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Abstract17

Since industrial fluidized-bed reactors typically operate with polydispersed particles, the abil-18

ity to approximate such reactors as the superposition of corresponding monodispersed fluidized19

beds would greatly simplify their design and operation. To evaluate the validity of superposition20

of monodispersed reactor behavior, we evaluate the effects of bidispersity by comparing three-21

dimensional liquid-solid monodispersed and segregated bidipsersed fluidized beds. Simulations22

were conducted using the Immersed Boundary Method (IBM) with direct forcing in a periodic23

domain and with particle Reynolds numbers of 20-70 based on the largest particle diameter. We24

show that the volume fraction, kinematic wave speed, particle velocity fluctuations, and collisional25

and hydrodynamic stresses in the segregated layers of a bidispersed fluidized bed can be well ap-26

proximated by the corresponding properties of a monodispersed fluidized bed. In the transition27

region between the layers, only the volume fraction and collision stresses monotonically decrease28

with height. At low Reynolds numbers, particle velocity fluctuations in the upper layers are the29

largest. As the particle Reynolds number increases, particle velocity fluctuations in the transition30

and lower layers become the largest sequentially. At intermediate particle Reynolds numbers, the31

hydrodynamic stresses in the transition region are greater than those in the upper and lower layers.32

As the particle Reynolds number increases, the difference between the hydrodynamic stresses in33

the transition layer and the two layers becomes more significant. This work demonstrates that,34

despite the clear segregation into layers that behave like monodispersed beds, the transition region35

is governed by complex bidispersed mechanisms that cannot be explained in terms of the parti-36

cle behavior in the segregated layers. Overall, particle dynamics of the segregated layers in the37

bidispersed fluidized bed can be approximated with the corresponding monodispersed layers. The38

result implies that industrial applications such as wastewater treatment performance in bidispersed39

or polydispersed fluidized beds can be predicted with results from past numerical or experimental40

studies of monodispersed fluidized beds.41

∗ yaoyinuo@stanford.edu
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I. INTRODUCTION42

Liquid-solid fluidization is found in many industrial systems such as wastewater treatment43

and chemical processes. In wastewater treatment, fluidized-bed reactors are widely used in44

treating both industrial and domestic wastewater [1–3]. Traditional biological domestic45

wastewater treatment is energy intensive [4], leading to the development of the Staged46

Anaerobic Fluidized-bed Membrane Bioreactor (SAF-MBR) that reduces energy demand in47

wastewater treatment by recovering energy in the form of methane [2, 5, 6]. In the SAF-48

MBR, wastewater is injected at the reactor bottom to fluidize granular activated carbon49

(GAC) which is used to support the growth of microorganisms. Like many other fluidized50

beds, the non-uniformity of the GAC particles introduces more complexity in the fluidized-51

bed hydrodynamics. The ability to predict the hydrodynamics of fluidized beds used in52

wastewater treatment improves existing biological models for predicting and optimizing the53

treatment performance.54

Since the monodispersed spherical fluidized bed is the most simplified and idealized55

fluidized-bed reactor, it has been studied extensively in the past [7–10]. Root-mean-square56

(rms) particle velocity fluctuations have been found to vary from 10% to 170% of the upflow57

velocity [8, 10–12]. A series of papers focus on establishing a relationship between the upflow58

velocity and volume fraction. The most widely adopted relationship is based on the power59

law model which can be applied to both fluidization and sedimentation, and is given by60

u∗ =
u0

wref
= k(1− φ)n , (1)

where u0 is the superficial or upflow velocity of the fluidized bed, wref is the settling velocity61

of a single particle in the domain of interest, k is a constant to correct for high volume62

fractions [8, 13–15], φ is volume fraction and n is the expansion or power-law exponent.63

Peak rms fluctuations have been shown to occur at a volume fraction of 30% [10]. At this64

volume fraction, the force on the particles transitions from collision to flow dominant [16].65

Since monodispersed fluidized beds are not found in industrial applications, understand-66

ing the effects of polydispersity is critical. The ability to approximate polydispersed fluidized67

beds as the superposition of corresponding monodispersed fluidized beds would greatly68

simplify their design and operation by enabling application of existing understanding of69

monodispersed fluidized beds, for which there is extensive literature (i.e., equation 1). A70

bidispersed liquid-solid fluidized-bed represents a level of complexity that is sufficient to71
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understand the basic effects of multiple particle sizes yet is not as computationally costly as72

a fully polydispersed system because particles with the smallest diameter dictate the grid73

resolution. Nevertheless, the number of parameters increases substantially in the study of74

a bidispersed bed. Because two interacting particles can have both different diameters and75

densities, the following three different cases are possible: (1) same diameter but different76

density, (2) same density but different diameter and (3) different diameter and density. For77

cases (1) and (2), particle segregation generally occurs, whereby the large (dense) particles78

sink to the bottom layer while the small (light) particles rise to the top layer. In a transition79

region between the two layers, both particles coexist but tend to move in opposite directions80

and the thickness of the transition region decreases with increasing particle diameter ratio or81

particle density ratio. Complete segregation is assumed to occur when the particle diameter82

ratio is greater than two [13]. The height of bidispersed fluidized bed is typically assumed to83

be the sum of the heights of the two monodispersed fluidized-bed layers, and this has been84

shown to be quite accurate in sufficiently large systems [13, 17]. Nevertheless, a large body85

of work has been devoted to developing models to predict the thickness of the transition86

region by solving the steady-state advection-diffusion equation in the axial z direction of the87

