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Fluid mixing usually involves the interplay between advection and diffusion, which

together cause any initial distribution of passive scalar to homogenize and ultimately

reach a uniform state. However, this scenario only holds when the velocity field is

non-divergent and has no normal component to the boundary. If either condition is

unmet, such as for active particles in a bounded region, floating particles, or for fil-

ters, the ultimate state after a long time is not uniform, and may be time dependent.

We show that in those cases of nonuniform mixing it is preferable to characterize

the degree of mixing in terms of an f -divergence, which is a generalization of rela-

tive entropy, or to use the L1 norm. Unlike concentration variance (L2 norm), the

f -divergence and L1 norm always decay monotonically, even for nonuniform mix-

ing, which facilitates measuring the rate of mixing. We show by an example that

flows that mix well for the nonuniform case can be drastically different from efficient

uniformly mixing flows.

I. INTRODUCTION

A. Uniform mixing

The standard paradigm for mixing in fluids is as follows [1–5]. Initially, some

passive scalar (such as red dye or virus particles) is inhomogeneously distributed in a

fluid. Given enough time, the dye would diffuse and spread uniformly throughout the

domain; stirring the fluid greatly enhances the speed of this homogenization process.
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The ultimate steady state is a fluid with uniform concentration of dye throughout

the domain.

The mathematical underpinning for this process is straightforward. The dye con-

centration θ(x, t) obeys the advection-diffusion equation

∂tθ + u · ∇θ = D∇2θ (I.1)

where the velocity field u(x, t) is non-divergent (∇ · u = 0), and D > 0 is the dye

diffusivity. Since a constant θ solves (I.1), we can assume without loss of generality

that
∫

Ω
θ dV = 0, that is, θ has zero mean over the bounded domain Ω. In that case

we find after a few integrations by parts

d

dt

∫
Ω

θ2 dV = −2D

∫
Ω

|∇θ|2 dV ≤ 0 (I.2)

where boundary terms vanish, assuming no-flux boundary conditions on θ. Equa-

tion (I.2) gives the evolution of the concentration variance or L2 norm of θ, and

the nonpositivity of the right-hand side shows that variance will decrease until θ

is a constant throughout the whole domain Ω. This constant vanishes because of

the zero-mean assumption, so the ultimate steady state is θ ≡ 0 everywhere. We

then declare the dye to be mixed. This argument makes no reference to the veloc-

ity u(x, t), since the terms involving it have integrated away. Equation (I.2) thus

cannot be used to get a useful estimate of the rate of mixing. Nevertheless, simply

having an equation such as (I.2) is essential in mathematical analysis since it guar-

antees mixing for long enough times, no matter what the form of u. It also validates

the common use of variance as a measure of the degree of mixing. The right-hand

side of Eq. (I.2) is called the variance dissipation, and the magnitude of its integrand

is a useful proxy for regions where mixing is most active.
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FIG. 1. In the presence of a suction flow, passive particles such as viruses accumulate near

a filter. The filter is permeable to fluid but not to particles.

B. Compressibility

When the fluid is compressible, the fluid density ρ(x, t) > 0 is solved for along

with the concentration θ(x, t), and instead of (I.1) we have the coupled equations

∂tρ+∇ · (uρ) = 0, ∂t(ρ θ) +∇ · (uρ θ) = D∇2θ. (I.3)

Notice that θ = const. is still a solution of (I.3), so the ultimate steady state remains

uniform. The concentration variance equation (I.2) becomes

d

dt

∫
Ω

ρ θ2 dV = −2D

∫
Ω

|∇θ|2 dV ≤ 0, (I.4)

again assuming no-flux boundary conditions on θ. The variance will relax to zero

over time, implying that θ(x, t) reaches the uniform mixed state. In that sense

compressible mixing is also an instance of a uniform mixing scenario.

Note that setting ρ = const. in (I.3) necessarily implies that ∇ · u = 0. Starting

in the next section we shall allow for cases where ∇ · u 6= 0, but where fluid density
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does not enter the problem. These cases are not the same as compressible mixing;

we shall usually refer to them as divergent flows to avoid confusion.

C. Nonuniform mixing

There was an implicit assumption when we stated that θ = const. is a steady

solution of (I.1): we required u · n̂ = 0 at the boundary ∂Ω. Furthermore, when

∇ · u 6= 0 we must modify (I.1) to read

∂tθ +∇ · (u θ) = D∇2θ (I.5)

to ensure that
∫

Ω
θ dV is conserved under no-flux boundary conditions. In order

for θ = const. to be a steady solution of Eq. (I.1) or (I.5), we require both u · n̂ = 0

at the boundary ∂Ω, as well as the non-divergence condition ∇ · u = 0. If either of

these conditions is not satisfied, then the steady state is not uniform in space. In

fact there may even be no steady state at all, in which case we instead refer to an

ultimate state, which is reached after a long time. We will define this ultimate state

more precisely later.

The no-penetration condition u · n̂ = 0 is usually quite reasonable: it says that

fluid doesn’t go through the walls. But in many relevant applications the fluid can go

through boundaries, even if the passive scalar cannot. We give two examples of such

a situation. (Note that we will use the term ‘passive scalar’ and ‘particles’ somewhat

interchangeably. We usually denote by θ a passive scalar that can have either sign,

and by p or n a particle density that cannot be negative.)

Particle filters. If the fluid is air and the passive scalar consists of virus par-

ticles, then a filter is a membrane that allows the passage of air but not of viruses

(hopefully). This is shown schematically in Fig. 1: the virus particles naturally accu-

mulate at the filter where u · n̂ > 0 due to the suction effect. In this type of situation
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the ‘mixed state’ is no longer uniform because of this accumulation.

Active particles. A popular model for 2D self-propelled active particles (so-

called Janus particles [6]) assumes that the particles move at a constant speed U , in a

swimming direction given by an angle φ that changes randomly with time [7, 8]. The

probability density of particles p(x, φ, t) obeys a Fokker–Planck (or Smoluchowski)

equation

∂tp+ (u + U q̂) · ∇p = D∇2p+Drot ∂
2
φp (I.6)

with q = (cosφ, sinφ) and rotational diffusion Drot. Equation (I.6) is exactly analo-

fous to (I.1), except that the domain Ω involves spatial coordinates x and the angle φ.

