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Direct simulations of two-dimensional channel flow of a viscoelastic fluid have revealed the exis-
tence of a family of Tollmien-Schlichting (TS) attractors that is nonlinearly self-sustained by vis-
coelasticity [Shekar et al., J. Fluid Mech. 893, A3 (2020)]. Here, we describe the evolution of this
branch in parameter space and its connections to the Newtonian TS attractor and to elastoinertial
turbulence (EIT). At Reynolds number Re = 3000, there is a solution branch with TS-wave structure
but which is not connected to the Newtonian solution branch. At fixed Weissenberg number, Wi and
increasing Reynolds number from 3000-10000, this attractor goes from displaying a striation of weak
polymer stretch localized at the critical layer to an extended sheet of very large polymer stretch.
We show that this transition is directly tied to the strength of the TS critical layer fluctuations and
can be attributed to a coil-stretch transition when the local Weissenberg number at the hyperbolic
stagnation point of the Kelvin cat’s eye structure of the TS wave exceeds 1

2
. At Re = 10000, unlike

3000, the Newtonian TS attractor evolves continuously into the EIT state as Wi is increased from
zero to about 13. We describe how the structure of the flow and stress fields changes, highlighting
in particular a “sheet-shedding” process by which the individual sheets associated with the critical
layer structure break up to form the layered multisheet structure characteristic of EIT.
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FIG. 1: (a) Time-averaged L2-norm of α̂xx vs Wi of the three solution branches identified in [15] at
Re = 3000, Lx = 5. Snapshots corresponding to (b) 2D EIT at Wi = 13 (point A on the bifurcation diagram); (c)
NNTSA at Wi = 3 (point B); and (d) VNTSA at Wi = 10 (point C). Shown are white contour lines of wall normal
velocity, v̂ superimposed on color contours of xx-component of polymer conformation tensor (α̂xx). Hereˆdenotes

deviations from laminar base state. For point B, we also show the streamlines (blue) in a reference frame moving at
the wave speed and the hyperbolic stagnation points (blue dots).

I. INTRODUCTION

The addition of minute quantities of long chain polymer molecules has tremendous effects on wall-bounded tur-
bulence, the most dramatic and well known effect being the reduction of friction factor by levels unmatched by
additive-free turbulence control-schemes. The rheological drag reduction phenomenon was first discovered by Toms
in the 1940s [1, 2], and is sometimes referred to as the “Toms effect”. This technology has found use in various
applications that seek energy efficiency – transportation of oil, fracking and heat & cooling systems, to name a few
[3–5].

Accompanying the drastic reduction in friction factor is a structural change to the flow – a well known effect is
the suppression by viscoelasticity of the near-wall streamwise vortices that dominate Newtonian turbulence [6, 7]. A
number of studies have captured this phenomena by studying the effect of viscoelasticity on three-dimensional (3D)
nonlinear traveling wave solutions of the Navier-Stokes equations termed exact coherent states (ECS) [8–13]. These
ECS contain the basic self-sustaining ingredients of transitional Newtonian turbulence i.e quasistreamwise vortices
and streaks. A comprehensive review of Newtonian ECS can be found in [14]. In particular, Li and coworkers [12, 13]
focused on one such family of ECS in channel flow and observed a weakening of structures on increasing Weissenberg
number (Wi), the ratio between the polymer relaxation time scale and the flow time scale. At sufficiently high Wi,
these structures are so weakened that the ECS are no longer self-sustained and lose existence. These results indicate
that the near-wall self-sustaining process of Newtonian turbulence is disrupted by viscoelasticity. Recognizing that in
general, viscoelasticity is not experimentally observed to drive relaminarization, these authors suggested the possibility
of new viscoelastic mechanisms for turbulence coming into existence and being unmasked as the Newtonian structure
are suppressed [12].

Indeed, instead of complete relaminarization (except in narrow parameter ranges at transitional Re as detailed later),
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recent studies have unearthed a polymer-driven chaotic flow state dubbed elastoinertial turbulence (EIT) dominating
the flow at high levels of viscoelasticity [16]. EIT was shown to display tilted multilayered sheets of polymer stretch
with weak spanwise-oriented flow structures – a sharp contrast to the 3D quasistreamwise vortex structures that
make up inertia-driven Newtonian turbulence. Gaining an understanding of the self-sustenance mechanisms that
underlie EIT has been the focus of recent efforts. Here, we build on previous observations that tie EIT to mechanisms
originating from Tollmien-Schlichting (TS) waves and uncover the underlying process that gives rise to the structures
seen in EIT.

Choueiri et al. [17] experimentally examined EIT by focusing on parameter regimes close to the inception of
Newtonian turbulence in pipes. At low transitional Re = 3150 and varying polymer concentration in a quasi-static
way, these authors observed a complete relaminarization of Newtonian turbulence in a narrow window of concentration,
followed by a reentrant transition to EIT. These observations bring to light two distinct self-sustenance mechanisms in
dilute polymer solutions, one that is suppressed by viscoelasticity (Newtonian turbulence) and one that is promoted
(elastoinertial turbulence).