bed for particle i = 1 of 2,88

−Di
∂φi
∂z

= φiuseg,i, (2)

where Di is the dispersion coefficient, φi is the volume fraction and useg,i is the segregation89

velocity [18–20]. These papers demonstrate that the volume fraction of the layers in a segre-90

gated bidispersed fluidized bed can be approximated as a superposition of two monodispersed91

fluidized-bed layers. However, the dispersion coefficient and segregation velocity needed to92

predict the volume fraction are largely based on fitting and heuristics without quantification93

of the underlying particle microstructure physics. In this paper, we study these physics to94

obtain a more quantitative understanding of the processes affecting the transition region in95

a bidispersed fluidized bed.96

To study the detailed hydrodynamics of a fluidized bed, there are both experimental97

and simulation approaches. In addition to the obvious advantage of studying real reactors98

without the need for models or simulations, the advantage of experiments is the ability to99

test a large number of different particle parameters in a relatively short period of time. This100

approach has been widely adopted to study macroscopic properties such as modeling Ret101
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and n [7, 21] and understanding the effect of particle properties on the collision pressure [22].102

However, quantification of local hydrodynamics and microstructure in a fluidized bed with103

experiments is difficult [8], most notably because direct imaging of particles is only possible104

for dilute suspension [23, 24]. In recent years, high-fidelity particle-resolved simulations105

(PRS) have gained popularity as a reliable technique to accurately resolve fluid-particle106

interactions. The approach is based on first principles and approximations are only needed107

to model particle collisions. With PRS, because individual particle information can be108

tracked over time, a more detailed examination of microstructure and local hydrodynamics109

in a fluidized bed is possible. Recently, the PRS approach has been widely adopted for a110

number of different problems, including extracting drag laws from arrays of particles [25–28]111

and understanding the detailed physics of flow-particle interactions in fluidized beds and112

particle suspensions [8–11, 29–31]113

In this paper, we present PRS results of liquid-solid monodispersed and segregated bidis-114

persed fluidized-bed reactors to gain a detailed understanding of the effects of bidispersivity115

on the particle dynamics. A series of cases with different particle Reynolds numbers is116

studied and the simulation results are used to validate the assumption of approximating117

segregated fluidized beds as the superposition of two monodispersed fluidized beds.118

II. NUMERICAL METHODOLOGY AND SIMULATION SETUP119

A. Equations and discretizations120

The governing Navier-Stokes equations are solved in a three-dimensional rectangular121

domain containing an array of spherical particles. A source term, fIBM, based on the direct-122

forcing IBM method is added to the incompressible Navier-Stokes equation to enforce no-slip123

boundary conditions on the particle surfaces as124

∂u

∂t
+ u · ∇u = −∇p+ νf∇2u + f IBM, (3)

subject to continuity, ∇·u = 0, where u is the velocity vector and p is the pressure normal-125

ized by the fluid density, ρf . Equation 3 is solved on a uniform collocated Cartesian grid.126

Coupling between the momentum and pressure equations is achieved using the fractional-127

step method proposed by Ref [32]. The advection term is discretized with the explicit,128

three-step Runge-Kutta scheme described in Ref [33]. The viscous term is discretized with129
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the implicit Crank-Nicolson scheme to eliminate the associated stability constraint. The130

Hypre library is used to solve the linear systems arising from the implicit discretization131

of the viscous terms and the pressure-Poisson equation [34, 35]. To solve the interactions132

between the fluid and the particles, the direct forcing approach first proposed by Ref [36]133

and improved by Ref [37] is adopted. Collision models [38, 39] are used to simulate particle-134

particle interactions when the separation distance between the particle surfaces is less than135

two grid cells. A detailed description and validation of the method can be found in Ref [40].136

B. Simulation setup137

Three-dimensional simulations are conducted in the rectangular, doubly-periodic (x-138

and y-directions) domain shown in figure 1. The particles have a constant density ρp =139

1300 kg m−3. Three different particle diameters dp,1, dp,2 and dp,3 are chosen based on the140

monodispersed or bidispersed fluidized-bed configurations summarized in table I. The fluid141

has density ρf = 998.21 kg m−3 and kinematic viscosity νf = 10−6 m2s−1. The Cartesian142

grid spacing is uniform and given by ∆x = ∆y = ∆z = h such that143

h =
max(dp,1, dp,2, dp,3)

25.6
=

min(dp,1, dp,2, dp,3)

18.3
, (4)

which is sufficient to resolve the flow-particle interactions as demonstrated by various au-144

thors [36–38] and demonstrated with our code in Ref [40]. The rectangular domain has a145

square cross section Lx = Ly = 10dp,1 and a height Lz = 60dp,1, giving a three-dimensional146

grid with 256×256×1536 grid points. The time-step size ∆t is calculated based on the advec-147

tion and diffusion Courant number which are defined as Cadv = u0∆t/h and Cdiff = νf∆t/h
2,148

respectively, and we ensure that Cmax = max(Cadv, Cdiff) = 0.25 for the case with the largest149

flow rate. In the simulations, the critical parameters are the particle diameter and the num-150151

ber of particles. Here, we choose the largest particle diameter dp,1 = 0.002 mm to compare152

the results to the monodispersed simulations of Ref [16], while dp,2 and dp,3 are calculated153

based on assuming154

dp,1 = 1.2dp,2 = 1.4dp,3. (5)

