
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Resolvent analysis of stratification effects on wall-bounded
shear flows

M. A. Ahmed, H. J. Bae, A. F. Thompson, and B. J. McKeon
Phys. Rev. Fluids 6, 084804 — Published 11 August 2021

DOI: 10.1103/PhysRevFluids.6.084804

https://dx.doi.org/10.1103/PhysRevFluids.6.084804


Resolvent analysis of stratification effects on wall-bounded shear

flows

M. A. Ahmed,1, ∗ H. J. Bae,2, 1, † A. F. Thompson,3, ‡ and B. J. McKeon1, §

1Graduate Aerospace Laboratories, California

Institute of Technology, Pasadena, CA 91125, USA

2Institute of Applied Computational Science,

Harvard University, Cambridge, MA 02138, USA

3Geophysical and Planetary Sciences,

California Institute of Technology, Pasadena, CA 91125, USA

(Dated: July 26, 2021)

1



Abstract

The interaction between shear-driven turbulence and stratification is a key process in a wide

array of geophysical flows with spatio-temporal scales that span many orders of magnitude. A

quick numerical model prediction based on external parameters of stratified boundary layers could

greatly benefit the understanding of the interaction between velocity and scalar flux at varying

scales. For these reasons, here, we use the resolvent framework [McKeon and Sharma, J. Fluid

Mech., 658 (2010)] to investigate the effects of an active scalar on incompressible wall-bounded

turbulence. We obtain the state of the flow system by applying the linear resolvent operator to

the nonlinear terms in the governing Navier-Stokes equations with the Boussinesq approximation.

This extends the formulation to include the scalar advection equation with the scalar component

acting in the wall-normal direction in the momentum equations [Dawson, Saxton-Fox and McK-

eon, AIAA Fluid Dynamics Conference, 4042 (2018)] . We use the mean velocity profiles from a

direct numerical simulation (DNS) of a stably-stratified turbulent channel flow at varying friction

Richardson number Riτ . The results obtained from the resolvent analysis are compared to the

premultiplied energy spectra, auto-correlation coefficient, and the energy budget terms obtained

from the DNS. It is shown that despite using only a very limited range of representative scales, the

resolvent model is able to reproduce the balance of energy budget terms as well as provide mean-

ingful insight into coherent structures occurring in the flow. Computation of the leading resolvent

models, despite considering a limited range of scales, reproduces the balance of energy budget

terms, provides meaningful predictions of coherent structures in the flow and is more cost-effective

than performing full-scale simulations. This quick model can provide a further understanding of

stratified flows with only information about the mean profile and prior knowledge of energetic

scales of motion in the neutrally-buoyant boundary layers.

I. INTRODUCTION

Stratification plays an important role in both atmospheric and oceanic flows, and in

particular, near boundaries, it has a significant effect on turbulence production, propagation,
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and decay. The interaction between shear-driven turbulence and stratification is a key

process in a wide array of relevant geophysical flows for which the spatio-temporal scales

span many orders of magnitude. In the atmosphere, stable boundary layers can be generated

by the advection of warm air over a colder surface. Stably-stratified atmospheric boundary

layers are observed during clear nights as a result of radiative cooling of the ground surface

[3, 4]. Oceans, unlike the lower atmosphere, are heated from above and are stably-stratified

outside of small regions of localized convection [5, 6]. This stable stratification shapes many

aspects of ocean turbulence although sampling is considerably sparser than the atmosphere

[7].

Classical understanding of stably-stratified boundary layers is well described in a number

of textbooks [8–11] and reviews [12, 13]. However, fundamental features of the stably-

stratified turbulent boundary layer still remain elusive from a modeling standpoint. The

strong intermittency observed in stable boundary layers causes the upper portion of the

boundary layer to decouple from the near-wall region due to the inhibition in vertical mixing

[10, 14, 15]. Strong stable stratification also significantly changes the flow structures preva-

lent in a boundary layer with additional features becoming prominent such as large-scale

intermittency, gravity waves and Kelvin-Helmholtz instabilities [14], and the near parallel

downstream tilting of flow structures [16–18]. At the interface between the boundary layer

and an outer stratified region, a pycnocline can develop with the stratification principally

acting to limit the boundary layer height [19].

One way to study the stably-stratified turbulent boundary layer is through on-site ex-

periments. Researchers in the past decades have conducted field experiments in the stably-

stratified atmospheric boundary layer to study turbulent energy budgets [20], heat and

momentum transfer [21], regime characterization [14, 22], flow structures [16], and the com-

plexities of atmospheric stable boundary layers [23]. Measurements of turbulence quantities

in the ocean near the bottom boundary are difficult to measure and as such the literature

is sparse. Smedman et al. [24], using data from a marine coastal experiment over the Baltic

sea, found that the near-wall turbulence was virtually independent of forcing from large-

scale structures embedded in the flow. Experiments performed in the northern bay of San

Francisco [25] found that active turbulence is confined near the wall. Bluteau et al. [26]

conducted a 21-day field study of the stratified flow dynamics near the bottom boundary

on the continental slope of the Australian North West Shelf (NWS); the authors found
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that measurements closest to the seabed were described by the log law-of-the-wall, and that

stratification had very little influence on turbulent shear production near the seabed. Fur-

thermore, their results showed that the production of turbulence weakened further from the

seabed as the local buoyancy frequency increased. Additionally, tidal channel experiments

[27] demonstrated that the production of turbulent kinetic energy is generally greatest near

the bottom boundary while the buoyancy flux is weakest in this region. Still, real-world

atmospheric and oceanic boundary layers are complicated by non-turbulent motions occur-

ring simultaneously on a variety of scales, such as wave motions [28] or tidal bores [29], the

possible importance of radiative flux divergence of the air within the boundary layer, surface

condensation, and variable cloudiness [12, 13, 30]. In order to isolate instances where the

secondary effects are minimized, restrictions on nonstationarity or conditions on the mini-

mum allowed value of turbulence energy may be applied to the data collected. Nonetheless,

certain assumptions that are applied for analyses of these real-world stratified boundary

layers are not always valid. As such, researchers supplement their work with laboratory

experiments as well as simulations.