Using computations of flowing dilute polymeric solutions in channel flow, Shekar et al. [18] shed critical insights into
the viscoelastic mechanisms underlying EIT. At fixed Re = 1500 and varying Wi, they observed a narrow zone of Wi
where the only attractor was the laminar base state. This separated drag-reduced Newtonian turbulence at lower Wi
and EIT at higher Wi, corroborating the experimental observations of [17]. Further, finite amplitude perturbations
were required to transition to EIT, indicating a new viscoelastic bypass transition route to EIT. By analyzing the
structures at EIT, they were able uncover clues into the nature of this transition. Close to its inception, EIT in this
parameter regime displayed polymer stretch fluctuations localized near the wall. To shed light on the origins of these
localized fluctuations, Shekar et al. [18] used a combination of linear stability analysis and resolvent analysis, which
quantifies the linear response of the system to external forcing in frequency space. In particular, they observed a clear
resemblance of the EIT structure in this parameter range to the viscoelastic Tollmien-Schlichting (TS) mode, which
at the chosen parameters was the slowest decaying mode from linear stability analysis. Similarly, resolvent analysis
predicted strong amplification of this structure in the presence of viscoelasticity. This strong amplification implies
that even very weak disturbances may be sufficient to trigger the nonlinear effects necessary to sustain EIT. The
viscoelastic TS mode displays polymer stretch fluctuations that are sharply localized to critical layers, i.e wall-normal
positions near the top and bottom walls where the streamwise velocity equals the real part of the wave speed. Critical
layers can be thought of as the most favorable positions for energy exchange between the mean and fluctuations,
because they are the positions where both have the same speed. These results indicate a role for TS-like critical layer
mechanisms at EIT. Indeed, the initial EIT computations of Samanta et al. [16], as well as followup computations
[19, 20] show strong localization of fluctuations in a layer near the wall. Sid et al. [21] later showed that EIT is
fundamentally 2D in nature by performing simulations in 2D channel flows. Relatedly, Haward et al. [22, 23] present
experiments and analysis for viscoelastic flow over a wavy wall that illustrate amplification of perturbations in the
critical layer.

Similar structures have been observed in a range of flow scenarios, indicating a robustness in the underlying
mechanisms. Near-wall localized, nearly-axisymmetric vortex and stress structures have been reported in pipe flow
simulations of EIT by Lopez et al. [24]. This near-wall nature of EIT in pipes was recently corroborated in
experiments by Choueiri et al. [25]. This is exactly what we would expect, if critical layers are also a strong source
of linear amplification in pipe flow, as they are in channel flow [26]. Indeed, Zhang [27] recently performed resolvent
analysis for pipe flow in the same parameter regime, demonstrating that the most amplified mode has strong stress
fluctuations localized in a critical layer near the wall, just as was found by Shekar et al. [18]. Simulations of
turbulent Couette flow by Pereira et al. [28] indicate a “pseudo-laminar state” with weak wall-localized fluctuations
as a precursor to the emergence of EIT. Again, the structures observed were nearly 2D, with near-wall localization.
Very recent computations by Zhu et al. [29] observe an intermittent process in drag-reduced turbulence involving
spanwise-oriented quasi-2D structures with critical layer characteristics and 3D quasistreamwise structures. While
the TS instability per se does not exist in pipe and plane Couette geometries, that fact does not preclude nonlinear
mechanisms with near-wall structure coming into existence at a finite amplitude to underlie EIT in these contexts.
We expand on this point below.

Given the 2D nature of EIT at transitional Re, Shekar et al. [15] studied the bifurcation scenario of 2D channel
flow EIT at Re = 3000 and its ties to nonlinear self-sustaining TS waves. In that study, the domain was chosen to
be five channel half-heights long, because at this length, self-sustaining nonlinear Tollmien-Schlichting waves exist
in the Newtonian case for Re & 2800 [30]. Some key results of this study that form the basis for the present work
are described below and summarized in Figure 1. At this parameter set, 2D EIT (upper branch of the red curve
on the bifurcation diagram of Figure 1a) comes into existence at Wi ≈ 13. A snapshot of the xx-component of
the polymer stretch, displaying tilted, multilayered sheets at EIT is shown in Figure 1b. These authors identify two
separate branches of attractors based on the TS mode. The first, (solid blue curve on Figure 1a), originates with the
Newtonian nonlinear traveling wave solution and loses existence above Wi ≈ 4. This solution branch is termed the
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Newtonian nonlinear Tollmien-Schlichting attractor (NNTSA); it develops a sheet of high polymer stretch that starts
out near the wall and arches away from it as shown in Figure 1c. This structure originates with the Kelvin cat’s
eye structure of TS waves, specifically its near-wall hyperbolic stagnation points (blue circles in Figure 1c). These
observations demonstrate the capability of nonlinear TS critical layer mechanisms in generating sheets of polymer
stretch.
The second solution branch (lower solid-red curve) with TS-like structure comes into existence at finite amplitude

when Wi ≈ 6. This branch, denoted the viscoelastic nonlinear Tollmien-Schlichting attractor (VNTSA), was first
found by starting with an initial condition at EIT, then lowering Wi below the threshold value Wi ≈ 13 noted above.
It has extremely weak fluctuations and seems likely to be related to the “pseudo-laminar” state observed by Pereira
et al. [28]. This state displays striations of polymer stretch localized at the critical layer (figure 1d) and is structurally
very similar to the linear TS mode at the same value of Wi, though it displays weakly chaotic rather than purely time-
periodic (traveling wave) fluctuations. The existence of such a state indicates the presence of a nonlinear viscoelastic
mechanism for self-sustenance of TS structure, an observation that has important implications in the broader context
of other flow scenarios such as pipe flow where no linear TS instability exists. On increasing Wi, the VNTSA develops
multilayered striations of polymer stretch before joining up with 2D EIT through an unstable branch indicated by
the red-dashed line in Figure 1a.
In the present work, we elaborate on the relationship between nonlinear Tollmien-Schlichting structures and elas-

toinertial turbulence. In section III A, we describe the evolution of the VNTSA as Re increases from 3000 to 10000.
We detail observations of a coil-stretch transition, with a jump in polymer stretching – almost two orders of magnitude
– when the local Wi at the hyperbolic stagnation point of the Kelvin cat’s eye structure crosses 1

