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Abstract: This paper analyzes odd and even higher order moments for longitudinal velocity increment

( , )u x r , where x is the longitudinal coordinate and r the separation distance, based on the canonical and 

a new (modified) normalization for skewness of longitudinal velocity derivative /u x  . Two types of 

data were used, stably stratified turbulence data from nocturnal Atmospheric Boundary Layer taken during 

the MATERHORN field campaign and from the Direct Numerical Simulation (DNS) of homogeneous and 

isotropic turbulence in a box at four Reynolds numbers and four different grid resolution. Third moment 

data normalized by the same moment of third order for modulus ( , )u x r  representing modified 

skewness of velocity increment showed a better collapse at all Reynolds numbers in the inertial and viscous 

sub-ranges than canonical normalized skewness with normalization parameter 
2 3/2( ( , ))u x r   , where <

∙∙>representing the ensemble average. The analysis also considered odd pth order classical structure 

functions ( , )pu x r with Kolmogorov-theory based normalization  
/3

( , )
ppu x r r  for the 

inertial subrange, where ε is the rate of dissipation, and a modulus-based structure function 

 
/3

( , )
p p

u x r r . Both types of structure functions of order p = (1÷6) were computed using 

different normalizations, and corresponding scaling exponents were assessed for the inertial and viscous 

sub-ranges. Scaling for modulus-based structure functions in the viscous sub-range was identified as

(5/6)( , )
p pru x r  g

. In the viscous sub-range, the velocity increment varied linear with r for the classical 

third moment 
3 3( , )u x r r   based on velocity increment while the classical fifth moment 
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5( , )u x r  did not provide any meaningful scaling exponent. A plausible qualitative explanation linking 

these effects to anisotropy of nocturnal stratified turbulence is proposed. 

Keywords: Structure Function, High order moments, Direct Numerical Simulation (DNS), Intermittency; 

Bursting; Probability Density Function (PDF), Skewness 

 

1. Introduction 

In his seminal work, Kolmogorov [K41, 1] proposed two hypotheses/postulates on turbulence: 

1. Kolmogorov Self-Similarity Hypothesis (KSSH), which enabled to express, based on 

dimensionless considerations, the structure function Lp(r) defined as a moment of any order p of 

the velocity increment u at a separation r as a function of ε (mean turbulent kinetic energy TKE 

dissipation rate) and r as /3( ) ( ) ( )p p

pL r u r   . This is strictly appropriate for Homogeneous 

Isotropic Turbulence (HIT), a theoretical abstraction that can be made pragmatic by introducing 

the Postulate of Local Isotropy (PLI) as below. 

2. PLI assumes that far from boundaries and external forces applied at large scales, 

turbulence losses memory as it cascades down from large to smaller scales, wherein turbulence 

becomes locally isotropic and therefore KSSH is applicable. This cascading region (inertial 

subrange) is suitably separated from the regions of larger TKE containing scales and much smaller 

viscous dissipation scales. The dissipation subrange is also locally isotropic, but viscous influence 

therein engenders scaling laws different from those of the inertial subrange. 

In most subsequent studies the KSSH was tested for the inertial subrange, and an anomalous 

exponent instead of the Kolmogorov p/3 scaling was observed. To explain and predict such 

anomalies, a large number of models have been suggested, for example, Extended Self Similarity 

Hypothesis (ESSH), Refined KSSH (RKSH) and fractal models. Most of them included the 

intermittency, especially that of ε. There is strong evidence from field, laboratory and direct 

numerical simulation (DNS) studies to suggest that ε is associated with small-scale turbulence 

structures distributed unevenly in space, being confined to a smaller fraction of space determined 

by the size of small eddies [2, 3], thus undermining KSSH [1]. As such, it is well known that the 

scaling exponents differ dramatically from the Kolmogorov p/3 exponents, and this disparity 

increases with both p and r-1 [4], revealing non-Gaussian behavior [5] in HIT. As well, real 

turbulent flows include anisotropic forcing and boundary conditions, particularly in stratified fluids 
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[6, 7, 8], and this anisotropy may penetrate to inertial and, perhaps, dissipation/viscous sub-ranges. 

This perfusion of anisotropy obviously puts PLI into question, as discussed below. 

Literature of DNS studies on HIT at high Taylor microscale Reynolds numbers Re, e.g. [9, 

10, 11] are voluminous. Benzi et al. [12, 13] experimentally investigated scaling laws using grid 

flows and at the center of jet and wake flows. Extended Self Similarity (ESS) based on the use of 

third order structure function for normalization instead of separation r was applied to determine 

anomalous scaling exponents; significant anomalies were observed, in good agreement with peer 

studies. Instead of third order longitudinal structure function 
3

3( ) ( ( , ))L r u x r    , an alternative 

function 
3*

3( ) ( , )L r u x r    was proposed [12, 13, 14]. As expected in the viscous sub-range for 

very small normalized separations r/η ≈ 1, where 𝜂  is the Kolmogorov scale, the velocity 

difference ( , )u x r  is regular, causing both the velocity difference and its modulus to be 

approximately proportional to r. Similar results were obtained by the same group [15, 16] and 

others [17 - 23]. Most efforts by Benzi et al. [15, 16] and She & Leveque [19] were focused on 

identifying the most appropriate model for anomalous scaling exponents. 

Sreenivasan et al.’s [24] measurements in the surface layer of the atmospheric boundary layer 

(ABL) reached very high Taylor microscale Reynolds numbers Reλ (10,000 to 20,000), but PLI 

could not be validated, which was ascribed to the presence of mean shear. Laboratory experiments 

with homogeneous shear flow by Warhaft and his co-workers [25-27] showed unambiguously that 

return to isotropy expected at small scales does not occur either at lower Reλ ~O(100) [25] or at 

higher Reλ numbers ~ O(1000) [26], which again was ascribed to shear. To quote [26] “The results 

show that PLI is untenable, both at the dissipation and inertial scales, at least to Rλ~1000, and 

suggest it is unlikely to be so even at higher Reynolds numbers.” In grid flows without shear [30], 

however, the isotropy at small scales could be realized, and thus the expected praxis of zero odd 

transversal structure functions was manifested.  

Effects of shear on similarity laws, scaling laws, intermittency and anisotropy of small scales 

have been further studied in laboratory experiments and DNS of Channel Flow Turbulence, Wall 

Bounded Turbulence, Homogeneous Shear Flows, and Nonhomogeneous Turbulence [28-34]. 

With regards to similarity laws, in HIT the celebrated KSSH was replaced by Refined Kolmogorov 

Similarity Hypothesis (RKSH) [5] to account for intermittency of ε, which was found appropriate 

and sound away from the wall (logarithmic) region of the boundary layer. Near the wall, where 

shear is strong, the classical RKSH was not valid, and an ‘alternative RKSH’ [29] has been 
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proposed to account for stronger intermittency. Therein, PLI at small scales was violated as 

anisotropy penetrated the smallest scales, scaling anomalies become pronounced, and scaling 

exponents deviated from the Kolmogorov counterpart p/3 more remarkably than in HIT. At 

intermediate distances from the wall, double scaling could be obtained where both RKSH and 

alternative RKSH anomalous exponents appear to coexist.  

