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Modeling realistic fluid and plasma flows is computationally intensive, motivating the use of reduced-order
models for a variety of scientific and engineering tasks. However, it is challenging to characterize, much less
guarantee, the global stability (i.e., long-time boundedness) of these models. Previous work provided a theo-
rem outlining necessary and sufficient conditions to ensure global stability in systems with energy-preserving,
quadratic nonlinearities, with the goal of evaluating the stability of projection-based models. In this work, we
incorporate this theorem into modern data-driven models obtained via machine learning. First, we propose that
this theorem should be a standard diagnostic for the stability of projection-based and data-driven models, exam-
ining the conditions under which it holds. Second, we illustrate how to modify the objective function in machine
learning algorithms to promote globally stable models, with implications for the modeling of fluid and plasma
flows. Specifically, we introduce a modified “trapping SINDy” algorithm based on the sparse identification of
nonlinear dynamics (SINDy) method. This method enables the identification of models that, by construction,
only produce bounded trajectories. The effectiveness and accuracy of this approach are demonstrated on a broad
set of examples of varying model complexity and physical origin, including the vortex shedding in the wake of
a circular cylinder.
Keywords: fluid mechanics, reduced-order modeling, Galerkin projection, machine learning, global sta-
bility, nonlinear systems, magnetohydrodynamics, data-driven models, SINDy

I. INTRODUCTION

Modeling the full spatio-temporal evolution of natural pro-
cesses is often computationally expensive, motivating the use
of reduced-order models (ROMs) that capture only the domi-
nant behaviors of a system [1–6]. Projection-based model re-
duction is a common approach for generating such models; a
high-dimensional system, such as a spatially discretized set of
partial differential equations (PDEs), is projected onto a low-
dimensional basis of modes [7, 8]. This projection leads to a
computationally efficient system of ordinary differential equa-
tions (ODEs) that describes how the mode amplitudes evolve
in time [9]. However, these models often suffer from stabil-
ity issues, causing solutions to diverge in finite-time. To ad-
dress this issue, Schlegel and Noack [10] developed a “trap-
ping theorem” with necessary and sufficient conditions for
long-term model stability for systems that exhibit quadratic,
energy-preserving nonlinearities.

Quadratic nonlinearity is pervasive in nature, with common
examples including convection in the Navier-Stokes equations
and the Lorentz force in magnetohydrodynamics (MHD). The
trapping theorem provides conditions for the existence of a
global trapping region, towards which every system trajectory
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asymptotically and monotonically converges; once a trajec-
tory enters this region, it remains inside for all time, guaran-
teeing that all trajectories are bounded. These types of guar-
antees are ideal for the application of real-time flow-control
strategies. An example trapping region is illustrated by the
blue sphere in Fig. 1 for the Lorenz system. For convenience,
we will use the terms “global stability”, “long-term bound-
edness”, and “monotonically trapping region” interchange-
ably, although systems exhibiting trapping regions are a strict
subset of globally stable systems (see Fig. 1 of Schlegel and
Noack [10] for a useful organizational diagram of these vari-
ous notions of stability). In this work, we adapt the trapping
theorem from projection-based modeling to promote global
stability in data-driven machine learning models.

Increasingly, reduced-order models of complex systems,
such as fluids and plasmas, are discovered from data with
modern machine learning algorithms [11–36], rather than
classical projection-based methods that are intrusive and re-
quire intricate knowledge of the governing equations. These
data-driven approaches for modeling fluid dynamics [37, 38]
range from generalized regression techniques [11, 15, 19] to
deep learning [25, 31, 32, 34, 35, 39]. It is often possible
to improve the stability and performance of data-driven mod-
els by incorporating partially known physics, such as con-
servation laws and symmetries [19, 30, 36], or known physi-
cal structure [40]. Thus, incorporating physics into machine
learning and developing hybrid data-driven and operator-
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FIG. 1: Left: Decision diagram to determine global stability, modified from Schlegel and Noack [10] and described in
Section II C. Right: Illustration of a trapping region (blue sphere) for the Lorenz system; all outside trajectories monotonically
approach this region, and after entering, remain inside. Trajectories inside the red ellipsoid experience positive energy growth,

in this case precluding convergence to a fixed point.

based approaches are rapidly growing fields of research [19,
40–48]. Physics can be incorporated into machine learning
algorithms through model structure, by augmenting training
data with known symmetries, by adding constraints to the op-
timization, or by adding custom loss functions [38]. However,
even physics-informed data-driven models often lack global
stability guarantees, and the ability of these methods to find
long-term bounded models depreciates as the state dimension
increases.

In this work, we use the Schlegel and Noack [10] trap-
ping theorem to diagnose and promote global stability of data-
driven models with quadratic nonlinearities. Even though
their theorem was developed in the context of projection-
based ROMs, we emphasize that it can be applied directly to
analyze data-driven model stability post hoc, and we examine
conditions under which it holds. Next, we describe how to use
this theorem to promote global stability in machine learned
models by modifying the optimization loss function. We il-
lustrate this approach on the sparse identification of nonlin-
ear dynamics (SINDy) algorithm [15, 17] by implementing
a custom optimization loss term that promotes models that
are globally stable by construction. A constrained version
of the SINDy optimization was previously developed to en-
force energy-preserving quadratic structure in incompressible
fluids [19] and it has since been extended for arbitrary state
size and global conservation laws in magnetohydrodynamic
systems [30, 36]. These constrained SINDy variants gener-
ally produce more stable models, and reflect a broader trend
that stability issues can often be improved by building phys-
ical constraints into system identification methods [19, 49].
Our “trapping SINDy” algorithm generalizes previous stabi-
lized or constrained reduced-order models for fluids by con-
sidering global rather than local stability, allowing for both
transients and long-time attracting sets. Promoting global sta-

bility also improves robustness to noise over unconstrained
or constrained SINDy. Recent works by Erichson et al. [50]
and Sawant et al. [51] promote a more restrictive Lyapunov
stable origin in fluid flows by adding similar loss terms to
the optimization problem. Additionally, much of the litera-
ture has focused on the long-time energy properties of a dy-
namic attractor [52] by either prescribing that the system be
fully energy-preserving (or Hamiltonian) [53–58] or applying
real-time control [59]. Mohebujjaman et al. [46] also used a
simple version of the trapping theorem in order to constrain a
hybrid projection-based and data-driven method. The present
work builds on these studies, providing a framework for ad-
dressing the long-standing challenge of promoting global sta-
bility in data-driven models.

The remainder of this paper is organized as follows: in
Section II, we introduce the general class of systems with
energy-preserving quadratic nonlinearities, investigate the cir-
cumstances under which the trapping theorem holds, and indi-
cate connections with other stability descriptions in fluid me-
chanics. In Section III, we define our “trapping SINDy” al-
gorithm. Our trapping SINDy implementation is open-source
and available through the PySINDy software package [60].
This is a rather technical section on nonconvex optimization;
the reader may skip this section and proceed to the results if
the algorithmic details are not of interest. In Section IV, we
demonstrate the effectiveness of this new system identifica-
tion technique on a wide range of examples. Abridged ver-
sions of all of the results have been incorporated into a single
PySINDy example notebook and can be reproduced in a few
minutes on a laptop. In Section V, we conclude with sugges-
tions for future work. Similar trapping theorems are promis-
ing for data-driven models in fields such as neuroscience, epi-
demiology, and population dynamics.
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II. REDUCED-ORDER MODELING

Before describing how we incorporate the trapping the-
orem of Schlegel and Noack [10] into data-driven models,
here we briefly describe the family of projection-based ROMs
for which the trapping theorem was introduced, and investi-
gate the circumstances under which this theorem holds. It
is helpful to first motivate this work by reviewing the many
scenarios under which energy-preserving quadratic nonlin-
earities can arise. In fluid dynamics, the quadratic non-
linearity often represents the convective derivative (u ·∇)u
in the Navier-Stokes equations. This quadratic nonlinearity
is energy-preserving for a large number of boundary condi-
tions. Examples include no-slip conditions, periodic bound-
ary conditions [9, 61], mixed no-slip and periodic bound-
ary conditions [62], and open flows in which the velocity
magnitude decreases faster than the relevant surface inte-
grals expand (e.g., two-dimensional rigid body wake flows
and three-dimensional round jets) [63]. In magnetohydrody-
namics, there are additional quadratic nonlinearities through
∇× (u×B) and J ×B, which are also energy-preserving
with common experimental boundary conditions such as a
conducting wall [64], or a balance between dissipation and
actuation in a steady-state plasma device [36, 65]. Notably,
dissipationless Hall-MHD has four invariants; energy, cross-
helicity, magnetic helicity, and generalized helicity [66], pro-
viding a wealth of potential model constraints for Hall-MHD
ROMs. Here u is the fluid velocity, J is the electromagnetic
current, andB is the magnetic field.