2 . Accompanying this
transition is a structural change from localized striations to extended sheets. These form the necessary ingredients
for a process we coin the “sheet shedding process” responsible for generating multilayered sheets of polymer stretch,
a key characteristic of EIT. We describe this process at Re = 10000 and trace its origins in section III B. At this
Reynolds number, the Newtonian nonlinear Tollmien-Schlichting solution is directly connected to EIT as Wi increases.
Interesting intermittent dynamics occur along this branch, as described in Section III C. In Section IIID, we show
the robustness of these observations with respect to polymer extensibility and domain size. Finally, in section III E
we discuss the broader context of our results.

II. FORMULATION

This study focuses on two-dimensional pressure-driven channel flow with constant mass flux. The x and y axes are
aligned with the streamwise and wall-normal directions, respectively. Lengths are scaled by the half channel height l,
so the dimensionless channel height Ly = 2. The domain is periodic in x with length Lx. Velocity v is scaled with the
Newtonian laminar centerline velocity U ; time t with l/U , and pressure p with ρU2, where ρ is the fluid density. The
polymer stress tensor τ p is related to the polymer conformation tensor α through the FENE-P constitutive relation,
which models each polymer molecule as a pair of beads connected by a nonlinear spring with maximum extensibility
b.
We solve the momentum, continuity and FENE-P equations:

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2

v +
(1− β)

ReWi
(∇ · τ p) , (1)

∇ · v = 0, (2)

τ p =
α

1− tr(α)
b

− I, (3)

∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)T =

−1

Wi
τ p. (4)

Here Re = ρUl/(ηs + ηp), where ηs and ηp are the solvent and polymer contributions to the zero-shear rate viscosity.
The viscosity ratio β = ηs/(ηs + ηp). We fix β = 0.97 and b = 6400 for all results except in the last section where
we use b = 105. Since 1 − β is proportional to polymer concentration and b to the number of monomer units, these
parameters correspond to a dilute solution of a high molecular weight polymer. The Weissenberg number Wi = λU/l,
where λ is the polymer relaxation time.
For the nonlinear direct numerical simulations (DNS) described below, a finite difference scheme and a fractional

time step method were adopted for integrating the momentum equation. Second-order central differences were used for
spatial discretization, and second-order Adams-Bashforth and Crank-Nicolson methods were used for time-integration
of the convection and diffusion terms, respectively. The FENE-P equation was discretized using a high resolution
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FIG. 2: (a) L2-norm of α̂xx (blue) and corresponding mean local stretch rate at the hyperbolic stagnation point
(red) along the VNTSA branch at Wi = 10. Red-dashed line corresponds to Wiloc = λσmax = 1/2. (b) and (c) are
snapshots of the fluctuation structure of the solution branch at Re = 6000 and 8000 respectively. Shown are contour

lines of v̂ superimposed on color contours of α̂xx. Hereˆdenotes deviations from laminar base state. On (c), the
hyperbolic stagnation points in the traveling frame are indicated as blue dots, and the streamlines attached to them

as dashed curves with arrows indicating the direction of flow.

central difference scheme, the second-order Kurganov-Tadmor scheme [31–33], and, as in [33], time integrated with
forward Euler. No artificial diffusion was applied. A time step of 0.001 was used, corresponding to a Courant number
∼ 10−2. Further details and validation cases can be found in [34] and [35]. Resolution tests were performed to ensure
convergence of statistics. A typical resolution for the following results is (Nx, Ny) = (131, 602). This resolution used
was based on mesh convergence results at the highest Re and Wi (10000 and 13) considered here. When the resolution
was increased to (Nx, Ny) = (181, 702), the mean polymer stretch deviations from the laminar base state change by
less than 1%. We also perform computations in the shift-reflect symmetric subspace innate to the TS solution family.
These computations are done by simulating half the domain and applying the following symmetry to generate the
fields in the other half:

[

u v αxx αyx αyy αzz

]

(x + Lx/2, y, t) =
[

u −v αxx −αyx αyy αzz

]

(x,−y, t). (5)