The choice of the diameter ratio is designed to minimize the computational cost (that scales155

with the diameter ratio) while ensuring bidispersed behavior. For the monodispersed sim-156

ulations, the number of particles Np,mono = 2000 is used to ensure a sufficient fluidized bed157
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Figure 1. The three-dimensional computational domain, showing the bidispersed fluidized bed

and the uniform inflow velocity profile. Particle positions are initialized with 1dp,1 spacing for the

simulation with Rep = 40 for FB-Bi-14.

height to obtain accurate statistics. For the bidispersed simulations, the number of particles158

Np,bi varies from case to case and is defined as159

Np,bi = Np,dp,1 +Np,dp,j , (6)

where j = 2 or 3, Np,dp,1 and Np,dp,j are the number of particles with particle diameter dp,1160

and dp,j, respectively. To ensure a fluidized-bed height that is sufficiently high to obtain good161

statistics, the bidispersed fluidized-bed height Lbi is kept the same as the monodispersed162

fluidized-bed height. Defining the monodispersed bed height determined by Ref [16] as163

Lmono,dp,1 , we require164

Lbi = Lmono,dp,1 = 2× Lbi,dp,j = 2× Lbi,dp,1 . (7)
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FB-Mono-12 FB-Bi-12 FB-Mono-14 FB-Bi-14 FB-Mono-10

u0 (m s−1) Np,mono Np,dp,1 Np,dp,2 Np,mono Np,dp,1 Np,dp,3 Np,mono

0.010 2000 1000 1607 2000 1000 2376 2000

0.015 2000 1000 1565 2000 1000 2247 2000

0.020 2000 1000 1518 2000 1000 2106 2000

0.025 2000 1000 1465 2000 1000 1943 2000

0.030 2000 1000 1401 2000 1000 1749 2000

0.035 2000 1000 1321 2000 1000 2509 2000

Table I. Summary of number of particles used in the simulations. Np,mono = 2000 is used for

all monodispersed cases. Np,dp,2 and Np,dp,3 are calculated using equation 8 with respect to the

upflow velocity. Particles with diameter dp,1 = 2.0 mm, dp,2 = dp,1/1.2 and dp,3 = dp,1/1.4 are

used. Results from FB-Mono-10 were obtained from Ref [16]

Given Lmono,dp,1 , Np,mono, dp,1 and dp,j, if we assume the number of particles in the lower165

layer is Np,dp,1 = 1000, then the number of particles in the upper layer is given by166

Np,dp,j =
LxLyLbi,dp,jφ

Vp,dp,j
, (8)

where Vp,dp,j = πd3
p,j/6 is the volume of a particle with diameter dp,j and φ can be estimated167

with equations 1. Table I summarizes the number of particles used in each simulation such168

that the largest number of particles used is Np,bi = 3376. This represents a good balance169

between ensuring a sufficient fluidized bed height while minimizing the number of particles,170

which significantly increase the computational cost.171

In this work, in addition to the particle diameter ratio, the second parameter of interest172

is the particle Reynolds number. For a monodispersed fluidized bed, the particle Reynolds173

number is defined as Rep,i = u0dp,i/νf where i = 1, 2 or 3. For a bidispersed fluidized-174

bed, two particle Reynolds numbers Rep,1 and Rep,j are defined based on the two particle175

diameters dp,1 and dp,j where j = 2 or 3. In order to maintain the same flow rate as the176

monodispersed simulations, we vary Rep,1. In total, six simulations were conducted with177

0.010 m s−1 ≤ u0 ≤ 0.035 m s−1, giving 20 ≤ Rep,1 ≤ 70 for each configuration summarized178

in table I, giving a total of 24 simulations. For all cases, the pressure is specified at the top179

boundary as p = 0, while a uniform inflow velocity of u0 is specified at the bottom boundary.180
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Simulations are initialized with a uniform array of particles and the flow is started from181

rest. The upflow velocity leads to expansion of the bed and random motion of the particles182

until statistical equilibrium is reached, at which time the dynamics are independent of the183

initial particle distribution and the total average drag force is in balance with the submerged184

weight of the particles. To understand the time evolution of particle variables and assess185

statistical equilibrium, we define the naive ensemble-average operator in which data for all186

particles are used as187

〈{·}〉∗ =
1

Np

Np∑
n=1

{·}n, (9)

where Np is the total number of particles in the simulation, and we monitor the ensemble-188

average vertical particle velocity 〈wp〉∗. Here, we define a turnover time τT = dp,max/u0 and189

statistical equilibrium is achieved after 30τT that is indicated by 〈wp〉∗ fluctuating about zero.190

Figure 2 shows 〈wp〉∗ as a function of maximum turnover time τT for different configurations191

with the same Rep,1 = 40. The 〈wp〉∗ of both monodispersed and bidispersed fluidized bed192

converges to zero, indicating statistical equilibrium. Here, we define the time-averaging193

operator194

{·} =
1

tmax − ti

∫ tmax

ti

{·} dt , (10)

where ti = t0 + 30τT and t0 is the spin-up time needed for the flow to reach statistical195

equilibrium.196

III. RESULTS197

A. Distribution of volume fraction in the bidispersed fluidized bed198

Many researchers have reported that segregated bidispersed fluidized beds consist of199

three different regions (lower, transition and upper layer) [13, 19, 20]. The volume fraction200

of the lower and upper layers can be approximated with the corresponding values for a201

monodispersed fluidized bed. To validate the volume fraction distribution of the segregated202

bidispersed fluidized bed, we compute the instantaneous Eulerian volume fraction φ(x, t)203

following the procedure in Ref [16]. We compute the volume fraction as a function of204
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Figure 2. Time series of the ensemble settling velocity 〈wp〉∗ normalized by u0 for Rep,1 = 40 for

all cases simulated except FB-Mono-10.