Laboratory experiments of stratified wall-bounded flows show that buoyancy effects play

an important role in the transfer of heat and momentum in both the inner and outer layers

of the boundary layer [31–35]. In general, the experiments show that with increasing strat-

ification, the turbulence shear production rate is strongly affected by buoyancy and greatly

reduced far from the wall. One measure of stratification strength is the local gradient

Richardson number, Rig. Since shear originates at the wall, the local gradient Richardson

number, which is inversely proportional to the shear, is generally smaller in the near-wall

region as the shear term overpowers the buoyancy term. The stabilizing effect of stratifica-

tion has a greater impact farther from the wall. Indeed, works listed here demonstrated that

velocity fluctuations become weaker further from the wall, and in some cases, turbulence

intensity is reduced as the buoyancy frequency in the system is increased. Additionally, the

experiments of Komori et al. [34] show that the correlation coefficients associated with the

Reynolds shear stress approach zero at values of Rig ' 0.2− 0.3.

There have been many large-eddy simulations (LES) [37–42] and direct numerical simula-

tions (DNS) [43–47] of density stratified channel flows. The results support the experimental

observations: strengthening the stratification leads to the reduction (or even suppression)

of turbulent velocity fluctuations further from the wall. Garg et al. [37] showed in their
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work that the mean velocity profiles of the stratified channel were similar in the near-wall

region but differed in the logarithmic region. The difference is characterized by a reduc-

tion in the value of both the slope of the log-law of the mean velocity and the gradient of

the mean velocity profile. It should be noted that the authors used the friction Richard-

son number to categorize the stratification strengths investigated in their simulations and

concluded that the friction Richardson number is superior to the local gradient Richard-

son number in characterizing flow regimes as it is a global flow property. There have also

been DNS studies of homogeneous stably-stratified flow which exhibit similar results [48–50].

Holt et al.[50] found that as the gradient Richardson number increases, the production and

turbulent kinetic energy decrease. Their results also demonstrated that the production of

streamwise velocity fluctuations at low gradient Richardson numbers is due to the down-

gradient Reynolds stress. Furthermore, the kinetic energy is redistributed to the spanwise

and vertical components via pressure-strain interactions.

Previous research has also shown that stable stratification inhibits the self-sustained pro-

cesses that exist in turbulent channel flows, studied by, e.g., [51, 52]. The coherent motions

that persist during the self-sustaining processes exist as quasi-streamwise roll vortices in

the sublayer and they take the form of hairpin vortices and double roller eddies above the

sublayer. Bakas et al.[53] found that the energy of the roll structures is suppressed by stable

stratification compared to neutral stratification. In addition, Eaves and Caulfield[54] demon-

strated that stable stratification disrupts the self-sustaining processes through an inhibition

of vertical motions.

Performing experiments (both on-site and in laboratories) of stratified wall-bounded tur-

bulence can be challenging for reasons such as topography or secondary effects and simula-

tions suffer from computational constraints. Moreover, laboratory experiments and simula-

tions can attain only a limited range of Reynolds and Richardson numbers that are often

orders of magnitude smaller than real-world geophysical phenomena. A quick numerical

model prediction of key features of stratified boundary layers could greatly benefit the un-

derstanding of the interaction between velocity and scalar flux at varying scales. Recently,

works targeted towards reconstructing velocity fields from a few spatial probe measurements

and resolvent modes have been successful [55–57]. While these studies have been focused on

incompressible neutrally buoyant cases, we expect the methodology to extend to stratified

flows as well. For these reasons, in this paper, we aim to explore the interaction between
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velocity and scalar fluctuations using the resolvent model [1].

The resolvent model provides an optimal basis, in an energy sense, that allows an in-depth

comparison of the underlying mechanisms in the flow. Moreover, the model is computation-

ally efficient where only the singular vectors corresponding to the largest singular value are

required to obtain the leading order model. Resolvent analysis has been widely applied to a

range of flow configurations to identify dominant flow structures and the underlying forcing,

e.g. Ref. [1, 58–63], and has been reviewed in detail in Ref. [64] and Ref. [65]. The resol-

vent model does not need a priori knowledge of the flow fluctuations and the assumption of

white-noise forcing is often employed. Recently, Morra et al.[66] performed DNS of unstrat-

ified turbulent channel flows at Reτ = 179 and used the cross-spectral density to quantify

the nonlinear forcing term. They showed that the nonlinear forcing is structured and the

resulting resolvent response modes are in very good agreement with DNS data. Similarly,

Nogueira et al.[63] also showed that the forcing is structured in turbulent plane Couette

flow.

We use the model to provide analysis of the flow using only mean quantities, which are

easy to obtain even in field experiments, along with knowledge from the energetics of the

unstratified case, which is better documented than the stably-stratified case. The predictions

from the resolvent model are then compared to the flow statistics from a DNS of a stably-

stratified turbulent channel flow. Note that we do not compute the nonlinear forcing term

from DNS to use as input in the resolvent model. The Reynolds number under consideration

in the current study is considerably lower than those observed in geophysical flows, which

is dictated by the available DNS data for comparison, rather than by the resolvent model.

Resolvent analysis of unstratified wall-bounded flows shows that the results of the model are

still relevant for moderate Reynolds numbers [67] with the resolvent modes in the logarithmic

layer showing self-similar behavior. We expect the capability of the model in stably-stratified

regimes to extend to higher Reynolds numbers as well.

The paper is organized as follows. In §II, we introduce the resolvent framework with the

inclusion of the scalar advection-diffusion equation and discuss the relevant energy norm,

boundary conditions, and computational methods. In §III A, we examine the sensitivity

of the low-rank properties of the resolvent operator to the stable stratification strength

and compare these properties with the most energetic scales in each flow. In §III B, we

analyze the characteristics of the forcing and response modes of both velocity and scalar.
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We compare the mode shapes with correlations obtained from DNS data. In §III C, we

study the turbulent kinetic energy budget in the resolvent formulation and compare the

results with the energy budget obtained from the DNS data. Finally, our conclusions on

the application of the resolvent framework to a stably-stratified boundary layer are given in

§IV.