III. RESULTS AND DISCUSSION

A. Viscoelastic Tollmien-Schlichting attractor: from Re = 3000 to 10000

The results presented in this section make the connection between the results of Shekar et al. [15] and the bulk
of the present work, which will focus on the attractor at Re = 10000. We begin by considering the evolution of the
VNTSA as Re is increased from 3000 to 10000 at fixed Wi = 10, Lx = 6.2. To find these solutions, an initial condition
of the laminar state perturbed by the linear TS mode was used to land on the attractor at Re = 3000, following which
the velocity and polymer stretch fields from the nonlinear TS attractor at a one Re were used as initial conditions
at a higher Re to trace out the evolution of the attractor from Re = 3000 to 10000. We then performed the same
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process but moving downward in Re from the solution at 10000 to verify that there is no hysteresis on this solution
branch upon changing Re. Note the difference in box size from the results in [15]. In the earlier study, Lx was chosen
based on the lowest Re for existence of finite amplitude nonlinear TS waves. In contrast, in the present work, Lx was
chosen to approximately correspond to the domain size at which the linear TS instability first appears (at Re = 5772)
[36]. This was done so that we could examine, as we do below, the behavior when the TS mode is linearly unstable
to explore the relationship between the NNTSA, VNTSA and EIT. Indeed, at the value Lx = 5 chosen in the earlier
work, the TS mode does not become linearly unstable at any Re.
The blue curve on Figure 2a quantifies the evolution of the VNTSA in Re using the time-averaged L2-norm of α̂xx

as a measure. Unless otherwise noted, all quantities reported here are time-averaged. With the attractor being weakly
chaotic, at least 3000 time units (TU) of data, and in some cases up to 6000 TU, is used to get an accurate estimate
of this quantity. The key observation is that in the range 6000 < Re < 8000, ||α̂xx||2 increases by several orders of
magnitude. Note that to capture this large change, a log scale is used. Figures 2b and c are representative snapshots
of the flow and polymer conformation fields, which illustrate the structural change accompanying this transition.
Throughout this manuscript, we report the deviations from the laminar state, rather than the total. Otherwise, for
cases where the TS structure is weak, especially in the case of α, it would not be discernible.
As at Re = 3000, the attractor at Re = 6000 (figure 2b) continues to display striations of weak polymer stretch

fluctuations that are localized near the wall, and closely resembles the linear TS mode. Apart from the obvious
quantitative differences, the attractor at 8000 (figure 2c) now displays a sheet of very strong polymer stretch emanating
from the near-wall stagnation point regions. Additionally, at Re = 8000 we see that, in the region near the bottom
wall where the wall-normal velocity is negative (roughly 1.6 < x < 4.6), the sheet of high stretching seems to have
broken into several smaller sheets, and similarly near the top wall where vy > 0. We elaborate below on the “sheet
shedding” process that leads to this structure, and how it connects the TS structure to EIT.
To shed insights into the nature of this transition, we examine the flow kinematics more quantitatively. Aside from

a very weak temporally nonperiodic component, the flow is a traveling wave displaying the characteristic Kelvin cat’s
eye streamlines, and the corresponding hyperbolic stagnation points, in the traveling frame. Denoting the largest
eigenvalue of the velocity gradient ∇v

T at these points as σmax, material lines near these points will stretch along
the unstable direction of the stagnation point as exp(σmaxt). Polymer molecules near these points will also stretch
exponentially if λσmax > 1/2 [37, 38]. Defining a local Weissenberg number Wiloc = λσmax, this criterion becomes
Wiloc > 1/2. Figure 2a reports estimates (red) of σmax vs. Re. Values are in the range 0.01 . σmax . 0.1 (in units
of U/l), indicating that Wiloc ≪ Wi. The origin of this difference in magnitude can be understood as follows: recall
that the laminar velocity field is everywhere a pure shear flow, for which the straining and vortical (symmetric and
antisymmetric) components of ∇v

T are equal, both of its eigenvalues are zero, it has only one eigenvector, [1, 0]T , and
material line stretching is everywhere linear in time, no matter how large Wi is. The velocity field of the VNTSA is
a relatively weak perturbation away from the laminar flow, and accordingly, the eigenvalues of the velocity gradient
tensor are weakly perturbed from zero: σmax ≪ 1 or equivalently Wiloc ≪ Wi. Furthermore, at the hyberbolic
stagnation points, the eigenvectors of ∇v

T (the unstable and stable directions) are nearly aligned, because they both
emerge from the single eigenvector [1, 0]T of the degenerate pure shear case. Figure 2c shows the positions of the
hyperbolic stagnation points (blue dots) and the streamlines emanating from these points at Re = 8000. Observe the
small angle between the streamlines entering and leaving the stagnation points, as well as the sheet of highly stretched
fluid oriented along the unstable direction. At Re = 6000 the angle is too small to see clearly so we opted not to show
the streamlines for that case.
Since the attractors are not pure traveling waves, the estimates of σmax in Figure 2a are based on time-averaging

over multiple snapshots sampled over the attractor. For a given snapshot, say at t = 2000, the fields at t = 1999 and
t = 2001 would be used to estimate the instantaneous wavespeed by calculating the streamwise distance the position
of the maximum wall normal velocity moves. This wavespeed is then subtracted off of the streamwise velocity to
yield the velocity field in the traveling frame, from which the stagnation point positions can be identified and σmax

estimated. The drastic change between Re = 6000 and 8000 coincides with Wiloc crossing the coil-stretch threshold
Wiloc = 1/2.