The fluid velocity u(x, t) obeys u · n̂ = 0 at boundaries, but the swimming veloc-

ity U q̂ does not: a particle may keep pushing against a boundary even after it makes

contact. (It is prevented from entering the wall by the no-flux boundary condition

on p.) Hence, the steady solution to Eq. (I.6) is not uniform: particles tend to

accumulate near boundaries, in a manner similar to the filter example above [9–11].

There are two other effects that can lead to nonuniform ultimate states: divergence

of the velocity (∇ · u 6= 0) and the presence of sources and sinks. We give examples

for each case.

Divergent velocity. Floating particles at the surface of the ocean are sub-

jected to the fluid velocity field u(x, t) evaluated at z = 0. Even though the three-

dimensional velocity satisfies ∇ · u = 0, the two-dimensional velocity at the surface

is in general divergent. In the long-time limit, particles will tend to congregate at

downwellings, where the divergence is negative. The ultimate state is thus nonuni-

form [12].

The same type of model applies to surfactants, which are concentration scalar

fields defined at the surface of a fluid. The equation for a surfactant concentra-
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tion θ(x, t) evaluated at a free surface is [13, 14]

∂tθ +∇s · (us θ) = D∇2
sθ − θ (∇s · n̂s)u · n̂s (I.7)

where ∇s is a gradient along the surface, us is the component of u parallel to the

surface, and n̂s is the unit normal to the surface. The source-sink term on the right

vanishes if the surface is flat (∇s · n̂s = 0) or if it is not moving (u · n̂s = 0). Even

though the three-dimensional velocity is non-divergent, the surface divergence ∇s ·us

is generally nonzero. Equation (I.7) thus has the form of Eq. (I.5), and the surfactant

concentration can achieve a nonuniform ultimate state.

Heating a room. In the winter, a closed room may be heated by a space

heater, which is a localized source of heat. A closed window somewhere else in the

room may act as a sink of heat. The equilibrium state is nonuniform: after a long

time, we still expect the temperature to be warmer near the heater, and cooler near

the window.

Whenever Eq. (I.5) fails to have a uniform steady state, we are dealing with

nonunform mixing : any initial condition θ(x, 0) still tends towards an ultimate state,

and stirring can accelerate this convergence. However, mixing must be defined with

respect to this ultimate state, not the uniform state. Note that this ultimate state

may be time-dependent, which challenges our natural notion of mixing even further.

Note that even if u · n̂ 6= 0 on the boundary ∂Ω, it is still typically the case that∫
Ω

ρu · n̂ dS = 0 (I.8)

where ρ is the fluid density. Equation (I.8) is a consequence of fluid mass conservation

inside Ω. However, we shall not assume that Eq. (I.8) is satisfied in our development,

since it is unnecessary, and there are cases where fluid mass might not be conserved

(for instance, if there is some external source of fluid, such as rain).
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D. Convergence to the ultimate state

When the variance equation (I.2) is modified to allow for a nonuniform ultimate

state, as described in Section I C, we will see that it no longer implies monotonic

convergence to that state, because of a nonvanishing term that is sign-indefinite.

Concentration variance becomes an unreliable measure of mixing, as least from a

mathematical viewpoint.

We will show that, in all cases where the ultimate state is nonuniform, the degree

of mixing is better captured by a kind of entropy function, related to the relative

entropy of information theory and statistical physics. This entropy function has a

time evolution that is always nonincreasing, no matter the subtleties of the system,

and therefore always predicts convergence to an ultimate state.

We also show that the L1 norm of θ satisfies

d

dt

∫
Ω

|θ| dV = −2D

∫
{θ=0}

|∇θ| dS ≤ 0 (I.9)

where the integral is taken over the zero level set of θ(·, t). Equation (I.9) holds

in the general case, unlike the variance equation (I.2) which depends on the non-

divergence ∇ · u = 0 and u · n̂ = 0 at the boundary ∂Ω. Thus, in general the L1

norm is preferable to the L2 norm as a measure of mixing, as we will make evident

by simple numerical examples. In fact we will show that L1 is the only Lq norm

(with 1 ≤ q ≤ ∞) having this monotonic decay property.

The main point of this article is that the non-divergence condition ∇ ·u = 0 and

no-penetration condition u·n̂ = 0 lead to a very special situation in that the ultimate

mixed state is uniform. This is not true if either of these conditions is violated; we

categorize the resulting situations as nonuniform mixing. We must then revise what

we mean by the rate of mixing: instead of defining it as the rate of approach to a

uniform state, it is preferable to use the rate at which any two initial states converge
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to each other.

Nonuniform mixing can be very different from traditional mixing. For example,

we will show by an example that a constant flow can be an exceedingly good mixer

in the presence of suction boundary conditions, whereas such a flow is essentially

useless for traditional mixing. The reason is that with the suction conditions the

flow presses particles against one wall, which leads to a rapid convergence of any two

initial conditions towards each other.

The presentation in this paper is unapologetically mathematical: the aim is to

present the precise underpinnings in (hopefully) an agreeable language, without the

rigorous burden of function spaces. In addition, the approach presented here relies

on some techniques common in the analysis of convergence in Fokker–Planck equa-

tions [15–21], which are standard in statistical physics but less well known in fluid

dynamics, even though the mathematical framework is similar. One major difference

is that in statistical physics one is typically less concerned with specific boundary

conditions, since the independent variables are often quantities like momenta, which

live in unbounded spaces. In contrast, here we shall pay particularly close attention

to the role of boundary conditions. Another difference is that much of the Fokker–

Planck literature involves cases where the steady state exists and is easily identified,

which will not be the case here for our more complicated, time-dependent examples.

It is worth noting that entropies have been used by several authors to quantify

fluid mixing; see for instance [22–30]. However, their approaches are usually based

on measuring statistical properties, whereas here we focus directly on differential

equations to get rigorous bounds. Entropy and mixing are also often studied in

the context of non-equilibrium thermodynamics, but in that case there is usually

an equilibrium state such as a Maxwell–Boltzmann distribution towards which the

system is tending. Our description will be more general and adapted to the context

of fluid mixing. Approaches based on topological entropy [31–33] are complementary
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but not closely related to ours, since they focus on properties of trajectories of u(x, t).

