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Abstract

We develop a mean-field model for an elastic dumbbell that predicts an enhanced concentration

of flexible polyelectrolytes in the center of a microfluidic channel due to simultaneous applica-

tion of axial flow and electric fields. Consistent with previous works, the model indicates that local

shear flow stretches and orients a polyelectrolyte molecule so that electrohydrodynamic interactions

within the molecule drive its migration towards the center of the channel. Unlike previous works,

dispersion due to fluctuations of electrohydrodynamic velocity induced by thermal fluctuations

of the molecular configuration is explicitly included in the mean-field model. This electrohydro-

dynamic dispersion is comparable with or exceeds diffusivity due to Brownian forces for electric

field strengths commonly used in microfluidic devices. The developed models are in quantitative

agreement with Brownian dynamics simulations and in qualitative agreement with experiments.

In particular, competition between the electrohydrodynamic migration and dispersion is shown to

cause a non-monotonic dependence of the polyelectrolyte concentration in the channel center on

the magnitude of the electric field.

I. INTRODUCTION

Electric fields are commonly utilized to manipulate macromolecular transport within

microfluidic devices for analysis and processing, and researchers continue to discover new

and varied ways to use electric fields within microfluidic devices. For the particular case of

polyelectrolyte molecules, such as DNA, simultaneous application of an axial electric field

and pressure-driven flow can cause a transverse migration and subsequent concentration of

polyelectrolytes at either the wall or the centerline of the channel [1–3]. This migration

phenomenon has been used to trap and separate DNA within a microfluidic device of simple

design [4–6].

The transverse migration is caused by electrohydrodynamic interactions between different

portions of a polyelectrolyte molecule, i.e. interactions due to disturbances in the fluid flow

caused by an external electric field acting on the charged polymer and its surrounding coun-

terions [7–12]. These interactions are of importance to the dynamics of a polyelectrolyte if
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the double layer is large compared to the diameter of the polymer backbone and the molecule

is distorted from its equilibrium (roughly spherical) isotropic configuration. In the case of

migration in a pressure-driven flow, a molecule not at the center of the channel is stretched

and reoriented by a local shear. Then, the electric field and resulting electrohydrodynamic

interactions induce additional components of motion, including one transverse to the flow

and field direction.

When a flexible polyelectrolyte leads a pressure-driven flow upon application of an axial

electric field, the transverse motion is towards the center of the channel, as illustrated in

Fig. 1. The electrohydrodynamic velocity is proportional to the magnitude of the electric

field, which suggests that increasing strength of the electric field should increase concentra-

tion of polyelectrolytes in the center of the channel. However, experiments [3] and simula-

tions [9] show that this trend holds only for weak electric fields; for sufficiently strong fields,

the concentration at the channel center decreases as the field strength increases. In other

words, there is an optimal field strength E∗ corresponding to the smallest width σ of the

concentration profile at the channel center.

The kinetic model of Butler et al. [8] predicted a monotonic decrease of the concentration

profile width with increasing electric field for a dumbbell in a pressure-driven flow, in contrast

with later findings [3, 9]. More recently, Setaro and Underhill [13] developed an improved

kinetic model that accounts for fluctuations of the end-to-end vector of the dumbbell and

predicts a non-monotonic dependence of the centerline concentration on the electric field.

They attributed this phenomenon to feedback between the polymer flux and conformation.

To further clarify the physical origin of the minimum value for σ, Kopelevich et al.

[14] suggested an empirical model that includes dispersion due to the electric field. This

electrohydrodynamic dispersion arises from the instantaneous electrohydrodynamic velocity

corresponding to each configuration of the fluctuating polyelectrolyte molecule. The average

of these instantaneous velocities corresponds to the migration velocity driving the polymer

towards the center of the channel, while the velocity fluctuations contribute to the effective

polymer diffusivity. The electrohydrodynamic dispersion increases with the strength of the

electric field faster than the migration velocity. Since the profile width σ is determined

by competition between the migration towards the center of the channel and diffusive flux

away from the center, σ increases with increasing field strength for sufficiently strong electric

fields. This empirical model was confirmed by Brownian dynamics simulations for a multi-
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Figure 1: Trapping Focusing of DNA molecules in the center of a microfluidic channel by

simultaneous application of a pressure-driven flow (blue) and an anti-parallel electric field.

The electric field causes the negatively charged DNA molecules to lead the flow (red) and

migrate towards the center of the channel (green arrows). The width σ of the developed

concentration profile (black) is determined by competition between the net migration Vy

towards the center and diffusion Dyy away from the center. The diffusivity Dyy contains

contributions from Brownian diffusion and electrohydrodynamic dispersion.

bead polymer model [14].

In this work, we develop explicit mean-field relationships between the dispersion and

dynamics of the internal degrees of freedom of a dumbbell in shearing and pressure-driven

flows. The mean-field model developed for a shearing flow directly connects the electrohy-

drodynamic dispersion with the autocorrelation function of instantaneous electrohydrody-

namic velocity which, in turn, is determined by the end-to-end vector of the dumbbell. For

the pressure-driven flow, the mean-field model is a convection-diffusion equation with the

diffusion term containing contributions of both the Brownian diffusivity and the electro-

hydrodynamic dispersion. We derive this model by performing an adiabatic elimination of

the internal degrees of freedom from the Fokker-Planck equation for the harmonic approx-

imation of a dumbbell with short-range electrohydrodynamic interactions. The resulting

equation is consistent with the kinetic theory of Setaro and Underhill [13], but our new

derivation clearly demonstrates the contribution of electrohydrodynamic dispersion to the

polymer flux.

4



In Section II, we present Langevin equations for the center of mass and the internal degrees

of freedom of the dumbbell. In Section III, we consider the dumbbell in a shearing flow and

develop and validate mean-field relationships between transport properties of the dumbbell

and statistics of its internal degrees of freedom. In Section IV, we discuss the mean-field

model for the dumbbells in a pressure-driven flow, demonstrate the generic nature of the

dispersion mechanism leading to the non-monotonic dependence of the concentration profile

width on the electric field strength, and discuss the effect of the time-scale separation (or

lack thereof) on parameters of the mean-field model. Conclusions are presented in Section V.

II. MODEL

The current work models λ-DNA molecules that were used in the experiments of Arca et

al. [3]. These molecules have a contour length of approximately 21 µm, which is substantially

larger than their Kuhn length of 106 nm [15]. Therefore, a λ-DNA molecule is flexible and

each bead of its dumbbell model represents a large number of Kuhn steps so that the beads

can be approximated as spheres.

The polyelectrolyte molecule is modeled as a dumbbell is suspended in an ambient flow

field U∞(R) and a uniform electric field E. The dynamics of each bead is described by the

following Langevin equation:

dRi

dt
= U∞(Ri) +

1

ζ
(FC

i + FB
i ) + µE

0 E+UE
i , i = 1, 2. (1)

Here, Ri are coordinates of the dumbbell beads, FC
i and FB

i are the conservative and Brow-

nian forces acting on the i-th bead (i = 1, 2), ζ = 6πηa is the friction coefficient of a

spherical bead of radius a in a fluid with viscosity η, µE
0 is the electrophoretic mobility, and

UE
i is the electrohydrodynamic velocity of the i-th bead. The Brownian force satisfies the

fluctuation-dissipation theorem [16],

〈FB
i (t)〉 = 0, (2)

〈FB
i (t)F

B
j (t+ τ)〉 = 2kBTζIδijδ(τ), i, j = 1, 2. (3)

where kB is the Boltzmann constant, T is the temperature, I is the 3 × 3 identity matrix,

δij is the Kronecker delta, and δ(τ) is the Dirac delta-function.