In [35-40], SO(3) formalism was used for systematic decomposition of structure and/or 

correlation functions in spherical harmonics to separate isotropic and anisotropic contributions. 

This decomposition enables the determination of scaling exponents in the isotropic and anisotropic 

sectors in the presence of strong and weak shear, thus following possible decay of anisotropic 

contributions at small scales. Interestingly, measurements in homogeneous shear flow by Casciola, 

Gualtieri, Jacob, and Piva [36,37] found that anisotropic contributions in weak shear waning at a 

relatively fast rate while under strong shear the anisotropy keep a significant presence up to viscous 

scales, thus violating PLI [37]. The latter fine-scale anisotropy is accompanied by stronger 

intermittency and stronger deviation of scaling exponents from HIT. These authors [37] conclude: 

“It has always been believed that turbulence in fluids can achieve a universal state at small scales 

with fluctuations that, becoming statistically isotropic, are characterized by universal scaling laws. 

In fact, in different branches of physics it is common to find conditions such that statistical isotropy 

is never recovered and the anisotropy induced by large scale shear contaminates the entire range 

of scales up to velocity gradients.”  

Arad et al. [41] conducted ABL surface layer measurements at very high Reλ (10,000 - 20,000), 

and SO(3) rotation groups were employed to determine scaling exponents in different isotropic and 

anisotropic sectors. The contributions of anisotropic sectors were small, indicating weak effects of 

shear. Nevertheless, the accounting for these anisotropic contributions significantly improved the 

correspondence between experimental data and the analytic fit. A general theory explaining the 

decomposition of structure and correlation functions (by projections on the spherical harmonics) 

as well as determination of scaling exponents in isotropic and anisotropic sectors are presented in 

[42-45].  

Notwithstanding above advancements with regard to shear flows, studies on possible 

penetration of anisotropy into small scales of stable stratified flows are far fewer. A few high-

quality experimental studies [46-49] augmented by DNS [50] unambiguously show that, much the 

same way as for shear, strong stable stratification begets large anisotropies in the mean-squares 

strain rates ∂v/∂x and ∂w/∂x relative to ∂u/∂x. Studies of stably stratified grid-generated HIT [46, 
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47] report “an unexpected rapid onset of anisotropy in the small scales,” which is true for uniformly 

sheared thermally stratified turbulent flow [48, 49]. A combination of shear and stratification, 

especially for decaying turbulence, is expected to increase the propensity for small-scale anisotropy 

compared due to either shear or stratification alone.  

The outcomes of past research discussed above will be used in Section 3 to argue that the 

anomalous scaling for structure functions obtained during fine-scale hot-film measurements of 

turbulence in the nocturnal ABL during the field campaigns of Mountain Terrain Atmospheric 

Modeling and Observations (MATERHORN) Program [51, 52] is possibly due to stratification 

effects and not due to shear (since the measurements were conducted well away from the wall 

layer). An intriguing observation of MATERHORN was the intermittent appearance of strong 

bursts at nighttime (stably stratified conditions) at smaller scales characterized by ephemeral rise 

of velocity fluctuations and simultaneous increase of ε by orders of magnitude. The separation of 

data into ‘burst’ and ‘no-burst’ time intervals based on a chosen threshold of ε enabled processing 

of both burst and no-burst datasets independently. The dataset without bursts could follow classical 

Kolmogorov turbulence if the effects of stratification can be considered insignificant. The datasets 

with bursts behaved differently in that the TKE spectral shape exhibited bumps in the inertial sub-

range [53]. 

This study concerns a new (modified) normalization for higher odd moments of longitudinal 

velocity increment ( , )u x r  built upon the normalization proposed in [52] for skewness of the 

longitudinal velocity derivative /u x  . No-burst datasets from MATERHORN were used along 

with those from limited DNS computations of HIT.  

 

2. Methodology  

An intriguing effect observed in nocturnal ABL is the appearance of episodic but puissant 

turbulence or ‘bursts’. Arguably, this may occur either in HIT or anisotropic turbulent flows subject 

to external forcing such as stratification, rotation or electromagnetic forces that promote anisotropy. 

These factors may magnify the deviation of the probability density functions (pdf) from Gaussian, 

but not necessarily increase its asymmetry present in HIT due to non-linearity. It is well known 

that the pdf of velocity derivatives in HIT is skewed, leading to considerable negative third moment 

(vis-à-vis zero for the Gaussian distribution) of longitudinal velocity derivative; this explains the 

appearance of generation term in the vorticity equation that causes production of enstrophy [54]. 
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Enstrophy production and intermittency in turbulent flows occur due to two independent 

effects: in the HIT case, turbulence is skewed at the intermediate (inertial subrange) and small 

(dissipation range) scales, thus magnifying the enstrophy flux to small scales. In addition to the 

presence of stretched vortex sheets and vortex tubes that is associated with strong intermittency at 

very small scales of HIT, breaking of small-scale random internal gravity waves in (anisotropic) 

stably stratified turbulence may also lead to enstrophy generation and intermittency. The range of 

scales at which such breaking occurs and associated dynamics are yet to be understood (and the 

separation of internal waves from turbulence continues to be a vexing problem). 

Nocturnal ABL is a case where stability evolves overnight due to radiative cooling at a pace 

slower than the time scale of turbulence, leading to a myriad of turbulence-related phenomena that 

was studied during MATERHORN (2011-2016) field experiments. A novel probing system was 

deployed for this purpose, the details of which are given in [52, 55]. The finer scales therein were 

captured with a sonic- and hot-film anemometer dyad (dubbed the ‘combo’ probe) placed on a 

horizontal pole at 6 m height of a 32-m high tower (labeled ES-2) equipped with an array of sonics 

and thermocouples at various levels. This system is described in [52] and the MATERHORN 

experiment in [51]. The data encompassed a variety of flow types that appear over different phases 

of the diurnal cycle, but careful winnowing could identify data that fit the rubric of stratified shear 

flows, which emerged from a katabatic flow draining from the nearby Granite Mountain.  

After careful processing of sonic records of ES-2, the 90-minute period of katabatic flow 

starting from 22:00 MDT1on October 19, 2012 was selected for stratified shear flow studies. Prior 

to the selected time interval, the wind speed rapidly increased from ~1 m/s to ~4 m/s at the height 

of the combo probe. The wind direction changed from its usual oscillations before 22:00 MDT to 

a nearly constant direction, resembling a stratified parallel shear flow. Thereafter, the winds 

changed quite rapidly between 23:30 MDT and midnight [52]. Although mean quantities were 

quasi-steady during the selected period 22:00-23:30 MDT, careful inspection of turbulence 

statistics showed considerable variability. An analysis for identification of approximately 

homogeneous sub-intervals enabled focusing on structure function analysis in the sub-interval 

SIdevd )22:50 - 23:10 MDT). This sub-interval was considered as fully developed turbulence since 

flow variations were modest and appearance of bursting events were very limited (less than 2% of 

the time). More details can be found in [52, 56].  

                                                 
1 Mountain daylight time (local time) 
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To augment, three-dimensional homogeneous and stationary turbulence was studied using 

high-resolution DNS in a periodic box with up to 10243 grid points. A pseudo-spectral code with 

large-scale random forcing and triply periodic boundary conditions was used. The white-in-time 

Gaussian forcing was placed in the range of scales1 6k  . The DNS were carried at 4 grid 

resolutions, yielding Re = 139, 201, 264, 383. Details of the numerical scheme are given in [11]. 