B. Re = 10000: Sheet-shedding and the evolution from TS waves to EIT

At Re = 3000, the solution branch described in the previous section loses existence as Wi is decreased to zero. In
contrast, at Re = 10000, the attractor presented in the previous section at Wi = 10 can be traced continuously and
non-hysteretically back to the Newtonian attractor on decreasing Wi. Thus, at these conditions, the NNTSA and
VNTSA are no longer distinct solution branches, so we simply refer to the TS attractor. Equally importantly, the
solution at Wi = 10 evolves, with a slight further increase in Wi, to EIT. That is, at Re = 10000, the Newtonian

nonlinear Tollmien-Schlichting solution evolves continuously to EIT as Wi increases.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

FIG. 3: (a) ||α̂xx||2 vs Wi at Re = 10000 for simulations in the full space and the shift-reflect subspace. Here, ‘A’
indicates asymmetry in the attractor in the full space. The upper and lower blue symbols at Wi = 11 and 12

indicate averages over the two metastable states intermittently visited by the dynamics at these Wi values. (b) - (i)
are snapshots of the fluctuation structure at the indicated Wi.

Figure 3a shows this evolution using ||α̂xx||2 as the measure. To generate the results in this section, initial conditions
of the laminar base state perturbed by the linear TS mode were used to land on the nonlinear attractor at each Wi.
Furthermore, a second set of runs were performed using the fields from the nonlinear attractor at a certain Wi as
initial conditions at higher or lower Wi. Results on both increasing and decreasing Wi were consistent with the first
set of runs, indicating the absence of hysteresis. Also shown on this plot are the standard deviations of this statistic
to give a sense of the temporal intermittency of the dynamics along the branch. Here, the results in the full space
(red) are shown along with the results in the shift-reflect (S-R) symmetric subspace (blue). The full space attractor
displays an increasing trend in ||α̂xx||2 from Newtonian to Wi = 8 followed by a decrease up to Wi = 11 and an
increase beyond that. The instantaneous dynamics of ||α̂xx||2 go from 2-torus dynamics up to Wi = 2 to mild chaos
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(a) (b)

(c) (d)

(e) (f)

FIG. 4: (a) - (f): snapshots of the fluctuation structure at Re = 10000, Wi = 4. Snapshots are taken from t = 4400
to 4410 every 2 time units respectively. Green lines correspond to v̂ = 0, i.e., where wall normal velocity changes

sign. Bottom half of the domain shown.

at Wi = 4. As Wi further increases, the dynamics get more complicated and reach a peak in intermittency around
Wi = 11. Here, intermittent bursts characterized by a sharp temporary increase in the instantaneous ||α̂xx||2 can be
seen as a persistent phenomena.
Many of the observations described in the full space carry forward to the S-R subspace up to Wi = 10. The same

non-monotonic trend in ||α̂xx||2 is accompanied by a temporal modulation around Wi = 4. In other words, the full
space attractor can be seen as a modification of the attractor in the S-R subspace. Beyond Wi = 10, the dynamics
in the S-R space alternate between two metastable states (indicated by vertical dotted lines) before settling on the
stable symmetric attractor at Wi = 13. We will expand on this observation in Section III C.
To get a sense of what underlies the dynamics, we now turn to the full-space flow structures at various values of

Wi. Snapshots of these structures are shown in Figures 3b-i. The Newtonian attractor (figure 3b) displays the usual
wall normal velocity contour lines across the channel height. At Wi = 2 (figure 3c), the attractor develops a sheet of
polymer stretch that starts near the wall and arches closer to the centerline. This is typical of the NNTSA structure
described in the Introduction and can be attributed to the Kevin cat’s eye critical layer kinematics of the attractor.
Going from Wi = 2 to 4, the attractor starts to display near-wall multilayered sheets, as seen between x ≈ 3 and
x ≈ 5 in Figure 3d. This effect gets more pronounced as we move along the branch, with Wi = 11 intermittently
displaying strong multilayered sheets (figure 3g) similar to those seen at EIT at Wi = 13 (figure 3i). Interestingly,
Wi = 12 displays strong multilayered sheets on one half of the channel with no particular preference towards either
half. (By symmetry, for every state with fluctuations localized near the top, there is a dynamically equivalent state
localized near the bottom. Asymmetric states similar to this have been observed in 2D Newtonian channel flow [39].)
The marked structural transition beyond Wi = 11 coincides with an increasing trend in ||α̂xx||2 in Figure 3a and
giving rise to the EIT branch beyond Wi = 11. We now describe the process through which this branch makes the
structural transition from a single sheet at low Wi to the multilayered sheets seen at EIT.
To elaborate on this sheet shedding process, we focus on the attractor at Re = 10000, Wi = 4, i.e., close to where

this process first comes into existence. Figures 4a to f cover one cycle of the process and correspond to t = 4400 to
4410 taken every 2 time units respectively. The following description focuses on the bottom half of the channel with
the same process taking place in the top half.
As the name suggests, this process involves the shedding of sheets of polymer stretch from the primary TS structure,

giving rise to multilayered sheets. The onset of this process involves the arched portion of the TS structure seen
between x = 0 and x ≈ 4. At the instant shown in (a), this arched section goes from a region of positive wall normal
velocity to negative. The locations where the wall normal velocity changes sign is shown using green lines as seen
near x ≈ 1.5. Going from instant (a) to (c), this arch gets weaker and stretches out due to the wall normal velocity
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 5: (a) - (j): snapshots of the fluctuation structure at Wi = 11. Snapshots are taken from t = 5230 to 5320
every 10 time units respectively. Same format as Figure 4.