II. MODELING ACTIVE SCALAR DYNAMICS IN THE NAVIER-STOKES EQUA-

TIONS

A. Navier-Stokes equation with active scalar

We consider a density-stratified turbulent channel flow where the density acts in the

direction of gravitational acceleration. We use a Cartesian coordinate system x = (x, y, z)

such that the force of gravity acts in the −y direction, with x, y and z being the streamwise,

wall-normal, and spanwise directions, respectively. The governing equations are given by

the non-dimensional Navier-Stokes equation under the Boussinesq approximation,

∂ũ

∂t
+ (ũ · ∇)ũ = −∇p̃+

∇2ũ

Reτ
−Riτ ρ̃ey, (1a)

∂ρ̃

∂t
+ (ũ · ∇)ρ̃ =

∇2ρ̃

ReτPr
, (1b)

∇ · ũ = 0. (1c)

Here, ũ = (ũ, ṽ, w̃) is the instantaneous velocity vector in the reference system (x, y, z),

t is time, p̃ is the kinematic pressure field that remains after removing the part that is in

hydrostatic balance with the mean density field, ρ̃ is the density deviation from the reference

density ρ0 (ρ̃ � ρ0), and ey is the unit vector acting in the y-direction. The velocity and

length scales are non-dimensionalized using the friction velocity uτ and channel half-height

δ, respectively, and the density is non-dimensionalized using ∆ρ, the difference in density

between the two channel walls. We define the walls to be located at y = 0 and y = 2. The

non-dimensional quantities are given by the Reynolds, Prandtl, and Richardson numbers,

defined as

Reτ =
uτδ

ν
, Pr =

ν

γ
, Riτ =

g∆ρδ

ρ0u2τ
, (2a, b, c)

where ν is the kinematic viscosity, γ is the molecular diffusivity of density, and g is the

acceleration due to gravity.
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B. Resolvent framework with an active scalar

The total fields ũ, p̃ and ρ̃ can be split into mean and fluctuating parts as

ũ(x, t) = u(y) + u(x, t), (3a)

p̃(x, t) = p(y) + p(x, t), (3b)

ρ̃(x, t) = ρ(y) + ρ(x, t), (3c)

where the mean is taken in the homogeneous directions, x and z, and time. Note that

u = (ū, v̄, w̄) and v̄ = w̄ = 0. We substitute the decomposed variables into Eq. (1) to obtain

the fluctuation equations

∂tu+ (u · ∇)u+ (u · ∇)u = −∇p+
∇2u

Reτ
−Riτρey + fu (4a)

∂tρ+ (u · ∇)ρ+ (u · ∇)ρ =
∇2ρ

ReτPr
+ fρ, (4b)

∇ · u = 0, (4c)

where fu = −u · ∇u and fρ = −u · ∇ρ are the nonlinear terms.

Taking the Fourier transform of the fluctuation equations above in homogeneous direc-

tions and time, the variables can be expressed as
u(x, y, z, t)

p(x, y, z, t)

ρ(x, y, z, t)

 =

∫∫∫ ∞
−∞


û(y; kx, kz, ω)

p̂(y; kx, kz, ω)

ρ̂(y; kx, kz, ω)

 ei(kxx+kzz−ωt)dkxdkzdω, (5)

for k = (kx, kz, ω) 6= (0, 0, 0), where (̂·) denotes the Fourier transformed variables. Here, the

streamwise and spanwise wavenumbers are kx and kz, respectively, and ω is the temporal

frequency defined as ω = ckx, where c is the wavespeed. The streamwise and spanwise

wavelengths are defined as λx = 2π/kx and λz = 2π/kz, respectively. Critical-layers can

be identified when the wavespeed c is equivalent to the mean velocity, i.e. yc is the critical

layer location for wavespeed c = u(yc). Assuming the mean velocity and density profiles are

known, the fluctuations equations are expressed compactly in a linear equation as

−iωq̂ −Aq̂ = f̂ , (6)

where we define q̂ = [û v̂ ŵ p̂ ρ̂]T as the state vector and f̂ = [f̂u f̂v f̂w 0 f̂ρ]
T as the forcing
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vector. The linear operator is given by

A =



A −∂u/∂y 0 −ikx 0

0 A 0 −Dy −Riτ
0 0 A −ikz 0

−ikx −Dy −ikz 0 0

0 −∂ρ/∂y 0 0 Aρ


, (7)

where

A = −ikxu+
∆̂

Reτ
, (8a)

Aρ = −ikxu+
∆̂

ReτPr
, (8b)

Dy is the wall-normal derivative operator and ∆̂ ≡ Dyy − k2⊥ is the Laplacian with k2⊥ =

k2x + k2z . The block matrix A describes the linear dynamics of the system. Equation (6) can

be rearranged to yield

q̂ = H(k) f̂ , (9)

where H(k) = (−iωI − A)−1 is the resolvent of the linear operator and I is the identity

matrix. A related analysis has been performed in Ref. [68].

From Eq. (9), we wish to find a decomposition of the resolvent operator that enables

us to identify high gain input and output modes with respect to the linear operator. For

resolvent analysis, this is given by the Schmidt decomposition. However, this decomposition

must be accompanied by a choice of inner product and the corresponding norm. The natural

and physically meaningful norm is given by the non-dimensionalized energy norm, which is

the sum of kinetic and potential energies [69, 70]

1

2
‖q‖2E =

1

2
(q, q)E =

1

2

∫ 2

0

(u∗u+ v∗v + w∗w +Riτ (ρ
∗ρ)) dy, (10)

where (·)∗ denotes the conjugate transpose.

We perform the Schmidt decomposition of the resolvent operator H to generate a basis

based on the most highly amplified forcing and response directions such that

H(k) =
∞∑
j=1

σj(k)ψ̂j(y;k)φ̂∗j(y;k), (11)

where the right and left Schmidt bases (or singular vectors in the discrete case) are given by

φ̂j and ψ̂j along with their corresponding gains σj. The singular values are in descending
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order such that σ1 ≥ σ2 ≥ · · · ≥ 0. The forcing and resolvent modes are orthonormal such

that

(φ̂j, φ̂k)E = (ψ̂j, ψ̂k)E = δjk, (12)

where δjk denotes the Kronecker delta. The basis pair defined above is used to decompose

the nonlinear forcing and response field at a specified wavenumber triplet as

f̂(y;k) =
∞∑
j=1

φ̂j(y;k)χj(k), (13a)

q̂(y;k) =
∞∑
j=1

χj(k)σj(k)ψ̂j(y;k). (13b)

Here, χj is a projection variable that is obtained by projecting the nonlinear forcing onto

the forcing modes and subsequently use to weight the response modes. Note that the largest

energy is obtained when the forcing is aligned with the leading singular vector, i.e. when χj =

δj1. While the values of χj may be obtained from time-resolved flow fields, for simplicity, we

assume white-noise forcing in the wall-parallel directions and time throughout the paper.

C. Computational approach

1. Mean velocity and density profiles

Mean velocity and density profiles are required to close the resolvent model. We obtain

the one-dimensional mean velocity and density profiles from a DNS of a stratified turbulent

channel at Reτ = 180 for a wide range of Riτ . The simulations are performed by discretizing

the incompressible Navier-Stokes equations with a staggered, second-order accurate, central

finite-difference method in space [71], and an explicit third-order accurate Runge-Kutta

method for time advancement [72]. The system of equations is solved via an operator

splitting approach [73]. The code has been verified for neutrally-buoyant cases in Ref.