vertical position by applying the Eulerian horizontal-averaging operator205

〈{·}〉∗xy =
1

NxNy

NxNy∑
i,j=1

{·}ij. (11)

Figure 3 shows 〈φ〉∗xy(z) as a function of z/dp,1 for different Rep,1. Qualitatively, the 〈φ〉∗xy(z)206

of FB-Mono-12 and FB-Mono-14 approximately match the corresponding upper layers in207

FB-Bi-12 and FB-Bi-14. For quantitative comparison, we compute the vertically-averaged208

(z) volume fraction 〈〈φ〉∗xy〉z by excluding the boundaries. To do so, we define a modified209

Eulerian vertical-averaging operator210

〈{·}〉z =
1

N∗z

zt/h∑
k=zb/h

{·}k, (12)

where zb and zt are the bottom and top of the homogeneous fluidized-bed layers, respectively,211

and N∗z = (zt − zb)/h is the number of grid points in the z-direction bounded by zb and212

zt. “Homoegenous” refers to the region of the fluidized-bed that is not affected by the213

boundaries. In what follows, 〈〈φ〉∗xy〉z ≡ 〈φ〉 will be assumed unless otherwise indicated.214

For FB-Mono-12 and FB-Mono-14, we define zb and zt following the procedure in Ref [16]215

by excluding the values near the top and bottom of the fluidized bed. For FB-Bi-12 and FB-216

Bi-14, the fluidized beds consist of three regions with a total of four boundaries (two for each217
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Figure 3. Horizontally- and time-averaged volume fraction 〈φ〉∗xy as a function of normalized vertical

position z/dp,1 for different particle Reynolds numbers Rep,1. (a) FB-Mono-12. (b) FB-Bi-12. (c)

FB-Mono-14. (d) FB-Bi-14.

segregated layer). In the transition region, the lower layer 〈φ〉 decreases monotonically from218

the lower to the upper layer 〈φ〉 as shown in figure 3(b) and (d). To define the boundaries of219

each region, we construct probability density functions (PDF) based on the particle vertical220

position with respect to particle diameter as221

Pα(z) =
1

Nt

Nt∑
t=1

Np∑
i=1

[1zl<ztp,i<zu(ztp,i)][1dp,i=dp,j(dp,i)], (13)

where zp,i is the vertical position of the ith particle, zl and zu denote the lower and upper222

edges of the equally-spaced bins having a width of 0.5dp,1, Np is the total number of particles223
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in the fluidized bed, 1zl<ztp,i<zu(ztp,i) is the indicator function224

1zl<ztp,i<zu(ztp,i)

1 zl < ztp,i < zu,

0 otherwise,
(14)

that determines whether particle i is located in the bin bounded by zl and zu, and225

1dp,i=dp,j(dp,i) is the indicator function226

1dp,i=dp,j(dp,i)

1 dp,i = dp,j,

0 otherwise,
(15)

to include particles with diameter dp,j. Figure 4 shows the PDF of the particle vertical227

position for case FB-Bi-12 with Rep,1 = 40. We define the top of the lower layer as228

zt,lower = arg min
(
Pdp,1(z)/Pdp,j(z)− ζthresh

)
(16)

and the bottom of the upper layer as229

zb,upper = arg min
(
Pdp,j(z)/Pdp,1(z)− ζthresh

)
, (17)

where ζthresh = 100 is an arbitrary threshold ratio to be set apriori. Large ζthresh will result230

in a more monodispersed-like segregated layer that leads to a larger transition region and231

smaller segregated region. Table II summarizes zt,lower and zb,upper for FB-Bi-12 and FB-Bi-232

14. With the boundaries defined in this way, we can compute 〈φ〉 for each segregated layer233

in cases FB-Bi-12 and FB-Bi-14.234

Figure 5 shows the fit of 1 − 〈φ〉 as a function of Rep,1 for different regions. Each235

bidispersed fluidized bed can fit two different lines for the upper and lower layers, resulting236

in a total of 7 fitted lines (only three can be seen in the figure due to overlap). Overall, FB-237

Mono-12 [16] overlaps with the lower layer of FB-Bi-12 and FB-Bi-14 while FB-Mono-12 and238

FB-Mono-14 overlaps with the corresponding upper layer of FB-Bi-12 and FB-Bi-14. This239

shows that the volume fractions in the different layers of a segregated bidispersed fluidized-240

bed can be approximated accurately with those of a monodispersed fluidized bed. Table III241

summarizes the fitted n that are closer to the predicted n by Ref [21] and fitted k that is in242

the same range as reported by various authors [8, 10]. Overall, n and k obtained from the243

monodispersed fluidized bed and corresponding layers in the bidispersed fluidized bed are244

indistinguishable, further demonstrating the accuracy of approximating the volume fraction245

in each segregated layer as that in a monodispersed layer without boundary effects.246247
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u0 (m s−1)
FB-Bi-12 FB-Bi-14

zt,lower/dp,1 zb,upper/dp,1 zt,lower/dp,1 zb,upper/dp,1

0.010 8.44 12.7 9.35 25.9

0.015 8.74 16.3 11.2 22.0

0.020 11.5 17.5 12.7 19.3

0.025 13.3 22.0 14.5 16.6

0.030 15.4 23.8 17.2 14.2

0.035 18.4 27.7 20.5 11.8

Table II. Summary of the top boundary of lower layer zt,lower and the bottom boundary of upper

layer zb,upper in the bidispersed fluidized bed. The transition region is defined as the difference

between zt,lower and zb,upper.