A. Projection-based ROMs

In modern scientific computing, a set of governing par-
tial differential equations is typically discretized into a high-
dimensional system of coupled ordinary differential equa-
tions. In this work we will explicitly consider dynamics with
linear plus quadratic structure, as are found in many fluid and
plasma systems:

u̇=L0u+Q0(u). (1)

Here we assume that the PDE has already been discretized
for numerical computation, resulting in a coupled system of
n differential equations. The state of the system u(x, t) ∈ Rn

is a high-dimensional vector that represents the fluid veloc-
ity or other set of spatio-temporal fields, for example sampled
on a high-resolution spatial grid. Thus, L0 and Q0 are high-
dimensional operators used to perform the numerical simula-
tion. The zero subscript distinguishes these operators from the
Galerkin coefficients defined below in Eq. (3).

The goal of a projection-based ROM is to transform this
high-dimensional system into a lower-dimensional system of
size r� n that captures the essential dynamics. One way to
reduce the set of governing equations to a set of ordinary dif-
ferential equations is by decomposition into a desired low-
dimensional basis {ϕi(x)} in a process commonly referred to

as Galerkin expansion:

u(x, t) = u(x)+
r

∑
i=1

ai(t)ϕi(x). (2)

Here, u(x) is the mean field, ϕi(x) are spatial modes, and
ai(t) describe how the amplitude of these modes vary in time.
The proper orthogonal decomposition (POD) [9, 67] is fre-
quently used to obtain the basis, since the modes ϕi(x) are
orthogonal and ordered by maximal energy content. The
governing equations are then Galerkin projected onto the ba-
sis {ϕi(x)} by substituting Eq. (2) into the PDE and using
inner products to remove the spatial dependence. Orthog-
onal projection onto POD modes is the simplest and most
common procedure, resulting in POD-Galerkin models, al-
though Petrov-Galerkin projection [3, 4] improves model per-
formance in some cases.

In this paper, we rely on a theorem that is derived explic-
itly from modal expansions of the form of Eq. (2), i.e. lin-
ear and separable decompositions, although non-orthogonal
modes can be straightforwardly handled in the following anal-
ysis. This reliance on a simple basis is not ideal, because
there are many other modal expansions and bases that have
been introduced for reduced-order fluid [7, 8] and plasma
models [68–71], including balanced POD [72, 73], spectral
POD [20], dynamic mode decomposition (DMD) [11, 12, 74],
the Koopman decomposition [13, 75, 76], resolvent analy-
sis [77, 78], and autoencoders [32, 79, 80]. Future work is
required to expand our strategy to these alternative and nonlin-
ear bases, and we provide some potential avenues for progress
in the conclusion in Sec. V.

Now, if the governing equations for u(x, t) are at most
quadratic in nonlinearity, Galerkin projection produces the
following system of ODEs for the set of temporal functions
ai(t),

ȧi(t) = Ei +
r

∑
j=1

Li ja j +
r

∑
j,k=1

Qi jka jak. (3)

Ei, Li j, and Qi jk are tensors of static coefficients, obtained
from spatial inner products between the ϕi(x) and the opera-
tors L0 and Q0, that define the model dynamics. The class of
systems we consider are those with energy-preserving nonlin-
earity, for which

r

∑
i, j,k=1

Qi jkaia jak = 0, (4)

or equivalently, for all i, j,k ∈ {1, ...,r},

Qi jk +Q jik +Qk ji = 0. (5)

Qi jk is symmetric in swapping j and k without loss of gener-
ality.
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B. Schlegel and Noack Trapping Theorem

This theorem provides necessary and sufficient conditions
for energy-preserving, effectively nonlinear, quadratic sys-
tems to exhibit a trapping region B(m,Rm), a ball centered
at m ∈ Rr with radius Rm. Outside this region the rate of
change of energy K is negative everywhere, producing a Lya-
punov function that renders this system globally stable. Re-
centering the origin by an arbitrary constant vector m, the
energy may be expressed in terms of the shifted state vector
y(t) = a(t)−m as

K =
1
2
yTy. (6)

Taking a derivative and substituting in Eq. (3) produces

d
dt

K = yTASy+dT
my, (7)

AS =LS−mTQ, LS =
1
2
(L+LT ), and (8)

dm =E+Lm+Qmm. (9)

mTQ refers to miQi jk andQmm to Qi jkm jmk. The trapping
theorem may now be stated as:

Theorem 1. There exists a monotonically trapping region at
least as small as the ball B(m,Rm) if and only if the real, sym-
metric matrix AS is negative definite with eigenvalues λr ≤
·· · ≤ λ1 < 0; the radius is then given by Rm = ‖dm‖/|λ1|.∗

In practice, the goal is then to find an origin m so that the
matrixAS is negative definite, guaranteeing a trapping region
and global stability. Without effective nonlinearity, described
at the beginning of Section II C, only the backwards direction
holds; if we can find an m so that AS is negative definite,
the system exhibits a trapping region. However, such systems
can be globally stable without admitting such an m. Subse-
quently, the goal of Section III is to use this theorem to de-
fine a constrained machine learning optimization that identi-
fies a reduced-order model with a guaranteed trapping region.
Even when the requirements of the trapping theorem are not
fully satisfied, the algorithm results in Section IV indicate that
this approach tends to produce models with improved stability
properties.

To understand the Rm bound in Thm. 1, we transform into
eigenvector coordinates z = Ty, h= dmT

T , where T are the
eigenvectors ofAS. Now Eq. (7) becomes

d
dt

K =
r

∑
i=1

hizi +λiz2
i =

r

∑
i=1

λi

(
zi +

hi

2λi

)2

− h2
i

4λi
. (10)

∗ If a system is long-term bounded (not necessarily exhibiting a monotoni-
cally trapping region) and effectively nonlinear, only the existence of an m
producing a negative semidefinite AS is guaranteed.

We can see that the trapping region will be determined by the
equation of the ellipsoid where K̇ = 0,

1 =
r

∑
i=1

1
α2

i

(
zi +

hi

2λi

)2

, (11)

αi =
1
2

√√√√ 1
λi

r

∑
j=1

h2
j

λ j
≤ 1

2|λ1|
‖dm‖. (12)

The origin at y = 0 (a =m) lies on the ellipsoid, and in the
worst case scenario lies at the tip of the major axis. Thus, to
guarantee that a ball centered at this origin entirely contains
this region, we estimate Rm as twice the size of the largest
possible value of the half-axes αi. Note that our definition
of αi differs from Schlegel and Noack [10]; we believe that
there is a minor typo in their Eq. 3.14. Fortunately, the only
consequence is a change in the estimate of Rm. Lastly, recall
that long-term bounded (not necessarily exhibiting a mono-
tonically trapping region) and effectively nonlinear systems
only guarantee an m exists such that AS is negative semidef-
inite. In the case of mixed zero and nonzero eigenvalues,
the ellipsoid becomes a paraboloid. The infinite extent of
the paraboloid precludes a monotonic trapping region but not
other forms of global stability. This edge case is not further
discussed because in practice (numerically) there is no chance
of arriving at an eigenvalue of exactly zero.

C. Interpretation of the trapping theorem

The Schlegel and Noack [10] theorem, summarized in The-
orem 1, provides necessary and sufficient conditions for the
projected ROM in Eq. (3) to be globally stable by admitting
a trapping region. This theorem is necessary and sufficient
for systems that exhibit effective nonlinearity, i.e., the system
does not manifest invariant manifolds where there exists some
i such that Qi jka jak = 0 for all time, for which a linear stability
analysis must be adopted. In other words, systems that start
in purely linear model subspaces, and remain in those sub-
spaces, do not exhibit effective nonlinearity. Fortunately, real-
istic fluid flows exhibit effective nonlinearity, although there
are some subtleties that we discuss in Section II D. In this
case, we can always use the total fluid kinetic energy K as
a Lyapunov function for the trapping region. This is ideal, as
finding a suitable Lyapunov function is often the most difficult
task in stability analysis. It is possible that other Lyapunov
functions exist with tighter bounds on the size of a trapping
region, but this paper is primarily concerned with promoting
models with long-term boundedness (i.e. models that exhibit a
trapping region of any kind), rather than an algorithm for pre-
cisely capturing the shape and size of a trapping region. For
a post-fit algorithm to find the optimal ellipsoidal estimate of
the stability domain, see Kramer [81].

A generic nonlinear system may exhibit multiple fixed
points, limit cycles, and other equilibrium point behavior.
However, any physical system should produce bounded tra-
jectories, and the global stability property from the trapping
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theorem is agnostic to any local stability properties. This
manuscript solely considers systems that are globally stable,
or equivalently, long-term (ultimately) bounded, by virtue of
exhibiting globally trapping regions. Long-term boundedness
means that there exists some T0 and R0 such that ‖a(t)‖< R0
for all t > T0. A trapping region encompasses an attractor or
attracting set, which is typically defined as a set of the system
phase space that many trajectories converge towards; this can
be an equilibrium point, periodic trajectory, Lorenz’s “strange
attractor”, or some other chaotic trajectory. Whenever it does
not detract from the discussion, we omit the qualifiers “glob-
ally”, “monotonically” and “long-term”, as this is the only
characterization of stability considered in the present work.
Examples of physical systems that are globally stable but do
not exhibit a trapping region include Hamiltonian systems and
systems that do not fit into the trapping theorem assumptions
(examined further in Section II D and summarized in Fig. 1).
For instance, fully energy-preserving systems satisfy K̇ = 0,
so trajectories represent shells of constant distance from the
origin; these trajectories are globally bounded but no trapping
region exists.