 

3. Results 

3.1 Datasets from Field Campaign and DNS 

The datasets revealed strong bursts characterized by short-term increase of velocity 

fluctuations and simultaneous increase of 𝜀  by orders of magnitude. The separation between 

burst/no-burst time intervals was based on a threshold for 𝜀, as in [52]. The data without bursts 

followed the Kolmogorov -5/3 law whereas those with bursts showed bumps in the TKE spectra. 

Since no-burst periods resembled Kolmogorov turbulence, it was decided to test various features 

of intermittency using no-burst field data sets and DNS of HIT turbulence. The analysis focused, 

inter alia, on the new (modified) normalization suggested in [53], the effects of varying Reynolds 

number and the scaling exponents in various sub-ranges, e.g. inertial and viscous. The new 

normalization is based on [53], where the second-order denominator  
3/2

2( / )u x   of the 

canonical skewness of the longitudinal velocity derivative /u x   is replaced by the same third 

order moment of its modulus 
3

/u x   to define an alternative descriptor for intermittency 

studies. In our work described below, modulus based normalizations are extended for odd structure 

functions of higher orders p = 3, 5, 7. 

3.2 Normalized Odd Structure Functions in DNS  

The following discussion deals with longitudinal structure function ( )pL r  of order p; 
* ( )pL r

is the same function based on the absolute values of the longitudinal velocity increment

( , ) ( ) ( )u x r u x r u x    , where r is the separation distance: 

*( ) ( ( , )) ; ( ) ( , )
pp

p pL r u x r L r u x r        . (1) 

The moments of velocity increment in the canonical form are 
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/2 * * /2

2 2( ) ( ) ( ( )) ( ) ( ) ( ( ))p p

p p p pH r L r L r H r L r L r  . (2) 

We dealt mostly with odd moments, p = 3, 5, 7 and, following [1], considered modified moments 

* *( ) ( ) ( ) ( ) / ( )p p p p pH r L r L r H r H r % along with the moments obtained using canonical 

normalization presented in (2). Note that, at small separations r, the normalized structure-function 

based velocity increments become the moments of the velocity derivative. For example, at p=3, 

velocity derivative skewness can be retrieved as  
3/2

23

3 ( / ) /H S u x u x      , which was 

the focus in [53]. 

The normalized canonical moments for p =3, 5, 7 at all four Reλ numbers in DNS are given in 

Figure 1, and the modified moments ( )pH r%  for p = 3, 5, 7 are presented for comparison in Figure 

2 where the separation scale r is normalized by the Kolmogorov length scale . 

 

(a) 
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(b) 

 

(c) 

Figure 1. Canonical odd moments for all 4 datasets obtained in DNS. (a) third, (b) fifth 

and (c) seventh moments. 
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Figure 2. Modified moments for all 4 DNS datasets. Color coding is the same as in Figure 1. 

Note the two striking differences between Figures 1 and 2. Plots for two highest Re practically 

collapse in Figure 2 in both viscous (r/ <10) and inertial (50÷200) sub-ranges while they 

obviously differ systematically in Figure 1 in all subranges. The upper boundary of the inertial sub-

range (Figure 1) depends significantly on Re and is about 300 for the highest Re =383, and it 

reduces remarkably at lower Re due to the reduction of separation between large and dissipating 

scales. At larger scales, universal scaling is not expected given their dependence on boundary 

conditions and details of large-scale forcing. In the inertial sub-range, all modified moments (Figure 

2) remain approximately constant, while canonical moments (Figure 1) decline with an 

approximately constant slope. The slope increases with the order p of moments, as was observed 

by [12]. 

3.3 Comparisons of Various Structure Function Moments in Experiments and Simulations. 

The results of Section 3.2 for odd moments led us to conduct a detailed comparison of 

normalized (canonical and modified) moments obtained via DNS and field experiments. We started 

with the third moment due to its relation to the corresponding structure function, for which classical 

theoretical results based on Kolmogorov equation [5] are available. All meaningful field results 

were obtained for the no-burst events. Events with burst did not provide sensible plots for 

interpretation. 
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In Figures 3 and 4, respectively, the results are presented for 3rd and 5th order canonical and 

modified structure functions; see eq. (1) and (2) for definitions. Obviously, the modified moments 

make sense only for odd moments. It is worth noting that canonical moments can be sensitive to 

intermittency, as it may affect differently the moments in the numerator and denominator, which 

are of different order. It is noted in [53] that odd moments of the same order ( )pL r  and * ( )pL r  

depend similarly on the intermittency and, therefore, normalization using * ( )pL r  can significantly 

decrease the influence of intermittency on the scaling exponent. 

Figure 3a indicates almost perfect agreement between the experimental and DNS canonical 

moments in the inertial range, which decay as H3=L3/(L2)
3/2

 ~ (r/η)-0.1. Since this appealing result 

was obtained in two physically different systems, at notably different characteristic Reλ, it was 

necessary to analyze these outcomes with care to elicit the similarity of turbulence structures.  

In the viscous sub-range, at small normalized separations r/𝜂 < 10, the results of Figure 3a 

show different behavior, and the scaling exponents are even of different sign for field and DNS 

data.  

 

a) 
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b) 

Figure 3. Comparison of the 3rd canonical (a) and modified (b) moments obtained in the 

field campaign [51, 52] with Reλ = 1200 and DNS conducted for the 2 highest Reλ = 264 

and 383. The periods indicated in the legends are for time periods without bursts, 

determined according to the methodology of [52].  

The DNS-Field ±
3H  comparisons shown in Figure 3b indicate that in the inertial sub-range 

the structure functions are qualitatively in very good agreement. The scaling exponents at the 

highest 𝑅𝑒𝜆, in spite of being very low (3.6%), are practically the same for DNS and field data. 

The quantitative agreement is less satisfactory compared to the canonical third moment. In contrary 

to scaling exponents in the inertial sub-range, Figure 3a shows that in the viscous sub-range the 

scaling exponents for the 3rd canonical moments are different for the field and DNS data. Similar 

trends are evident in Figure 3b, again indicating exponents of different signs for field and DNS 

data in the viscous sub-range. 

Increasing the rank of the moments inevitably decreases the accuracy since the effect of greater 

velocity increments becomes more substantial and the resolution worsens due to their lower 

probability. Therefore, employing odd moments higher than the 5th seemed unreasonable. The 

canonical and modified 5th moments calculated for field and DNS data are presented in Figures 4a 

and 4b, respectively. In the inertial range, they are in almost perfect agreement with regard to slope 
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(-0.25) but not the amplitude. For example, in Figure 4a, at r/η = 100, the amplitude is 4.3 for field 

and 3 for DNS data. In the viscous sub-range (r/η < 10), however, the slope is negative (-0.35) in 

DNS (Figure 4a) and fluctuating in the field data; this contrasts field observations for the 3rd 

canonical moment, wherein a slope of about 0.5 was noted (Figure 3a). 