Parameters
dp,1 dp,2 dp,3

FB-Mono-10 FB-Bi-12 FB-Bi-14 FB-Mono-12 FB-Bi-12 FB-Mono-14 FB-Bi-14

n 2.81 2.83 2.81 3.00 2.99 3.15 3.14

k 0.71 0.72 0.72 0.74 0.74 0.76 0.76

nga 2.89 2.95 3.02

nzaki 2.61 2.71 2.80

Table III. Summary of fitted n and k with respect to each monodispersed fluidized bed and segre-

gated layers in the bidispersed fluidized-bed. All coefficients of determination R2 for these fits are

1. nzaki and nga are calculated using Refs [7] and [21] respectively.

B. Kinematic wave speed248

In the previous section, the fluidized bed is characterized by the volume fraction and249

particle Reynolds number. However, the volume fraction fluctuates about a mean value250

which exhibits alternating regions of low and high volume fractions, resulting in waves [41–251

43]. Comparison between the wave speed of segregated bidispersed and monodispersed252

fluidized beds will further validate the assumption of approximating segregated bidispersed253

fluidized beds as a superposition of two monodispersed fluidized beds.254
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Figure 4. Probability density function (PDF) of particle vertical positions for the two particle

diameters in the case with Rep,1 = 40 for FB-Bi-12.

Based on the classification of fluidization by Refs [41, 42], the cases simulated in this work255

are classified as unstable fluidization that is characterized by persistent particle velocity fluc-256

tuations. Figure S1(a) shows a typical volume fraction fluctuation φ′ = 〈φ〉xy − 〈φ〉 plot in257

two-dimensional space-time. Qualitatively, propagating waves are indicated by regions of258

porosity that are periodic in space and time. However, due to the random noise, extract-259

ing wave speeds from Figure S1(a) is difficult. In the Appendix B, wave speeds estimated260

with three different approaches are compared, namely 1) naive, 2) two-dimensional auto-261

correlation and 3) the dispersion relationship. The results indicate that the autocorrelation262

approach is the most accurate and is adopted in this paper.263

Ref [44] relates volume fraction to wave speed with264

c = knφ(1− φ)n−1wref , (18)

where c is wave speed and other variables are consistent with equation 1. Figure 6(a),265

(b) and (c) show the wave speeds computed with different particle diameters using the266

autocorrelation approach and model (equation 18). Overall, the computed wave speeds are267

very similar to the wave speeds computed with the model. Interestingly, the wave speed268

in the different layers in the FB-Bi-12 and FB-Bi-14 cases agree with the corresponding269

14



20 30 40 50 60 70 80
Rep, 1

0.4

0.5

0.6

0.7

0.8

0.9

1−
⟨ ϕ

⟩
FB-Mono-12
FB-Bi-12 upper
FB-Mono-14
FB-Bi-14 upper
FB-Bi-14 lower
FB-Bi-12 lower
FB-Mono-10 (Yao et al.)

Figure 5. Porosity 1− 〈φ〉 as a function of Rep,1 for the simulated monodispersed and bidispersed

cases. The lines were constructed based on fitting to the power law equation (1).
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Figure 6. Wave speed based on the autocorrelation as a function of Rep,1 for (a) dp,1, (b) dp,2 and

(c) dp,3.

monodispersed fluidized-bed cases even though the boundary conditions on each segregated270

layer in cases FB-Bi-12 and FB-Bi-14 are different. For illustration, case FB-Mono-12 is271

prescribed with a uniform inflow profile while the upper layer of case FB-Bi-12 is subjected272

to the non-uniform flow at the transition region. This shows that the wave speed is controlled273

by the particle properties and local porosity rather than the inflow.274
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Figure 7. Particle velocity fluctuations as a function of the fluidized-bed height Lb for case FB-

Mono-12 with (a) Rep,1 = 30 and (b) Rep,1 = 60.

C. Velocity fluctuations275

To understand the effect of particle velocity fluctuations in a segregated bidispersed276

fluidized bed, we compute the root-mean-square velocity277

urms,α =
√
〈u′αu′α〉, (19)

where u′α = uα − 〈u〉α is the particle velocity fluctuation and α = x, y or z. In a suspended278

particle system, Ref [23] discovered that particle velocity fluctuations depend on the domain279

size for min(Lx, Ly, Lb) < 10dp,maxφ
−1/3 and otherwise scale as 2wtφ

1/3. By simulating Stokes280

sedimentation, Ref [45] demonstrated that the dependence on the domain size exists with281

periodic horizontal and non-periodic z-direction boundaries. Figure 7 shows the particle282283

velocity fluctuations u′α for case FB-Mono-12 as a function of the normalized bed height284

for Rep,1 = 30 and 60. Particle velocity fluctuations initially increase at a higher rate as285

Lb increases. When Lb is sufficiently large (above the black line), the increase in particle286

velocity fluctuations is less significant. Since the heights of the segregated layers in cases FB-287