For simplicity, here we neglect hydrodynamic interactions due to velocity disturbances

caused by Brownian and conservative forces. Effects of these hydrodynamic interactions
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are explored in Section S1 of Supplemental Material [17], where it is shown that the main

conclusions of this work remain valid if these interactions are taken into account.

The polymer is assumed to be sufficiently far from the channel walls so that the polymer-

wall interactions are negligible. In this case, the only contribution to the conservative forces

FC
i is the bead-bead interactions and the potential Φ for these forces depends only on the

distance between the beads,

FC
2 = −FC

1 = −∂Φ(q)

∂q
≡ FC(q), (4)

where q = R2−R1 is the end-to-end vector. The dumbbell beads are connected by a freely

jointed chain of NK Kuhn steps of length lK each, with the tension approximated by the

finitely extensible nonlinear elastic (FENE) force [18],

FC(q) = − κq

1 − (q/q0)2
, (5)

where q0 = NK lK is the maximum extension of the spring and κ = 3kBT/lKq0 is the spring

constant. For λ-DNA molecules considered in the current work, NK = 200 and lK = 106 nm

[15].

We use the short-range model for electrohydrodynamic interactions [10–12]. Within this

model, the electrohydrodynamic mobility of a dumbbell is approximated by an average

of electrohydrodynamic mobilities of Kuhn steps of the spring connecting the dumbbell

beads; electrohydrodynamic interactions between the Kuhn steps and between the beads

are neglected. Both dumbbell beads have the same electrohydrodynamic velocity, which can

be written as

UE
i (q) = EÛE(q), i = 1, 2. (6)

Here,

E =
1− αµ

1 + 2αµ

2µE
0 E

q20
(7)

quantifies the strength E of the electric field and αµ = µE
⊥/µ

E
|| is the ratio of the electro-

hydrodynamic mobilities µE
⊥ and µE

|| of a Kuhn step (modeled as a rod) in the directions

perpendicular and parallel to the rod axis. The normalized electrohydrodynamic velocity is

ÛE(q) =
(3qq− q2I) · Ê
3− (q/q0)2

, (8)

where Ê = E/E is the direction of the electric field.
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In what follows, we non-dimensionalize the variables using the characteristic length lc =
√

kBT/κ, the characteristic time tc = ζ/κ, the characteristic energy kBT , and the elementary

charge e. The dimensionless values of κ and ζ are 1.

Subtracting and adding the Langevin equations (1) for beads 1 and 2 and using Eqs. (4)

and (6), we obtain the following equations for the end-to-end vector q and the center of

mass Rc = (R1 +R2)/2 of the dumbbell:

dq

dt
= (q · ∇)U∞(Rc) + 2FC(q) + FB

q (t), (9)

dRc

dt
= U∞(Rc) + µE

0 E+ EÛE(q) + FB
c (t). (10)

In writing Eqs. (9) and (10), we kept only the leading order terms of the expansion of

U∞(R) around the dumbbell center of mass. The stochastic forces acting on q and Rc are

FB
q = FB

2 − FB
1 and FB

c =
1

2

(

FB
1 + FB

2

)

, (11)

respectively. These forces have zero mean and their autocorrelation functions are

〈FB
q (t)F

B
q (t + τ)〉 = 4Iδ(τ), (12)

〈FB
c (t)F

B
c (t + τ)〉 = Iδ(τ), (13)

〈FB
q (t)F

B
c (t + τ)〉 = 0, (14)

where the last equality indicates that FB
q (t) and FB

c (t) are independent of each other.

Equation (10) shows that motion of the polymer center of massRc is affected by dynamics

of the internal degrees of freedom q(t). Random fluctuations of q lead to fluctuations of the

electrohydrodynamic velocity EÛE(q), which give rise to electrohydrodynamic dispersion.

III. ELECTROHYDRODYNAMIC DISPERSION IN A SHEARING FLOW

In this section we consider the dumbbell in a shearing flow U∞(R) = γ · (R−Rc), where

γ is a position-independent rate-of-strain tensor. We demonstrate that fluctuations of the

end-to-end vector q of the dumbbell yield electrohydrodynamic dispersion and obtain an

explicit expression for the dispersion contribution to the overall diffusivity of the dumbbell.

To obtain the relationship between statistics of the vector q and the electrohydrodynamic
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dispersion, the average and fluctuating components of the center of mass position and the

electrohydrodynamic velocity are separated,

Rc(t) = 〈Rc〉(t) + rc(t), (15)

ÛE(q(t)) = 〈ÛE〉+ ûE(q(t)), (16)

where rc(t) and ûE(q(t)) represent fluctuations of Rc(t) and ÛE around their mean values.

Eq. (9) indicates that the end-to-end vector is independent of the translational motion of the

dumbbell in a shearing flow. Therefore, 〈ÛE〉 is independent of time and can be obtained by

averaging over the steady-state solution q(t) of Eq. (9). It then follows from Eq. (10) that

the mean and the fluctuating components of the dumbbell center of mass obey the following

equations:

d〈Rc〉
dt

= µE
0 E+ E〈ÛE〉, (17)

drc
dt

= E ûE(q(t)) + FB
c (t). (18)

We note that U∞(Rc) = 0 for the shearing flow. The right-hand side of Eq. (18) contains

two fluctuating terms. One of these terms, FB
c (t), corresponds to the usual Brownian force.

The other term, E ûE(q(t)), represents instantaneous deviations of the electrohydrodynamic

velocity from its mean value E〈ÛE〉. These deviations are caused by fluctuations of the

end-to-end vector q(t) and give rise to the electrohydrodynamic dispersion.

Integrating Eq. (18), we obtain

rc(t)− rc(0) =

∫ t

0

[E ûE(q(s)) + FB
c (s)]ds. (19)

Hence, the diffusion tensor of the dumbbell center of mass is

D = lim
t→∞

1

2t
〈[rc(t)− rc(0)][rc(t)− rc(0)]〉

= lim
t→∞

1

2t

∫ t

0

∫ t

0

〈[E ûE(q(s)) + FB
c (s)][E ûE(q(s′)) + FB

c (s
′)]〉ds ds′

= DE +DB, (20)

where

DE = lim
t→∞

E2

2t

∫ t

0

∫ t

0

〈ûE(q(s))ûE(q(s′))〉ds ds′ (21)
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is the electrohydrodynamic dispersion and

DB = lim
t→∞

1

2t

∫ t

0

∫ t

0

〈FB
c (s)F

B
c (s

′)〉ds ds′ = 1

2
I (22)

is the diffusivity in the absence of the electric field, i.e. the usual Brownian diffusivity.

In writing the last equality in Eq. (20), we took into account that ûE(q(t)) and FB
c (t)

are uncorrelated, since the random force FB
q (t) acting on the end-to-end vector q(t) is not

correlated with the Brownian force FB
c (t) acting on the center of mass (see Eq. (14)).

Since ûE is independent of the field strength, Eqs. (20) and (21) demonstrate that the

mean square displacement is increased by a factor proportional to E2 due to fluctuations

in the electrohydrodynamic interactions. To obtain the electrohydrodynamic dispersion, we

rewrite Eq. (21) as follows:

DE = lim
t→∞

E2

2t

∫ t

0

∫ t−s

−s

CE(τ)dτ ds =
E2

2

∫ ∞

−∞

CE(τ)dτ. (23)

Here,

CE(τ) = 〈ûE(q(s))ûE(q(s+ τ))〉 (24)

is the autocorrelation function of ûE(q(t)). The last equality in Eq. (23) was obtained

by replacing the limits of integration in the inner integral by ±∞. This approximation

is justified by the time-scale separation between fluctuations of the end-to-end vector and

diffusive motion, so that CE(τ) ≈ 0 for τ on the diffusive time-scale.

