carlo simulation389

For all the previously presented simulation results, conservation of particles in the channel was ensured via a billiards-390

like reflection boundary condition wherein the orientation of the particles is unchanged following wall collision. For391

active Brownian particles, Peng and Brady similarly assumed that the orientation of the particles is unaffected by392

collisions with the walls of the channel [12]. Similar to the billiards-like reflection condition, an alternative method393

to ensure the conservation of particles in the channel is the “potential-free” method where a suitably tuned force is394

applied to the particle only if it predicted to escape the channel boundaries due to Brownian effects at a given time395

step [49]. Both the billards-like reflection and “potential-free” methods are convenient idealizations to the detailed396

hydrodynamic boundary interactions, yet have been successfully used to model the no-flux boundary condition at the397

wall in prior works on Taylor dispersion [12, 15, 50]. This section presents a discussion of two alternative idealized398

orientation collision conditions that affect the local alignment statistics and, consequently, the dispersion factor. The399

first case is when the rods are prescribed to align in the direction of the flow immediately after wall collision, which we400

will refer to as an aligning collision condition. The second case is when the rods have a uniformly random orientation401

following each wall collisions, which we will refer to as a randomizing collision condition.402

As demonstrated in Figure 11(a), for the case of aligning collisions, the particles’ overall alignment with the flow is403

stronger which results in greater dispersion. In contrast, randomizing collisions systematically reduce dispersion by404

weakening overall alignment. The unchanged wall condition sits between these extremes, and is best predicted by the405

continuum theory presented in §III B. We repeated the same set of simulations for a lower value of Pe in Figure 11(b)406

and observed the same overall trends, but with an increased deviation between the predictions from the three idealized407

boundary conditions. One way to interpret this finding, is that for a fixed Per, the dispersion is decreasingly sensitive408

to the details of particle-wall interactions as Pe is increased. For the physically relevant regime defined by Pe ≫ Per409

(corresponding to ap ≪ a: equation (27)), the timescale for equilibration of the orientational dynamics is much faster410

than the translational timescales of the problem. Thus following a collision, particles orientations rapidly relax to411

their steady-state orientational distributions. Consistent with this interpretation, and as evidenced in these Monte412

Carlo simulations, the overall dispersion statistics are most weakly influenced by the details of the wall collisions when413

Pe ≫ Per.414

These results ultimately highlight the role of the assumed particle-wall dynamics on the long-term dispersion415

behavior. Considering the detailed hydrodynamics associated with particle-wall collisions would thus inevitably affect416

the overall spreading statistics, and should be explored in future work.417

Appendix B: Unconstrained rotation: 3D infinite parallel plates418

In this section, we extend the analytical prediction based on the continuum model to the three-dimensional case of419

infinite parallel plates, where the rods have two degrees of rotational freedom. For this calculation, we assume there420

are no gradients along the z direction (into the page in relation to Figure 2). The diffusion tensor D for the governing421

Fokker-Planck equation for particles in a 3D infinite parallel plate is given by [46]422

D(θ, φ) = e eD‖ + (I− e e)D⊥, (B1)423

where e = cos θ cosφ ex+sin θ cosφ ey+sinφ ez. In the present work, θ is the angle the rod makes along the xy plane424

(with θ = 0 corresponding to the positive x-axis) and φ is the angle made by the rod along the xz plane (with φ = 0425

corresponding to the positive x-axis). In the xyz (laboratory) basis, the components of the translational diffusion426

tensor are,427





Dxx(θ, φ) Dxy(θ, φ) Dxz(θ, φ)
Dxy(θ, φ) Dyy(θ, φ) Dyz(θ, φ)
Dxz(θ, φ) Dyz(θ, φ) Dzz(θ, φ)



 (B2a)428
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(a) (b)

FIG. 11. Predictions for the effective dispersion coefficient assuming different boundary conditions in Monte Carlo simulations
with (a) Pe = 1000 and (b) Pe = 100. The unfilled points represents the case when the orientation of the particles is unaffected
by the collisions, the filled points represent the case when the rods align themselves in the direction of the flow after collision
and, the shaded points refer to the case when the orientation of the particles is fully randomized after each collision. The solid
lines indicates the theoretical prediction derived in §III B (equation (50)).

where429

Dxx(θ, φ) = D‖ cos
2(θ) cos2(φ) +D⊥

(

1− cos2(θ) cos2(φ)
)

, (B2b)430

Dxy(θ, φ) = D‖ sin(θ) cos(θ) cos
2(φ) −D⊥ sin(θ) cos(θ) cos2(φ), (B2c)431

Dxz(θ, φ) = D‖ cos(θ) sin(φ) cos(φ) −D⊥ cos(θ) sin(φ) cos(φ), (B2d)432

Dyy(θ, φ) = D‖ sin
2(θ) cos2(φ) +D⊥

(

1− sin2(θ) cos2(φ)
)

, (B2e)433

Dyz(θ, φ) = D‖ sin(θ) sin(φ) cos(φ) −D⊥ sin(θ) sin(φ) cos(φ), (B2f)434

Dzz(θ, φ) = D‖ sin
2(φ) +D⊥

(

1− sin2(φ)
)

. (B2g)435

The xy components of this tensor are identical to equation (31) when φ = 0, which corresponds to the constrained436

problem considered hitherto. For the 3D case, we define the orientationally averaged diffusivity as,437

D̄ =
D‖ + 2D⊥

3
. (B3)438

The dimensional form of the conservation equation for the probability distribution P (x, θ, φ, t), for the particles is,439

∂P

∂t
= −u(y)

∂P

∂x
+Dxx(θ, φ)

∂2P

∂x2
+ 2Dxy(θ, φ)