Our paper is organized as follows. In Section II we define the system and de-

rive some basic results. We consider the simplest ‘traditional’ case of non-divergent

flow with impermeable boundary conditions in Section III, and show that the time-

evolution equation for variance in that case predicts convergence to a uniform state.

In Section IV we relax both the non-divergence and impermeability conditions. Now

the ultimate state is no longer uniform, and may not even be steady. The variance

equation no longer implies convergence, due to the addition of a sign-indefinite term.

We remedy this by introducing the f -divergence associated with two probability

densities p1 and p2, a quantity that arises in information theory. (A special case

of the f -divergence is the relative entropy of p1 and p2.) We show that the time

evolution of the f -divergence is nondecreasing, and that it must eventually decrease

to zero.

We give some simple examples for flows that can be fully solved in Section V. In

particular, we show that a constant flow with suction boundary conditions can be

surprisingly effective at mixing. In Section VI we incorporate the effect of sources

and sinks. For those we need to slightly generalize the definition of f -divergence, and

we can still show convergence to an ultimate state. We discuss the time evolution of

the L1 norm in Section VII. Finally, we offer some concluding remarks in Section VIII.

II. A PARTICLE IN A CLOSED DOMAIN

Consider a particle in a closed, connected domain Ω. The particle could represent

a virus, or some molecule of a pollutant. The particle evolves according to a velocity

field (or drift) u(x, t) and a diffusion tensor D(x, t). The probability of finding the

particle in a small volume dVx centered on x is p(x, t) dVx, where the probability
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density obeys the Fokker–Planck equation

∂tp+∇ · F (p) = 0, x ∈ Ω, (II.1)

with the probability flux defined as

F (p) := u(x, t) p− D(x, t) · ∇p . (II.2)

The probability flux consists of an advective part and a diffusive part. In the fluid-

dynamical context Eq. (II.1) is called an advection-diffusion equation.

The probability density satisfies p ≥ 0 and
∫

Ω
p dV ≤ 1. (If the total probability is

less than one, then the particle might not be in the domain at all.) We can integrate

Eq. (II.1) over Ω and use the divergence theorem to get

d

dt

∫
Ω

p(x, t) dV = −
∫
∂Ω

F (p) · dS , (II.3)

where dS = n̂ dS, with n̂ the outward unit normal to the boundary ∂Ω. Equa-

tion (II.3) makes it clear that we can conserve total probability by requiring the

no-flux boundary condition

F (p) · n̂ = 0, x ∈ ∂Ω. (II.4)

It is important to note that we have not made any assumptions on u(x, t), other

than a bit of smoothness. In particular we did not assume ∇ · u = 0. In addition,

we did not assume u · n̂ = 0, so the boundary condition Eq. (II.4) is of mixed type

(i.e., a linear combination of p and ∇p).

We spoke of one particle in this section, but the description works equally well

for N non-interacting particles, with N fixed, or if p is a non-negative quantity such

as heat, appropriately normalized. Later in Section VI, we will introduce sources

and sinks, so that N will be allowed to vary.
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III. NON-DIVERGENT FLOW WITH IMPERMEABLE BOUNDARY

We make the additional assumptions

∇ · u = 0, x ∈ Ω, (III.1a)

u · n̂ = 0, x ∈ ∂Ω. (III.1b)

Equation (III.1a) is the non-divergence condition, and Eq. (III.1b) is the imperme-

ability condition. The no-flux boundary condition (II.4) reduces to n̂ · D · ∇p = 0.

Observe that, under conditions (III.1), Eq. (II.1) with boundary conditions (II.4)

has the steady solution p = ϕ, with

ϕ(x) = |Ω|−1, (III.2)

where |Ω| is the volume of Ω, so that
∫

Ω
ϕ dV = 1. The solution ϕ(x) = |Ω|−1 is called

the uniform density on Ω. Two important remarks are in order: (i) both conditions

in (III.1) are necessary for Eq. (III.2) to be a steady solution; (ii) Eq. (III.2) is a

steady solution even when u(x, t) and D(x, t) are explicit functions of time.

We define mixing as the tendency for any initial condition p(x, t0) to converge

to ϕ(x) as t → ∞. A traditional way of characterizing this convergence is to first

define the anomaly

θ(x, t) := p(x, t)− ϕ(x) (III.3)

so that
∫

Ω
θ dV = 0. The variance is then

∫
Ω
θ2 dV ; after a few integrations by parts,

we find that it evolves according to

d

dt

∫
Ω

θ2 dV =

∫
Ω

u · ∇θ2 dV − 2

∫
Ω

∇θ · D · ∇θ dV. (III.4)

The first integral on the right vanishes: from (III.1a) u · ∇θ2 = ∇ · (uθ2), followed

by the divergence theorem and then (III.1b). Next we require that there exists a
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constant σ > 0 such that

v · D(x, t) · v ≥ σ|v|2 > 0, for all vectors v, (III.5)

i.e., the operator ∇· (D ·∇p) is uniformly elliptic. With (III.5), Eq. (III.4) now gives

d

dt

∫
Ω

θ2 dV ≤ −2σ

∫
Ω

|∇θ|2 dV ≤ −2σλ

∫
Ω

θ2 dV (III.6)

where in the last step we used the Poincaré–Wirtinger inequality ‖∇θ‖2
2 ≥ λ ‖θ‖2

2

for a mean-zero function θ [34]. The constant λ > 0 depends only on the domain Ω.

Grönwall’s lemma then yields the bound∫
Ω

θ2(x, t) dV ≤ e−2σλ(t−t0)

∫
Ω

θ2(x, t0) dV (III.7)

which goes to zero as t→∞. We conclude that θ → 0, or p→ ϕ. Thus the ultimate

fate of any initial p(x, t0) is to be homogenized until the probability of finding the

particle anywhere in Ω is uniform. The rate at which this happens is of order 2σλ,

though this is generally an underestimate. In practice, the action of u(x, t), called

stirring, amplifies gradients so that∇θ in Eq. (III.4) can be much larger than required

by the Poincaré–Wirtinger inequality. Nevertheless, Eq. (III.7) is useful in that it

proves that variance must converge to zero. What we have just described is the basic

idea of what is traditionally meant by mixing in the fluids community.