[74, 75].

Periodic boundary conditions are imposed in the streamwise and spanwise directions, the

no-slip and no-penetration condition with ρ̃ = 0 is applied at the bottom boundary, and

a no-slip and no-penetration condition with ρ̃ = 1 is applied at the top boundary. The

streamwise, wall-normal, and spanwise domain sizes are Lx = 4π, Ly = 2, and Lz = 2π

respectively. The grid spacings in the streamwise and spanwise directions are uniform with
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TABLE I. Comparison of our DNS and the results of Garćıa-Villalba & del Álamo [47] denoted

under columns titled GV11, both at Reτ = 180. ReB is the bulk Reynolds number defined as

uBδ/ν where the bulk velocity is uB =
∫ 2
0 udy/2. RiB is the bulk Richardson number which is

defined as RiB = g∆ρδ/(2ρ0u
2
B). Nu is the Nusselt number defined as Nu = 2δqw/(γ∆ρ), where

qw is the density flux at the wall. For laminar flow Nu = 1.

ReB RiB Nu

Riτ GV11 DNS GV11 DNS GV11 DNS

0 2820 2823 0.000 0.000 6.03 6.08

10 - 2970 - 0.018 - 4.78

18 3043 3060 0.031 0.031 4.02 4.15

60 3436 3473 0.082 0.081 2.80 2.82

100 - 3850 - 0.109 - 2.37

∆x+ = 8.8 and ∆z+ = 4.4; non-uniform meshes are used in the wall-normal direction,

with the grid stretched toward the wall according to a hyperbolic tangent distribution with

min(∆y+) = 0.31 and max(∆y+) = 5.19, where the superscript + indicates length scales

in wall units normalized by ν/uτ rather than δ. A constant pressure gradient is applied to

drive the flow. The simulation was run over 100 eddy-turnover times, defined as δ/uτ , after

transients. The mean quantities computed from the simulations are statistically stationary

and converged.

The work of Garćıa-Villalba & del Álamo [47] at Reτ = 180 is used to validate the

results. The comparison of a few key quantities is shown in Table I, which indicates a

good agreement for all Richardson numbers. The mean and root-mean-squared streamwise

velocity and density profiles are shown in Fig. 1 for all current cases and select cases from

Ref. [47] and show good agreement among all statistics. The mean profiles are linearly

stable in each case.
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FIG. 1. Mean (a) streamwise velocity and (b) density profiles and root-mean-square (r.m.s.) (c)

streamwise velocity and (d) density profiles from the current DNS for Riτ = 0, 10, 18, 60, 100 (solid

lines darker to lighter), compared to the mean profiles of Ref. [47] for Riτ = 0, 18, 120 (dashed

lines darker to lighter). The friction density is defined as ρτ = qw/uτ , where qw is the density flux

at the wall.

2. Resolvent mode computation

The Schmidt decomposition of the resolvent operator outlined in §II B is numerically

implemented as the singular value decomposition (SVD) of the matrix (−iωI−A)−1, where

each block of the linear operator A in Eq. 7 is a Ny × Ny matrix with Ny being the

number of points in the wall-normal direction. The discrete system limits the number of

singular values to 5Ny because the state vector q̂ ∈ C5Ny×1. The wall-normal points are

chosen as Chebyshev nodes. The nondimensional-energy norm is similarly discretized using
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a numerical quadrature. See Trefethen and Embree [76] for more details on the numerical

computation of the resolvent modes. In this study, after conducting a grid convergence

study examining the singular values, we selected a wall-normal grid resolution of Ny = 400.

Thus, the computational cost of the resolvent mode computation is at most O(N3
y ) (less if

randomized algorithms are employed [67, 77]), often only requiring a leading order singular

value decomposition (see §III A for more information), and can be performed in seconds on

a personal computer.

The discretized linear operator is constructed using Chebyshev differentiation matrices

and is shifted to integrate between y ∈ [0, 2] rather than y ∈ [−1, 1]. The mean velocity and

density profiles obtained from DNS as well as their wall-normal derivatives are interpolated

to the Chebyshev grid points to form the resolvent operator as in Eq. (7). The no-slip and no-

penetration boundary conditions for the fluctuating velocities and density, i.e. u, v, w, ρ = 0,

are applied at the walls.

In the case of a turbulent channel, due to the symmetry in the geometry, the resolvent

modes appear in pairs that can be linearly combined to produce symmetric and antisymmet-

ric modes. Depending on the support of these modes, the singular values may be identical

or similar in magnitude. For the results in the following sections, only results in the bottom

half-channel will be shown, but the corresponding upper half-channel results are analogous

in all cases.

The results from the analysis of resolvent modes are compared to DNS data. In particular

we compare the energy contained in the leading resolvent modes to the the energy spectra,

the mode shapes to the proper orthogonal decomposition (POD) modes and correlation

coefficients, and energy budgets from resolvent modes to those computed from DNS data.

III. RESULTS

In this section, we explore how the resolvent analysis provides insight into changes in

flow characteristics with increasing stratification from only a limited range of representative

scales. We compare (i) the resolvent energy spectra, obtained from the ratio of the energy

in the leading resolvent response mode pair to the total response, (σ2
1 + σ2

2)/
∑

j σ
2
j , to the

premultiplied energy spectra of the DNS, (ii) the structure identified by the leading resolvent

mode to the correlation computed from DNS, and (iii) the energy budgets of the resolvent
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modes to that of the DNS.

In order for full representation of the system, a wide range of scales, as well as information

of all other subsequent modes in addition to the leading resolvent modes, are necessary [1, 64].

However, the goal here is to provide a quick model for characterizing the flow. The simplest

and quickest model can be provided via a rank-one approximation, where only the leading

resolvent mode is computed. Thus, our focus will be on the representation given by the

leading resolvent mode for a limited number of scales.