Bi-12 and FB-Bi-14 are less than the critical height 10dp,maxφ
−1/3, they differ from the height288

of the corresponding monodispersed fluidized bed. Therefore, particle velocity fluctuations289

in the monodispersed fluidized bed are calculated with particles located below the desired290

height to eliminate the effect of Lb on particle velocity fluctuations. Figure 8(a) and (b)291

show the normalized particle velocity fluctuations as a function of Rep,1. With the same292
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bed height, the normalized particle velocity fluctuations for cases FB-Mono-10, FB-Mono-12293

and FB-Mono-14 are nearly identical to those of the corresponding layers in the bidispersed294

fluidized-bed cases. At low Reynolds numbers (Rep,1 ≤ 40), the upper segregated layer has295

the largest normalized particle velocity fluctuations, followed by the transition and lower296

layers. As the Reynolds number increases, particle velocity fluctuations in the transition297

layer become greater than those of the upper segregated layer. For Rep,dp,1 > 60, the particle298

velocity fluctuations in the transition layer are the highest, followed by the lower and upper299

layers. The trends in figure 8 indicate that the normalized particle velocity fluctuations of300

the lower layers will eventually become the largest. This observation is due to the different301

particle properties and volume fraction operating at a common Rep,1, resulting in different302

porosity due to different particle properties. To eliminate this effect, figure 8(c) and (d)303

show the normalized particle velocity fluctuations as a function of the porosity 1−〈φ〉. The304

normalized particle velocity fluctuations are expected to be zero for both a single particle305

(φ ≈ 0) and a packed bed (φ ≈ 0.6), resulting in a maximum value at an intermediate306

porosity. The upper segregated layer has consistently higher normalized particle velocity307

fluctuations than the lower segregated layer at the same porosity due to the decreasing308

particle cluster lifespan with increasing Archimedes number [40], which is defined as309

Ar =
g(s− 1)d3

p,i

ν2
f

, (20)

where i = 1, 2 or 3, dp,i is the diameter of particle i, g is the gravitational acceleration310

and s = ρp/ρf is the particle-fluid density ratio. According to Ref [40], particles are more311

likely to form long-lived clusters for particles with lower Ar due to ineffective collisions that312

are unlikely to break particle clusters formed by wake entrainment. With more long-lived313

clusters, particles experience appreciable acceleration as a cluster resulting in more signifi-314

cant normalized particle velocity fluctuations. Despite higher particle velocity fluctuations315

for lower Ar, we would like to point out that figure 8 resembles more realistic fluidized-bed316

operation. With a common upflow velocity, particles with different Ar cannot be operated317

at the same porosity. To optimize reactor mixing that is likely to coincide with the peak in318

particle velocity fluctuations [16], both layers must be considered separately.319

17



20 30 40 50 60 70
Rep, dp, 1

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

u r
m
s,
z/u

0

(a)

FB-Bi-12 lower
FB-Bi-12 transition
FB-Bi-12 upper
FB-Mono-10
FB-Mono-12

20 30 40 50 60 70
Rep, dp, 1

0.35

0.40

0.45

0.50

0.55

0.60

0.65

u r
m
s,
z/u

0

(b)

FB-Bi-14 lower
FB-Bi-14 transition
FB-Bi-14 upper
FB-Mono-10
FB-Mono-14

0.5 0.6 0.7 0.8
1− ⟨ϕ⟩

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

u r
m
s,
z/u

0

⟩c)

FB-Bi-12 lower
FB-Bi-12 upper
FB-Mono-10
FB-Mono-12

0.5 0.6 0.7 0.8
1− ⟨ϕ⟩

0.35

0.40

0.45

0.50

0.55

0.60

0.65

u r
m
s,
z/u

0

⟩d)

FB-Bi-14 lower
FB-Bi-14 upper
FB-Mono-10
FB-Mono-14

Figure 8. Normalized particle velocity fluctuations as a function of Rep,1 for (a) dp,1/dp,2 = 1.2

and dp,1/dp,3 = 1.4 and 1− 〈φ〉 for (c) dp,1/dp,2 = 1.2 and (d) dp,1/dp,3 = 1.4.

D. Auto-correlation and self-diffusivity320

In this section, we compute the integral timescale and self-diffusivity for different regions

in the bidispersed fluidized bed and compare them to the corresponding monodispersed

fluidized bed. As defined by Refs [9, 10, 46], the autocorrelation function is given by

Rαα(τ) =
〈u′α(t0)u′α(t0 + τ)〉
〈(u′α(t0))2〉

, (21)

where τ is the given time lag and α = x, y or z. Following the procedure to quantify the321

errors in computing the integral timescale due to finite simulation time in [16], we compute322
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Figure 9. Calculated integral timescale as a function of (a) simulated duration Nτ and (b) fluidized-

bed height Lb/dp,1 for case FB-Mono-12 with Rep,1 = 40.

the approximate integral timescale as323

E(Tα,cal) =
1

Nτ −Nτ,thresh

Nτ∑
i=Nτ,thresh

T iα,cal, (22)

STD.(Tα,cal) =
√

E(T 2
α,cal)− E(Tα,cal)2, (23)

where Nτ = t/τT and Nτ,thresh is the threshold time needed to reach statistical equilibrium,

and the calculated integral timescale with Nτ is defined as

T Nτα,cal =

∫ tf

0

Rαα(τ) dτ . (24)