pulling the arch towards the centerline for x . 1.5 and towards the wall beyond this region. Eventually, a piece of
this arch breaks off, i.e., it is “shed” as shown in (d) near the location where the wall normal velocity changes sign.
The next stage of the process has to do with these fragments that are shed, which get convected downstream faster

than the primary TS structure. This can be seen in (e). This difference has to do with the fact that the velocity
of the primary TS structure is dictated by the mean velocity at the critical layer while these fragments are closer to
the centerline, where the streamwise velocity is higher. As these fragments are convected, they are simultaneously
sheared, giving rise to the near-wall multilayered sheet seen in (f) between x ≈ 3 and x ≈ 6. The instant (f) is similar
to (a), and the process repeats. The time scale of the process is dictated by the dominant time scale of the attractor
with TS critical layer mechanisms at its core.
This process gets more pronounced as we move along this branch, and the statistical intermittency described earlier

corresponds to a structural intermittency due to the sheet shedding process excited by viscoelasticity. To show this,
Figure 5 depicts the structural intermittency observed at Wi = 11. Snapshots shown are taken every 10 TU - the
time scale at which we described the sheet shedding process at Wi = 4. The attractor goes from displaying a single
sheet of polymer stretch as seen in (a) to strong multilayered sheets at the instant (j) and back. The observed steps of
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FIG. 6: Power spectral density (PSD) of wall normal velocity at y = ±0.8 at the indicated Wi.

shedding-convecting-shearing now happen in a fashion that eventually gives rise to multilayered sheets. These near-
wall sheets observed during this intermittent process start to resemble those observed at EIT as described earlier.
These multilayered sheets take over the dynamics at Wi = 12, turning into EIT at Wi = 13.
To build on the evidence linking the TS attractor (up to Wi = 11) and EIT (beyond 11), Figure 6 shows the

power spectral density of wall normal velocity at y = ±0.8, with the following observations holding true at other
y locations. At Wi = 11 (blue), the spectrum is mainly composed of the fundamental TS frequency (red-dashed)
and its two higher harmonics (black-dashed). This is unsurprising, as TS-like flow structures characterized by wall-
normal velocity contour lines spanning the channel are a dominant feature of the attractor (evidenced by Figure 5).
Interestingly, the fundamental TS frequency (red-dashed vertical line) remains a prominent feature of the spectrum
even at Wi = 13 (brown) in spite of the obvious structural differences with Wi = 11. This points at TS-like mechanisms
dictating the dynamics even at EIT.
Looking at other statistics, Figure 7 shows the evolution of mean profiles of streamwise velocity (figure 7a), Reynolds

shear stress (figure 7b) and polymer shear stress (figure 7c) going from the Newtonian attractor to EIT. On increasing
Wi, the mean velocity profiles get increasingly uplifted from Newtonian (red) to Wi = 11 (purple) with the profile at
Wi = 4 (blue) very similar to the Newtonian one. EIT at Wi = 13 (green) displays a profile in between Newtonian
and Wi = 11. Turning to the Reynolds shear stress profiles, the Newtonian profile (red) displays a near-wall peak
corresponding to the critical layer of the TS wave. This points to a prominent role for critical layer behavior in
Reynolds shear stress production. Moving along the branch, the attractors continue to display this near-wall peak
with a monotonic decrease in magnitude until Wi = 13, where the Reynolds shear stress becomes negligible. Past
studies of EIT have reported reported similar observations [16, 18, 21]. While Reynolds shear stress dominates over
polymer shear stress at Wi = 4, the roles are completely reversed at EIT, with polymer shear stress being the main
source of turbulence generation. At Wi = 11, the above quantities are of similar magnitude thus indicating roles
of equal importance in self-sustenance. Further, the peak polymer shear stress at EIT loosely aligns with the peaks
at lower Wi. This hints at mechanisms originating from the TS attractor underlying the main source of turbulence
production at EIT. Taken together, these results provide direct indications of a connection between the TS attractor
and EIT.

C. Intermittent regime: analogy with relaxation oscillations

In the range 10 . Wi . 13, the amplitude of ||α̂xx||2 increases sharply and its temporal fluctuations are large. At
the beginning of this regime, the flow remains structurally similar to the TS wave, but with substantial sheet-shedding
(Figure 3f, Wi = 10) while at the end is found the full-blown EIT structure, with sheets occupying most of the channel
(Figure 3i). To gain some understanding of this transition, we focus on the dynamics in the shift-reflect subspace.
With this restriction, the intermittency and basic structural features of the full space simulations are found, while
the symmetry-breaking that leads to the degenerate, strongly asymmetric structures like that in Figure 3h will not
complicate matters.
Figure 8a shows the time evolution of the instantaneous value of ||α̂xx||2 from simulations in the S-R subspace at

Wi = 11, 12, and 13. While there are substantial fluctuations in the flows at 11 and 13, the behavior at Wi = 12
is quite distinct, displaying strong intermittency between two metastable states. A snapshot from the lower of these
states (Figure 8b) closely resembles a TS wave, while one from the upper (Figure 8b) looks like EIT. There is no
hysteresis in this scenario: if we use initial conditions at higher Wi to generate trajectories at lower Wi, we get the
same behavior as when we use initial conditions at lower Wi to generate trajectories at higher Wi.
The destabilization of one attractor (TS here) leading to a regime of intermittency followed by appearance of

another attractor with substantially different amplitude is typical of a dynamical system with multiple time scales
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FIG. 7: (a) Mean streamwise velocity profiles, (b) Reynolds shear stress profiles, (c) polymer shear stress profiles of
full space solutions. All profiles are shown as a function of distance from the wall 1− |y|.