In the inertial sub-range, for 5th order modified moments obtained using field and DNS data 

(Figure 4b), the slope is slightly positive (~1.5% for both). In the viscous sub-range, the slope is 

moderately negative (-9.5%) for DNS, but is fluctuating for field data as in the case of 5th canonical 

moments in Figure 4a. 

Let us first consider modified structure functions of the odd 3rd and 5th order moments since 

their expressions include the moments of the same order in numerator and denominator. It has been 

widely assumed [11-14, 20-22] that 3rd order moments based on velocity increment and its modulus 

have very similar scaling in the inertial and viscous subranges, and in each the exponent differ only 

by a few percent. Our (nearly HIT) DNS data confirm this assumption, but field data (stratified 

turbulence in nocturnal boundary layer) show this trend only in the inertial sub-range; in the 

viscous sub-range, the scaling exponents differ substantially to the extent that even the sign of the 

slope can be different between DNS and field. Since the expectation for the viscous sub-range was 

a linear dependence of velocity increment on separation r, this result was highly unexpected. The 

results for the 5th order modified structure function in the viscous sub-range was even more puzzling 

since the moments were randomly fluctuating without a firm dependence on separation r. 
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a) 

 
b) 

Figure 4. Comparison of 5th canonical moments (a) and modified moments (b) obtained 

in the field and DNS. 

Unexpectedly, in the viscous sub-range, the canonical 3rd and 5th order moments (Figures 3a 

and 4a) normalized by the power p/2 of the second moment (that lineages to KSSH) behaved very 

similar to the modified moments of the same order (Figures 3b and 4b). In particular, the scaling 

exponents of the 3rd order moment were practically the same (0.50 for modified and 0.52 for 

canonical moments) and the 5th order canonical moment fluctuated randomly similarly to the case 
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of the 5th order modified moment. Recall that the modified normalization was suggested in [53] to 

ameliorate intermittency effects by using moments of the same order in the numerator and 

denominator. Therefore, the expectation was that due to different normalization the canonical and 

modified moments will behave differently in the viscous sub-range. To clarify these findings, the 

structure functions ( )pL r  normalized using Kolmogorov inertial sub-range scaling /3( ) pr were 

investigated.  

The 2nd and 3rd order structure functions, which are directly related to turbulence dynamics and 

appearing in the Kolmogorov equation [K41, 1], are considered first. In Figure 5, the KSSH-

normalized 3rd and 2nd order structure functions obtained in the field campaign are presented. As 

expected from the Kolmogorov equation, for the no-burst case, the normalized 3nd order 

longitudinal structure function approximately satisfied 4/5 law (Figure 5a), with an approximately 

zero slope in the inertial sub-range. In the viscous sub-range, the slope of the normalized 3rd 

longitudinal structure function is 2, or L3 ∝ r3, indicating that ( , )u x r ∝ r. Figure 5b shows, 

however, for the same viscous subrange, 2/3

2 / ( )L r r   or L2 ∝ r5/3, indicating that ( , )u x r ∝ r5/6 

and not the expected ( , )u x r ∝ r .  

While above discussion concerned the no-burst case, it is noteworthy that in the viscous sub-

range similar slopes were obtained for the 2nd order structure function for the case with bursts 

(Figure 5b). No clear scaling was observed in the inertial sub-range for datasets with bursts. For 

the 3rd order structure functions, no clear scaling was observed either in the viscous or inertial sub-

ranges for the burst cases. 
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a) 

 

b) 

Figure 5. Normalized according to KSSH 3rd (a) and 2nd (b) order structure functions in 

field experiments computed using longitudinal velocity increment ( , )u x r . 

The near-zero negative (-0.13) slope of the canonical 3rd order structure in DNS (Figure 3a) 

attests to similar dependence of 2nd and 3rd structure functions on r/η in the viscous sub-range. Such 

behavior is expected, and has been observed in laboratory experiments with homogeneous flows 

(developed turbulence in a jet and past a cylinder) [13], however, in the field data (Figure 5) the 
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dependences of 2nd and 3rd structure functions on r/η differ in the viscous sub-range. This results 

in a slope of ~0.5 in the viscous sub-range for the 3rd order canonical structure function (Figure 3a).  

In the inertial sub-range, the slope of normalized 2nd order structure function is ~0.073 (Figure 

5b), yielding a scaling exponent of 0.74 (i.e. 
0.74

2 ( )L r r ) instead of 0.667 expected from KSSH, 

/3( ) ( )p

pL r r . This explains the slope -0.1in Figure 3a of the 3rd canonical structure function. 

From eq. 2, it follows that 
3/2 0.11

3 3 2( ) ( ) ( ( ))H r L r L r r  (i.e. the exponent yielding 1-0.74*1.5 = 

-0.11, which is very close to -0.1). Similar results are found in the literature [11, 12]. 

The above observations prompted investigations into all other (viable) even and odd structure 

functions for ( , )u x r  and ( , )u x r . Note that even moments are identical for both types of 

velocity increments. In the following, additional results are presented for the 3rd and 1st order 

structure functions for modulus ( , )u x r  (Figure 6) and 4th and 6th (Figure 7) order structure 

functions. The 1st order structure function for ( , )u x r  is identically zero. The 3rd order structure 

function for ( , )u x r  was presented in Figure 4a. 

It follows from Figure 6 that the shapes in the viscous sub-range (r/η < 10) are 
* 5/6

1L r  for 

the 1st order and 
* 15/6

3L r  for the 3rd order structure functions, suggesting ( , )u x r  ~ r5/6 as 

observed with 2nd order structure functions (Figure 5b) and not to the separation r as observed with 

the 3rd order structure function for ( , )u x r . In the inertial sub-range, structure functions for both  

( , )u x r  and ( , )u x r almost follow Kolmogorov scaling, although a slight deviation was 

evident. As established earlier, in the viscous subrange, both 3rd and 1st order structure functions 

evaluated for ( , )u x r  with all datasets, including those with bursting events, has the same 

scaling (Figure 6a and b). In the inertial sub-range, when bursting is present, the structure function 

is randomly varying and no definite scaling is observed. 
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a) 

 

b) 

Figure 6. Normalized odd 3rd (a) and 1st (b) order structure functions in field experiments 

computed using modulus of velocity increment.  

The 4th and 6th order canonical structure functions in Figure 7 confirm the same trend as 

observed above for 1st, 2nd, and 3rd structure functions for ( , )u x r . In the viscous sub-range, the 

velocity increment ( , )u x r  is found to be proportional to r5/6 for both datasets with and without 

bursts. This power-law is also clearly confirmed for the 4th order and is nearly valid for the 6th order 
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structure function. In the inertial sub-range, the 4th order structure function approximately adheres 

to Kolmogorov scaling, and an anomaly becomes noticeable only when the 6th order structure 

function is considered.  

 

a) 

 

b) 

Figure 7. Normalized according to KSSH even 4th (a) and 6th (b) order structure functions in field 

experiments computed using longitudinal velocity increment. 
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In particular, the slope of 4th order structure function in the inertial sub-range is very small 

(Figure 7a), about 3%, but unexpectedly positive, marginally exceeding KSSH prediction. The 

slope of the 6th order structure function (Figure 7b) in the same inertial sub-range is negative, thus 

confirming the well-known anomaly [13-17] that scaling exponent is lower than p/3 for high order 

structure functions, which for our field experiments p ≥ 5. The deviations from Kolmogorov 

scaling exponent noted in the literature [13-17] either obtained in the laboratory or DNS, however, 

is notably greater than that evaluated from our field data. 