Figure 9(a) shows the effects of Nτ on the computed integral timescale for the entire flu-324

idized bed. For each respective fluidized-bed height, Tα,cal initially increases as Nτ increases325

and fluctuates about a mean value after Nτ ≈ 10, demonstrating that the computed in-326

tegral timescale has converged in time. The fluctuations are likely due to the presence327

of waves in the fluidized bed which produce alternating positive and negative autocorrela-328

tions [9, 16]. We also compute Tα,cal as a function of Lb by considering particles that are329330

located in the desired range of the fluidized bed for 99% of the simulated duration. As331

shown in figure 9(b), E(Tα,cal) converges as Lb/dp,1 increases. After Lb > Lb,crit, the integral332

timescale is independent of the fluidized-bed height. Since Lb < Lb,crit for cases FB-Bi-12333

and FB-Bi-14, we adopt a similar approach as Section III C by computing a reduced Lb334
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Figure 10. Expected integral timescale as a function of Rep,1 for (a) dp,1/dp,2 = 1.2 and dp,1/dp,3 =

1.4.

for the monodispersed simulations (cases FB-Mono-12 and FB-Mono-14). As shown in fig-335

ure 10, the integral timescale for the bidispersed cases are of the same order of magnitude336

as the truncated monodispersed integral timescales. The non-monotonic behavior is due to337

the error associated with Lb < Lb,crit. Since the main focus is not on the absolute magni-338

tude but on the relative magnitude between the monodispersed and bidispersed fluidized339

beds, approximating the segregated layers in bidispersed fluidized beds with corresponding340

monodispersed fluidized beds is still valid.341342

Following Refs [9, 46], the self-diffusivity is defined as

DNτα,cal =

∫ tf

0

Rαα(τ)〈(u′α(t0))2〉 dτ . (25)

Similar to the integral timescale, the self-diffusivity initially depends on Lb until Lb > Lb,crit343

(not shown). Therefore, to compare to the bidispersed cases, we compute the truncated344

self-diffusivity for the monodispersed cases. Figure 11 shows that the self-diffusivity of the345

bidispersed cases is comparable to the self-diffusivity of the monodispersed cases, indicating346

the validity of characterizing bidispersed fluidized beds using properties of the corresponding347

monodispersed layers.348349
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dp,1/dp,3 = 1.40 and with (a) Re1,p = 20 and (b) Re1,p = 70. Solid lines correspond to bidispersed

fluidized-bed layers and dotted lines correspond to monodispersed layers.

E. Particle-particle and fluid-particle interactions350

Ref [16] showed that the dominant mechanism inducing particle velocity fluctuations351

shifts from collisions to hydrodynamic forces as the particle Reynolds number increases.352

Following the approach outlined in Ref [16], we compute the normal contact stress σcol, nor-353354

mal lubrication stress σlub and hydrodynamic stresses σhydro in the bidispersed fluidized bed.355

Figure 12 shows the magnitude of each stress as a function of vertical position for Rep,1 = 20356
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and 70 for cases FB-Bi-14, FB-Mono-10 and FB-Mono-14. For the range of Reynolds num-357

ber simulated, lubrication stresses are negligible (not shown). At low Reynolds numbers for358

the bidispersed simulation, the normal contact stress smoothly transitions from a high value359

in the lower layer to a lower value in the upper layer because of the reduced likelihood of360

collisions in the higher-porosity upper layer. The collision stresses in the upper and lower361

layers are roughly equal to the stresses in the corresponding monodispersed cases, and the362

hydrodynamic stresses are negligible due to the low upflow velocity. At high Reynolds num-363

bers, similar trends are observed in which the normal contact stress decreases monotonically364

to zero moving from the lower to the upper layers. Unlike the collision stress, however, the365

hydrodynamic stress peaks in the transition region rather than monotonically decreasing366

from the lower to the upper layers. In the transition region at higher Reynolds numbers,367

more vigorous velocity fluctuations are induced when large particles coexist with small par-368

ticles because small particles are strongly affected by the wakes of the large particles, thus369

leading to a peak in the hydrodynamic stress in the transition region.370371

Figure 13 shows that the collision stresses decrease monotonically from the lower to372

the upper layers for all cases, indicating a strong dependence of the collision stress on the373

Archimedes number in each layer. In addition, the collision stresses in the lower and up-374

per layers of the bidispersed fluidized-bed match those of the corresponding monodispersed375

fluidized-bed. This shows that collision stresses in the bidispersed fluidized bed can be376

approximated as those in the monodispersed fluidized bed. However, because the hydro-377

dynamic stress is a weaker function of the Archimedes number in each layer but a strong378

function of particle Reynolds number, the hydrodynamic stresses in the transition region379

are greater than those in the lower and upper layers in the bidispersed fluidized bed. Nev-380

ertheless, this analysis demonstrates that both collision and hydrodynamic stresses in the381

lower and upper layers of a segregated bidispersed fluidized bed can be approximated by the382

corresponding values in a monodispersed fluidized-bed.383

IV. CONCLUSION384

We utilized PRS to compare the effects of the particle Reynolds number and bidispersity385

on both macroscopic and microscopic behavior of a fluidized bed in a three-dimensional386

domain. The particle Reynolds number was varied by varying the flow rate suspending387
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Figure 13. The computed normal contact stress and hydrodynamic stress as a function Reynolds

number Rep,1. (a) normal contact stress for dp,1/dp,2 = 1.2. (b) hydrodynamic stress for dp,1/dp,2 =

1.2. (a) normal contact stress for dp,1/dp,3 = 1.4. (a) hydrodynamic stress for dp,1/dp,3 = 1.4.

particles in the axial direction. Analysis of various statistics provided detailed comparison388

between monodispersed and bidispersed fluidized beds. We have validated the assumption in389

approximating the volume fraction of segregated bidispersed fluidized bed with the volume390

fraction of two corresponding monodispersed fluidized beds. Fitting the porosity 1− 〈φ〉 to391