What can happen if we violate the uniform ellipticity condition Eq. (III.5)? For

example, consider the heat equation

∂tp = T ′(t)∇2p (III.8)

with time-dependent diffusion coefficient D(t) = T ′(t). If T ′(t) ∼ t−α for large time,

then the uniform ellipticity condition is violated when α > 0. We can rescale and

use T as a time coordinate, in which case we expect a long-time exponential decay

of the form

p(x, t)− |Ω|−1 ∼ e−γT (t) , (III.9)
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where γ is the asymptotic decay rate for T ′(t) = 1. Since T (t) ∼ t−α+1, we see that p

will fail to converge to the uniform density for α > 1. Thus, the condition (III.5) is

only sufficient: there may still be convergece to equilibrium even if it is not satisfied.

IV. DIVERGENT FLOW OR PERMEABLE BOUNDARY

The situation described in Section III is straightforward: for any velocity field u(x, t)

and diffusion tensor D(x, t), we can expect convergence to a uniform density as long

as conditions (III.1) and (III.5) are satisfied. Now we investigate what happens when

either the flow is divergent (Eq. (III.1a) not satisfied), or when there is suction of

fluid through the boundary (Eq. (III.1b) not satisfied).

First consider the autonomous case where u(x, t) → u(x), and D(x, t) → D(x).

Then there is an equilibrium density ϕ(x) > 0 that satisfies

∇ · (uϕ− D · ∇ϕ) = 0, x ∈ Ω; F (ϕ) · n̂ = 0, x ∈ ∂Ω (IV.1)

and is normalized:
∫

Ω
ϕ dV = 1. We can then define the anomaly as we did in

Eq. (III.3); the only difference is that the reference state ϕ(x) is no longer uniform.

The variance evolution equation (III.4) is still valid, but now the first integral term

on the right now longer vanishes. This term is not sign-definite: this means that we

can no longer conclude from this equation alone that variance must decay. In fact,

variance does eventually decay, but it might not do so monotonically. Equation (III.4)

alone is not enough to conclude that p converges to ϕ.

It would be convenient, then, to have a quantity other than variance that does

decay monotonically in this general case. To that end, consider the f -divergence of

two normalized probability densities p1(x) and p2(x) [35, 36]:

Hf [p1, p2] :=

∫
Ω

p2 f(p1/p2) dV. (IV.2)
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Here f : R≥0 → R is an arbitrary convex function with f(1) = 0. The f -divergence

is non-negative; indeed, since p2 is a probability density, by Jensen’s inequality for

the convex function f we have

Hf [p1, p2] ≥ f

(∫
Ω

(p1/p2) p2 dV

)
= f(1) = 0. (IV.3)

The f -divergence is zero if and only if p1 ≡ p2; Hf [p1, p2] measures how different p1

and p2 are from each other—hence the name ‘divergence.’ The f -divergence is not

generally a metric for probability densities, since Hf [p1, p2] 6= Hf [p2, p1], though for

certain choices of f it can be made symmetric (see below).

We now further assume that f is strictly convex and twice-differentiable. If

each pi(x, t) evolves according to Eq. (II.1), with no-flux boundary condition (II.4),

we show in Appendix A that

Ḣf [p1, p2] = −
∫

Ω

p2 f
′′(p1/p2)∇(p1/p2) · D · ∇(p1/p2) dV ≤ 0 (IV.4)

since f ′′ > 0 for a strictly convex function. For D satisfying (III.5), notice that the

right-hand side of (IV.4) is zero if and only if p1 ≡ p2. Hence, any two solutions

to ∂tp = −∇ ·F (p) converge to each other; in the autonomous case they converge to

the fixed point p = ϕ.

We emphasize that Eq. (IV.4) holds for any divergent flow, possibly with suction

boundary conditions, with time-dependent u and D. In that sense the f -divergence

is a better descriptor of mixing than variance: it monotonically decreases for any

flow. The evolution equation (IV.4) also suggests how to define mixing in the non-

autonomous context: p1 and p2 converge to some ultimate state ϕ(x, t), which is

‘locked’ to the time-dependence of u and D. Thus, the main characteristic of mixing

is not that it leads to a homogeneous state, but rather that it leads to a state that has

completely forgotten the initial condition. This ultimate state must be unique (for

connected Ω), otherwise (IV.4) leads to a contradiction. Unfortunately, extracting
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an explicit bound on the decay rate from (IV.4) is much more challenging than it was

in the case of variance in Eq. (III.7), and is still a topic of ongoing research [17–20].

The discussion of Hf so far did not depend on a choice of the convex function f

in (IV.2), as long as it exists. A simple choice for f is

f(u) = u log u, f ′′(u) = 1/u, (IV.5)

which corresponds to the relative entropy or Kullback–Leibler divergence (KLD),

denoted by HKL(p1, p2) [37] [38]:

HKL(p1, p2) =

∫
Ω

p1 log(p1/p2) dV. (IV.6)

The KLD can be interpreted as the amount of information lost when p2 is used to

approximate p1. The KLD bounds the L1 norm by Pinsker’s inequality :

‖p1 − p2‖2
1 ≤ 2 log 2HKL(p1, p2). (IV.7)

However, HKL(p1, p2) is not symmetric in p1 and p2, and is unbounded when p2 van-

ishes anywhere in Ω. (We will discuss the time evolution of ‖p1−p2‖1 in Section VII.)

A slightly more involved choice for f is

f(u) = 1
2
u log u− 1

2
(1 + u) log[1

2
(1 + u)] f ′′(u) = (2u (1 + u))−1, (IV.8)

which leads to the Jensen–Shannon divergence (JSD), denoted by HJS(p1, p2) [39]:

HJS(p1, p2) = 1
2
{HKL(p1, p12) +HKL(p2, p12)}

= 1
2

∫
Ω

{p1 log(p1/p12) + p2 log(p2/p12)} dV (IV.9)

where p12 := 1
2
(p1 + p2). The JSD is symmetric in p1 and p2, and its square root is a

metric. Moreover, it is bounded:

HJS(p1, p2) ≤ 1
2
(log 2) ‖p1 − p2‖1 ≤ log 2. (IV.10)
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An intuitive interpretation of the JSD is not so straightforward, and will not be

needed here; see for instance [39].