The normalized 5th order structure functions based on KSSH for ( , )u x r  and ( , )u x r were 

calculated and are presented in Figures 8a and 8b. In the inertial sub-range (around r/η = 100) the 

normalized 5th order structure function (Figure 8a) is undulating about KSSH-predicted zero slope, 

however in the viscous sub-range the structure function fluctuates randomly without a clear trend. 

No linear dependence between velocity increment ( , )u x r and separation r exists for the 5th order 

structure function on the contrary to that observed for the 3rd order structure function (Figure 5a).  

The 5th order normalized structure function for ( , )u x r  behaves essentially different (Figure 

8b) from its ( , )u x r  counterpart, with very smooth curves both in the inertial (around r/η = 100) 

and viscous sub-ranges. The slope in the inertial sub-range is approximately zero for the no-burst 

case, but a slight negative slope (≈-3%) is evident. The shape of this structure function in the 

viscous sub-range (r/η < 10) is about 
* 25/6

5L r , corresponding to ( , )u x r ∝ r5/6, same as that 

observed for odd 1st and 3rd order structure functions (Figures 6a and 6b) and for all even structure 

function studied here (2, 4 and 6). The same slope of 25/6 was observed in the viscous sub-range 

for both burst and no-burst cases. In the inertial range, no clear scaling was observed with bursts. 
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a) 

 

b) 

Figure 8. Normalized 5th order structure functions in field experiments computed using 

longitudinal velocity increment ( , )u x r  (a) and its modulus (b).  

The scaling exponents in the inertial and viscous sub-range structure functions of different 

orders varying from 1st to 6th are summarized in Figure 9. Although our field results in the inertial 

sub-range do not contradict with those previously reported for HIT [11, 19-23], there are modest 

qualitative discrepancies. The significant differences are in the small values of separation r/𝜂 in the 
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viscous sub-range. A widely-used assumption is that in the viscous sub-range (which have received 

lesser attention in the past) both ( , )u x r  and ( , )u x r  vary similarly and nearly linear with r 

[13, 14]. This assumption is of practical interest for Extended Self Similarity (ESS), which suggests 

replacing εr of Kolmogorov normalization with 3rd order structure function for ( , )u x r .  

According to our field results, for the 3rd order structure functions in the viscous sub-range 

behave as ( , )u x r r   and 
5/6( , )u x r r  , revealing appreciably different behavior between the 

two. Only the last relation, 
5/6( , )u x r r  , is confirmed for the 5th order modulus structure 

function (Figure 8b); instead of linear dependence with r, the 5th order conventional structure 

function for ( , )u x r  (Figure 8a) fluctuates randomly in the viscous sub-range.  

A surprising result is that in the viscous sub-range all structure functions of the modulus of the 

velocity increment in our study are described by the unique equation 5 /6( , )
p pu x r r   for 𝑝 ∈

(1 − 6)  (Figure 9). The odd structure functions (p = 1, 3, 5) are definitely different for ( , )u x r  

than for ( , )u x r . In particular, the 1st order structure function for ( , )u x r  is identically zero. 

The 5th order structure function (Figure 8a) in the viscous sub-range did not allow determining the 

scaling exponent unambiguously. One could expect it to behave similarly to the 3rd order structure 

function (i.e., vary linearly with r). However, in our field experiments, disparities exist between 3rd 

and 5th order structure functions, and it is highly probable that they are due to stable-stratification 

effects of the nocturnal ABL, as discussed below.  

In our DNS of HIT, all scaling exponents of odd structure functions (p = 3, 5, 7) are 

approximately the same (Figure 2) for ( , )u x r  and ( , )u x r . Additionally, in contrary to field 

results (Figure 4a), the shape of the 5th order structure function for ( , )u x r  is smooth. 

Interestingly, in the viscous sub-range calculations with field data, similar scaling exponents are 

also obtained for all structure functions for ( , )u x r , including for data containing bursts. 

Conversely, for datasets with bursts, no definite scaling exponents are obtained in the inertial sub-
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range with any type of velocity increment, including ( , )u x r . This indicates that bursts mostly 

affect scales larger than those of viscous sub-range.  

Figure 9. Scaling exponents of the structure functions in the inertial and viscous sub-ranges for 

velocity increment and its modulus evaluated for field data. Stars indicate that different scaling 

exponents of structure functions (exp-str-fun) were obtained with odd 3rd and 5th structure functions 

for velocity increments and their modulus. 

The results for scaling exponents obtained in the present case of stratified ABL (dubbed str) 

are presented in Table 1 along with their HIT counterparts (dubbed hom), with strong shear near 

the boundary (sh), theoretical predictions in accordance to KSSH (kssh) in the inertial sub-range 

and linear dependence on r (lin) in the viscous sub-range. As mentioned, it is commonly accepted 

that scaling exponents for velocity increment and its modulus are practically the same across all 

sub-ranges, and this claim has been partially verified in studies dealing with ESS of HIT [11, 13]. 

Our results cast doubts on the general validity of this statement and, therefore, detailed results were 

presented for structure functions based on ( , )u x r  and ( , )u x r  for inertial and viscous sub-

ranges.  
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Naturally, only odd structure functions are relevant, since even functions are identical for 

( , )u x r  and ( , )u x r  cases. The small differences between scaling exponents of 3rd and 5th 

order structure functions in the inertial sub-range are within the uncertainty of the analysis, but in 

the viscous sub-range the differences are substantial (Table 1). In the inertial sub-range, scaling 

exponents of the 4th, 5th and 6th order structure functions are considerably closer to Kolmogorov 

scaling (than their counterparts in flows with strong shear). The scaling exponent of the 2nd order 

structure functions, however, shows greater deviation from Kolmogorov scaling, thus contradicting 

the assumption of possible decrease of intermittency due to stable stratification. 

The assumption of increased intermittency in strong shear flow seems plausible since the 

scaling exponents of all orders (1st, 2nd, 4th, 5th, 6th) in the inertial sub-range show an increased 

deviation from KSSH-based scaling exponent obtained in HIT simulations/experiments. The 

exponent of 3rd order structure function is 1 in all cases, in agreement with the Kolmogorov 

equation. In the viscous sub-range, direct results for scaling exponents are not reported in published 

papers, but indirect results, including our DNS, where canonical and modified moments were 

calculated, show that the exponents for ( , )u x r  and ( , )u x r  for HIT are nearly the same.  

The situation is different for stratified nocturnal ABL turbulence. The 3rd structure function 

for velocity increment in the viscous sub-range shows predicted linear dependence, but the 5th order 

structure function shows strong fluctuations thus precluding the determination of a scaling 

exponent. All structure functions for modulus of velocity increment, except the 6th order where a 

slight deviation was present, are yielding the scaling exponent 5p/6. 
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Table 1 Scaling exponents of the (structure) functions in the inertial and viscous sub-ranges for 

velocity increment and its modulus for datasets without bursts. kssh and lin - theoretical exponents 

in inertial - p/3 and linear - p in viscous sub-ranges [18], hom and sh – experimental and DNS 

values in HIT and shear flows [28], str –current field data measured under stratified conditions in 

nocturnal ABL. In viscous sub-range results for modulus of velocity increment corresponding to 

5p/6. 