∂2P

∂x∂y
+ 2Dxz(θ, φ)

∂2P

∂x∂z
+ 2Dyz(θ, φ)

∂2P

∂y∂z
Dyy(θ, φ)

∂2P

∂y2

+Dzz(θ, φ)
∂2P

∂z2
+Dθ

[

1

cos2 φ

∂2P

∂θ2
+

1

cosφ

∂

∂φ

(

cosφ
∂P

∂φ

)]

−
[

∂

∂θ
(ωθg) +

1

cosφ

∂

∂φ
(cosφ ωφg)

] (B4a)440

where,441

ωθ(θ) =
γ̇(y)

2
(1− β cos 2θ), ωφ(θ, φ) =

γ̇(y)

4
β sin 2θ sin 2φ, and β =

p2 − 1

p2 + 1
. (B4b)442

The symmetry of rod shaped particles makes the the probability distribution periodic in θ and φ, with P (x, θ+π, φ, t) =443

P (x, θ, φ, t) and P (x, θ, φ + π, t) = P (x, θ, φ, t). We also demand the no-flux boundary condition at the walls,444

(J · ŷ) = Dxy(θ, φ)
∂P

∂x
+Dyz(θ, φ)

∂P

∂z
+Dyy(θ, φ)

∂P

∂y
= 0 at y = ±a. (B4c)445

Upon non-dimensionalization as done in the main text, moving into the mean frame of reference of the particles, and446

employing the assumption of no gradients in the z direction, the conservation equation becomes,447

ε
∂P

∂t
= −εPer (u(y)− um)

∂P

∂X
+ ε3Dxx(θ, φ)

∂2P

∂X2
+ 2ε2Dxy(θ, φ)

∂2P

∂X∂y
+ εDyy(θ, φ)

∂2P

∂y2
+ LP (θ, φ; y) (B5a)448
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and zero-flux boundary condition449

εDxy(θ, φ)
∂P

∂X
+Dyy(θ, φ)

∂P

∂y
= 0 at y = ±1, (B5b)450

where,451

LP (θ, φ; y) =

[

1

cos2 φ

∂2P

∂θ2
+

1

cosφ

∂

∂φ

(

cosφ
∂P

∂φ

)]

+2yPer

[

∂

∂θ
(ωθ P ) +

1

cosφ

∂

∂φ
(cosφ ωφ P )

]

.

(B6)452

Using the framework outlined in §III B, we obtain the leading order equation as,453

[

1

cos2 φ

∂2g

∂θ2
+

1

cosφ

∂

∂φ

(

cosφ
∂g

∂φ

)]

+ 2yPer

[

∂

∂θ
(ωθg) +

1

cosφ

∂

∂φ
(cosφ ωφg)

]

= 0 (B7a)454

subject to the normalization condition455

∫ 2π

0

∫ π

0

g cosφ dθ dφ = 1, (B7b)456

where457

ωθ(θ) =
1

2
(1− β cos 2θ), ωφ(θ, φ) =

1

4
β sin 2θ sin 2φ, and β =

p2 − 1

p2 + 1
. (B8)458

Following [28], the boundary value problem (B7) was solved using a truncated generalized Fourier (Laplace) series of459

the form460

g =
1

4π
+

M
∑

l=1

Al(y)N2l(sinφ) +

M
∑

m=1

M
∑

l=m

[

Bm
l (y)N2m

2l (sinφ) cos(2mθ) + Cm
l (y)N2m

2l (sinφ) sin(2mθ)
]

, (B9)461

whereNm
l are the fully normalized associated Legendre functions [51], related to the unnormalized associated Legendre462

functions, Pm
l , by463

Nm
l = (−1)m

√

(

l + 1
2

)

(l −m)!

(l +m)!
Pm
l . (B10)464

We note that symmetry of particle orientations under (θ, φ) → (θ+ π, φ+ π) eliminates both even degrees and orders465

of the Legendre functions. Furthermore, owing to the form of the rotation rates ωθ and ωφ, we may restrict our466

attention to the domain 0 ≤ θ ≤ π and 0 ≤ φ ≤ π/2. Following an analogous procedure to that outlined in §III B,467

inserting the expansion (B9) into (B7a) and enforcing the differential equation at every point468

θi =
πi

I
, i = 1, . . . , I and φj =

πj

2J
, j = 1, . . . , J (B11)469

results in an overdetermined system of equations of dimension IJ ×M(M + 2) for the coefficients Al(y), B
m
l (y),470

and Cm
l (y). For each value of y (discretized from y = 0 to y = 1 using 200 equally spaced values), the resulting system471

was again solved using a standard QR least-squares algorithm in MATLAB with I = 72, J = 144, and M = 32. For472

p = 2, we only needed M = 16 modes for convergence.473

Having now solved the leading order (orientational) problem, solving the higher order equations becomes identical474

to the procedure outlined in §III B. The final expressions for κ and um are also the same (equations (51) and (53),475

respectively), but with orientational averages now computed over both angles θ and φ, specifically:476

〈·〉 =
∫ 2π

0

∫ π

0

· cosφ dθ dφ. (B12)477

Predictions for the mean particle speed, um, and dispersion factor, κ, are presented in Figure 12. The overall478

trends are remarkably similar to the constrained rotation problem considered in the main text (Figure 9), but with479

the departures from the spherical case reduced in magnitude.480
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(a) (b)

FIG. 12. Theoretical predictions for mean particle speed and dispersion factor for the case of unconstrained rotation at
Pe = 1000, as described in Appendix B. Plots of (a) the mean speed of the particles, um and (b) the effective dispersion factor,
κ, as a function of Per for different aspect ratios p.
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