One remark is in order: notice that in (IV.2) and (IV.4) there are several divisions

by p2, which should rightfully worry the reader since potentially p2 could vanish at

some points, for instance at the initial time. However, for any positive time p2

immediately becomes strictly positive, because of diffusion. See the discussion in

Arnold et al. [17, p. 161] for more careful considerations.

V. ONE-DIMENSIONAL EXAMPLES

To summarize the previous sections: for a velocity field u(x, t) and diffusion

tensor D(x, t), we seek solutions to the advection-diffusion equation (II.1) with no-

flux boundary conditions (II.4). Then the possible scenarios, in increasing order of

complexity, can be characterized as follows.

1. If both conditions in (III.1) hold, then the uniform density is ϕ(x) = 1/|Ω|.

This is true whether or not u and D are explicitly time-dependent (i.e., au-

tonomous or non-autonomous). In this case the variance evolution equa-

tion (III.4) is sufficient to directly show convergence to the uniform state.

2. If either condition in (III.1) is unsatisfied, then there are two cases:

(a) For u and D time-independent (autonomous), any initial p(x, t0) con-

verges to a nonuniform invariant density ϕ(x).

(b) For u and D time-periodic with period τ ,

u(x, t) = u(x, t+ τ), D(x, t) = D(x, t+ τ), (V.1)

any initial condition p(x, t0) converges to a periodic limiting invariant

density ϕ(x, t), with ϕ(x, t) = ϕ(x, t+ τ).
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(c) For u and D time-dependent (non-autonomous), any initial condition p(x, t0)

converges to a time-dependent limiting invariant density ϕ(x, t).

In case 2 the f -divergence evolution equation (IV.4) can be used directly to

show convergence to ϕ(x, t).

Since case 1 is familiar from the traditional view of mixing, we will give explicit

examples for the subcategories of case 2.

A. Example of case 2(a): Convergence to a nonuniform density

Consider a simple one-dimensional model where the domain Ω = [0, L], the ve-

locity u = U x̂, and (D)ij = D δij, with U and D constants. Then (II.1) simplifies

to

∂tp+ U∂xp−D∂2
xp = 0, 0 < x < L (V.2)

with no-flux boundary conditions

Up−D∂xp = 0, x = 0, L. (V.3)

This may be regarded as a simple model of a filter: the flow is non-divergent and

can pass through the membranes at x = 0 and L, but particles cannot cross those

membranes. Since the velocity and diffusivity are time-independent, Eq. (V.2) has

the invariant density

ϕ(x) =
U

D

eUx/D

eUL/D − 1
. (V.4)

The flow pushes particle against the boundary at x = L (for U > 0), creating a

boundary layer of thickness D/U .

Now we solve the initial value problem for Eq. (V.2). This is most generally

done in terms of the Green’s function p = P (x, t |x0, t0) = P (x, t− t0 |x0, 0), which
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satisfies (V.2)–(V.3) with initial condition P (x, t0 |x0, t0) = δ(x− x0). The solution

is not completely straightforward, since the PDE is not self-adjoint, but it can be

obtained using Laplace transforms as

P (x, t |x0, t0) = ϕ(x) +
D

L3

∞∑
n=1

e−γn(t−t0)

2γn
φUn (x)φ−Un (x0), (V.5)

with

φUn (x) = eUx/2D{2πn cos(nπx/L) + (|U |L/D) sin(nπx/L)} (V.6)

and decay rates

γn = D (πn/L)2 + U2/4D. (V.7)

The Green’s function is plotted in Fig. 2. The relaxation rate to the invariant den-

sity ϕ(x) is given by γ1, which is considerably enhanced by the constant flow U :

the second term U2/4D is dominant for UL/D > 2π. Thus, unlike in ‘traditional’

mixing problems, a constant velocity can accelerate mixing substantially (though

for a large domain size there could be an initial transient before the concentration

reaches the wall). This acceleration is due to the flow squashing the concentration

field against the boundary. Superficially, this does not sound like mixing, but it is in

the sense that it causes the scalar field p(x, t) to quickly forget its initial condition

and converge to the invariant density ϕ(x).

B. Example of case 2(b): Convergence to a time-periodic density

To illustrate convergence to a time-periodic invariant density ϕ(x, t), we use the

same system (V.2)–(V.3) as in the previous example. We mimic a time-periodic

flow by reversing the direction of u = ±U x̂ at every half-period τ/2. (This could

represent the air flow reversing direction as a mask-wearer inhales and exhales.)
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FIG. 2. The Green’s function (V.5) with x0 = 1/4, plotted at different times for D = L = 1

and (a) U = −4; (b) U = 4. The ultimate state is the invariant density Eq. (V.4).

Thus, the density p(x, t) at time t is evolved to time t+ 1
2
τ by

p(x, t+ 1
2
τ) =

∫ L

0

PU(x, 1
2
τ |x0, 0) p(x0, t) dx0 (V.8)

where PU is the Green’s function (V.5); then, for the next half-period, we evolve the

density with a flow u = −U x̂ to the left:

p(x, t+ τ) =

∫ L

0

P−U(x, 1
2
τ |x′0, 0) p(x′0, t+ 1

2
τ) dx′0

=

∫ L

0

Pτ (x |x0) p(x0, t) dx0 (V.9)

where the period-τ kernel is

Pτ (x |x0) :=

∫ L

0

P−U(x, 1
2
τ |x′0, 0)PU(x′0,

1
2
τ |x0, 0) dx′0 . (V.10)

Note that t in Eq. (V.9) is not arbitrary but is aligned with period boundaries:

t = tk = kτ , for integer k. Equation (V.9) maps the density p(x, tk) to the beginning
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of the next period at time tk+1 = (k + 1)τ . The invariant density ϕ(x, tk) may be

found from

ϕ(x, tk) =

∫ L

0

Pτ (x |x0)ϕ(x, tk) dx0 (V.11)

which is a Fredholm integral equation of the second kind. Here ϕ(x, tk) is the periodic

invariant density evaluated at the start of a period. Even for this simple time-periodic

example it is not straightforward to compute ϕ(x, tk), or the rate of convergence

to ϕ(x, tk).