 

structure 

functions of 

order p 

( , )u x r  

scaling exponents 

inertial sub-range 

kssh, hom, str, sh 

( , )u x r  

scaling exponents 

inertial sub-range 

kssh, hom, str, sh 

( , )u x r  

scaling exponents 

viscous sub-range 

lin, hom, str, sh 

( , )u x r  

scaling exponents 

viscous sub-range 

lin, hom, str, sh 

1 Function identically 0 0.333, 0.36, 0.38, 0.44 Function identically 0 1.0, n/a*, 0.833, n/a 

2 0.667, 0.70, 0.74, 0.77 2.0, n/a, 1.667, n/a 

3 1.0,  1.0,  1.0, 1.0 1.0, n/a, 1.06, n/a 3.0, n/a, 3.0, n/a 3.0, n/a , 2.50, n/a 

4 1.333, 1.28, 1.334, 1.17 4.0, n/a, 3.333, n/a 

5 1.667, n/a, 1.667, n/a 1.667, 1.54, 1.635, 1.31 5.0, n/a , fluct, n/a 5.0, n/a, 4.1667, n/a 

6 2.0, 1.78, 1.867, 1.44 6.0, n/a, 4.87, n/a 

*n/a – not available from experiments or DNS 

The above results call for a plausible physical explanation. Note that the flow arriving at the 

ES-2 tower (equipped with the combo-probe [52]) originated at the Granite Mountain slope [51, 

52] as a nocturnal katabatic flow. As it drains under stably stratified condition, turbulence generated 

within is also advected and evolved, possibly becoming nearly HIT at ES2 [52, 56], much the same 

way as in wind-tunnel stratified flows [46]. When stratification is very weak, the turbulence 

remains HIT type, but when stratification becomes stronger, turbulence is buoyancy dominated, 

causing PDF to be almost symmetrical. Our initial attempts to qualitatively assess the effect of 

moderate stratification on structure functions based on previous laboratory results by blending 

fluctuations from isotropic and anisotropic sectors at fine scales appear to explain the linear 

dependence between velocity increment and separation for the 3rd order normalized structure 

function (according to KSSH) in the viscous sub-range and why such dependence does not hold 

for the 5th order normalized structure function. Such decomposition also allows obtaining different 

behavior for structure functions constructed for the absolute velocity increment ( , )u x r . 

Presentation of this assessment is left for a future publication. 
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When laboratory grid generated HIT [46] is subjected to thermally generated stable 

stratification, turbulence becomes anisotropic, and the relevant controlling parameter of overall 

flow is the inverse of internal/turbulent Froude numbers, 2/ 'Fr Nu  where 𝑢′ is the RMS of 

velocity component, N the buoyancy frequency and ε the rate of dissipation. The typical inverse 

Froude numbers assessed in our field experiments were 2÷5 [56], coincidentally in the same range 

as that observed in laboratory flows of [46], thus providing peripheral support for the notion of 

anisotropic turbulence at ES-2. Also note that the controlled laboratory results of [46] were 

obtained at relatively low Reλ ~ 20-40 and that 𝐹𝑟 does not specifically address the nuances of 

stratification-effects, such as their penetration to viscous scales. As such, the observed in the field 

peculiar behavior of third canonical and modified structure functions and their departure from the 

HIT data results following from DNS needs further investigation. 

 

A rigorous attempt to separate isotropic and anisotropic contributions can be made in the 

framework of SO(3) formalism by conducting the decomposition of appropriately measured 

structure or correlation functions into spherical harmonics [44, 45, 57]. However, this requires 

simultaneous multi-points measurement of high-frequency oscillating velocities and velocity 

derivatives and is left for future work. 

 

4. Summary 

1. The nocturnal stable boundary layer data acquired during the MATERHORN field program 

[51] were separated into “no-bursts” and “bursts” periods as in [52]. The no-burst field dataset 

as well as DNS datasets of homogeneous isotropic turbulence (HIT) were used to study the 

structure functions of various order of the velocity increment ( , )u x r  and its modulus 

( , )u x r .  

2. The canonical structure function is obtained by normalizing higher order structure functions 

of order p by the 2nd order structure function in power p/2 (eq. 2). When structure functions of 

different orders are involved, this normalization can result in significant variation of the scaling 

exponent, for example, due to different anomalies caused by intermittency. Such effects are 
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expected to magnify if the contributions from anisotropic sectors are accounted [38, 41], as in 

the case of shear and/or stratification. The computation of odd higher order structure functions 

(third, fifth and seventh) for ( , )u x r using four DNS datasets of HIT showed that although 

scaling exponents do not depend substantially on Re , the data are not collapsing in the inertial 

and viscous sub-ranges, indicating that scaling used is unsatisfactory. 

3. A new (modified) normalization proposed for skewness of longitudinal velocity derivative 

/u x   by [53] involves the replacement of the second moment in the denominator of the 

canonical scaling with the same order 3rd moment of the modulus /u x  . This new scaling 

was adopted for odd higher order structure functions (third, fifth and seventh) of ( , )u x r , 

which were computed using DNS datasets of HIT. The results were striking: for all moments, 

a conspicuous collapse was achieved in the viscous and inertial sub-ranges at all Re used in 

the study, suggesting the efficacy of new scaling for all moments. The collapse does not occur 

at larger scales, which is due to computational box boundaries and turbulence forcing at larger 

scales. 

4. Detailed comparison of odd 3rd and 5th order canonical and modified moments evaluated using 

field data without bursts with their DNS counterparts indicated a very good agreement in the 

inertial sub-range 50 / 200r   ; for example, at r/η = 100, both field and DNS simulations 

at the highest Re yield the same scaling exponents. In the viscous sub-range, the 3rd canonical 

and modified structure functions at small separations varies with separation as ~
0.5( / )r  in 

contrast to the approximately constant value exhibited by DNS. 

5. The structure functions (of order p) in the nocturnal ABL is normalized according to 

Kolmogorov Self Similarity Hypothesis (KSSH) as 
/3( ) / ( )p

pL r r ; and for the 3rd moment it 

yielded the predicted linear dependence 3 3( , )u x r r for smaller separations in the viscous 

sub-range. On the contrary, the 2nd moment in the viscous sub-range does not support the 

predicted r2 dependence, but yielded 
2 5/3( , )u x rr  . This explains the surprising scaling 

exponent of ~0.5 for canonical 3rd order structure function in the viscous sub-range. 

6. Since even moments are identical for velocity increment and its modulus, in the viscous sub-

range the 𝑟 dependence for the 2nd moment could be extended for a general p-order moment 
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as 5 /6( , )
p pu x rr  , which was (at least approximately) supported by our field data for all 

p (1÷6) used.  

7. As implied from item (5) above, in the viscous sub-range of the stratified turbulence measured 

in the field the 3rd order structure functions of the velocity increment ( , )u x r  and its modulus 

( , )u x r , normalized according to KSSH, behave differently. The same data processing 

approximately confirmed 4/5 Kolmogorov law for the inertial sub-range. The canonical and 

modified 3rd order structure functions computed for the same data showed very good 

agreement with their counterparts obtained in DNS for the inertial sub-range, however, a 

substantial disparity was observed in the viscous sub-range.  