Dispersion in shearing flows can thus be obtained by solving the Langevin equation (9)

for the end-to-end vector and then computing the integral of the autocorrelation function

of the instantaneous electrohydrodynamic velocity using the mean-field equations (23) and

(24). In the remainder of this section, we obtain transport properties of the dumbbell in a

simple shear flow

U∞(R) = [γ(y − yc), 0, 0]
T , (25)

where γ is the shear rate and yc is the y-coordinate of the dumbbell center of mass. The

electric field is assumed to be parallel to the flow. At sufficiently small shear rates, the

transport properties can be obtained analytically. In this case, the harmonic approximation

to the FENE spring potential (5) is used,

FC(q) = −q. (26)
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In addition, the harmonic approximation to the transverse component of the normalized

electrohydrodynamic velocity (8) is approximated by

ÛE
y = qxqy. (27)

For brevity, we refer to the model with the harmonic spring potential Eq. (26) and the lead-

ing order approximation Eq. (27) to the electrohydrodynamic interactions as the “harmonic

dumbbell” and the model with the FENE spring potential Eq. (5) and the electrohydrody-

namic interactions given by Eq. (8) as the “FENE dumbbell”.

Note that the harmonic dumbbell model is linear only for the internal degrees of freedom

q, since the electrohydrodynamic interactions influencing motion of the dumbbell center

of mass are nonlinear even in the leading-order approximation Eq. (27). It is shown in

Appendix A that, in this case, for the harmonic dumbbell, the mean electrohydrodynamic

velocity and dispersion in the transverse direction are

〈UE
y 〉(γ, E) =

Eγ
4

and DE
yy(γ, E) =

E2

4

(

1 +
5γ2

16

)

, (28)

respectively. Figure 2 shows the analytical mean-field result (28) as a function of the Weis-

senberg number Wi= τrγ, where τr = 1/4 is the relaxation time of the end-to-end distance

of the dumbbell at equilibrium. We plot the normalized transverse velocity 〈ÛE
y 〉 = 〈UE

y 〉/E
and dispersion D̂E

yy = DE
yy/E2, since these quantities are independent of the magnitude E

of the electric field. Additionally, Fig. 2 compares the analytical result for the harmonic

dumbbell with simulation results for both harmonic and FENE dumbbells. In the FENE

dumbbell, the electrohydrodynamic velocity is modeled by Eq. (8). Results of two types of

simulations are shown in Fig. 2: semi-analytical mean-field calculations and direct Brownian

dynamics simulations.

In the semi-analytical mean-field calculations, the Langevin equation (9) for the end-

to-end vector was solved numerically. For each set of the system parameters, at least 200

simulations of duration 5000 were performed. The mean transverse velocity 〈ÛE
y 〉 was then

obtained by averaging the instantaneous values of the electrohydrodynamic velocity ÛE
y (q),

with vector q(t) obtained from the numerical solution. The transverse dispersion D̂E
yy was

obtained by integrating the autocorrelation function of the instantaneous velocity, see Eqs.

(23) and (24).

For the Brownian dynamics simulations, the Langevin equations (1) for the individual

beads were integrated numerically. At least 104 simulations of duration 5000 each were
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Figure 2: (a) Normalized mean electrohydrodynamic velocity 〈ÛE
y 〉 = 〈UE

y 〉/E and (b)

normalized electrohydrodynamic dispersion D̂E
yy = DE

yy/E2 in the transverse direction in a

simple shear flow. Transport properties of the harmonic and FENE dumbbell models are

shown. Predictions of the analytical mean-field (AMF) model (28) for the harmonic

dumbbell are shown by lines; predictions of the semi-analytical mean-field (SMF) model

are shown by open symbols, and results of the Brownian dynamics (BD) simulations are

shown by crosses.

performed for each set of parameters. The mean dumbbell velocity and diffusivity D were

then obtained by fitting the mean displacement and the mean-squared displacement of the

dumbbell center of mass to a straight line [14]. The normalized electrohydrodynamic disper-

sion was computed as D̂E = (D−DB)/E2, where the Brownian diffusivity DB was obtained

from simulations with no electric field.

As evident from Fig. 2, the mean-field model is in excellent agreement with the Brownian

dynamics simulations. We also verified that DB obtained from the Brownian dynamics

simulations is I/2, in agreement with Eq. (22), and that (D−DB) scales as E2, in agreement

with Eqs. (20) and (21).

Fig. 2 shows that the short-range electrohydrodynamic model predicts a monotonic

growth of the mean transverse velocity and dispersion with increasing shear rate. Increasing

the shear rate leads to changes of the dumbbell configuration, including its reorientation and

stretching. In particular, stretching of the dumbbell spring results in increasing electrohy-

drodynamic velocity predicted by the short-range model Eq. (8). The harmonic dumbbell
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approximation is in good agreement with the full anharmonic model for Wi ≤ 2. For Wi > 2,

the harmonic model predicts larger values of electrohydrodynamic velocity and dispersion,

due to a larger stretching of the harmonic spring in comparison with the FENE spring at

high shear rates, see Section S2 of Supplemental Material [17].

IV. EFFECTOFDISPERSION ON CONCENTRATIONPROFILES IN PRESSURE-

DRIVEN FLOWS

A. General considerations

As illustrated in Fig. 1, the distribution of polyelectrolytes in a pressure-driven flow is

determined by a balance between the flux towards the channel center due to the electro-

hydrodynamic migration Vy = E〈ÛE
y 〉 and the flux away from the channel center due to

diffusive motion of the polymers. For a weak electric field, the diffusivity Dyy is dominated

by Brownian motion and is essentially independent of the field strength, whereas the driving

force towards the center of the channel is proportional to E . Therefore, at weak fields, the

concentration profile width σ decreases as the field strength increases. However, the elec-

trohydrodynamic dispersion DE scales quadratically with the electric field as shown in the

previous section. When the field is sufficiently strong, the diffusive flux is dominated by the

electrohydrodynamic dispersion, which increases faster with E than the migration velocity

E〈ÛE
y 〉 does. Therefore, increasing the field strength beyond the optimal value E∗ leads to

wider concentration profiles.

Here we develop a mean-field model for polymer density n in a pressure-driven flow that

accounts for the dispersion and demonstrates a minimum for the profile width σ. The

pressure-driven flow is centered at y = 0 and the channel walls are between two infinite,

planar walls located at y = ±H/2. The electric field and the fluid flow are parallel to the

x-axis and the shear rate is

γ(y) =
dU∞

x (y)

dy
= −4γ̄y

H
, (29)

where γ̄ is the mean shear rate.

The polymer density n in a fully-developed steady-state flow is assumed to satisfy the
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convection-diffusion equation,

d

dyc

[

Deff
yy (yc, E)

dn

dyc
− Vy(yc, E)n

]

= 0. (30)

Here, Vy and Deff
yy are the mean migration velocity and the effective diffusivity in the trans-

verse direction, where Deff
yy contains contributions of both Brownian diffusivity and the elec-

trohydrodynamic dispersion. If the time-scale of the translational motion of the polymer is

much slower that that of its internal dynamics, the polymer configuration adjusts its dy-

namics to the local shear as the polymer moves across streamlines of a flow. In this case,

the transport properties of the polymer are fully determined by the local shear, i.e.