D. Model truncation, effective nonlinearity, and closure

Before implementing the trapping theorem into system
identification, we investigate the circumstances under which
truncated projection-based models will exhibit effective non-
linearity; the reader may skip this section if the subtleties of
the trapping theorem are not of interest, although the discus-
sion here is pertinent to Section IV E. Effectively nonlinear
dynamics are ideal because they can be decisively classified
as globally stable or not, requiring no additional stability anal-
ysis. To proceed, consider a Fourier-Galerkin model of Burg-
ers’ equation derived from the Fourier expansion u(x, t) =
∑ak(t)eikx, and further examined in Section IV E,

u̇=−u∂xu+ν∂xxu =⇒ ȧk=−νk2ak−
∞

∑
`=−∞

i`a`ak−` (13)

=⇒ K̇=−ν

∞

∑
k=−∞

k2a2
k−

∞

∑
k,`=−∞

i`a`ak−`ak. (14)

The particular “triadic” structure of the nonlinear term in the
spectral domain, where the only nonzero terms acting on ak
are those whose wavenumbers sum to k, is identical to that
arising in isotropic turbulence [82]. The triadic term in K̇
transfers energy between length scales. Since the viscous
term scales with k2, energy is most effectively dissipated at
the smallest scales; the combination of the two terms leads to
the traditional energy cascade in which energy flows “down-
hill” from larger to smaller scales. This description implies
that heavily truncating the Galerkin system leads to under-
resolving the dissipation rate and a closure scheme may be re-
quired to re-introduce the full dissipation. Towards this goal,
modern sparse regression and deep learning methods have
been used to produce new closures for fluid models [25, 83–
87]. While the traditional explanation for unstable Galerkin

models derives from these truncated dissipative scales, in-
creasingly there are alternate explanations including funda-
mental numerical issues with the Galerkin framework (po-
tentially resolved in a Petrov-Galerkin framework) [88] and
the Kolmogorov width issues of linear subspaces more gen-
erally [32]. If true, this is probably good news for (incom-
pressible, dissipationless) Hall-MHD, where the conservation
of energy and the cross, magnetic, and generalized helicities
leads to direct, inverse, and even bidirectional cascades [89].
Interestingly, the notion of effective nonlinearity appears to be
another approach from which we can attempt to resolve these
disagreements about the sources of ROM instability.

To proceed with this theme, we show that the triadic struc-
ture of the model has repercussions for the presence of effec-
tive nonlinearity. Consider the truncated model

ȧk =−νk2ak −
r

∑
`=−r

i`a`ak−`, k ∈ {1, ..., r} (15)

with the initial condition a j = 1 for any j ∈ {±( r
2 +

1),±( r
2 + 2), ...,±r}, and ak = 0, k 6= j. For simplicity we

have assumed r is divisible by two. In this case the system has
r invariant 1D subspaces for which

ȧ j =−ν j2a j. (16)

These invariant linear subspaces exist because higher
wavenumber modes that could interact to transfer energy
between coefficients have been discarded. In other words,
Fourier-Galerkin models with finite truncation do not ex-
hibit effective nonlinearity. In contrast, POD-Galerkin models
weakly break the triadic structure of the nonlinearity [90], and
therefore in general will weakly satisfy the trapping theorem
criteria for effective nonlinearity, to the extent that they differ
from the Fourier modes because of inhomogeneity in the sys-
tem. There are also modern ROMs which attempt to retain the
full dissipation by utilizing bases that intentionally mix length
scales [91] – these types of models should be more likely to
satisfy effective nonlinearity. Lastly, numerical errors appear
to weakly restore effective nonlinearity, since errors break any
triadic structure. Proceeding with this analysis is complicated
because the numerical errors also weakly break our founda-
tional assumption that Qi jk is energy-preserving. Future inves-
tigations should be pursued to explore relationships between
effective nonlinearity, the energy cascade, and closure models
that reintroduce stabilizing dissipation to truncated models.

It is difficult to quantify “how close” a model is to exhibit-
ing effective nonlinearity, since a lack of effective nonlinearity
Qi jka jak = 0 must hold for all time, for any i, and for any valid
system trajectory. However, for an orthonormal set of tempo-
ral modes, and assuming there exists at least one index i such
that Qi j j 6= 0, we propose quantifying the average strength of
model effective nonlinearity through the metric

Se =
mini |Qi jka jak|
maxi |Qi jka jak|

=
mini |Qi j j|
maxi |Qi j j|

. (17)

The bar in a jak denotes a temporal average. We will show
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in Section IV E that in system identification a lack of effec-
tive nonlinearity is not a terrible loss. Our trapping SINDy
algorithm in Section III minimizes K̇ whether or not a nega-
tive definite AS can be realized. However, without additional
stability analysis, such models are no longer provably stable
for any initial condition. Although Eq. (16) is a linearly stable
system, this is not guaranteed for more general fluid models
than the simple Burgers’ equation considered here.

E. Constraints in model reduction and system identification

Before moving on to system identification, it is worth not-
ing that enforcing these types of existence-based stability con-
ditions is subtle. There are modern techniques to implement
implicit constraints of the form

Ci(ȧ, a, t, ...) = 0, i ∈ {1, 2, ...} (18)

into both model reduction [48, 92] and system identifica-
tion [19, 49, 93, 94]. Precisely in this way, the energy-
preserving constraint in Eq. (5) is cast as an affine version
of Eq. (18) in our optimization in Section III.

However, enforcing stability in quadratic energy-preserving
models is more complicated than Eq. (18). To see this, note
that there a few different circumstances under which we might
want to promote stability. If the true AS and the optimal m
are known, we can simply constrain the coefficients in Eq. (3)
to produce this known negative definiteAS. This would imply
that we already know the optimally-shifted eigenvalues of the
system and an m that produces these negative eigenvalues;
if this is the case, so much information about the system of
ODEs is already known that machine learning methods are
likely unnecessary.

But far more interesting are the cases in which 1) the un-
derlying system is known to be globally stable and effectively
nonlinear, so we want to find the “correct”m and correspond-
ing AS, or 2) it is not known if any m exists such that AS

is negative definite. In system identification, either of these
cases can be addressed by searching for a model that both op-
timally fits the data and is globally stable. In this context, we
adopt a mixed approach in the next section where we enforce
the energy-preserving constraint and then separately bias the
optimization towards models with a trapping region. This
technique is a significant methodological extension because
we can no longer rely on constraints of the form in Eq. (18).

III. TRAPPING SINDY ALGORITHM

We now describe how to incorporate the trapping theorem
of Schlegel and Noack [10] into data-driven model identifica-
tion, specifically for the SINDy algorithm. Before describing
the modified algorithm in Sec. III B, we first present the stan-
dard SINDy algorithm [15] along with a recent variant that
incorporates explicit constraints [19, 49]. We then build on
this framework to incorporate the Schlegel–Noack trapping
theorem.

A. Standard and constrained SINDy algorithms

The goal of system identification is to identify a system of
ODEs or PDEs that describe how a given data set evolves
dynamically in time. The SINDy algorithm [15] identifies
sparse, parsimonious models that remain interpretable and
avoid the overfitting issues that are common in this field. As
in Loiseau et al. [19], we develop SINDy models for the dy-
namics of a, representing the coefficients or amplitudes of a
modal Galerkin expansion in Eq. (2). We assume that the dy-
namics of a will be described as a sparse linear combination
of elements from a library Θ containing candidate terms such
as:

d
dt
a≈Θ(a)Ξ, Θ(a) =

 1 a a⊗ a

 . (19)

Here a⊗ a contains all combinations of aia j without dupli-
cates. The Θ matrix may contain any desired candidate terms,
but in this work we consider only terms up to quadratic poly-
nomials in a because we are searching for energy-preserving
quadratic models. The expressions in Eq. (19) are typically
evaluated on a data matrix X obtained from time-series data
of the state, a(t1), a(t2), ..., a(tM):

X =

state
−−−−−−−−−−−−−−−−−−−−−→

a1(t1) a2(t1) · · · ar(t1)
a1(t2) a2(t2) · · · ar(t2)

...
...