In Fig. 3 we show a numerical solution of Eq. (V.9), for two different initial

conditions: the first (p1(x, 0)) has particles initially concentrated on the right side

of the interval, and the second (p2(x, 0)) on the left. The two solutions rapidly

converge to each other after about 3 periods. The ultimate state ϕ(x, t) may be

considered ‘mixed’ even if it is not uniform. In Fig. 4 we compare the time evolution

of variance
∫

Ω
|p1 − p2|2 dV to the Jensen–Shannon divergence (IV.9). The variance

is not at all monotonic: it oscillates about a decreasing trend. The JSD is nice and

monotonic, which makes it much easier to assign a numerical value to the decay rate.

C. Example of case 2(c): Convergence to an aperiodic density

A simple way to produce an example that is neither steady nor time-periodic is

to add some randomness [40]. Recall that in the periodic example of Section V B

we imposed a flow U x̂ to the right for a time 1
2
τ , followed by a flow −U x̂ to the

left for a time 1
2
τ , to obtain a period-τ map. One simple way to randomize this

process is to select for every time interval [tk, tk + τ) a uniform independent random

number αk ∈ [0, 1], and impose a flow to the right for a time αkτ , followed by a flow

to the left for a time (1− αk)τ . The kernel Eq. (V.10) is then replaced by

Pτ,αk
(x |x0) :=

∫ L

0

P−U(x, (1− αk)τ |x′0, 0)PU(x′0, αkτ |x0, 0) dx′0 (V.12)
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FIG. 3. Density p(x, t) the periodic flow of Section V B, for two different initial conditions.

The two initial conditions converge to the same periodic pattern ϕ(x, t) after about 3

periods. Here the period τ = 0.05 and drift U = 20, for a domain of width L = 1 and with

diffusivity D = 1. The vertical lines indicate period boundaries, and the dashed lines are

half-periods when the flow switches from right to left.

and the map from time tk to tk+1 = tk + τ is

p(x, tk + τ) =

∫ L

0

Pτ,αk
(x |x0) p(x0, tk) dx0 . (V.13)

In Fig. 5 we show a numerical solution of Eq. (V.13), for two different initial

conditions, which rapidly converge to each other after about 3 periods. The ultimate

state ϕ(x, t) is ‘mixed’ even though it is neither uniform nor periodic. In Fig. 6

we compare the time evolution of variance
∫

Ω
|p1 − p2|2 dV to the Jensen–Shannon
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FIG. 4. Variance or L2 norm (solid line), squared L1 norm (dotted line), and Jensen–

Shannon divergence (dashed line) between the two solutions in Fig. 3. The variance is

nonmonotonic, whereas the L1 norm and HJS decreases monotonically.

divergence (IV.9). Much like the periodic case, the variance is not at all monotonic,

whereas the JSD relentlessly decreases towards zero.

VI. SOURCES AND SINKS

A. Varying the number of particles

So far the number of particles was fixed. Now consider the particle den-

sity n(x, t) ≥ 0 (also sometimes called particle number or number density), which

obeys the equation

∂tn+∇ · F (n) = Q(x, t;n), x ∈ Ω, (VI.1)
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FIG. 5. Density p(x, t) the random flow of Section V C, for two different initial conditions.

The two initial conditions rapidly converge to the same random pattern ϕ(x, t). The vertical

lines indicate period boundaries tk, and the dashed lines are the random times tk + αkτ

when the flow switches from right to left. Parameter values are as in Fig. 3.

with the particle flux F (n) = un− D · ∇n defined as in (II.2). The particle density

differs from the probability density p(x, t) in that the number of particles

N(t) =

∫
Ω

n(x, t) dV (VI.2)

is not 1, and can change with time. The number of particles N(t) is not in general

an integer. This can either be interpreted as a small error when N is very large,

or n/N can be interpreted as a probability.

The source-sink function Q(x, t;n) is not completely arbitrary: it must preserve
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FIG. 6. Variance or L2 norm (solid line), squared L1 norm (dotted line), and Jensen–

Shannon divergence (dashed line) between the two solutions in Fig. 5. The variance is

nonmonotonic, whereas the L1 norm and HJS decreases monotonically.

the positivity of n. There is an asymmetry between adding and removing particles:

we can always add particles, but we can only remove particles if there are particles

present. One common form of Q that naturally enforces this is

Q(x, t;n) = S(x, t)−K(x, t)n, S ≥ 0, K ≥ 0 (VI.3)

for given non-negative functions S and K. The source S creates particles indis-

criminately, but the sink −Kn vanishes as n → 0. Of course, more general forms

than (VI.3) are possible.

The same considerations for the interior source-sink apply to the flux at the bound-

ary: we should not remove particles if there are none present. Thus, we write for the

boundary flux

q(x, t;n) = −F (n) · n̂ = s(x, t)− k(x, t)n, s ≥ 0, k ≥ 0, x ∈ ∂Ω (VI.4)
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for given non-negative boundary functions s and k. The minus sign in front of F · n̂

in (VI.4) is because n̂ is an outward normal, so F (n) · n̂ > 0 corresponds to particles

leaving the domain Ω.

Using Eqs. (VI.1) and (VI.2) and the definition of q in (VI.4), we see that the

time evolution of N satisfies

Ṅ =

∫
Ω

Q dV +

∫
∂Ω

q dS (VI.5)

where the first term is the ‘bulk’ source of particles, and the second is the flux of

particles across the boundary of Ω.

B. Convergence to asymptotic state

In Section IV we showed that, for one particle (or equivalently a fixed number of

noninteracting particles) we can use the f -divergence to prove that any two initial

conditions will converge to the same ultimate state ϕ(x, t). The ultimate state may

be nonuniform and time-dependent, but what characterizes it is that it is independent

of the initial condition: it is an asymptotic state.

Having now allowed for sources and sinks in Section VI A, we can ask about

defining ϕ(x, t) in that case. After all, adding and removing particles should not

prevent two arbitrary initial conditions from converging to each other, as long as

they are subjected to the same sources and sinks.