Vy(yc, E) = 〈UE
y 〉(γ(yc), E) and Deff

yy (yc, E) = Dss
yy(γ(yc), E), (31)

where

〈UE
y 〉(γ, E) = E〈ÛE

y 〉(γ) and Dss
yy(γ, E) = DB

yy(γ) + E2D̂E
yy(γ) (32)

are the migration velocity and diffusivity in the simple shear flow at shear rate γ and the

electric field strength E . The normalized migration velocity 〈ÛE
y 〉(γ), the Brownian diffusiv-

ity DB
yy(γ), and the normalized electrohydrodynamic dispersion D̂E

yy(γ) = DE
yy(γ, E)/E2 are

independent of E .
It follows from Eq. (30) that

n(yc) ∝ exp

∫ yc

0

Vy(y
′, E)

Deff
yy (y

′, E)dy
′. (33)

It was shown by Kopelevich et al. [14] that Eq. (33) yields a Gaussian distribution, n ∝
exp(−y2c/2σ

2), if 〈UE
y 〉 ∝ γ and dependence of Dss

yy on γ is weak in the region of high

concentration of polymers. In this case, the standard deviation of n is determined by the

ratio of the velocity and the diffusivity, σ ∝ (Deff
yy/Vy)

1/2. This ratio, according to Eqs. (31)

and (32), is given by

Deff
yy

Vy
=

1

〈ÛE
y 〉

(

1

ED
B
yy + ED̂E

yy

)

. (34)

The first and second terms in Eq. (34) are monotonically decreasing and increasing functions

of E , respectively. Therefore, the ratio Deff
yy/Vy and the profile width σ exhibit a minimum

at some optimal electric field strength E = E∗.
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B. Mean-field model for the harmonic dumbbell approximation

The empirical mean-field model (30) was confirmed by Brownian dynamics simulations

for a multi-bead polymer [14]. We demonstrate in this section that a similar mean-field

model can be obtained using a more rigorous approach. Specifically, we consider a Fokker-

Planck equation that describes dynamics of all degrees of freedom of the harmonic dumbbell

and perform an adiabatic elimination of the internal degrees of freedom.

In the harmonic leading order approximation (26), (27), the z-component of the end-to-

end vector q is decoupled from all other degrees of freedom of the dumbbell and, hence, is

omitted from the analysis. Therefore, in the remainder of this section, q refers to the vector

containing only the x− and y− components of the end-to-end vector. In addition, only the

transverse coordinate yc of the center of mass needs to be considered, since we focus on the

dumbbell distribution in a fully-developed flow. This allows simplification of the Langevin

equations (9), (10) to

dqi
dt

= δixγ(yc)qy − 2qi + FB
q,i(t), i = x, y, (35)

dyc
dt

= Eqxqy + FB
c,y(t). (36)

The corresponding Fokker-Planck equation is

∂P

∂t
=

[

1

2

∂2

∂y2c
+ 2Lq + Lyq

]

P, (37)

where P (q, yc, t) is the probability density,

Lq =
∂

∂q
·
(

q+
∂

∂q

)

(38)

is the operator describing fluctuations of the end-to-end vector in the absence of shear, and

the operator

Lyq = −γ(yc)qy
∂

∂qx
− Eqxqy

∂

∂yc
(39)

describes coupling between the polymer center of mass and the end-to-end vector. There

are two diffusive terms in Eq. (37): the Brownian diffusion of the dumbbell center of mass

represented by the first term on the right-hand-side of Eq. (37) and random fluctuations of

the end-to-end vector q represented by the operator Lq. The fluctuations of q give rise to the

electrohydrodynamic dispersion through coupling with the center of mass motion described

by the operator Lyq.
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Similarly to analogous problems using adiabatic elimination [19], q is eliminated from

Eq. (37) by expanding P (q, yc, t) in terms of eigenfunctions of the operator Lq. As shown

below, the leading term of this expansion corresponds to the equilibrium distribution of

the end-to-end vector and the coefficient for that term corresponds to the number density

n(yc, t) of the dumbbells. Other terms of the expansion describe deviations from equilibrium

and correspond to various moments of the end-to-end vector. These moments quickly relax

towards values determined by n(yc, t), whereas the dynamics of n is relatively slow. This

allows reducing equation (37) for P (q, yc, t) to a mean-field equation for n(yc, t).

To proceed, it is convenient to transform Lq into a self-adjoint operator by first defining

P (q, yc, t) = C2
0e

−q2/4P̄ (q, yc, t), (40)

where C0 = (2π)−1/4 is a constant that ensures consistent normalization of the probability

density, as shown in Appendix C. Then

LqP = C2
0e

−q2/4L̄qP̄ , (41)

where

L̄q = −(b†xbx + b†yby) (42)

is the transformed self-adjoint operator for the equilibrium end-to-end vector dynamics and

bi =
∂

∂qi
+

qi
2

and b†i = − ∂

∂qi
+

qi
2

(i = x, y) (43)

are the boson annihilation and creation operators, respectively [19]. The eigenvalues of op-

erators b†ibi are non-negative integers and the zero eigenvalue corresponds to the equilibrium

distribution of the end-to-end vector. Additional properties of these operators and their

eigenfunctions are reviewed in Appendix C.

The coupling operator Lyq is then expressed in terms of the operators bi and b†i . Since

∂P

∂qi
= −C2

0e
−q2/4(b†i P̄ ) and qi = bi + b†i (i = x, y), (44)

we have

LyqP = C2
0e

−q2/4L̄yqP̄ , (45)

where

L̄yq = γ(η)(by + b†y)b
†
x − ǫE(bx + b†x)(by + b†y)

∂

∂η
(46)
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is the transformed operator Lyq. Here, we introduced a scaled variable η = ǫyc for the trans-

lational degree of freedom to highlight separation of length-scales between the translational

and internal degrees of freedom of the dumbbell: η = O(1) and ǫ << 1 is the ratio of

the average length of the end-to-end vector to the characteristic length-scale of yc (e.g., the

profile width σ). The former is O(1) at sufficiently small shear rates, see Eq. (A18). After

these transformations, the Fokker-Planck equation (37) becomes

∂P̄

∂t
=

[

ǫ2

2

∂2

∂η2
+ 2L̄q + L̄yq

]

P̄ . (47)

The probability density in terms of the eigenfunctions φk(qi) of operators b
†
ibi is

P̄ (q, η, t) =

∞
∑

kx,ky=0

ck(η, t)φkx(qx)φky(qy), (48)

where k = (kx, ky). The expansion coefficients ck are directly related to the moments of the

distribution of the end-to-end vector q. In particular, it is shown in Appendix C that c00

corresponds to the probability distribution n of the polymer center of mass and c11 = n〈qxqy〉.
In what follows, we refer to ck as the modes of the end-to-end vector distribution.

Substituting the expansion (48) into Eq. (47), utilizing the relationships (C1), (C3), and

(C4), and taking the inner product with φm, we obtain the following hierarchy of equations:

∂cm
∂t

=

[

ǫ2

2

∂2

∂η2
− 2(mx +my)

]

cm + L̂yq,m({c}), (49)

where m = (mx, my) and the operator

L̂yq,m({c}) =
(

γ − ǫE ∂

∂η

)

m1/2
x

(

m1/2
y cmx−1,my−1 + (my + 1)1/2cmx−1,my+1

)

− ǫE ∂

∂η
(mx + 1)1/2

(

m1/2
y cmx+1,my−1 + (my + 1)1/2cmx+1,my+1

)

(50)

describes coupling between dynamics of the end-to-end vector and motion of the center of

mass.