A. Resolvent energy spectra

The resolvent norm, σ1, quantifies the system’s sensitivity to temporal forcing. Here we

use
√
σ2
1 + σ2

2 (to account for pairs of singular vectors from geometric symmetry), of the

resolvent operator H to study the energetic response from broadband forcing associated

with the first two modes. The resolvent operator H can be described as low-rank if the

majority of its response to white-noise forcing in the wall-normal direction is captured by

the first few response modes. Theoretically, there are an infinite number of singular values

and corresponding modes because the wall-normal coordinate is continuous. However, not

all of the singular vectors are energetically significant. As described in §II B, a self-sustaining

representation of the flow will correspond to a weighted assembly of forcing modes rather

than a white-noise forcing [63]; however, past studies have shown that broadband forcing is

successful in identifying the important component of the flow, e.g. Ref. [1, 61]. McKeon &

Sharma [1] demonstrated that the characteristics of the leading response modes for a range

of wavenumber-frequency combinations agree with experimental observations in pipe flow

and with scaling concepts in wall-bounded turbulence. Moarref et al. [67] showed that the

first two resolvent modes account for more than 80% of the total response in a channel. Bae

et al. [61] investigated the low-rank nature of a compressible turbulent boundary layer and

highlighted the similarities in the region where the low-rank approximation is valid for the

incompressible regime.

Assuming the resolvent operator is low-rank (σ1 ' σ2 � σ3) allows us to approximate

the operator as

H(k) ≈ σ1 ψ̂1 φ̂
∗
1 + σ2 ψ̂2 φ̂

∗
2, (14)

for each k since most of the energy in the system is modelled by the principal singular
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FIG. 2. Contour plots depicting the energy contained in the leading response mode relative to

the total response, (σ21 + σ22)/Σjσ
2
j , for different streamwise and spanwise wavelengths at (a) c =

u(y+ = 15), (b) c = u(y+ = 30) and (c) c = u(y+ = 100) for Riτ = 0, 10, 18, 60, 100 (top to

bottom). Green dashed lines are (a) λx = 15λz, (b) λx = 10λz and (c) λx = 5λz.

value. The low-rank behavior of H is typically representative of there being a dynamically

significant physical, spatio-temporal structure at the scale dictated by k.

To study the variation in the low-rank behavior for different magnitudes of stratification,

we plot the energetic contribution of the principal response mode to the total response in

the model for a given k quantified by (σ2
1 +σ2

2)/Σjσ
2
j for a range of wall-parallel wavelengths

(Fig. 2). The leading response mode pair accounts for more than 80% of the total response
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FIG. 3. Contour plots depicting the premultiplied streamwise kinetic energy spectra as functions

of the streamwise and spanwise wavelengths obtained from DNS at (a) y+ = 15, (b) y+ = 30, and

(c) y+ = 100 for Riτ = 0 (solid line), Riτ = 60 (dashed line) and Riτ = 100 (dotted line). The

shaded contours are from the Reτ = 180 neutral channel [78]. The levels plotted are 0.1, 0.3, 0.5

times the maximum value of the corresponding spectrum.

over a large range of homogeneous wavelengths for the three wavespeeds selected.

The range of wavenumbers for which the resolvent operator is low-rank changes signifi-

cantly with stratification. In the neutrally-buoyant case (Riτ = 0), we see thatH is low-rank

in a range of moderate-to-large streamwise wavelengths. For the neutrally-buoyant case, it

is known that the low-rank region coincides with the most energetic wavenumbers from

the premultiplied energy spectra of a turbulent channel [67]. As the friction Richardson

number first increases, the low-rank behavior shifts to only a small range of streamwise

wavelengths. We see a similar phenomenon in the premultiplied streamwise energy spectra

from the DNS (Fig. 3), where with increasing Riτ , the larger streamwise wavelength content

is suppressed. This was also observed in the premultiplied energy spectra of Garćıa-Villalba

& del Álamo [47] for a wider range of Reτ and Riτ .

However, afterRiτ = 18, the low-rank behavior of the principal resolvent modes intensifies

along a vertical band λx/δ ≥ 1 until the system becomes low-rank at large spanwise wave-

lengths with almost no low-rank behavior below the green dashed line in Fig. 2 (λx = 15λz,

10λz and 5λz for y+ = 15, 30 and 100, respectively). This seems to indicate a low-rank

behavior in structures that are descriptive of quasi-two-dimensional flow where λz � λx.

Hopfinger [79] details the emergence of two-dimensional modes for a variety of flows with

strong stratification. Moreover, Mahrt [13] alludes to the emergence of two-dimensional

modes (often referred to as pancake modes) owing to the conversion of vertical kinetic en-
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TABLE II. Representative wavenumber combinations that we will explore in §III B.

Mode name kx kz c

E1: most energetic mode for y+ = 15 π/2 4π u(y+ = 15)

E2: most energetic mode for y+ = 30 π/2 3π u(y+ = 30)

E3: most energetic mode for y+ = 100 π/2 2π u(y+ = 100)

S1: spanwise-constant mode for y+ = 100 π/2 0 u(y+ = 100)
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FIG. 4. Amplitudes of the leading resolvent response modes for the (a) streamwise velocity and

(b) density, and leading forcing mode for the (c) wall-normal velocity for Riτ = 0, 10, 18, 60, 100

(darker to lighter) at c = ū(y+ = 15) (dashed line), ū(y+ = 30) (dot-dashed line) and ū(y+ = 100)

(dotted line) for wave-parameters corresponding to E1, E2 and E3, respectively. The subscripts u

and ρ indicate the corresponding components of the resolvent response mode, and the subscript v

indicates the component of the forcing mode.

ergy to potential energy in the presence of strong stable stratification. The premultiplied

energy spectra for higher Riτ indicate high energy in the vertical band as well [47].

Though not plotted here, the changes in the singular value magnitudes exhibit a similar

pattern to that of Fig. 2. The largest singular values occur at larger spanwise wavelengths

as stratification increases and a similar vertical band is formed for λx/δ ≥ 1 at y+ = 100.

We also see that as Riτ increases the largest singular values shift from being below the green

line to being above it for all of the wavespeeds investigated.
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B. Mode shapes

In order to study the flow structures, we compute the resolvent response modes for a set of

wave parameters. The most energetic scales for the various Riτ under consideration for the

different wall-normal heights still coincide with the neutrally-buoyant case (Fig. 3), falling in

the low-rank region despite the fact that including the scalar advection-diffusion equation in

the governing equations changes the wavelengths at which the resolvent operator is low-rank

(Fig. 2). In this section, we study the resolvent response mode shapes for these wavenumber

and wavespeed combinations. The list of mode combinations under consideration is listed in

Table II. In particular, mode E1 is the most energetic mode for y+ = 15, E2 for y+ = 30 and

E3 for y+ = 100. To study the emergence of low-rank regions at long spanwise wavelengths

we also look at the S1 mode at y+ = 100 in section III B 2.