. . .
...

a1(tM) a2(tM) · · · ar(tM)


y

tim
e . (20)

A matrix of derivatives in time, Ẋ , is defined similarly and
can be numerically computed from X . In this case, Eq. (19)
becomes Ẋ = Θ(X)Ξ. The goal of SINDy is to determine a
sparse matrix of coefficients Ξ =

[
ξ1 ξ2 · · · ξr

]
, also writ-

ten in vectorized form as Ξ[:] = ξ,

ξ = [ξ a1
1 , . . . , ξ

ar
1 , ξ

a1
2 , . . . , ξ

ar
2 , . . . , ξ

a1
N , . . . , ξ

ar
N ], (21)

where N is the number of candidate functions and r is the
state space size; nonzero elements in each column ξ j indicate
which terms are active in the dynamics of ȧ j(t). The matrix
of coefficients Ξ is determined via the following sparse opti-
mization problem:

arg min
ξ

[
1
2
‖Θξ − Ẋ‖2 + λ‖ξ‖0

]
. (22)

We deviate from the typical SINDy definitions by explicitly
formulating the problem in terms of the vectorized ξ ∈ RrN ,
Θ(X) ∈ RrM×rN , and Ẋ ∈ RrM . The first term in the SINDy
optimization problem in Eq. (22) fits a system of ODEs Θξ
to the given data in Ẋ . The ‖ξ‖0 term counts the number of
nonzero elements of Ξ, and the elements of Ξ smaller than a
threshold value, λ , are zeroed out. However, it is not techni-
cally a norm and leads to a non-convex optimization, so sev-
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eral convex relaxations have been proposed [15, 17, 49].
Since the original SINDy algorithm, Loiseau et al. [19]

introduced an extension to directly enforce constraints on
the coefficients in Ξ. In particular, they enforced energy-
preserving, skew-symmetry constraints on the quadratic
terms for incompressible fluid flows, demonstrating improved
model performance over standard Galerkin projection. The
quadratic library in Eq. (19) has N = 1

2 (r
2 + 3r) + 1 terms.

With the energy-preserving structure, it can be shown that the
number of constraints is p = r(r + 1)(r + 2)/6 and therefore
the number of free parameters is rN − p = 2p. This con-
straint is encoded as Cξ = d, C ∈ Rp×rN , d ∈ Rp, and the
constrained SINDy algorithm solves the following minimiza-
tion,

arg min
ξ

[
1
2
‖Θξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Cξ − d)
]
. (23)

In general we can use nonconvex regularizers that promote
sparsity in ξ, but the trapping SINDy modifications below re-
quire a convex regularizer such as the L1 norm. The third term
δ0 is an indicator function that encodes the constraintCξ = d,
guaranteeing the energy-preserving structure in the quadratic
nonlinearity is retained in the identified model. There are
also variants of the constrained SINDy objective function
in Eq. (23) that utilize sparse relaxed regularized regression
(SR3) in order to improve performance [49, 95].

B. Proposed trapping SINDy algorithm

Model constraints in system identification, such as global
conservation laws or other physical considerations, often re-
sult in improved models, but do not generally guarantee global
stability. Here, we will additionally promote globally stable
models that exhibit a monotonically trapping region. Recall
from Thm. 1 that m is an arbitrary, constant vector, of the
same state size as a, that specifies the center of a possible trap-
ping region. Stability promotion is then achieved by jointly
determining the sparse model coefficients Ξ and state vector
m such thatAS from Eq. (8) is negative definite.

To proceed with our trapping SINDy formulation, we must
relate the model coefficients in ξ to the matrix AS appearing
in the trapping theorem. We first define the projection opera-
tors P L ∈ Rr×r×rN , PQ ∈ Rr×r×r×rN , and P ∈ Rr×r×rN . The
operatorP L projects out the symmetric part of the linear coef-
ficients through LS = P Lξ. The same is true for the quadratic
coefficients,Q= PQξ. The operatorP = P L −mTPQ pro-
vides a concise representation of AS through the following
equation:

AS =LS −mTQ= Pξ = (P L −mTPQ)ξ. (24)

We now phrase a tentative version of the trapping SINDy
optimization problem, in analogy to the constrained SINDy
optimization in Eq. (23), that incorporates an additional loss
term to reduce the maximal (most positive) eigenvalue λ1 of

the real, symmetric matrixAS:

arg min
ξ,m

[
1
2
‖Θξ−Ẋ‖2

2+λ‖ξ‖1+δ0(Cξ−d)+
λ1

η

]
. (25)

Note that we have introduced a new hyperparameter η , which
modulates the strength of the λ1 loss term. Although λ1 is
a convex function of the matrix elements [96], AS = (P L −
mTPQ)ξ is not affine in ξ′ = [ξ,m]. The result is that this
new term is not convex, but convex composite. It is possible
to approximately solve this problem with a variable projection
technique, where we essentially treat ξ andm as independent,
solve the convex problem in ξ, and then substitute ξ∗, the solu-
tion at each iteration, into the optimization for m. In practice
this algorithm performs fairly well, although the convergence
properties are unclear. Eq. (25) is also amenable to other ap-
proaches, such as Gauss-Newton [97] or the prox-linear algo-
rithm [98], because λ1 is a convex function of the elements
of AS and Pξ is smooth in m and ξ. Although we insti-
tute a modified algorithm below, these convex-composite ap-
proaches are a promising future direction for effectively solv-
ing this nonconvex optimization problem.

In order to produce an algorithm with better performance
and better understood convergence properties, we adopt a
relax-and-split approach [99], similar to the approach taken
in Champion et al. [49]. We introduce an auxiliary variableA
that represents the projection of AS = Pξ onto the space of
negative definite matrices, and introduce two new terms in the
optimization:

arg min
ξ,m,A

[
1
2
‖Θξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Cξ − d) (26)

+
1

2η
‖Pξ −A‖2

2 + δI (Λ)

]
.

The new least-squares term enforces a “soft” constraint (or
bias) towardsAS = Pξ being negative definite by minimizing
the difference between Pξ and its projection into the space of
negative definite matrices. The auxiliary variableA is updated
to approximateAS = Pξ, and then, through the δI term, en-
forced to be negative definite by requiring that the diagonal-
ized matrix Λ = V −1AV lies in I = (−∞,−γ ], γ > 0. Di-
rectly enforcing Pξ to be negative definite tends to badly dis-
tort the model fit to the data. Instead, the auxiliary variableA
in Eq. (26) allows the algorithm to accurately fit the data with
ξ and then relax the coefficients towards a negative definite
AS to promote global stability.

This flexible formulation also allows A, our proxy for the
projection of Pξ onto the space of negative definite matri-
ces, to vary, and therefore fit the particular eigenvalues of the
system in question. In other words, the proposed approach
pushesAS into the space of negative definite matrices in Rr×r

with minimal assumptions about the eigenvalues, only assum-
ing that they are negative. Contrast our algorithm to a more
restrictive approach that prescribes anA, meaning we already
know a set of negative eigenvalues of Pξ that is compatible
with the data. A description of each of the hyperparameters
λ , η , and γ , is provided in Table I. Note that Eq. (26) is not
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convex in A, and this is the most challenging aspect of this
formalism.

Now that we have defined our problem in Eq. (26), we need
to solve it. If we denote the convex part of the optimization,

F(ξ,m,A) =‖Θξ − Ẋ‖2
2/2 + λ‖ξ‖1 (27)

+ δ0(Cξ − d) + ‖Pξ −A‖2
2/2η ,

and fix initial guesses for m and A, then we can define the
solution vector ξ∗ through

ξ∗ = arg min
ξ

[
F(ξ,m,A)

]
. (28)

If λ = 0, ξ∗ is structurally identical to the ξ∗ in Champion et
al. [49]:

H=(ΘT Θ+
1
η
P TP )−1, (29)

ξ∗=H
[
I−CT (CHCT )−1CH

][
ΘT Ẋ+

1
η
P TA

]
(30)

+HCT (CHCT )−1d.

H is positive definite, I is the identity matrix, and Cξ∗ = d
can be verified using Eq. (30). The minimization over ξ
with λ 6= 0 is still convex but not analytically tractable as in
Eq. (30). Since it is convex, it can be solved with standard
convex optimization libraries such as CVXPY [100]. It can
also be shown to reduce to a constrained quadratic program
over the unit box with a positive semidefinite cost matrix. A
barrier to this route is that typical numerical solvers either as-
sume that the quadratic cost matrix is sparse or positive defi-
nite. Neither assumption is true here.

Now that we have solved the minimization over ξ, we can
use prox-gradient descent on (m,A); each algorithm iter-
ation we alternate between solving for ξ∗ and solving for
(m∗,A∗). Again, we can think about this problem as a vari-
able projection [101, 102], which is a value function optimiza-
tion over the remaining variables (m,A). To make this view-
point more precise, we define

F̃(m,A) = F(ξ∗,m,A), (31)

The problem we want to solve is now written more simply as

arg min
m,A

[
F̃(m,A) + δI (Λ)

]
.

We apply prox-gradient descent to this nonconvex problem,
so that

m∗ =m− αm∇mF̃(m,A), (32)

A∗ = projI
[
A− αA∇AF̃(m,A)

]
, (33)

where αm and αA are step sizes. All that remains is to compute

the gradients of the value function F̃ ,

∇AF̃(m,A) =
1
η
(A− Pξ∗), (34)

∇mF̃(m,A) =
1
η
PQξ∗(A− Pξ∗). (35)

These are Lipschitz continuous functions with Lipschitz con-
stants LA, Lm satisfying

αA ≤
1

LA
≤ η , (36)

αm ≤
1

Lm
≤ η

‖(PQξ∗)i jk(PQξ∗)l jk‖F
, (37)

in order for guaranteed convergence of fixed step-size, prox-
gradient descent [103]. While the denominator in Eq. (37)
varies with the update in ξ, in practice, one can reduce αm un-
til convergence is found. The full trapping SINDy optimiza-
tion is illustrated in Algorithm 1.