We define the difference θ = n1 − n2 between any two solutions of Eq. (VI.1).

The squared-integral of θ obeys an equation analogous to the variance evolu-

tion Eq. (III.4):

d

dt

∫
Ω

θ2 dV =

∫
Ω

u · ∇θ2 dV − 2

∫
Ω

∇θ · D · ∇θ dV

− 2

∫
Ω

K θ2 dV − 2

∫
∂Ω

k θ2 dV. (VI.6)
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The source S does not enter the equation; the last two terms are new but they are

nonpositive, so they promote convergence to an equilibrium. However, the same

sign-indefinite term involving the integral of u ·∇θ2 appears on the right. This term

does go away under the non-divergence and impermeability assumptions (III.1), in

which case (VI.6) is enough to conclude convergence to an ultimate state ϕ(x, t),

independent of initial condition.

However, in the divergent or permeable case, we have the same problem as before:

the presence of a sign-indefinite term prevents us from guaranteeing convergence. A

generalization of the f -divergence (IV.2) is needed, with a time evolution that allows

us to conclude convergence. We tentatively define

Hf [n1, n2] =

∫
Ω

n2 f(n1/n2) dV. (VI.7)

This is not strictly speaking an f -divergence, since n1 and n2 are not normalized

probability densities. The proof from Eq. (IV.3) that Hf is positive now reads

Hf [n1, n2] = N2

∫
Ω

f(n1/n2) p2 dV ≥ N2f

(∫
Ω

(n1/n2) p2 dV

)
= N2f(N1/N2)

where Ni =
∫

Ω
ni dV , and pi = ni/Ni are normalized probability densities. Hence, to

guaranteeHf [n1, n2] ≥ 0 we must add the additional requirement that f ≥ 0, which is

satisfied by the Jensen–Shannon choice (IV.8) for f . (To satisfy f ≥ 0, the Kullback–

Leibler choice (IV.5) can simply be modified to read f(u) = u log u−u+ 1, in which

case Hf is sometimes called the physical relative entropy.) With this additional

constraint on f , we have Hf [n1, n2] = 0 if and only if n1 ≡ n2.

With the same approach as in Appendix A we can show that the time evolution
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of Hf [n1, n2] is given by

Ḣf [n1, n2] = −
∫

Ω

n2 f
′′(n1/n2)∇(n1/n2) · D · ∇(n1/n2) dV

−
∫

Ω

(Kn2f(n1/n2) + S gf (n1/n2)) dV

−
∫
∂Ω

(kn2f(n1/n2) + s gf (n1/n2)) dS ≤ 0, (VI.8)

where

gf (u) := (u− 1)f ′(u)− f(u) ≥ 0, gf (1) = 0. (VI.9)

The inequality in (VI.8) follows from the positivity of ni, the strict convexity of f

(f ′′ > 0), the positive-definiteness of D, the non-negativity of f , K, S, k, s, and

the inequality (VI.9). (The latter is easy to prove: a differentiable convex function

satisfies f(x) ≥ f(y)+(x−y)f ′(y) for all x, y, since its graph is above all its tangents;

set x = 1 and y = u and use f(1) = 0.) The right-hand side of (VI.8) vanishes if

and only if n1 = n2.

VII. TOTAL VARIATION DISTANCE AND L1 NORM

As an alternative to the f -divergence, another measure of convergence of two

densities is the total variation distance (or variational distance), which is equivalent

to 1
2
‖p1 − p2‖1 [37], where ‖·‖1 is the L1 norm on Ω. Compare the evolution of

‖p1 − p2‖2
1 to the concentration variance ‖p1 − p2‖2

2 in Figs. 4 and 6. Notice that

the L1 norm, much like Hf , decays monotonically, exhibiting none of the troublesome

oscillations of the L2 norm (variance). In this section we will show that the L1 norm

does indeed always decrease monotonically, so that it is a more reliable measure of

mixing than the L2 norm for nonuniform mixing.

We shall prove this for two general number densities n1 and n2 obeying Eq. (VI.1)

with the source-sink (VI.3), and with boundary conditions (VI.4). Let θ = n1 − n2,
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which satisfies ∂tθ = −∇·F (θ)−Kθ and F (θ)·n̂ = k θ on ∂Ω. For any function G(θ),

we have

d

dt

∫
Ω

G(θ) dV =

∫
Ω

G′′(θ) θu · ∇θ dV −
∫

Ω

G′′(θ)∇θ · D · ∇θ dV

−
∫

Ω

G′(θ)Kθ dV −
∫
∂Ω

G′(θ) kθ dS (VII.1)

which is a generalization of Eq. (VI.6). Now let G(θ) = |θ|, so that G′(θ) = sgn(θ)

and G′′(θ) = 2δ(θ). With that choice, Eq. (VII.1) becomes

d

dt
‖θ‖1 = 2

∫
Ω

δ(θ) θu · ∇θ dV − 2

∫
Ω

δ(θ)∇θ ·D · ∇θ dV −
∫

Ω

K|θ| dV −
∫
∂Ω

k|θ| dS.

The first term on the right vanishes since the delta function forces θ = 0; for the

second term, we can turn the volume integral into a surface integral [41, Theorem

6.1.5]:

d

dt
‖θ‖1 = −2

∫
{θ=0}

∇θ · D · ∇θ dS

|∇θ|
−
∫

Ω

K|θ| dV −
∫
∂Ω

k|θ| dS ≤ 0, (VII.2)

where the first integral is over the zero level set of θ(·, t). We conclude that the total

variation distance 1
2
‖n1 − n2‖ does indeed decrease monotonically, as was apparent

from the earlier numerical simulations. (The level-set integral in Eq. (VII.2) appears

in approaches based on tracer coordinates [42].)

The ‘proof’ presented here relies on the apparently strong assumption that |∇θ| 6=

0 on the zero level set of θ. However, the uniform ellipticity bound (III.5) implies

that −∇θ · D · ∇θ/|∇θ| ≤ −σ|∇θ|, so singular points limit nicely to zero in the

integrand. In Appendix B we show that the L1 norm is the only Lq norm that

decays monotonically in the nonuniform mixing case.