Note that for the POD modes of the DNS, the wavenumbers in Table II are approximated

such that kxLx/(2π) and kzLz/(2π) are rounded to the nearest integer. For example, for

kx = π/2, kxLx/(2π) = π ∼ 3, and thus we use kx = 1.5.

1. Energy-containing modes E1, E2 and E3

The predictive capabilities of the resolvent modes are first shown through the amplitudes

of the leading resolvent response modes (Fig. 4(a,b)) of the streamwise velocity and den-

sity. The resolvent modes compare well to the streamwise and density turbulence intensities

in Fig. 1(c,d). The streamwise root-mean-square (r.m.s.) quantities and resolvent ampli-

tudes show no variation among different Richardson numbers closer to the wall and increase

slightly with Riτ farther away from the wall. On the other hand, the density r.m.s. and re-

solvent amplitudes decrease significantly with Richardson number at all wall-normal heights.

Despite only using the leading resolvent mode, the relative magnitude at each corresponding

wall-normal height is well captured for the range of Richardson numbers considered here.

The wall-normal forcing mode component indicates that the lift-up mechanism exists even as

stratification is increased, see Fig. 4. The forcing amplitudes are unaffected by the different

Richardson numbers in the near-wall region, but when y+ = 100 the amplitudes decrease

slightly.

Additionally, we examine the response mode shapes in two dimensions for the different
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(a) (b) (c)

FIG. 5. Two-dimensional slices of response mode shapes for (kx, kz) = (π/2, 4π) at a critical-layer

location of y+ = 15 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive

and negative fluctuations, respectively. The contour levels are scaled by the maximum of each

mode component. The dashed black line in each sub-plot is the location of the critical-layer where

c = u(y+ = 15).

(a) (b) (c)

FIG. 6. POD modes corresponding to (kx, kz) = (π/2, 4π) for (a) Riτ = 0 (b) 18 and (c) 100. The

horizontal dashed line is y+ = 15.

regions and compare the structures observed in the resolvent modes with the POD modes

obtained from the DNS data. The POD modes are computed as the principal component

of matrix X, where each row of X is the wall-normal vector corresponding to the (kx, kz)

Fourier mode of the velocity and density components. The principal component is the first

left singular vector of X, where the energy norm in Eq. (10) is used to compute the SVD.
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(a) (b)

FIG. 7. Autocorrelation coefficients Cuu, Cvv, Cww and Cρρ of the DNS at y+ = 15 for (a)

Riτ = 0 and (b) 100. Red and blue contours represent positive (0.4, 0.6, 0.8) and negative (-0.2)

correlation, respectively, with each contour level signifying 0.2 increments. The horizontal dashed

line is y+ = 15 and the vertical dotted line is ∆x = 0.

Over 1000 snapshots from DNS data are used to form matrix X [80].

The two-dimensional structures of mode E1, which coincides with the size of the near

the wall structures observed previously in experiments and simulations [81, 82], are plotted

in Fig. 5 for a reference location of y′+ = 15. The POD modes of the streamwise, wall-

normal, and spanwise velocity fields, as well as the density field, are shown in Fig. 6, for a

two-dimensional slice at ∆z = 0. Even though the POD modes are integrated results from

all values of ω, we see that the POD modes are more or less centered around the y+ = 15

region.

Finally, we examine the response mode shapes in two dimensions for the different re-

gions and compare the structures observed in the resolvent modes with the autocorrelation

coefficient from the DNS data. We first define the streamwise auto-covariance as

R̂qq(kx, y, y
′, kz) = 〈q̂(kx, y, kz)q̂∗(kx, y′, kz)〉, (15)

where q is a generic variable of zero mean and 〈·〉 is the expected value. The auto-covariance

in physical space, Rqq(∆x, y, y
′,∆z), is obtained as the inverse Fourier transform of R̂, where

∆x = x− x′ and ∆z = z − z′ are the distances between the two points in the homogeneous
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directions. The autocorrelation coefficient,

Cqq(x,x
′) =

Rqq(x,x
′)

ςq(x)ςq(x′)
, (16)

is obtained by normalizing the covariance with the product of the standard deviations, ς, at

the two points involved in the measurements, which is the normalization adopted by most

researchers [83–88].

The two-dimensional structures of mode E1, which coincides with the size of the near the

wall structures observed previously in experiments and simulations [81, 82], are plotted in

Fig. 5. The autocorrelations of the streamwise, wall-normal and spanwise velocity fields as

well as the density field are shown in Fig. 7, for a two-dimensional slice at ∆z = 0. The

reference location y′+ = 15.

The LES of Armenio et al. [38] and the DNS of Garćıa-Villalba & del Álamo [47] demon-

strated that structures in the near-wall region (y+ . 15) are largely unaffected by stable

stratification. As expected, both the resolvent response modes and the correlations do not

change significantly for the range of Riτ considered. For the velocities, the main difference

is a slight backward tilt in the wall-normal component. The largest difference occurs for

density properties as the phase in the wall-normal direction along the resolvent response

modes are shifted, creating structures that are more detached from the wall. Similarly, the

density POD modes and the correlations shift farther away from the wall for higher values

of Riτ .

We plot the resolvent response modes (Fig. 8) and the POD modes (Fig. 9) for the

wavenumbers and wavespeed corresponding to E2. The results are similar to that of E1,

since the velocity response modes do not vary significantly across Riτ , but a difference is

observed in the density modes as a phase change along y. The POD modes for density are

both wall-detached in the Riτ = 0 and Riτ = 100 case, although the center of the density

POD modes for the Riτ = 100 case lies farther away from the wall.

The biggest difference in the resolvent response modes for the different Richardson num-

bers can be seen for the wavenumber and wavespeed corresponding to E3. We plot the

resolvent response modes (Fig. 10) and the POD modes (Fig. 11) for the wavenumbers and

wavespeed corresponding to E3. Here, all resolvent modes show significant differences in

the stratified case compared to the unstratified case. In particular, the backwards tilting of

the velocity modes and the phase difference across y of the density mode are pronounced.
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(a) (b) (c)

FIG. 8. Two-dimensional slices of response mode shapes for (kx, kz) = (π/2, 3π) at a critical-layer

location of y+ = 30 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive

and negative fluctuations, respectively. The contour levels are scaled by the maximum of each

mode component. The dashed black line in each sub-plot is the location of the critical-layer where

c = u(y+ = 30).

(a) (b) (c)

FIG. 9. POD modes corresponding to (kx, kz) = (π/2, 3π) for (a) Riτ = 0 (b) 18 and (c) 100. The

horizontal dashed line is y+ = 30.