Equations (49) are similar to the Brinkman hierarchy for the Kramers equation [19]. The

first equation of the hierarchy (49) is

∂n

∂t
=

ǫ2

2

∂2n

∂η2
− ǫE ∂c11

∂η
(51)

(recall that c00 = n). This equation indicates that the spatial distribution of the dumbbells

is determined by the Brownian diffusive flux (the first term on the right-hand side of Eq.
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(51)) and the electrohydrodynamic flux determined by the mode c11 = n〈qxqy〉 of the end-

to-end vector. Evolution of the latter is described by the second equation of the hierarchy

(49),

∂c11
∂t

=

[

ǫ2

2

∂2

∂η2
− 4

]

c11 + γ
(

n +
√
2 c02

)

− ǫE ∂

∂η

[

n +
√
2(c02 + c20) + 2c22

]

. (52)

To reduce the infinite hierarchy (49) to a manageable set of equations, first note that all

cm with m 6= 0 quickly decay towards their quasi-steady-state values determined by the

dumbbell density n. This fast decay is due to the (mx + my)cm terms in Eq. (49); these

terms correspond to eigenvalues of the operator L̄q describing fluctuations of the end-to-end

vector q. Eq. (49) indicates that the rate of change of cm with m 6= 0 is O(1). On the other

hand, Eq. (51) indicates that the rate of change of n is O(ǫ). Therefore, the non-equilibrium

modes cm (m 6= 0) relax relatively quickly in response to a slowly changing n. Hence, we

can neglect the time-derivatives in Eq. (49) for m 6= 0 and perform adiabatic elimination

of these fast modes.

The infinite hierarchy (49) can be truncated after its second equation (52) when the local

shear rate is small, γ(yc) = O(ǫ), and the electric field is weak or moderate, E ≤ O(1). In

this case, the leading-order terms of the steady-state version of Eq. (49) yield c11 = O(ǫ)n

and

cm =O(ǫ2)n for m 6= (0, 0) and m 6= (1, 1). (53)

Rewriting Eq. (52) as

c11 =
1

4

(

γ − ǫE ∂

∂η

)

n+O(ǫ2)n, (54)

we see that, to the leading order, the electrohydrodynamic flux c11 contains contributions

of the electrohydrodynamic migration and dispersion represented by the first and second

terms on the right-hand side of Eq. (54), respectively. Substituting Eq. (54) into Eq. (51),

neglecting the O(ǫ3)n terms, taking the steady-state limit, and returning to the original

transverse coordinate yc, we recover the mean-field convection-diffusion equation (30) with

the transverse velocity and diffusivity given by

Vy =
Eγ
4

and Deff
yy =

1

2
+

E2

4
. (55)

Note that the diffusivity differs from that used in the empirical model (31) which assumed

that diffusivity is determined by the local shear. Eq. (55) indicates that Deff
yy = Dss

yy(0, E) =
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DB
yy+DE

yy(0, E), where DB
yy = 1/2 is the Brownian diffusivity (see Eq. (22)) and DE

yy(0, E) =
E2/4 is the electrohydrodynamic dispersion in the absence of shear (see Eq. (28)).

Substituting Vy and Deff
yy from Eq. (55) and the local shear γ(yc) from Eq. (29) into Eq.

(33), we conclude that the concentration profile is a Gaussian distribution with the variance

σ2 =
Deff

yyH

γ̄E =
H

2γ̄

(E
2
+

1

E

)

. (56)

In particular, the optimal field strength corresponding to the minimum profile width is E∗ =
√
2. Eq. (56) is consistent with the result of Setaro and Underhill [13] obtained using the

method of moments. Moreover, using relationships similar to Eqs. (C6) and (C8) between

the modes cm and the moments of the end-to-end vector q, one can readily verify that steady-

state versions of the convection-diffusion equation (51) and the first-moment equation (52)

are consistent with equations obtained in [13]. The advantage of the derivation presented in

the current work is that it establishes a clear connection between fluctuations of the dumbbell

configuration and the electrohydrodynamic dispersion. Furthermore, this approach can be

generalized to multi-bead polymer models and more complex electrohydrodynamic models,

as well as analysis of developing flows.

Figure 3 compares the profile widths σ predicted by the adiabatic elimination Eq. (56),

the empirical mean-field model (31), and results of Brownian dynamics simulations of a

dumbbell in a pressure-driven flow. Data for mean shear rates γ̄ corresponding Weissenberg

numbers Wi = γ̄τr = 0.5 and 4 are shown. The dimensionless distance between the channel

walls is H = 92, which corresponds to the channel width in the experiments of Arca et

al. [3]. For each set of system parameters (electric field strength E and mean shear rate

γ̄), at least 104 trajectories were simulated. As shown in Fig. 3, the predictions of the

adiabatic elimination (56) agree with the Brownian dynamics results over a wide range of

conditions, beyond the small shear and moderate electric field assumptions made in the

derivation of Eq. (56). On the other hand, the empirical mean-field model (31) increasingly

deviates from the Brownian dynamics results as E and γ̄ increase. In addition, Fig. 3

shows asymptotic values of the profile width for E → 0 and E → ∞, which were obtained

from the mean-field model (30) with purely Brownian diffusivity (Deff
yy = DB

yy) and purely

electrohydrodynamic dispersion (Deff
yy = DE

yy(0, E)), respectively. These values agree with

the Brownian dynamics results in the corresponding limits thus confirming that Brownian

diffusivity and electrohydrodynamic dispersion are dominant at very weak and very strong
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Figure 3: Standard deviations σ of developed concentration profiles in the pressure-driven

flows at (a) Wi = 0.5 and (b) Wi = 4. Results of Brownian dynamics (BD) simulations are

compared with the mean-field model (30) with the diffusivity obtained using the adiabatic

elimination (Deff
yy = Dss

yy(0, E)) and the empirical assumption (Deff
yy = Dss

yy(γ(yc), E)). To
illustrate contributions of the Brownian diffusivity and the electrohydrodynamic dispersion,

predictions of the mean-field models with Deff
yy = DB

yy and Deff
yy = DE

yy(0, E) are also shown.

electric fields, respectively.

Simulations of both the harmonic and FENE dumbbell models were performed. These

simulations produced nearly identical results for developed profiles, since the transport prop-

erties of the harmonic and FENE dumbbells agree for Wi≤ 2 (see Fig. 2) and the developed

concentration profiles are sufficiently narrow to ensure that most of the molecules are located

in the region with small local shear rate. Hence, the harmonic approximation remains valid

in the high-concentration region even for the largest mean shear rate considered in this work

(Wi = 4). Therefore, in what follows, we focus on the harmonic dumbbell model.

C. Discussion

The transverse velocity Vy of the mean-field model obtained using the adiabatic elim-

ination (Eq. (55)) is consistent with the empirical mean-field assumption (31) that Vy is

determined by local shear γ(yc). Namely, Vy corresponds to the transverse velocity in the

simple shear flow which is given by Eq. (28) for the dumbbell model considered here. How-

ever, the diffusivity Deff
yy obtained by the adiabatic elimination is independent of the local
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shear rate, which deviates from the empirical mean-field assumption (31) that the effective

diffusivity in Eq. (30) should include the shear-dependent dispersion. This discrepancy is

explained, in part, by the small-γ approximation used in the derivation of Eq. (55), since

the γ-dependent term in DE
yy in the simple shear flow is O(γ2), see Eq. (28). However, Fig. 3

shows that the zero-shear value of DE
yy yields a better agreement with Brownian dynamics

simulations than the empirical shear-dependent value (31) even at moderate shear rates.

Despite the quantitative difference between the mean-field models, both qualitatively

agree with the experiment and the simulations and predict that σ(E) exhibits a minimum at

some optimal E = E∗. The arguments of Section IVA explaining the origin of the optimal

electric field for the empirical mean-field model still hold for the adiabatic elimination results,

since the key requirements for existence of the optimal field are still satisfied, namely Vy ∝ E
and DE

yy ∝ E2.