One possible advantage Eq. (VII.2) has over the corresponding equation (VI.8)

for the f -divergence is that it shows convergence even when the source S(x, t) is

negative, since the source has dropped out of (VII.2) completely. However Eq. (VI.8)
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suggests that a positive source can actually improve the rate of convergence. Another

weakness of Eq. (VII.2) compared to (VI.8) is that the its right-hand side is difficult

to compute: it requires tracking of the zero level set, which is a challenging problem

in practice because of resolution and changes in topology. By comparison, the right-

hand side of Eq. (VI.8) is readily computed and regions of large entropy production

can be identified from the magnitude of the integrands.

VIII. DISCUSSION

The traditional view of mixing in non-divergent flow is that a stirred passive

scalar will ultimately be homogenized to a uniform concentration. As we discussed,

this requires both non-divergence of the velocity field and no-penetration boundary

conditions. If either condition is violated, the ultimate state of the mixing process is

no longer uniform, and may in fact be time-dependent for non-autonomous systems,

where u or D are explicit functions of time. We refer to these systems as nonuniform

mixing, because the passive scalar may be mixed even though its concentration is

not uniform. Such nonuniform situations will arise in the presence of filters, which

are membranes that permits the passage of fluid but not of particles (passive scalar).

Using the standard concentration variance as a proxy for mixing is less useful for

nonuniform mixing, since the variance is not necessarily a monotonically-decreasing

function of time. Of course, variance will eventually decrease to zero even in nonuni-

form mixing (as long as it it defined appropriately), but the excursions it undertakes

can make it hard to ascribe a rate of mixing to the system (see Figs. 4 and 6). In-

stead of concentration variance, a more reliable proxy for mixing is the f -divergence,

which is related to relative entropy. Instead of relying an initial condition to become

uniform, we define the rate of mixing in terms of the rate at which two arbitrary

densities p1(x, t) and p2(x, t) approach each other. They will eventually both con-
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verge to an ultimate density ϕ(x, t), which is independent of the initial condition.

The f -divergence picture is easily adapted to cases with sources and sinks.

The connection between the f -divergence and mix-norms [4, 43, 44] is not com-

pletely clear. Mix-norms are used as a diagnostic for mixing, and are not guaranteed

to decay monotonically for the types of examples presented here. Their behavior

is thus probably more closely related to that of concentration variance than to f -

divergence, though they have the advantage that they decay even when the diffusivity

is set to zero, which renders them more useful for optimization [45–49]. Perhaps there

is a hybrid approach that could marry the advantages of both.

Finally, note that nonuniform mixing suggests a different type of mixing optimiza-

tion problem, where the goal is to decrease spatial or temporal variations of ϕ(x, t)

itself rather than the rate of approach to ϕ(x, t). This was investigated previously for

source-sink systems [50–53], but it could be effected in any problem involving nonuni-

form mixing. For example, a flow could be designed to minimize the concentration

of viruses near a filter, in order to minimize the effect of inevitable imperfections in

the membrane.
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Appendix A: Derivation of Eq. (IV.4)

Write ∂tpi = −∇·F (pi), with F (p) := u p−D·∇p, and consider a domain Ω ⊂ Rn

with F (pi) · n̂ = 0 on ∂Ω. Then by direct differentiation of Eq. (IV.2):

Ḣf [p1, p2] =

∫
Ω

(
∂tp2 f(p1/p2) + p2 f

′(p1/p2)
(
∂tp1/p2 − p1 ∂tp2/p

2
2

))
dV

= −
∫

Ω

(∇ · F (p2) f(p1/p2) + f ′(p1/p2)(∇ · F (p1)− (p1/p2)∇ · F (p2))) dV.

We integrate by parts, and two terms containing f ′(p1/p2)F (p2) · ∇(p1/p2) cancel.

We are left with

Ḣf [p1, p2] = BT[p1, p2] +

∫
Ω

p−1
2 f ′′(p1/p2)∇(p1/p2) · (p2F (p1)− p1F (p2)) dV (A.1)

with the boundary terms

BT[p1, p2] = −
∫
∂Ω

f(p1/p2)F (p2) · n̂ + p−1
2 f ′(p1/p2)(p2F (p1)− p1F (p2)) · dS.

The boundary terms vanish when F (pi) · n̂ = 0 on ∂Ω. Also,

p2F (p1)− p1F (p2) = p2(u p1 − D · ∇p1)− p1(u p2 − D · ∇p2)

= −p2D · ∇p1 + p1D · ∇p2

= −p2
2 D · ∇(p1/p2). (A.2)

Inserting (A.2) into (A.1) recovers Eq. (IV.4).

Appendix B: Decay of Lq norms

For 1 ≤ q ≤ ∞, does any Lq norm other than q = 1 decay monotonically? If we

put G(θ) = |θ|q in Eq. (VII.1), then for q even we have G(θ) = θq, G′(θ) = qθq−1,

and G′′(θ) = q(q − 1)θq−2, and find

d

dt
‖θ‖qq = q(q − 1)

∫
Ω

θq−1 u · ∇θ dV − q(q − 1)

∫
Ω

θq−2∇θ · D · ∇θ dV (B.1)
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where we set K = k = 0 for convenience. The first term on the right is not sign

definite for any even q, so none of these norms will necessarily decay monotonically.

For q odd, we have that G′(θ) = qθq−1 sgn(θ) and G′′(θ) = 2qθq−1δ(θ) + q(q −

1)θq−2 sgn(θ), and Eq. (VII.1) becomes

d

dt
‖θ‖qq = q(q − 1)

∫
Ω

θq−2|θ|u · ∇θ dV

− 2q

∫
Ω

θq−1δ(θ)∇θ · D · ∇θ dV − q(q − 1)

∫
Ω

|θ|q−2∇θ · D · ∇θ dV. (B.2)

For q = 1 this reduces to Eq. (VII.2); for q > 1 we have

d

dt
‖θ‖qq = q(q − 1)

∫
Ω

θq−2|θ|u · ∇θ dV − q(q − 1)

∫
Ω

|θ|q−2∇θ · D · ∇θ dV. (B.3)

and again the first term is not sign-definite. We conclude that the L1 norm is the

only such norm that exhibits a monotonic decay to zero in the nonuniform mixing

case.
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