with a pleated slow manifold and the possibility of rapid jumps between different, locally attracting, pleats [40]. In
particular, we draw an analogy with the following van der-Pol-type system:

ẋ =
1

ǫ
(y − (x3/3− x)), (6)

ẏ = a− x (7)

Here, a is the control parameter of the system and ǫ determines the ratio of time scales between the x and y
dynamics. The classical van der Pol system is recovered when a = 0. At each value of a, there is a unique steady state
(x, y) = (a, a3/3 − a). As ǫ → 0, this state is stable when a < −1 and a > 1, while in −1 < a < 1, there is a stable
limit cycle – a relaxation oscillation that jumps rapidly between positive and negative values of x. The bifurcations
are all supercritical so as in the above scenario there is no hysteresis. Figure 9 shows the x−dynamics of the system
for ǫ = 0.01 at different values of a. For a = −1.1 (maroon) and a = 1.1 (green), initial conditions settle on the stable
steady state x = −1.1 and x = 1.1, respectively. For a = 0 (purple), the system displays relaxation oscillations. The
observations presented in this section, taken in consideration with evidence of a link between TS and EIT, are entirely
consistent with a high-dimensional version of such relaxation oscillations between TS and EIT metastable states at
Wi = 12, which give rise to stable EIT at higher Wi.
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FIG. 8: (a) Instantaneous ||α̂xx||2 vs time at Re = 10000 in the shift-reflect symmetric subspace. (b) and (c) are
snapshots of the fluctuation structure of the TS (instant indicated by the black dot) and EIT (red dot) metastable

states respectively.

FIG. 9: Dynamics of x in the van der-Pol-type system described by Equations 6 and 7 for ǫ = 0.01 at the indicated
values of control parameter a.

D. Robustness in large spatial domains and very high polymer extensibility

Finally, we present results in other parameter regimes to portray the robustness of our observations. For each of
the below scenarios, we look at snapshots of the attractor for different levels of viscoelasticity.
First, we consider results at Re = 10000 in a large domain of size Lx = 31, i.e., five times the domain size used above.

Snapshots of the attractor are shown in Figure 10. At Wi = 6, the attractor displays a structure corresponding to
five spatial periods of the TS attractor in Lx = 6.2, with near-wall sheets and wall normal velocity across the channel.
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FIG. 10: Snapshots of the attractor at Re = 10000 in a box of size Lx = 31 at the indicated Wi. Contour plots
follow the same format as previous figures. Note the compressed scale in x.

Further, we can see clear evidence of the sheet shedding process at play. Here, different parts of the domain can be
at different stages of the process: i.e., there is spatio-temporal intermittency. For example, we see multilayered sheets
near x = 10 and sheet shedding near x = 25. At Wi = 13, we see EIT with strong multilayered sheets of polymer
stretch as we did for Lx = 6.2.
Now we consider the scenario at very high extensibility, b = 100, 000, with other parameters remaining the same.

Figure 11 depicts snapshots of the attractor for this case. At Wi = 4, the attractor corresponds to the TS attractor
in this parameter regime and displays the same characteristics as the attractor at lower extensibility. Further, the
attractor continues to exhibit the sheet shedding process that leads to multilayered sheets of polymer stretch. This
can be seen near x = 4. On increasing Wi, the TS attractor loses stability before giving rise to stable EIT. At Wi = 6,
the dynamics alternate between TS and EIT metastable states as shown in Figures 11b and c, respectively. This EIT
metastable state can sometimes be asymmetric and thus in agreement with the observations at Wi = 12, b = 6400.
These results are consistent with the relaxation oscillation scenario above with the bifurcation happening around
Wi ≈ 6 at this value of extensibility. At Wi = 13, we observe EIT.

E. Discussion: flow geometry and dimensionality

As with our prior study, Ref. [15], the present work is limited to two-dimensional flow in a plane channel. Given these
limitations, it is important to consider how they may be viewed in the broader context of turbulent drag reduction,
first with regard to how they may relate to the pipe flow geometry and then in the full context of three-dimensional
turbulence. These issues were discussed at some length in Ref. [15], so here we summarize that discussion and describe
some further issues in connection to very recent literature.
As noted in the Introduction, elastoinertial turbulence with very similar features has been observed in channel, pipe

and plane Couette flows. A natural question, then, is to what extent the above channel flow results are relevant to the
pipe flow case. While it is true of course that there is no linear instability of Newtonian pipe or plane Couette flows,
there are nevertheless “wall modes” with critical layer structure related to that of the TS mode [36]. Additionally,
critical layers are a strong source of linear amplification in those flows, as they are in channel flow [26]. Furthermore,
the absence of a Newtonian mechanism for nonlinear sustainment of Tollmien-Schlichting-like traveling waves does
not imply the absence of a viscoelastic mechanism. Indeed, Shekar et al. [15] showed the existence of just such a
mechanism. Furthermore, as noted in the Introduction, pipe flow [24] and plane Couette flow [28] simulations at EIT
display essentially two-dimensional velocity fluctuations localized near the wall that are similar to those reported in
channel flow, and resolvent analysis of viscoelastic pipe flow demonstrates strong linear amplification of modes with
near-wall critical-layer stress fluctuations [27].
At the same time, in more strongly viscoelastic regimes, Garg et al. [41] and Khalid et al. [42] have found a center