For weak electric fields, the adiabatic elimination and the empirical mean-field model

yield nearly identical results that are in quantitative agreement with the Brownian dynamics

simulations. The two mean-field approximations agree at small E because, in this case, the

contribution of the electrohydrodynamic dispersionDE
yy to the overall diffusivity is negligible.

In fact, completely neglecting DE
yy and using the approximation Deff

yy = DB
yy yields essentially

the same values of σ at small E , as shown in Fig. 3. Since the Brownian diffusivity is

independent of local shear (see Eq. (22)), the difference between the adiabatic elimination

and the empirical mean-field model vanishes at small E .
For strong electric fields, substantial differences exist between the two mean-field ap-

proaches, with the adiabatic elimination yielding much better agreement with the Brownian

dynamics simulations. Comparison of Fig. 3(a) and (b) reveals that the difference between

the mean-field models becomes more significant as the mean shear rate increases. In the

simple shear flow, the diffusivity is very sensitive to the shear rate, see Fig. 2 and Eq. (28).

Validity of the adiabatic elimination result indicates that electrohydrodynamic dispersion

is independent of the local shear rate and corresponds to the dispersion at zero shear rate

everywhere in the channel. This in turn suggests lack of time-scale separation between the

translational and internal degrees of freedom of the dumbbell, i.e. the polymer does not

have time to adjust to changes to its local environment as it traverses the channel at large

electric fields.

To confirm this conjecture, we compare time-scales of the dumbbell configuration and
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transport in the transverse direction. The former is characterized by the relaxation time

τr of the end-to-end distance and the latter is characterized by the migration and diffusion

time-scales τV and τD defined as average times that it takes the dumbbell to travel a distance

equal to the profile width σ,

τV =
σ

〈Vy〉y
and τD =

σ2

2Deff
yy

. (57)

Here,

〈Vy〉y =
∫ H/2

−H/2

n(yc)|Vy(yc)|dyc (58)

is the transverse migration velocity averaged over the concentration profile n(yc) in a fully

developed flow. Note that the number density n(yc) of dumbbells is normalized so that
∫ H/2

−H/2
n(yc)dyc = 1. The values of Vy(yc) utilized in Eq. (58) were obtained from the mean-

field approximation, i.e. they were taken to correspond the local shear rate γ(yc). The

definition of τD uses the diffusivity Deff
yy = Dss

yy(0, E) at zero shear. This choice is motivated

by validity of the adiabatic elimination result, which indicates that the diffusivity of the

dumbbell remains equal to Dss
yy(0, E) throughout the channel. Substituting Eqs. (55), (56),

and (58) into Eq. (57), we obtain

τD
τr

=
H

2EWi
and τV =

√
2πτD. (59)

As expected, the transport time-scales decrease as the electric field strength increases. When

E << H/Wi, the transport time-scales substantially exceed the relaxation time-scale of the

internal degrees of freedom of the dumbbell, confirming the key assumption of the empirical

mean-field model. In this case, the dumbbell configuration is expected to be determined by

the local shear.

However, at strong fields, the transport time-scales are comparable with τr and the em-

pirical mean-field assumption is invalid. For example, at Wi = 4 and E > 10, it takes

the dumbbell less time to travel across the entire concentration profile than for its internal

fluctuations to relax. Since the transport time-scales are inversely proportional to Wi, at

smaller shear rates the empirical mean-field assumption remains valid for a wider range of

E as evident from comparison of Fig. 3(a) and (b).

When the transport time-scale is very small, the dumbbell configuration does not adjust

to the local environment and is likely to be similar to the configuration near the peak of the
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concentration profile, i.e. at zero shear rate. Since the dumbbell configuration in a shearing

flow is not affected by the electric field (see Eq. (9)), the zero shear rate configuration

is identical to the equilibrium configuration. Hence, the dumbbell degrees of freedom are

expected to approach the equilibrium distribution as E → ∞.

This is confirmed by moments Mkm(yc) = 〈qkxqmy 〉(yc) of the end-to-end vector of the

dumbbell. If the empirical mean-field approximation is valid and the dumbbell configuration

is determined by local shear, the value of the moment Mkm at position yc in the pressure-

driven flow corresponds to its value in the simple shearing flow at shear γ = γ(yc). For the

harmonic dumbbell approximation, several moments in the simple shear flow are obtained

in Appendix A (see Eq. (A18)).

For a pressure-driven flow, the typical effect of E on the local dumbbell configuration is

demonstrated in Fig. 4, which plots the moment M11 computed for several values of E in

the fully developed flow at Wi = 4. For comparison, the moment values corresponding to

the local shear, M11 = γ(yc)/4, are also shown. It is evident that at small E , M11 is in

good agreement with the empirical mean-field assumption, i.e. the moment in the pressure-

driven flow is determined by the local shear. However, as E increases, the deviation from the

empirical mean-field approximation increases and M11(yc) approaches its equilibrium value,

M11 = 0, as E → ∞. Similar trends are observed for other moments Mkm and at other mean

shear rates (see Fig. S5 and S6 in Supplemental Material [17]).

This confirms that the fast time-scale of the dumbbell transport at large E yields a near-

equilibrium distribution of the dumbbell end-to-end vector, i.e. ck = 0 for all k 6= 0 (see Eq.

(48)). In this case, Eq. (52) yields
(

γ − E d

dyc

)

n = 0. (60)

In other words, the electrohydrodynamic convective and dispersion fluxes are balanced and

the Brownian diffusion flux is negligible. Therefore, n(y) is a Gaussian distribution with the

variance

σ2
0 =

EH
4γ̄

=
DE

yy(0, E)H
γ̄E (61)

that corresponds to diffusivity given by the electrohydrodynamic dispersion DE
yy(0, E) at zero

shear. The profile width given by Eq. (61) is in agreement with the adiabatic elimination

prediction (56) in the limit of E → ∞ (see also Fig. 3). Hence, the adiabatic elimination

result is valid even at strong electric fields, even though its derivation assumed that E ≤ O(1).
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Figure 4: Moment M11 = 〈qxqy〉 of the end-to-end vector q obtained from the Brownian

dynamics simulations in the pressure-driven flow at Wi = 4 and several E . The empirical

mean-field approximation to M11, i.e. M11 determined by the local shear, is shown by

circles.

V. CONCLUSIONS

Diffusive motion of polyelectrolyte molecules with diffuse double layers in a simultaneous

shear flow and electric field contains two contributions: Brownian diffusion due to collisions

between the polymer and solvent molecules and electrohydrodynamic dispersion caused by

fluctuations in the instantaneous electrohydrodynamic velocity of the polymer due to fluc-

tuations in its configuration. At sufficiently strong electric fields, the electrohydrodynamic

dispersion dominates the diffusive motion and has a substantial influence on the ability to

manipulate polyelectrolyte molecules in microfluidic devices. For example, it introduces a

limit on focusing polyelectrolytes on the centerline when using a combination of flow and

electric fields.

In the current work we analyzed the electrohydrodynamic dispersion for a dumbbell model

of a polyelectrolyte molecule and developed mean-field models connecting dynamics of the

internal degrees of freedom with the dumbbell transport. The mean-field model (23), (24)

for the dumbbell in a shearing flow provides a direct relationship between fluctuations of

the end-to-end vector of the dumbbell and the dispersion. In particular, for a dumbbell in

harmonic approximation the harmonic dumbbell, this relationship yields a simple formula

23



(28) for the dispersion.

For pressure-driven flow in a straight channel, the mean-field model is a convection-

diffusion equation (30). For the harmonic approximation to the dumbbell, we obtained the

migration and diffusion terms (55) for this equation by performing an adiabatic elimination

of the internal degrees of freedom of the dumbbell. The obtained diffusion term contains

contributions of both the Brownian diffusivity and the electrohydrodynamic dispersion. It

was demonstrated that the latter contributions arise from coupling between the fluctuations

of the end-to-end vector of the dumbbell and the translational motion of its center of mass.