Algorithm 1 Trapping SINDy

Input: Numerical data Ẋ and optional initial guesses form andA.
Output: Optimal model coefficients ξ∗ and shift vectorm∗.

1: procedure SINDY(Ẋ , λ , η , γ)
2: Construct Θ(X), P ,C, and d.
3: while |ξk − ξk+1|> ε

ξ

tol and |mk −mk+1|> εm
tol

4: ξk+1⇐= arg minξk

[
F(ξk,mk,Ak)

]
,

5: Vk+1Λk+1(Vk+1)
−1⇐=Ak − αA∇AF̃(m,A)|mk ,Ak ,

6: Ak+1⇐= Vk+1projI
[
Λk+1

]
(Vk+1)

−1,
7: mk+1⇐=mk − αm∇mF̃(m,A)|mk ,Ak ,
8: end procedure

In words, 2: initialize variables, 3: start iteration loop, 4: convex
minimization for ξk+1, 5: prox-gradient step for Ak+1, 6: project
Ak+1 into I , rotate into Pξk+1 basis, and 7: prox-gradient step for
mk+1. Note that inequalities (36)–(37) should be satisfied, and there
tends to be a sweet spot for η . It is often useful to start with η � 1
and then reduce η until the model coefficients are significantly af-
fected.

ε
ξ

tol and εm
tol are convergence tolerances. The Vk+1 are the

eigenvectors of Pξk+1 and are used to transform Ak+1 into
the same basis as Pξk+1. An example of the algorithm iter-
ating on noisy data from the chaotic Lorenz system is shown
in Fig. 2, demonstrating how the algorithm transitions from a
poor initial guess that decays to a fixed point to a stable model
converging to the correct attractor. We also implement an op-
tional FISTA method [104, 105] for reducing the convergence
time in the (m,A) optimization. Algorithm 1 is computa-
tionally intensive, but it can be parallelized for speed in future
work, following other SINDy variants [106]. Initial guesses
are allowed for m and A in order to facilitate continuation
of previous optimization runs. Along with these methods,
we also implement the λ1 variant of the trapping algorithm
in Eq. (25) in the open-source PySINDy code [60].

A key insight to the trapping algorithm is that the energy-
preserving constraint Cξ = d is non-negotiable. Although in
practice small errors in Cξ = d do not significantly affect the
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Trapping SINDy hyperparameters
λ Specifies the strength of sparsity-promotion through the regularizer R(ξ). λ = 0 already works well for

low-dimensional systems because the ‖Pξ −A‖2
2 term promotes stability.

η Specifies how strongly to push the algorithm towards models with negative definite AS. If η � 1, ξ∗ is
unaffected by the minimization overm. If η � 1, the problem is increasingly nonconvex.

γ Determines how far to push the eigenvalues ofAS towards being negative definite. Typically γ . 0.1 works
for a variety of problems regardless of the true eigenvalues ofAS.

TABLE I: Description of the trapping SINDy hyperparameters.

iteration:

· · · · · ·

0 151 152 153 154 155 156 157 158 500

FIG. 2: Illustration of trapping SINDy progress on noisy Lorenz data. The minimization results in the transition from a poor
initial guess to identification of the correct attractor dynamics.

optimization problem, the ‖Pξ −A‖2
2 term in the optimiza-

tion loses its physical interpretation if the coefficients are not
exactly energy-preserving. Thus, the goal is to satisfyCξ = d
exactly, and then to push a potential model towards a more re-
fined model that exhibits a trapping region, potentially at the
expense of the fit to the data (this can also mitigate overfit-
ting).

With regards to choosing hyperparameters, there is some
work to do for each new problem. Fortunately, the results
in Sec. IV are fairly insensitive to the precise hyperparame-
ter values. Rather, we rediscover a common occurrence in
sparse regression techniques – the existence of cutoffs in the
hyperparameter space where the model quality sharply drops.
These sharp boundaries are actually grounded in reality; if
sparsity-promotion is increased in the regression, it will even-
tually start to truncate out the smallest physical scales in the
system, and at “large enough” values, it truncates the primary
dynamics of interest!

More specifically for our Algorithm 1, if the system has
some small scales, poor choices of λ (sparsity-promotion) or
γ (smallest eigenvalue of AS) can truncate these scales dur-
ing the regression. A reasonable strategy, assuming no prior
system knowledge, is to start with λ = 0, γ ∼ 0, η � 1, and
then scan the values. For η (the strength of the long-term
boundedness term), there tends to be a “sweet spot” regime.
If η−1‖Pξ −A‖2

2�‖Θξ − Ẋ‖2
2, then ξ∗ is essentially un-

affected by the minimizations over m and A. In practice,
this means that poor initial guesses for ξ∗ do not improve as
the full optimization problem is solved. In the opposite ex-
treme, η−1‖Pξ −A‖2

2�‖Θξ − Ẋ‖2
2, the optimization in

Eq. (26) is increasingly nonconvex and potentially pulls ξ∗ far
away from the data. Finding the η regime where updating m
perturbs ξ∗, instead of leaving ξ∗ unaffected or mangled, re-
quires scanning η . Because each problem requires some data-
craftsmanship, there are plans to parallelize the algorithm to
efficiently scan large ranges in the hyperparameters. Finally,
prior system knowledge can also constrain the hyperparame-
ter space.

IV. RESULTS

We now investigate the utility of our trapping SINDy algo-
rithm to identify stable, sparse, nonlinear models for a number
of canonical systems. These examples illustrate that it is pos-
sible to both effectively discover stable models that exhibit
trapping regions and improve the discovery of systems that do
not satisfy Thm. 1 or the requirement of effective nonlinearity.
For each system, we train SINDy on a single trajectory with
a random initial condition and evaluate the model on a differ-
ent trajectory of the same temporal duration with a new ran-
dom initial condition. It is difficult to quantity model perfor-
mance for chaotic systems, such as the Lorenz system, where
lobe-switching is extremely sensitive to initial conditions and
the coefficients of the identified model, and for systems with
transients, for which the precise timing of instability must be
matched to achieve the correct phase. Two reasonable defini-
tions for the model quality are the relative Frobenius error in
the model coefficients (for models with closed forms) and the
time-averaged error in Ẋ ,

Em =
‖ΞTrue −ΞSINDy‖F

‖ΞTrue‖F
, (38)

Ef =
‖ẊTrue − ẊSINDy‖2

‖ẊTrue‖2
. (39)

It should be understood that the time-average in Ef is com-
puted after dividing the numerator and denominator. When
appropriate, we also report a far more demanding relative pre-
diction error,

Epred =
‖XTrue −XSINDy‖F

‖XTrue‖F
. (40)

Table II summarizes the sampling, hyperparameters, and
identified trapping regions for each example discussed in Sec-
tions IV A–IV F. Table II is intended to be instructive rather
than exhaustive. For clarity, the training and testing trajecto-



10

ries used to generate this table do not have added noise, al-
though Fourier modes from the Burgers’ Equation and POD
modes from the Von Kàrmàn street are obtained from di-
rect numerical simulation (DNS), and subsequently contain
minor numerical noise; the performance on noisy data will
be explored further in Sec. IV C. To compare trapping re-
gion sizes Rm across different examples, we also report Reff =

Rm/
√

∑
r
i=1 y2

i , which is normalized to the approximate radius
of the training data. The denominator denotes the root-mean-
square of the temporal average of each component of the tra-
jectory.

A. Mean field model

Often the trajectories of a nonlinear dynamical system,
which has a linear part exhibiting some stable directions,
will approach a slow manifold of reduced dimension with re-
spect to the full state space. As an example of this behavior,
consider the following linear-quadratic system originally pro-
posed by Noack et al. [1] as a simplified model of the von Kàr-
màn vortex shedding problem explored further in Sec. IV F:

d
dt

x
y
z

=

µ −1 0
1 µ 0
0 0 −1

 x
y
z

+

 −xz
−yz

x2 + y2

 . (41)

Systems of this form commonly arise in PDEs with a pair of
unstable eigenmodes represented by x and y. The third vari-
able z models the effects of mean-field deformations due to
nonlinear self-interactions of the instability modes. The sys-
tem undergoes a supercritical Hopf bifurcation at µ = 0; for
µ � 1 trajectories quickly approach the parabolic manifold
defined by z = x2 + y2. All solutions asymptotically approach
a stable limit cycle on which z = x2 + y2 = µ . It is enough to
notice thatm= [0, 0, µ + ε], ε > 0 produces

AS =LS −mTQ=

−ε 0 0
0 −ε 0
0 0 −1

 , (42)

so this system exhibits a trapping region. We illustrate a sta-
ble and accurate model identified by our trapping SINDy al-
gorithm in Fig. 3a.