8. In the viscous sub-range of DNS, the scaling exponent of the modified 3rd order structure 

function is close to zero, indicating that, in contrast to field observations, the scaling exponents 

for velocity increment ( , )u x r  and for its modulus ( , )u x r  for HIT are nearly the same. 

9. As in the case of 3rd order, the canonical and modified 5th order structure functions computed 

using field data showed very good agreement with their DNS counterparts for the inertial sub-

range. In the viscous sub-range, both the canonical and modified 5th order structure functions 

for field data were oscillating, and the scaling exponents could not be determined. 

10. The field data set represents stratification-affected high Reynolds number turbulence in a 

katabatic flow in the nocturnal ABL [56]. An attempt was made to isolate stratification effects 

from the total turbulence field using a simple-minded assumption that the measured turbulence 

at 6 m above the ground is contributed by two uncorrelated effects: roughly HIT generated 

within the katabatic flow arriving from a nearby Granite mountain and motions due to stable 

temperature stratification at the measurement location (i.e., ES-2 tower). In ABL, shear effects 

are substantial near the ground, however, at larger distances (e.g., 6 m height) turbulence tends 

toward HIT which can be affected by anisotropic tendency of stratification [46, 47] that may 

even penetrate to fine scales. A simplified model based on blending of fluctuation 

contributions from isotropic and anisotropic sectors at fine scales appear to explain the linear 

dependence between velocity increment and separation for the 3rd order normalized structure 

function in the viscous sub-range and why such dependence does not hold for the 5th order 

normalized structure function (which is deferred to a future publication). In addition, such 

decomposition allows obtaining of different behavior for structure functions constructed for 
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the absolute velocity increment ( , )u x r . Considering all, we suggest that the more 

sophisticated SO(3) formalism [57] developed for decomposition of structure and/or 

correlation functions to separate contributions of isotropic and anisotropic sectors be attempted 

in future studies of anisotropy at small scales introduced by large scale effects such as 

stratification. Studies on small and viscous scales have become one of our foci because of the 

interest in understanding fog formation mechanisms, where spawning of water droplets occurs 

at Kolmogorov and sub-Kolmogorov scales of ABL. We hope that this work provides entrée 

for future such work.  

Acknowledgement: This research was funded by the Israel Science Foundation (Grant 408/15, 

EK), US Office of Naval Research Grant N00014-21-1-2296 (Fatima MURI, HJSF/EK) and US 

National Foundation Grant AGS-1921554 (HJSF).  

 

References  

1. Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very 

large Reynolds numbers, Dokl. Akad. Nauk SSSR. 30, 301-305 (1941).  

2. Batchelor, G.K. and Townsend, A.A. The nature of turbulent motion at large wave-numbers. 

Proc. R. Soc. London A 199, 238-255 (1949).  

3. Kuo, A.Y.S. and Corrsin, S. Experiments on internal intermittency and fine-structure 

distribution functions in fully turbulent fluid. J. Fluid Mech. 50, 285-320 (1971). 

4. Rose, H.A. and Sulem, P.L. Fully developed turbulence and statistical mechanics. Journal de 

Physique 39(5), 411-484 (1978). 

5. Frisch, U. Turbulence: The legacy of A.N. Kolmogorov (Cambridge University Press, 

Cambridge, 1995). 

6. Pouquet, A. Intermittent Turbulence in a Global Ocean Model. Physics 11, 21 (2018). 

7. Rorai, C.; Mininni, P.D. and Pouquet, A. Turbulence comes in bursts in stably stratified flows. 

Phys. Rev. E 89, 043002 (2014). 

8. Feraco, F.; Marino, R.; Pumir, A.; Primavera, L.; Mininni, P. D.; Pouquet, A. and Rosenberg, 

D. Vertical drafts and mixing in stratified turbulence: Sharp transition with Froude number. 

EPL 123, 44002 (2018). 

9. Ishihara, T.; Gotoh, T. and Kaneda, Y. Study of high-Reynolds number isotropic turbulence 

by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165-80 (2009). 

10. Ishihara, T.; Morishita, K.; Yokokawa, M.; Uno, A. and Kaneda, Y. Energy spectrum in high-

resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1, 082403(r) (2016). 



 30 of 32 

 

11. Gotoh, T., Fukayama, D., and Nakano, T. Velocity field statistics in homogeneous steady 

turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14(3), 

1065-1081 (2002). 

12. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli and S. Succi Extended self-

similarity in turbulent flows, Phys. Rev. E 48, R29-R32 (1993). 

13. R. Benzi, S. Ciliberto, C. Baudet, G. Ruiz Chavarria and R. Tripiccione Extended Self-

Similarity in the Dissipation Range of Fully Developed Turbulence, EPL 24, 275-279 (1993). 

14. Briscolini, M., Santangelo, P., Succi, S. and Benzi, R. Extended self-similarity in the numerical 

simulation of three-dimensional homogeneous flows. Phys. Rev. E 50, R1745-1747 (1994). 

15. Benzi, R., Ciliberto, S., Baudet, C. and Ruiz Chavarria, G. On the scaling of three dimensional 

homogeneous and isotropic turbulence. Physica D 80, 385–398 (1995). 

16. Benzi, R., Biferale, L., Ciliberto, S., Struglia, M. V. and Tripicccione, R. Generalized scaling 

in fully developed turbulence. Physica D 96, 162–181 (1996). 

17. Anselmet, F., Gagne, Y., Hopfinger, E.J., and Antonia, R.A. High-order velocity structure 

functions in turbulent shear flows. J. Fluid Mech. 140, 63-89 (1984). 

18. M. Nelkin What do we know about self-similarity in fluid turbulence? J. Stat. Phys. 54, 1-15 

(1989). 

19. She, Z.S., and Leveque, E. Universal scaling law in fully developed turbulence. Phys. Rev. 

Let. 72, 336-339 (1994). 

20. Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., 

Ciliberto, S., Camussi, R., Chillia, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijer, J., 

Marchand, M., Maurer, J., Muzy, J. F., Naert, A., Noullez, A., Peinke, J., Roux, F., Tabeling, 

P., van de Water, W., Willaime H. Structure functions in turbulence, in various flow 

configurations, at Reynolds number between 30 and 5000, using extended self-similarity. EPL, 

34, 411-416 (1996). 

21. Boratav, N., and Pelz, R. B. Structures and structure functions in the inertial range of 

turbulence, Phys. Fluids 9, 1400-1415. 

22. Grossmann, S., Lohse, D., and Reeh, A. (1997) Application of extended self-similarity in 

turbulence. Phys. Rev. E 56, 5, 5473-5478 (1997). 

23. Belin, F.; Maurer, J.; Tabeling, P. and Willaime, H. Velocity gradient distributions in fully 

developed turbulence, Phys. Fluids, 9, 3843 – 3850 (1997). 

24. Sreenivasan, K. R., and Dhruva, B. Is there scaling in high-Reynolds number turbulence? Prog. 

Theor. Phys. Suppl. 130, 103-120 (1998). 

25. Garg S., and Warhaft, Z. On small scale structure of simple shear flow. Phys. Fluids 10, 662-

673 (1998). 