The developed mean-field model is in agreement with the model obtained by Setaro and

Underhill [13] using the kinetic theory. The new derivation presented here establishes a clear

connection between the internal degrees of freedom and transport properties of the dumbbell.

In addition, we demonstrated that the electrohydrodynamic dispersion is responsible for

existence of the optimal electric field for trapping of polyelectrolytes by a combined flow

and electric fields.

Although the current work focuses on a relatively simple dumbbell model, the main con-

clusions are expected to hold for more detailed models of polyelectrolytes. For example,

it is shown in Section S1 of Supplemental Material [17] that including hydrodynamic in-

teractions induced by Brownian and conservative forces into the model yields results very

similar to those obtained in the absence of these interactions. Another improvement of the

model would incorporate a more accurate model for electrohydrodynamic interactions. The

short-range electrohydrodynamic model considered in the current work neglects interactions

between Kuhn steps of the polyelectrolyte molecule. As shown in [14], this results in a

quantitative discrepancy with experimental data, even when simulating a multi-bead poly-

mer model. This necessitates development of a more accurate electrohydrodynamic model.

The mean-field relationship Eqs. (23), (24) for the shearing flows is readily applicable to

this anticipated future electrohydrodynamic model, since it remains valid as long as Eq. (6)

is satisfied.

Furthermore, the qualitative arguments presented in Section IVA show that the mecha-

nism leading to the optimal electric field strength in a pressure-driven flow is applicable for

other models for electrohydrodynamic interactions. In addition, the adiabatic elimination

for pressure-driven flows presented in Section IVB can be adapted to a different electrohy-

drodynamic model by making an appropriate change to the operator Lyq describing coupling
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between the end-to-end vector and the dumbbell center of mass.

Achieving quantitative agreement with the experiment will require generalizing the cur-

rent mean-field approach to multi-bead polymer models. Although the multi-bead model still

predicts a non-monotonic dependence of the profile width on the field strength, comparison

between the dumbbell and multi-bead models reveals an important difference between their

dispersion terms. Specifically, in the mean-field model (55) for the dumbbell, the dispersion

term corresponds to the zero shear rate. On the other hand, in the empirical model (31)

proposed and validated for a 20-bead polymer model [14], the dispersion term is determined

by local shear. This difference is caused by different time-scales of fluctuations of the elec-

trohydrodynamic velocity. In a multi-bead model, fluctuations of the electrohydrodynamic

velocity are dominated by fast fluctuations of individual beads and the contribution of the

slow fluctuations of the molecule as a whole are very small [14]. Therefore, in the multi-bead

model, the electrohydrodynamic dispersion is less sensitive to local shear and the degrees

of freedom relevant to the dispersion respond quickly to changes in the flow environment.

These degrees of freedom are absent in a dumbbell, which only captures slow fluctuations

of the molecule as a whole.

Therefore, it is expected that a mean-field model for a polymer with a sufficiently large

number of beads is similar to the empirical model (31). A systematic study is therefore

needed to determine dependence of the electrohydrodynamic dispersion on the number of

beads in a polymer model and determine the discretization level necessary for validity of

this mean-field model.
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Appendix A: Transverse migration and dispersion of the harmonic dumbbell in a

simple shear flow

In this Appendix, we obtain analytical expressions for the electrohydrodynamic migration

and dispersion in the transverse direction in the simple shear flow (25) assuming the harmonic

approximation of the spring potential (26) and the leading-order approximation to the short-
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range electrohydrodynamic interactions (27). In this case, the Langevin equation (9) for the

end-to-end vector q(t) is linear and can be readily solved analytically,

qx(t) = qx(0)e
−2t +

∫ t

0

e−2(t−s)[γqy(s) + FB
q,x(s)]ds and (A1)

qy(t) = qy(0)e
−2t +

∫ t

0

e−2(t−s)FB
q,y(s)ds. (A2)

We are interested in solutions at sufficiently large t so that the influence of the initial

conditions (i.e., the first terms on the right hand sides of Eqs. (A1) and (A2)) vanishes.

Therefore, in what follows, we assume that t >> 1.

The expression (A1) for qx contains a contribution of qy. It is convenient to express qx

explicitly in terms of the Brownian force FB
q only. To this end, we substitute Eq. (A2) into

Eq. (A1):

qx(t) =

∫ t

0

e−2(t−s)FB
q,x(s)ds+ γ

∫ t

0

∫ s

0

e−2(t−s′)FB
q,y(s

′)ds′ds. (A3)

The double integral in the second term of Eq. (A3) can be reduced to a single integral by

exchanging the order of integration,

∫ t

0

∫ s

0

e−2(t−s′)FB
q,y(s

′)ds′ds =

∫ t

0

∫ t

0

θ(s− s′)e−2(t−s′)FB
q,y(s

′)ds′ds

=

∫ t

0

e−2(t−s′)(t− s′)FB
q,y(s

′)ds′, (A4)

where θ(s) is the Heaviside step function. Substituting Eq. (A4) into Eq. (A3), we obtain

qx(t) =

∫ t

0

e−2(t−s)
[

FB
q,x(s) + γ(t− s)FB

q,y(s)
]

ds. (A5)

Substituting Eqs. (A2) and (A5) into Eq. (27), we obtain the following expression for the

instantaneous normalized electrohydrodynamic velocity in the transverse direction:

ÛE
y (t) = qx(t)qy(t) =

∫ t

0

ds

∫ t

0

ds′e−2(2t−s−s′)
[

FB
q,x(s) + γ(t− s)FB

q,y(s)
]

FB
q,y(s

′). (A6)

Taking into account the fluctuation-dissipation relationship (12), we obtain the following

expression for the mean transverse velocity:

〈UE
y 〉 = E〈ÛE

y 〉 = 4Eγ
∫ t

0

e−4(t−s)(t− s)ds =
Eγ
4
. (A7)

The last equality in (A7) was obtained by taking the limit of t → ∞.
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To obtain the electrohydrodynamic dispersion, we compute the autocorrelation function

of the normalized electrohydrodynamic velocity, see Eqs. (23), (24). It is convenient to

rewrite the transverse component of the autocorrelation function (24) as follows:

CE
yy(τ) = 〈ÛE

y (t)Û
E
y (t+ τ)〉 − 〈ÛE

y 〉2. (A8)

Without loss of generality, the derivation below assumes that τ ≥ 0. The first term on the

right-hand-side of Eq. (A8) can be written as

〈ÛE
y (t)Û

E
y (t+ τ)〉 = 〈qx(t)qy(t)qx(t + τ)qy(t+ τ)〉 = I1 + γ2I2, (A9)

where

I1 =

∫ t

0

ds1

∫ t+τ

0

ds2 e
−2(2t+τ−s1−s2)〈FB

q,x(s1)F
B
q,x(s2)〉〈qy(t)qy(t+ τ)〉 (A10)

and

I2 =

∫ t

0

ds1

∫ t+τ

0

ds2 e
−2(2t+τ−s1−s2)(t− s1)(t + τ − s2)〈FB

q,y(s1)F
B
q,y(s2)qy(t)qy(t+ τ)〉

(A11)

In writing Eq. (A9) we used the fact that qy is independent of FB
q,x and 〈FB

q,x〉 = 0.