This system is of particular interest because it is a proto-
typical example of how quadratic interactions in a multi-scale
system can give rise to effective higher-order nonlinearities.
If the dynamics are restricted to the slow manifold, the system
reduces to the cubic Hopf normal form [1, 107]

d
dt

[
x
y

]
=

[
µ − (x2 + y2) −1

1 µ − (x2 + y2)

] [
x
y

]
. (43)

Systems of this type arise in weakly nonlinear pattern-forming
systems and are often called Stuart-Landau equations. In
this case, the nonlinear interactions are no longer energy-
preserving, since the manifold restriction removes the fast,

(a) Trapping SINDy model (black) of a mean field system trajectory
(red) with µ = 0.01 and initial condition [µ, µ, 0]. The trajectory is

shown within the estimated trapping region and ellipsoid where
K̇ ≥ 0. The prediction error is Epred ≈ 0.6%.

(b) Same illustration for the atmospheric oscillator with random
initial condition chosen from the unit ball. There is large scale

separation in this system, so that |λ1| � |λ2|, |λ3|. This leads to an
overestimate of the trapping region size. The prediction error is

Epred ≈ 6%.

FIG. 3: Identified models and trapping regions for the mean
field and atmospheric oscillator systems.

dissipative degree of freedom. We might intuitively expect
that this type of manifold reduction would inherit the trapping
properties of the underlying system, but to our knowledge a
general theory of such situations has not yet been worked out,
even for the quadratic energy-preserving case.

B. Atmospheric oscillator model

Here we examine a more complicated Lorenz-like system
of coupled oscillators that is motivated from atmospheric dy-
namics:

d
dt

x
y
z

=

µ1 0 0
0 µ2 ω

0 −ω µ2

 x
y
z

+

 σxy
κyz + β z2 − σx2

−κy2 − βyz

 .

(44)

For comparison, we use the parameters in Tuwankotta et
al. [108], µ1 = 0.05, µ2 =−0.01, ω = 3, σ = 1.1, κ =−2,
and β =−6, for which a limit cycle is known to exist. The
trapping SINDy algorithm finds m such that AS is negative
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Dynamic system r ∆t M λ η γ m∗ Rm Reff λ1 Em Ef
Mean field 3 0.01 50K 0 1010 1 [0, 0, 1.3] 1.3 218 -1 10−5 10−12

Atmospheric oscillator 3 0.005 50K 0 108 0.1 [0,−0.9, 0.4] 300 597 −0.01 10−4 10−7

Lorenz attractor 3 0.005 50K 0 0.1 1 [−1.2, 0.1, 38] 106 4.4 −1 10−3 10−5

Triadic MHD 6 0.001 50K 0 103 0.1 [0, ..., 0] – – 0 10−6 10−10

Burgers’ Equation 10 0.1 30K 0 500 0.1 [−0.2, 0, ...] – – 0.1 – 10−3

Cylinder wake 5 0.1 30K 0.1 1 0.1 [−1.2, ..., 1.1] 29 17 −0.1 – 10−3

TABLE II: Description of the sampling, trapping SINDy hyperparameters, and identified trapping region for the dynamic
systems examined in Section IV. Trajectory data does not include any added noise so λ = 0 works for most of the systems. The

SINDy models are identified from a single trajectory. These parameters produce reasonable results for these systems, but a
hyperparameter scan can lead to further improvements. The errors in the last two columns are approximate up to O(1) factors.

definite for a wide range of parameter and hyperparameter
choices, and accurate model results are illustrated in Fig. 3b
alongside the mean-field model results.

So far, we have illustrated that the trapping algorithm
successfully produces accurate and provably stable models
on simple systems that exhibit well-behaved attractors. In
the next sections, we investigate progressively noisier (Sec-
tion IV C) and higher-dimensional (Sections IV D–IV F) sys-
tems that typically provide significant challenges for model
discovery algorithms.

C. Noisy Lorenz attractor

The Lorenz 1963 system [109] is among the simplest sys-
tems exhibiting chaotic dynamics, developed to model ther-
mal convection in the atmosphere based on computer simu-
lations from his graduate students Ellen Fetter and Margaret
Hamilton:

d
dt

x
y
z

=

−σ σ 0
ρ −1 0
0 0 −β

 x
y
z

+

 0
−xz
xy

 . (45)

For this system, it is possible to writeAS explicitly as

AS =

 −σ
1
2 (ρ + σ − m3)

1
2 m2

1
2 (ρ + σ − m3) −1 0

1
2 m2 0 −β

 . (46)

For Lorenz’s choice of parameters, σ = 10, ρ = 28, β = 8/3,
this system is known to exhibit a stable attractor. For m=
[0, m2, ρ + σ ] (m1 does not contribute to AS so we set it to
zero),

AS =

−σ 0 1
2 m2

0 −1 0
1
2 m2 0 −β

 , (47)

λ1 =−1, λ± =−1
2

[
β + σ ∓

√
m2

2 + (β − σ)2

]
,

so that if λ± < 0, then −2
√

σβ < m2 < 2
√

σβ . Our algo-
rithm successfully identifies the optimalm, and identifies the
inequality bounds on m2 for stability. As this analysis is in-
variant to m1, in principle the trapping region is given by a
cylinder, extruded in the m1 direction, rather than a sphere.

We can show further improvements in model quality. We
train unconstrained, constrained, and trapping SINDy models
four times; the data for each is a single Lorenz attractor with
four different noise instantiations. Then we test the perfor-
mance of the resulting models with a random initial condition
in [−10, 10]× [−10, 10]× [−10, 10]. For direct comparison,
we use the L1 regularizer for each method. Fig. 4 illustrates
the increased performance with our trapping SINDy algorithm
over the constrained SINDy algorithm on noisy Lorenz data
for varying threshold levels λ = {0, 0.01, 0.1}. The uncon-
strained method is not pictured because most of the identified
models diverge at these high noise levels. At all values of λ

and most initial conditions, the unconstrained method overfits
to the data and produces unstable and diverging models. The
traditional constrained SINDy variant mostly manages to pro-
duce stable models but produces increasingly poor data fits
as λ increases. In contrast, the trapping version continues
to produce stable models that lie on the correct attractor. In
this way, the additional optimization loss terms that promote
stable models provide both a trapping region of known size
and additional robustness to noise, even when the models ap-
pear otherwise stable, as with many of the constrained SINDy
models that incorrectly decay to a fixed point.

D. Triadic MHD model

Magnetohydrodynamic systems exhibit quadratic nonlin-
earities that are often energy-preserving with typical bound-
ary conditions. We consider a simple model of the nonlinear-
ity in two-dimensional incompressible MHD, which can be
obtained from Fourier-Galerkin projection of the governing
equations onto a single triad of wave vectors. For the Fourier
wave vectors k1 = (1, 1), k2 = (2,−1), and k3 = (3, 0) and
no background magnetic field, the Carbone and Veltri [110]
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FIG. 4: Comparison between the constrained SINDy (magenta) and trapping SINDy (black) results for the Lorenz system using
three different values of the sparsity-promotion strength λ . Unconstrained SINDy results are not pictured because most of the

models diverge. Each model is trained on a single Lorenz attractor with noise sampled from N (0, 4) and an initial condition of
[1,−1, 20] (blue). The illustrations depict the model performance on data evolved from four random initial conditions between

[−10, 10] (this testing data is not shown but the attracting set is unchanged). Trapping SINDy produces stable models that
follow the underlying attractor for all values of λ .

system is
V̇1
V̇2
V̇3
Ḃ1
Ḃ2
Ḃ3

=

−2ν 0 0 0 0 0

0 −5ν 0 0 0 0
0 0 −9ν 0 0 0
0 0 0 −2µ 0 0
0 0 0 0 −5µ 0
0 0 0 0 0 −9µ




V1
V2
V3
B1
B2
B3

+


4(V2V3−B2B3)
−7(V1V3−B1B3)
3(V1V2−B1B2)
2(B3V2−V3B2)
5(V3B1−B3V1)
9(V1B2−B1V2)

, (48)

where ν ≥ 0 is the viscosity and µ ≥ 0 is the resistivity. With-
out external forcing, this system is stable, dissipating to zero,
so we consider the inviscid limit ν = µ = 0. The system is
now Hamiltonian and our algorithm correctly converges to
m= 0, AS = 0. The results in Fig. 5 provide a useful il-
lustration that trapping SINDy converges to stable energy-
preserving models even when the trapping theorem is not sat-
isfied. These results also provide a reminder that there are
a large number of dynamical systems beyond fluids, such as
MHD, which may benefit from these types of techniques. The
reason our algorithm converges to the correct behavior is be-
cause it is still minimizing K̇; in this case trapping SINDy
converges to K̇ ≈ 0 and can make no further improvement.