These phenomena occur in the POD modes as well. There is noticeable backwards tilting

in the all three velocity components with particularly noticeable changes in the wall-normal

POD mode and shift in the density POD modes in the Riτ = 100 case compared to the

neutrally stratified case. The biggest differences come in the form of the wall-normal and

density models because they are coupled through the Richardson number in the stratified
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(a) (b) (c)

FIG. 10. Two-dimensional slices of response mode shapes for (kx, kz) = (π/2, 2π) at a critical-layer

location of y+ = 100 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive

and negative fluctuations, respectively. The contour levels are scaled by the maximum of each

mode component. The dashed black line in each sub-plot is the location of the critical-layer where

c = u(y+ = 100).

(a) (b) (c)

FIG. 11. POD modes corresponding to (kx, kz) = (π/2, 2π) for (a) Riτ = 0 (b) 18 and (c) 100.

The horizontal dashed line is y+ = 100.

Navier-Stokes equations.
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(a) (b) (c)

FIG. 12. Amplitudes of the leading resolvent response modes for the (a) streamwise velocity and (b)

density, and leading forcing mode for the (c) wall-normal velocity for Riτ = 0, 10, 18, 60, 100 (darker

to lighter) at c = ū(y+ = 100) (dotted line) for wave-parameters corresponding to S1, respectively.

The subscripts u and ρ indicate the corresponding components of the resolvent response mode,

and the subscript v indicates the component of the forcing mode.

2. Spanwise-constant mode S1

As stratification is increased the low-rank behaviour of the resolvent operator shifts from

moderate-to-large streamwise wavelengths to moderate-to-large spanwise wavelengths (Fig.

2). Here, we explore the amplitude and structure of the S1 mode combination given in Table

II.

First, we observe the leading response mode and forcing amplitudes in Fig. 12. We

see that increasing the stratification decreases the streamwise and density response mode

amplitude significantly. Interestingly, the streamwise response now has a double peaked

structure and the density response does not, this is opposite to the mode shapes observed

for the E3 mode at y+ = 100 in Fig. 4. For the S1 mode, the amplitude of the wall-

normal forcing component is reduced with stratification and is significantly lower than the

E3 wall-normal forcing amplitude shown in Fig. 4(c).

The two-dimensional resolvent response mode and POD modes for S1 are shown in Fig.

13 and 14, respectively. Here, all resolvent modes show differences in the stratified case

compared to the unstratified case. In particular, the backwards tilting of the streamwise and

wall-normal velocity modes. The spanwise and density components become more localised to

the critical-layer at y+ = 100. The POD modes also show the backward tilt in the streamwise

and wall-normal component. The biggest difference between the POD and resolvent modes

24



(a) (b) (c)

FIG. 13. Two-dimensional slices of response mode shapes the long-in-spanwise mode (S1) where

(kx, kz) = (π/2, π/20) at a critical-layer location of y+ = 100 for (a) Riτ = 0, (b) 18, and (c)

100. Red and blue contours represent positive and negative fluctuations, respectively. The contour

levels are scaled by the maximum of each mode component. The dashed black line in each sub-plot

is the location of the critical-layer where c = u(y+ = 100).

(a) (b) (c)

FIG. 14. POD modes corresponding to (kx, kz) = (π/2, 0) for (a) Riτ = 0 (b) 18 and (c) 100. The

horizontal dashed line is y+ = 100.

occur in the density component. The density POD mode gets further from the wall with

stratification and is centered above the critical-layer.
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C. Energy balance at selected scales

Finally, we study the energy budget terms for the turbulent kinetic energy of the stratified

channel. We define the production, transport, viscous diffusion/dissipation, buoyancy flux,

and pressure-strain budget terms in the resolvent formulation [68, 89] as

Ptot(y) = R

[
−∂u
∂y

∑
j

∫ ∞
−∞

σ2
jχ

2
j

(
ψ̂∗j,uψ̂j,v

)
dk

]
, (17a)

Ttot(y) = R

[
−
∑
j

∑
i

∫ ∞
−∞

σjχjχi

(
φ̂∗i,uψ̂j,u + φ̂∗i,vψ̂j,v + φ̂∗i,wψ̂j,w

)
dk

]
, (17b)

Vtot(y) = R

[
1

Reτ

∑
j

∫ ∞
−∞

σ2
jχ

2
j

(
ψ̂∗j,u∆̂ψ̂j,u + ψ̂∗j,v∆̂ψ̂j,v + ψ̂∗j,w∆̂ψ̂j,w

)
dk

]
, (17c)

Btot(y) = R

[
−Riτ

∑
j

∫ ∞
−∞

σ2
jχ

2
j

(
ψ̂∗j,vψ̂j,ρ

)
dk

]
, (17d)

Πtot(y) = R

[
−
∑
j

∫ ∞
−∞

σ2
jχ

2
jDy

(
ψ̂∗j,pψ̂j,v

)
dk

]
, (17e)

where χj, σj, ψ̂j and φ̂j are functions of k and the subscript u, v, w, ρ indicate the corre-

sponding components of the response or forcing mode. To get a global sense of the energy

balance, the equations above are integrated over all wavenumber triplets. Here, we will

examine only the principal resolvent mode contribution to the local components of the total

budgets for particular k, defined as

P(y,k) = R
[
−∂u
∂y
σ2
1

(
ψ̂∗1,uψ̂1,v

)]
, (18a)

T (y,k) = R
[
−σ1

(
φ̂∗1,uψ̂1,u + φ̂∗1,vψ̂1,v + φ̂∗1,wψ̂1,w

)]
, (18b)

V(y,k) = R
[

1

Reτ
σ2
1

(
ψ̂∗1,u∆̂ψ̂1,u + ψ̂∗1,v∆̂ψ̂1,v + ψ̂∗1,w∆̂ψ̂1,w

)]
. (18c)

B(y,k) = R
[
−Riτσ2

1

(
ψ̂∗1,vψ̂1,ρ

)]
, (18d)

Π (y,k) = R
[
−σ2

1Dy

(
ψ̂∗1,pψ̂1,v

)]
, (18e)