It follows from Eqs. (A2) and (12) that

〈qy(t)qy(t+ τ)〉 =
∫ t

0

ds

∫ t+τ

0

ds′e−2(2t+τ−s−s′)〈FB
q,y(s)F

B
q,y(s

′)〉 = e−2τ as t → ∞. (A12)

Substituting this into Eq. (A10) and applying the fluctuation-dissipation theorem (12), we

obtain

I1 = 4e−4(t+τ)

∫ t

0

e4sds = e−4τ as t → ∞. (A13)

Substitute Eq. (A2) into Eq. (A11):

I2 =e−4(2t+τ)

∫ t

0

ds1

∫ t+τ

0

ds2

∫ t

0

ds3

∫ t+τ

0

ds4 e
2(s1+s2+s3+s4)(t− s1)(t + τ − s2)

· 〈FB
q,y(s1)F

B
q,y(s2)F

B
q,y(s3)F

B
q,y(s4)〉. (A14)

Integrals of type (A14) are computed in Appendix B. Substituting Eq. (B7) into (A14), we
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obtain

I2 = 16e−4(2t+τ)

[
∫ t

0

ds1

∫ t

0

ds3(t− s1)(t+ τ − s1)e
4(s1+s3)

+

∫ t

0

ds1

∫ t+τ

0

ds2(t− s1)(t+ τ − s2)e
4(s1+s2)

+

∫ t

0

ds1

∫ t

0

ds2(t− s1)(t+ τ − s2)e
4(s1+s2)

]

=
e−4τ (3 + 8τ)

16
+

1

16
as t → ∞. (A15)

Substituting Eqs. (A13) and (A15) into Eq. (A9) and then substituting the result

together with Eq. (A7) into Eq. (A8), we obtain

CE
yy(τ) = 〈ÛE

y (t)Û
E
y (t + τ)〉 − γ2

16
=

(

1 +
γ2(3 + 8τ)

16

)

e−4τ . (A16)

Thus, the electrohydrodynamic dispersion of the harmonic dumbbell is

DE
yy = E2

∫ +∞

0

CE
yy(τ)dτ =

E2

4

(

1 +
5γ2

16

)

. (A17)

The first equality in Eq. (A17) follows from Eq. (23) because diagonal components of the

matrix CE(τ) are symmetric with respect to time, CE
ii (τ) = CE

ii (−τ).

In conclusion of this Appendix, we compute several moments of the end-to-end vector q

which are utilized in verification of the mean-field assumption for the pressure-driven flow

(see Fig. 4, S5, and S6):

〈qxqy〉 =
γ

4
, 〈q2x〉 = 1 +

γ2

8
, 〈q2y〉 = 1, 〈q2xq2y〉 = 1 +

γ2

4
. (A18)

Appendix B: Calculation of integral (A14)

The purpose of this Appendix is to compute the integral

I =

∫ t1

0

ds1

∫ t2

0

ds2

∫ t3

0

ds3

∫ t4

0

ds4 f(s1, s2, s3, s4)〈Γ(s1)Γ(s2)Γ(s3)Γ(s4)〉, (B1)

where Γ(s) is a random process with Gaussian distribution, zero mean, and the autocorre-

lation function 〈Γ(s)Γ(s+ τ)〉 = 4δ(τ). The challenge in computing this integral is handling

the 4-variable correlation when even the 2-variable correlation is singular (a δ-function). To

do this, we introduce a Wiener process W (s) corresponding to the Brownian force Γ(s),

dW (s) = Γ(s)ds, (B2)
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and rewrite Eq. (B1) as a limit of the Riemann sum, i.e.

I =

〈
∫ t1

0

dW (s1)

∫ t2

0

dW (s2)

∫ t3

0

dW (s3)

∫ t4

0

dW (s4)f(s1, s2, s3, s4)

〉

= lim
∆t→0

N1
∑

i1=0

N2
∑

i2=0

N3
∑

i3=0

N4
∑

i4=0

f(s1, s2, s3, s4) 〈∆Wi1∆Wi2∆Wi3∆Wi4〉 , (B3)

where Nj = [tj/∆t], sj = ij∆t (j = 1, . . . , 4), and

∆Wi =

∫ (i+1)∆t

i∆t

Γ(s)ds (B4)

is a Gaussian variable with zero mean and autocorrelation

〈∆Wi∆Wj〉 = 4δij∆t. (B5)

Therefore,

〈∆Wi1∆Wi2∆Wi3∆Wi4〉 = 16∆t2 (δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 + 3δi1i2δi1i3δi1i4) . (B6)

The last term in Eq. (B6) corresponds to the 4-th moment of the Gaussian variable ∆Wi.

Substituting Eq. (B6) into Eq. (B3), we obtain

I = 16 lim
∆t→0

∆t2

[

N1∧N2
∑

i1=0

N3∧N4
∑

i3=0

f(s1, s1, s3, s3) +

N1∧N3
∑

i1=0

N2∧N4
∑

i2=0

f(s1, s2, s1, s2)

+

N1∧N4
∑

i1=0

N2∧N3
∑

i2=0

f(s1, s2, s2, s1) +

N1∧N2∧N3∧N4
∑

i1=0

f(s1, s1, s1, s1)

]

= 16

[
∫ t1∧t2

0

ds1

∫ t3∧t4

0

ds3 f(s1, s1, s3, s3) +

∫ t1∧t3

0

ds1

∫ t2∧t4

0

ds2 f(s1, s2, s1, s2)

+

∫ t1∧t4

0

ds1

∫ t2∧t3

0

ds2 f(s1, s2, s2, s1)

]

. (B7)

Here, x ∧ y = min(x, y).

Appendix C: Details of analysis of the Fokker-Planck equation for the harmonic

dumbbell

In this section we summarize properties of eigenfunctions φk of the operators b
†
ibi (i = x, y)

that describe the probability density of the end-to-end vector of the harmonic dumbbell.
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Here, b†i and bi are the boson creation and annihilation operators defined in Eq. (43).

Further information on properties of these operators is available, e.g., in [19].

The eigenvalues of the operator b†ibi are non-negative integers,

b†ibiφk(qi) = kφk(qi), i = x, y, k = 0, 1, 2, . . . . (C1)

The eigenfunction corresponding to zero eigenvalue is

φ0(qi) = C0e
−q2i /4, (C2)

where the normalization constant C0 = (2π)−1/4 is chosen so that ||φ0|| = 1.

Application of the operators bi and b†i to the eigenfunction φk of the operator b†ibi trans-

forms φk into eigenfunctions φk−1 and φk+1, respectively,

biφk(qi) = k1/2φk−1(qi), (C3)

b†iφk(qi) = (k + 1)1/2φk+1(qi). (C4)

The k1/2 and (k + 1)1/2 factors in these equations ensure that ||φk|| = 1 for all k. Since the

operator b†ibi is self-adjoint, its eigenfunctions φk form an orthonormal set.

The coefficients ck of the eigenfunction expansion (48) are directly related to the number

density of the dumbbell center of mass and moments of its end-to-end vector. It follows

from Eqs. (40) and (C2) that

P (q, yc, t) = P̄ (q, yc, t)φ0(qx)φ0(qy). (C5)

Then the number density of the dumbbell is

n(yc, t) =

∫

P (q, yc, t)dq =

∫

P̄ (q, yc, t)φ0(qx)φ0(qy)dq = c00(yc, t). (C6)

Here, we used the expansion (48) and the fact that the eigenfunctions φk are orthonormal.

To obtain the moment 〈qxqy〉(yc, t) of the end-to-end vector, we note that

φ1(qi) = b†iφ0 = C0qie
−q2

i
/4 = qiφ0(qi). (C7)

Therefore,

n〈qxqy〉 =
∫

P (q, yc, t)qxqydq =

∫

P̄ (q, yc, t)φ1(qx)φ1(qy)dq = c11(yc, t). (C8)
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Similar approach can be used to obtain relationships between other coefficients ck and mo-

ments of the end-to-end vector.
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