E. Forced Burgers’ equation

The viscous Burgers’ equation has long served as a sim-
plified one-dimensional analogue to the Navier-Stokes equa-
tions [111, 112]. The forced, viscous Burgers’ equation on a
periodic domain x ∈ [0, 2π) is:

d
dt

u =−(U + u)∂xu + ν∂
2
xxu + g(x, t), (49)

where ν is viscosity and the constant U models mean-flow
advection. We project this system onto a Fourier basis and
assume constant forcing acting on the largest scale, i.e.,
g(x, t) = σ

(
a1(t)eix + a−1(t)e−ix

)
, as in Noack et al. [113].

After Fourier projection, the evolution of the coefficients ak(t)
is given by the Galerkin dynamics

ȧk =
(

δ|k|1σ − νk2 − ikU
)

ak −
r

∑
`=−r

i`a`ak−`. (50)

In the subcritical case σ < ν , the origin of this system is
stable to all perturbations and all solutions decay for long
times. However, in the supercritical case σ > ν , the excess
energy input from the forcing cascades to the smaller dissipa-
tive scales. The “absolute equilibrium” limit σ = ν = 0 has
a Hamiltonian structure; for long times the coefficients ap-
proach thermodynamic equilibrium and equipartition of en-
ergy [114]. This structure does not correspond to any phys-
ical behavior of the Navier-Stokes equations, although it
does approximate some properties of the inviscid Euler equa-
tions [115]. Due to its rich dynamics, this modified Burgers’
equation has also been investigated in the context of closure
schemes for Galerkin models [113]. We simulate the PDE
in Eq. (49) with a high-resolution Godunov-type finite vol-
ume method using a van Leer flux limiter, implemented in the
open-source Clawpack solver [116].

We illustrate the model performance in Fig. 6a for the sub-
critical case with σ = 0.01 and ν = 0.025, the supercritical
case with σ = 0.1 and ν = 0.025, and the absolute equilib-
rium. In all cases U = 1. For the subcritical condition, all
the eigenvalues of LS are negative, and thus the algorithm
finds stable models. For the supercritical condition σ > ν ,
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FIG. 5: The triad model for 2D inviscid MHD training data (blue, upper triangle) and a trapping SINDy model (black)
capturing Hamiltonian dynamics on testing data (red, lower triangle).

there is some subtlety. The algorithm does not converge
to a negative definite AS, although it finds a solution with
K̇ ≤ 0. As mentioned in Section II D, this system does not
exhibit effective nonlinearity. This lack of effective nonlin-
earity was also true for the MHD example in Section IV D,
since the initial condition with no magnetic field perturbation,
B1(0) = B2(0) = B3(0) = 0, remains on the purely hydrody-
namic manifold. In the inviscid limit, we did not need to
consider this subspace because the system already does not
satisfy the trapping theorem by virtue of being Hamiltonian.
Lastly, in the absolute equilibrium regime the trapping SINDy
algorithm correctly identifies vanishing eigenvalues ofAS. In
practice, we find excellent models for all of the aforemen-
tioned systems and for all practical purposes these models are
typically stable, regardless of effective nonlinearity or Hamil-
tonian dynamics, because the SINDy trapping algorithm is
minimizing K̇. However, without effective nonlinearity we
are not guaranteed to produce a stable model for every possi-
ble initial condition.

In Fig. 6b we illustrate the r = 10 model built from the DNS
data in the supercritical regime with σ = 0.1, ν = 0.025. It
struggles a bit with the transient but otherwise the perfor-
mance is accurate. Part of the reason for the poor fit to the
transient is that λ = 0 is used here. The biasing towards
stability appears to mitigate some of the need for sparsity-
promotion; in other words, sparsity-promotion is not neces-
sarily needed to produce a stable model, but may be needed

for a more accurate or interpretable model, since the number
of coefficients in Qi jk is O(r3) despite the constraints. Using
finite λ may improve the model further, especially the tran-
sients, but instead of further investigating this example, we
move on and conclude the results by addressing the challeng-
ing von Kàrmàn vortex shedding behind a circular cylinder.

F. Von Kàrmàn vortex street

Here we investigate the fluid wake behind a bluff body,
characterized by a periodic vortex shedding phenomenon
known as a von Kàrmàn street. The two-dimensional in-
compressible flow past a cylinder is a stereotypical exam-
ple of such behavior, and has been a benchmark problem for
Galerkin models for decades [1]. The transition from a steady
laminar solution to vortex shedding is given by a Hopf bifur-
cation, as a pair of eigenvalues of the linearized Navier-Stokes
operator cross the real axis.

The transient energy growth and saturation amplitude of
this instability mode is of particular interest and has histori-
cally posed a significant modeling challenge. Early Galerkin
models of vortex shedding, based on a POD expansion about
the mean flow, captured the oscillatory behavior but were
structurally unstable [117]. This was later resolved by Noack
et al. [1], who recognized that the transient behavior could
be explained by Stuart-Landau nonlinear stability theory, in
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(a) Trapping SINDy model (black) for the modified Burgers’ equation in the three dynamic regimes. For improved illustration, the ground
truth data (blue) is generated from the 10D Noack et al. [113] model rather than DNS.
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(b) Temporal evolutions of each (ai, a j) pair for i, j = 1, ..., 10 obtained from DNS training data (blue, upper triangle), DNS testing
data (red, lower triangle), and trapping SINDy prediction on both DNS datasets (black). The trapping algorithm struggles a bit with the

transients, but obtains the correct attractor behavior.

FIG. 6: Summary of trapping SINDy performance for the forced Burgers’ equation.
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which the unsteady symmetric flow is deformed to the neu-
trally stable mean flow via a nonlinear self-interaction of the
instability mode. In that work, an 8-mode POD basis was aug-
mented with a ninth “shift mode” parameterizing this mean
flow deformation. This approach was later formalized with a
perturbation analysis of the flow at the threshold of bifurca-
tion [118].

This modification encodes the intuition that the dynam-
ics take place on the parabolic manifold associated with the
Hopf bifurcation; without it, the energy quadratic models
tends to overshoot and oscillate before approaching the post-
transient limit cycle. Nevertheless, the 9-mode quadratic
Galerkin model does resolve the transient dynamics, nonlin-
ear stability mechanism, and post-transient oscillation, accu-
rately reproducing all of the key physical features of the vor-
tex street. Moreover, in Schlegel and Noack [10] stability of
the quadratic model was proven with m9 = mshift = ε , ε > 1,
and mi = 0 for i = {1, ..., 8}. Recall from the discussion in
Section II D that POD-Galerkin models will generally weakly
satisfy the effective nonlinearity criteria and it is unclear if the
shift-mode complicates this picture.

Although the POD-Galerkin model is an accurate descrip-
tion of the flow past a cylinder, it is an intrusive model, in the
sense that evaluating the projected dynamics requires evaluat-
ing individual terms in the governing equations, such as spa-
tial gradients of the flow fields. POD-Galerkin models there-
fore tend to be highly sensitive to factors including mesh res-
olution, convergence of the POD modes, and treatment of the
pressure and viscous terms. Recent work by Loiseau et al. [19,
119, 120] has bypassed the Galerkin projection step by using
the SINDy algorithm to directly identify the reduced-order
dynamics. This approach has been shown to yield compact,
accurate models for low-dimensional systems (r = 2 or 3),
but preserving accuracy and stability for higher-dimensional
systems remains challenging. Higher-dimensional regression
problems often become ill conditioned; for example, in the
cylinder wake example, the higher modes 3-8 are essentially
harmonics of the driving modes 1-2, and so it is difficult to dis-
tinguish between the various polynomials of these modes dur-
ing regression. Because these higher harmonics are driven by
modes 1-2, the 3D constrained quadratic SINDy model with
modes 1-2 plus the shift mode from Loiseau et al. [19] already
performs well enough to capture the energy evolution with mi-
nor overshoot and correct long-time behavior. Details of the
DNS and the POD-Galerkin technique used to reproduce the
9D shift-mode model can be found in Appendix A.

With the trapping SINDy algorithm, we obtain new 5-
dimensional and 9-dimensional models for the cylinder wake
and compare the performance against the same-size analytic
POD-Galerkin models. The 5D trapping SINDy model is
provably stable and we illustrate the identified trapping re-
gion in Fig. 7a. We also compare the 5D SINDy and 9D
POD-Galerkin models in Fig. 7c. The 5D trapping SINDy
model outperforms the 9D POD-Galerkin model by signifi-
cantly improving the transient and improving the identifica-
tion of the long-term attractor. For the 9D trapping SINDy
model, we managed to reduce the largest eigenvalue of AS

to O(10−2 − 10−4) but were unable to produce accurate trap-

ping SINDy models with fully negative definite AS. In prac-
tice, these models are functionally stable; we tested a large
set of random initial conditions and did not find unbounded
trajectories. Further searching in the hyperparameter space,
or more algorithm iterations for better convergence, could po-
tentially produce fully stable models.