mode instability for pipe flow and channel flow respectively, in the Oldroyd-B limit. To put these results into context,
for Re = 10000, this instability comes into existence for Wi & 500 for β = 0.97 and Wi & 200 for β = 0.9 in either
geometry. [43] numerically converged nonlinear “arrowhead” structures originating subcritically from this instability
in channels at very low Re ∼ O(100), Wi ∼ O(10). Similar structures were observed in 2D simulations of EIT by
Dubief et al. [44] at very high viscoelasticity with Wi ∼ O(100). Choueiri et al. [25] also note the appearance of
“chevron” shaped structures resembling the unstable center mode in pipe flow at very low Re ∼ O(100) before being
taken over by near-wall modes on increasing Re. These results open up the possibility that other states unrelated to
the nonlinear excitation of a wall mode may also play a role at EIT in both channels and pipes, especially at very low
Re and high Wi. Nevertheless, the present work demonstrates a direct connection between a Newtonian wall mode
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FIG. 11: Snapshots of the attractor at Re = 10000 with b = 100, 000 at various Wi. At Wi = 6, the dynamics are
strongly intermittent; (b) and (c), respectively, are snapshots from the low-amplitude (TS) and large amplitude

(EIT) intervals. Format is the same as previous plots.

(the TS mode) and two-dimensional EIT structures.
We now turn to the topic of how the present results are related to the fully three-dimensional context of near-wall

turbulence. Newtonian turbulence is of course, strongly three-dimensional, with the dominant near-wall structure
comprised of coherent wavy streamwise vortices that to some extent can be modeled by so-called Exact Coherent
States (ECS) [14]. In particular, Li et al. [13] studied the bifurcation scenario for a particular family of channel
flow ECS ([45]) in a parameter regime close to that considered here. At Re = 1500, this ECS family is sufficiently
weakened by viscoelasticity to lose existence at Wi ≈ 16, somewhat above the value Wi ≈ 10 beyond which Newtonian
turbulence cannot self-sustain in the DNS study of [18]. (This discrepancy is consistent with what we know about
transition in the Newtonian case: channel flow turbulence is self-sustaining above Re ≈ 1000, while ECS can exist in
that case down to Re ≈ 660 [46].) Extrapolating slightly from the results of Li et al. [13], one can estimate that at
Re = 10000, this ECS family exists at least up to Wi = 25. Based the results above, we might expect that Wi & 13,
a mix of EIT-like and quasistreamwise structures might coexist, while once Wi > 25, two-dimensional EIT would
dominate. Consistent with this analysis, our preliminary work [47] as well as a number of other recent studies have
reported coexistence of EIT-like sheets and 3D quasistreamwise structures [17, 28, 29, 48–50]. How the 2D and 3D
structures interact is an important topic for future work.

IV. CONCLUSION

This study describes the evolution of the Tollmien-Schlichting (TS) attractor in Re−Wi parameter space and its
relationship to elastoinertial turbulence (EIT), using simulations of 2D channel flow of a very dilute polymer solution.
At Re = 3000, there is a solution branch with TS-wave structure but which is not connected to the Newtonian solution
branch. At fixed Weissenberg number, Wi and increasing Reynolds number, Re from 3000-10000, this attractor goes
from displaying a striation of weak polymer stretch localized at the critical layer as described in Shekar et al. [15] to
an extended sheet of very large polymer stretch. We show that this transition is directly tied to the strength of the
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TS critical layer fluctuations and can be attributed to a coil-stretch transition when the local Wi at the hyperbolic
stagnation point of the Kelvin cat’s eye structure of the TS wave exceeds 1

2 . At Re = 10000, unlike 3000, the
Newtonian TS attractor evolves continuously into EIT as Wi is increased from zero to about 13 – the two flows are
directly connected in parameter space. We describe how the structure of the flow and stress fields changes with Wi,
highlighting in particular a “sheet-shedding” process by which the individual sheets associated with the critical layer
structure break up to form the layered multisheet structure characteristic of EIT. Furthermore, in an intermediate
parameter regime a state of highly intermittent dynamics are observed: the flow behavior alternates between a state
with sheetlike stress fluctuations localized near the wall – the TS structure – to one with such structures present
across the channel, except near the centerline – EIT. To understand this regime, we draw analogies with relaxation
oscillator dynamics.

The linear instability to Tollmien-Schlichting waves does not arise for pipe or plane Couette flow, so the scenario
described here does not directly apply to those geometries. On the other hand, in these geometries elastoinertial
turbulence with very similar features does arise in simulations in the same general parameter regime: namely, fluc-
tuations localized in a layer near the wall, with a sheetlike stress structure and little to no activity in the center of
the flow [24, 28]. Furthermore, while linearly stable, wall modes analogous to the TS wave do exist in these other
geometries, and may be subject to nonlinear critical layer excitation, and subsequent evolution into EIT, just as the
TS mode is in the channel flow case.
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