The results for wavenumber combinations E1, E2 and E3 are shown in Fig. 15. Since

the wavenumber combinations E1, E2 and E3 are the most energetic at each wavespeed,

we predict that the local components of the budget term should indicate the overall trend

of the total budget term at the corresponding wall-normal height. These quantities are
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FIG. 15. Energy budget terms (production, P; transport, T ; viscous diffusion/dissipation, V;

buoyancy flux, B; and pressure strain, Π ) computed from resolvent modes (Eq. 18a–18e) for

wavenumbers given by (a) E1 at c = u(y+ = 15), (b) E2 at c = u(y+ = 30), (c) E3 and (d) S1 at

c = u(y+ = 100) for Riτ = 0, 10, 18, 60, 100 (darker to lighter).
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FIG. 16. (Energy budget terms computed from the DNS for Riτ = 0, 10, 18, 60, 100 (darker to

lighter).
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compared to the energy budget computed from the DNS, shown in Fig. 16. The trends

observed in the energy budget computed from the DNS are also recovered in the resolvent

budgets. The production is mostly balanced by viscous diffusion/dissipation and has larger

magnitudes compared to the transport and pressure-strain (approximately 10% of the pro-

duction term) or buoyancy flux (approximately 0.1-1%, depending on Riτ of the production

term) terms. Comparing the quantities at the wall-normal heights of interest, we see that at

y+ = 15, there is little variation in the production and viscous diffusion/dissipation terms

in both DNS and resolvent modes. The difference in relative magnitude over the various

values of Riτ increases farther away from the wall, and at y+ = 100, the production (and

viscous diffusion/dissipation) of the Riτ = 100 case is half the production (and viscous

diffusion/dissipation) of the neutrally-buoyant case in both the DNS and resolvent.

For the S1 modes, the amplitudes of the production and viscous diffusion/dissipation

terms are significantly smaller than the E1, E2 and E3 wavenumber combinations. It is

also evident that production increases with stratification, and viscous diffusion/dissipation

is almost entirely reduced.

Direct comparison of the integrated magnitudes is more difficult for the transport,

pressure-strain, and buoyancy flux terms as they are not uniformly positive or negative.

However, this indicates that, locally, buoyancy flux acts as an energy transfer term, much

like the turbulent transport, as the term adds energy in one wall-normal location and re-

moves it from another. Because the DNS energy budget is integrated for all spatio-temporal

scales, it is impossible to deduce that the buoyance flux term acts as a local energy transfer

term from Fig. 16, which shows a net negative energy balance from B at all wall-normal

locations. In contrast, the resolvent buoyancy flux term indicates a non-monotonic distri-

bution of energy in the wall-normal direction. Similar results could be obtained through

spatio-temporal deconstruction of the DNS energy budget term as in Ref. [90], but this

would require a time-resolved dataset for a longer time domain. The resolvent turbulent

transport and pressure-strain terms stay relatively similar among different Riτ , as does the

turbulent transport and pressure-strain terms from DNS. The buoyancy flux is much more

dependent on Riτ , with variations becoming greater farther away from the wall in both the

DNS and resolvent results.

These results can be better quantified by plotting the values at each wall-normal location

normalized by the production at y+ = 15 for the Riτ = 0 case for both the resolvent and
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FIG. 17. (a) Resolvent (solid line) and DNS (dashed line) energy budget terms normalized by the

respective P(Riτ = 0, y+ = 30) as a function of Riτ for y+ = 30. (b) Resolvent (solid line) and

DNS (dashed line) energy budget terms normalized by the respective P(Riτ = 0, y+ = 30) as a

function of y+ for Riτ = 0. Lines indicate production (blue, circles), transport (red, diamonds),

viscous diffusion/dissipation (green, crosses), buoyancy flux (black, asterisks), and pressure-strain

(purple, triangles).

the DNS energy budgets, as shown in Fig. 17. This shows that the overall trend of the

budget terms is well captured by the resolvent budget terms, both as a function of friction

Richardson number and wall-normal location, with the exception of the transport term close

to the wall. This discrepancy may be attenuated by integrating over more wavespeeds.

Note that the results are not expected to match that of DNS for all scales as the the energy

captured in the wall-parallel resolvent modes are known to be overpredicted and the energy

captured in the Reynolds stress and wall-normal resolvent modes underpredicted. This is

a known issue for the resolvent analysis in the primitive variables due to the competing

mechanisms of the Squire modes with the Orr-Sommerfeld modes [91, 92]. Additionally, the

underprediction of energy captured in the Reynolds stress and wall-normal resolvent modes

could explain the underprediction of the transport term close to the wall. Crucially, though,

the most energetic scale can reproduce the integrated effect of all scales, which enables a quick

predictive model of stratified boundary layers. The discrepancy in the energy prediction

between the resolvent model and DNS could be reconciled by using nonlinear forcing terms

computed from DNS as inputs to the resolvent model as shown by Nogueira et al.[63] and

Morra et al.[66].
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IV. CONCLUSIONS

The resolvent framework for the Navier-Stokes equations with the Boussinesq approxi-

mation was applied to a stratified turbulent boundary layer. Computation of the leading

resolvent modes is more cost-effective than performing a full-scale simulation or experiment,

while being able to provide information on the flow. This quick model can provide mean-

ingful insight into stratified flows with only information about the mean profile and prior

knowledge of energetic scales of motion in the neutrally-buoyant boundary layers.

The results show that despite using only a very limited range of representative scales,

the resolvent model was able to reproduce the relative magnitude of turbulence intensities

and the balance of the energy budget as well as provide meaningful analysis of structures in

the flow. We studied the amplitude of the resolvent response modes and two-dimensional

slices of the mode shapes of the rank-one approximation, which were then compared to the

turbulence intensities and the two-dimensional auto-correlation of the velocity and density

fields of the DNS, respectively. The resolvent response modes were able to predict the relative

variation in turbulence intensities as a function of wall-normal distance and Richardson

number for the Riτ under consideration in this study. The two-dimensional mode shapes

also provided insight into how the auto-correlation coefficient might shift as a function of

Riτ . Finally, the energy budget terms for the turbulent kinetic energy of the system were

computed both using the rank-one approximation of the resolvent analysis and the DNS

data. Again, the resolvent energy budget predicts well the relative distribution of energy

between production, dissipation, transport, and buoyancy flux as a function of wall-normal

distance and Richardson number.

In the current study, the resolvent model was closed using mean velocity and density

profiles obtained from DNS and using the assumption of white-noise forcing. For full closure

of the model we would need to model the nonlinear forcing term or calculate it using data

from simulations or experiments. This was not explored in the present investigation but

remains a topic of future work. The computational cost of calculating the forcing and

response modes at certain scales was on the order of seconds on a laptop. Therefore, by

obtaining only mean velocity and scalar profiles we could generate a salient basis for a given

stratified wall-bounded flow. The next steps involve using in-situ data to generate modes

that are representative of flow phenomena observed in nature.
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