Despite this setback, the 9D trapping SINDy model per-
forms quite well. The Galerkin model and the trapping SINDy
model exhibit comparable performance and the SINDy model
improves the transient prediction. The energies in Fig. 7b il-
lustrate convergence to the true fluid flow energy for all the
SINDy and POD-Galerkin models, with only the 9D trapping
SINDy model capturing the precise timing of the transient.
The flow reconstructions in Fig. 7d are quite accurate for both
models. This is surprisingly strong performance with SINDy;
recall that: 1) the Galerkin model is far more invasive a proce-
dure than SINDy, requiring computation of spatial derivatives
and inner products from the DNS, 2) the Galerkin model can
still be quite sensitive to the DNS data, boundary conditions,
and mesh size, and 3) the 9D trapping SINDy model is far
sparser and has far fewer “active” terms than the 9D POD-
Galerkin model.

The difficulty in producing provably stable, 9D trapping
SINDy models here appears to reveal an interesting opti-
mization tradeoff. While sparsity-promotion tends to pro-
mote more accurate models and reduce the complexity of the
nonconvex optimization problem (since there are fewer active
terms to manage), it also deemphasizes our proposed metric
for the strength of effective nonlinearity, Se from Eq. (17), by
reducing the values of unimportant model terms. For instance,
the SINDy model here exhibits weak effective nonlinearity,
Se ≈ 10−5, compared with Se ≈ 10−2 for the POD-Galerkin
model. This small value of Se may indicate increased diffi-
culty in obtaining a fully negative definite AS. SINDy mod-
els with weaker sparsity-promotion exhibit larger Se, but then
it becomes exceedingly difficult to obtain accurate models in
the nonconvex optimization problem. Without any sparsity-
promotion this is an ill-conditioned, nonconvex optimization
in a 330-dimensional space. In this way, there appears to be
some tradeoff between sparsity-promotion and the strength
of effective nonlinearity. Given these points, we consider
the sparse 5-mode and 9-mode SINDy models to be promis-
ing first steps towards incorporating stability constraints into
higher-dimensional data-driven models.

Before concluding, we should note that the eight-mode (no
shift mode) POD-Galerkin model from Noack et al. [1], and
all eight-mode models found by trapping SINDy, do not ex-
hibit global stability. The problem fundamentally stems from
the marginal stability of the mean flow and the very weak ef-
fective nonlinearity, both of which are somewhat addressed
by the shift mode in the 9-mode model. This should be taken
as a cautionary warning; success of these algorithms still re-
lies on useful representations that capture the stability infor-
mation of the underlying dynamics. This may require high-
resolution data or the alternative dynamic bases mentioned in
Section II A.
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(a) Trapping SINDy 5D model (black) of a Von Kàrmàn
trajectory (red). The trajectory is shown within the estimated

trapping region and ellipsoid where K̇ ≥ 0.
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(b) Comparison of the energies for DNS and the 5 and 9 mode
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(c) 5-mode trapping SINDy (black) and 9-mode POD-Galerkin
(blue) models with a random initial condition, and the Von

Kàrmàn trajectory used for training (red).
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(d) Predictions of the vorticity field for the von Kàrmàn street at four snapshots in time, with a movie available [121]. The trapping SINDy
model outperforms the 9D POD-Galerkin model, although an initial phase error in the trapping SINDy prediction (visible in the first

snapshot) persists throughout the prediction.

FIG. 7: Summary of the differences between DNS, POD-Galerkin models, and trapping SINDy models.

V. CONCLUSION

The present work develops physics-constrained system
identification by biasing models towards fulfilling global sta-
bility criteria, and subsequently produces long-term bounded
models with no extra assumptions about the stability proper-
ties of equilibrium points and equilibrium trajectories. In or-
der to produce globally stable models, we have implemented a
new trapping SINDy algorithm based on the Schlegel-Noack
trapping theorem [10]. Biasing models towards stability, and

post-fit, proving that identified models are globally stable,
will likely become increasingly important for both projection-
based and data-driven models of fluids and plasmas. Our ap-
proach, which relies on using the energy as a Lyapunov func-
tion for an entire class of models with fixed nonlinear struc-
ture, is challenging for application to higher-order nonlinear-
ities where generic Lyapunov functions are often unknown.
Fortunately, data-driven methods are now increasingly used
to discover Lyapunov functions and barrier functions for non-
linear control [93, 122–129]. These methods build a heuristic
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Lyapunov function for a given dataset, rendering the search
for a Lyapunov function tractable but possibly at the cost of
model generality.

We demonstrated the effectiveness of this optimization to
identify stable models and additionally managed to improve
the discovery of models that do not conform to the assump-
tions of the trapping theorem. Our trapping SINDy algorithm
resulted in more accurate and stable models for a range of sys-
tems, including simple benchmark problems, noisy data from
chaotic systems, and DNS from full spatial-temporal PDEs. In
these examples, we found that our modified SINDy algorithm
could effectively discover stable, accurate, and sparse mod-
els from significantly corrupted data. Even when an explicit
stable trapping region was not found, improved stability was
observed. Finally, we explored relatively high-dimensional
reduced-order models, with O(10) degrees of freedom, which
are typically challenging for unconstrained data-driven algo-
rithms.

There is considerable future work for biasing machine
learning methods to discover models that satisfy existence-
style proofs of stability, especially those that require non-
convex optimization; we find that the lack of convexity in
the trapping SINDy algorithm leads to deprecating algorithm
speed and tractability as the size of the problem increases.
There are many fluid flows which have known stable and un-
stable projection-based and data-driven reduced-order mod-
els, and which would benefit from a larger class of models
with trapping region guarantees. Future work should apply
this methodology to heavily-researched systems such as the
fluidic pinball [21, 130] and the lid-cavity flow [131, 132].
Other promising future work includes adapting this structure
to N-body coupled Stuart-Landau equations for which stabil-
ity theorems already exist [133]. However, the nonconvexity
of this formulation may require adaptation to a deep learning
approach for high-dimensional N-body problems that occur in
fluids and modern neuronal models.

For all of the examples in this work, we train our trap-
ping SINDy algorithm on a single trajectory, although most
data-driven methods can improve performance by processing
data from multiple trajectories. Very large data can be effec-
tively addressed with modern approaches, such as manifold
Galerkin projection [120] and autoencoder [32, 79, 80, 134,
135] methods. These approaches may also address the sig-
nificant Kolmogorov width limitations of linear transforma-
tions [136], and help ease the nonconvexity of our new opti-
mization problem. There are also modern reduced-order mod-
eling techniques, such as “lift & learn” [29], which produce
quadratic ROMs regardless of the nonlinear structure of the
underlying governing equations. Similarly Koopman analysis
aims to produce a map from the original state-space, where
the dynamics are nonlinear, to a new coordinate system, typ-
ically infinite dimensional, where the dynamics become lin-
ear [13, 16, 75, 79, 137–140].

However, adapting our methodology to these alternative
bases requires additional work to understand how the trap-
ping theorem, or similar theorems, change under these (of-
ten nonlinear) coordinate transformations. For instance, Pan
et al. [28] builds stable Koopman models by requiring that

the real parts of the eigenvalues of the linear Koopman oper-
ator are non-positive, although the relationship between this
linear stability and the trapping theorem is unclear. In re-
lated work, neural-network-based encoders are often used to
reverse this mapping; encoders can input quadratically non-
linear fluid flow data and apply nonlinear transformations to
find useful reduced-order models beyond what is capable with
traditional projection-based methods [141]. A natural ques-
tion that arises is: assuming the original energy-preserving,
quadratically nonlinear fluid flow exhibits a trapping region,
under what conditions can we conclude that global stability
holds in a new coordinate system given by b= g(y), for some
map g : Rr→ Rs? The transformation could be an encoder,
the reverse lifting map [29], or some other coordinate trans-
form. Understanding how the stability properties manifest in
the transformed system is a promising future direction for ex-
tending this stability theorem for ROMs with alternative dy-
namic bases.
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Appendix A: Von Kàrmàn DNS and POD-Galerkin details

We simulate the flow past a circular cylinder at Reynolds
number Re = 100 with unsteady incompressible DNS using
the open source spectral element solver Nek5000 [142]. The
domain consists of 17, 432 seventh order spectral elements
(∼ 850, 000 grid points) on x, y ∈ (−20, 50)× (−20, 20), re-
fined close to a cylinder of unit diameter centered at the origin.
Diffusive terms are integrated with third order backwards dif-
ferentiation, while convective terms are advanced with a third
order extrapolation. The 9-mode augmented POD-Galerkin
model is computed following Noack et al [1], using gradi-
ents extracted directly from the DNS code. Mean-subtracted
POD modes are computed from a set of 100 equally-spaced
snapshots over one period of vortex shedding. The shift
mode is calculated as the difference between an unsteady
base flow, obtained with the selective frequency damping al-
gorithm [143] and the mean of the snapshots, orthonormal-
ized with respect to the remaining POD modes with a Gram-
Schmidt procedure. The transient DNS is initialized with the
unstable steady state perturbed by the leading linear instabil-
ity mode with energy 10−8. We compute the transient POD
coefficients by projecting 3000 snapshots sampled at ∆t = 0.1
onto this POD basis.
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