26. Shen X. and Warhaft, Z. The anisotropy of the small scale structure in high Reynolds number 

(Rλ~1000) turbulent shear flow. Phys. Fluids 12, 2976-2989 (2000). 

27. Shen X. and Warhaft, Z. Longitudinal and transverse structure functions in sheared and 

unsheared wind-tunnel turbulence. Phys. Fluids 14, 370-381 (2002). 



 31 of 32 

 

28. Toschi, F., Amati, G., Succi, S., Benzi, R. and Piva, R. Intermittency and Structure Functions 

in Channel Flow Turbulence. Phys. Rev. Lett. 82, 5044-5047 (1999). 

29. Benzi, R., Amati, G., Casciola, C. M., Toschi, F. and Piva, R. Intermittency and scaling laws 

for wall bounded turbulence. Phys. Fluids 11, 1284-1286 (1999). 

30. Toschi, F., Leveque, F. and Ruiz-Chavarria, G. Shear effects in nonhomogeneous turbulence. 

Phys. Rev. Lett. 85, 1436 (2000). 

31. Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. and Piva, R. Scaling laws and intermittency 

in homogeneous shear flow. Phys. Fluids 14, 583-596 (2002). 

32. Casciola, C. M., Benzi, R., Gualtieri, P., Jacob, B. and Piva, R. Double scaling and 

intermittency in shear dominated flows. Phys. Rev. E 65, 015301 (2002). 

33. Jacob, B., Olivieri, A. and Casciola, C. Experimental assessment of a new form of scaling law 

for near-wall turbulence. Phys. Fluids 14, 481-491 (2002). 

34. Casciola, C. M., Benzi, R., Gualtieri, P., Jacob, B. and Piva, R. Scale-by-scale budget and 

similarity laws for shear turbulence. J. Fluid Mech. 476, 105-114 (2003). 

35. Jacob B., Biferale L., Iuso G. and Casciola C.M. Anisotropic fluctuations in turbulent shear. 

flows. Phys. Fluids 16, 4135-4142 (2004). 

36. Casciola, C. M., Gualtieri, P., Jacob, B. and Piva, R. Scaling properties in the production range 

of shear dominated flows. Phys. Rev. Lett. 95, 024503 (2005). 

37. Casciola, C. M., Gualtieri, P., Jacob, B. and Piva, R. The residual anisotropy at small scales in 

high shear turbulence. Phys. Fluids 19, 101704 (2007). 

38. Biferale, L., and Vergassola, M. Isotropy vs anisotropy in small-scale turbulence. Phys. of 

Fluids 13, 2139 (2001). https://doi.org/10.1063/1.1381019. 

39. Biferale, L. and Toschi, F. Anisotropic homogeneous turbulence: Hierarchy and intermittency 

of scaling exponents in the anisotropic sectors. Phys. Rev. Lett. 86, 4831 (2001). 

40. Biferale, L., Boffetta, G., Celani, A., Lanotte, A., Toschi, F. and Vergassola, M. The decay of 

homogeneous anisotropic turbulence. Phys. Fluids 15, 2105-2112 (2003). 

41. Arad, I., Dhruva, B., Kurien, S., L’vov, V.S., Procaccia, I. and Sreenivasan, K.R. Extraction 

of Anisotropic Contributions in Turbulent Flows. Phys. Rev. Lett. 81, 5330-5333 (1998). 

42. Arad, I., L’vov, V.S., and Procaccia, I. Correlation functions in isotropic and anisotropic 

turbulence: The role of the symmetry group. Phys. Rev. E 59, 6753-6765 (1999). 

43. Belinicher, V. I. and L’vov, V. S. A scale-invariant theory of fully developed hydrodynamic 

turbulence Sov. Phys. JETP 66 (2), 303-313(1988). (Translation from Zh. Eksp. Teor. Fiz. 93, 

533-551 (August 1987)).  

44. L’vov, V. S., Procaccia, I. and Tiberkevich, V. Scaling exponents in anisotropic hydrodynamic 

turbulence. Phys. Rev. E 67, 026312 (2003). 

45. Biferale, L. and Procaccia, I. Anisotropy in turbulent flows and in turbulent transport, Phys. 

Rep. 414 (2-4), 43-164 (2005). https://doi.org/10.1016/j.physrep.2005.04.001 

46. Thoroddsen, S. T. and Van Atta, C. W. The Influence of Stable Stratification on Small-Scale 

Anisotropy and Dissipation in Turbulence, J. Geophys. Res. 97, C3, 3647-3658 (1992). 

https://doi.org/10.1063/1.1381019
https://doi.org/10.1016/j.physrep.2005.04.001


 32 of 32 

 

47. Thoroddsen, S. T. and Van Atta, C. W. Experiments on density-gradient anisotropies and 

scalar dissipation of turbulence in a stably stratified fluid. J. Fluid Mech. 322, 383-409 (1996). 

48. Piccirillo, P. and Van Atta, C. W. The evolution of a uniformly sheared thermally stratified 

turbulent flow. J. Fluid Mech. 334, 61-86 (1997). 

49. Keller, K. H. and Van Atta C. W. An experimental investigation of the vertical temperature 

structure of homogeneous stratified shear turbulence. J. Fluid Mech. 425, 1-29 (2000). 

50. Holt, S. E., Koseff, J. R. and Ferziger, J. H. 1992 A numerical study of the evolution and 

structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499-539. 

51. Fernando, H. J. S.; Pardyjak, E. R.; Di Sabatino, S.; Chow, F. K.; De Wekker, S. F. J.; Hoch, 

S. W.; Hacker, J.; Pace, J. C.; Pratt, T.; Pu, Z. et al. The MATERHORN –unraveling the 

intricacies of mountain weather. Bull. Am. Meteorol. Soc. 96 (11), 1945–1967 (2015).  

52. Kit, E.; Hocut, C.; Liberzon, D. and Fernando, H.J.S. Fine-Scale Turbulent Bursts in Stable 

Atmospheric Boundary Layer in Complex Terrain. J. Fluid Mech. 833, 745-772 (2017).  

53. Sukoriansky, S.; Kit, E.; Zemach, E.; Midya, S. and Fernando, H.J.S. Inertial range skewness 

of the longitudinal velocity derivative in locally isotropic turbulence. Phys. Rev. Fluids 3, 

114605 (2018). 

54. Batchelor, G. K. and Townsend, A. A. Decay of vorticity in isotropic turbulence. Proc. R. Soc. 

London A 190, 534-550 (1947).  

55. Kit, E.; Cherkassy, A.; Saint, T.; Fernando, H. J. S. In-situ calibration of hot-film probes using 

a co-located sonic anemometer: implementation of a neural network. J. Atmos. Ocean Tech., 

27, 23-41 (2010).  

56. Conry, P.; Kit, E.; Fernando, H. J. S. Measurements of mixing parameters in atmospheric 

stably stratified parallel shear flow. Environ. Fluid Mech. 20, 1177–1197 (2020).  

57. Kurien, S., Sreenivasan K. R. “Measures of anisotropy and the universal properties of 

turbulence,” in New Trends in Turbulence: Nouveaux Aspects, edited by M. Lesieur, A. 

Yaglom, and F. David, (Springer, Berlin, 2001), pp. 53–111.  

 