Rep,1 further confirms that each segregated layer in the bidispersed fluidized-bed behaves392

like a monodispersed fluidized-bed and can be calculated using a power-law relationship.393

To understand the effects of wave speed in the monodispersed and bidispersed fluidized394

beds, we filter out random noise in the volume fraction fluctuation using a low-pass filter395

and approximate the wave speed using three different approaches. As compared to the396
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corresponding monodispersed fluidized bed with uniform inflow conditions, the upper layer397

of a bidispersed fluidized bed has an equivalent non-uniform flow conditions due to the398

transition layer. For a inflow-dominated wave speed, the wave speed of the upper layer of the399

bidispersed fluidized bed is expected to differ from that of the corresponding monodispersed400

fluidized bed. Results show that the non-uniform flow that fluidizes the upper layer of a401

bidispersed fluidized bed does not result in a different wave speed. This reveals that the402

wave speed is instead controlled by the local porosity rather than the inflow conditions. As403

the fluid flows through the voids between particles, inflow conditions are no longer important404

in determining the wave speed of the volume fraction fluctuations. Within the computed405

uncertainty bounds, the wave speed in each layer in the bidispersed fluidized bed agrees406

with the wave speed in the corresponding monodispersed fluidized bed.407

Examination of particle velocity fluctuations shows that they are a strong function of408

the fluidized-bed height until the fluidized-bed height is greater than the critical bed height409

10dpφ
−1/3. Due to limitations related to computational cost, the heights of the lower and410

upper layers of the bidispersed fluidized bed are less than the critical bed height. Therefore,411

we compute the particle velocity fluctuations of the monodispersed fluidized beds with bed412

heights equivalent to the corresponding upper and lower layers of the bidispersed fluidized413

beds. By computing particle velocity fluctuations in the monodispersed fluidized bed with414

equivalent heights, we have shown that the particle velocity fluctuations in the bidispersed415

fluidized bed match those of the corresponding monodispersed fluidized bed. Similarly, the416

convergence of the integral timescales and self-diffusivity are affected by both the fluidized-417

bed height and simulated duration until a critical bed height and sufficient long simulated418

duration are attained. Results show that the simulated duration of both the monodis-419

persed and bidispersed fluidized beds is sufficient. However, the bed heights of the upper420

and lower layers are insufficient to obtain converged statistics. In order to compare with421

the corresponding monodispersed fluidized beds, we compute the integral timescale of the422

monodispersed fluidized beds with an equivalent bed height to the corresponding upper and423

lower layers in the bidispersed fluidized beds. Using this approach, we confirmed that both424

self-diffusivity and integral timescales in the bidispersed fluidized-bed can be approximated425

by their corresponding values for a monodispersed fluidized bed.426

By quantifying the lubrication, collision and hydrodynamic stresses, we showed that colli-427

sion stresses are a strong function of both Archimedes number and particle Reynolds number,428
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while hydrodynamic stresses depend more strongly on the particle Reynolds number. Fur-429

thermore, the collision stress in the bidispersed fluidized bed decreases monotonically from430

the lower to the upper layer while the hydrodynamic stress has a peak in the transition431

region at high Reynolds number. This points out the need to develop models that can accu-432

rately capture this observations. Nevertheless, the magnitude of collision and hydrodynamic433

stresses in the segregated layers of the bidispersed fluidized-bed are very similar to those in434

the corresponding monodispersed fluidized-bed.435

The results clearly indicate that both macroscopic and microscopic properties of a436

monodispersed fluidized bed can be transferred to a segregated bidispersed liquid-solid437

fluidized bed. However, in the transition region, while the volume fraction and collision438

stresses are always bounded by values in the lower and upper layers, the particle veloc-439

ity fluctuations and hydrodynamic stresses are not always monotonically decreasing with440

height. This shows that the properties of the transition region cannot be approximated as441

simple averages of those properties in the segregated layers.442
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Appendix A: Simulation setup of a fluidized bed465

For the simulation of FB-Mono-10 [16], three-dimensional simulations are conducted with466

Np = 2000 particles in a rectangular domain. The particles have an Archimedes number467

Ar = 23600. The grid spacing is uniform in the x, y and z directions and the grid resolution468

is given by ∆x = ∆y = ∆z = h = dp/25.6. The rectangular domain has cross sectional469

dimension Lx = Ly = 10dp and its length is Lz = 60dp with 256×256×1536 grid points. The470

time-step size is ∆t = 1.5 × 10−4 s, resulting in a maximum advection Courant number of471

0.5 for the six cases simulated. The cases are run with periodicity in the x and y directions.472

The pressure is specified at the top boundary as p = 0, while at the bottom boundary the473

inflow velocity is specified as uniform and given by Ũ . The primary parameter of interest474

is the particle Reynolds number Rep,1 = u0dp,1/νf , where the average upflow velocity at the475

inlet, u0, is varied to investigate Reynolds number effects. A total of six simulations were476

conducted with 0.010 ≤ u0 ≤ 0.035, giving 20 ≤ Rep,1 ≤ 70.477

Appendix B: Evaluation of different approaches in computing wave speed478

In this section, we compare three different approaches which are 1) naive, 2) autocorrela-479

tion and 3) dispersion relation in computing wave speed from volume fraction. To separate480

the wave motion from the random noise, we followed the procedure by Ref [16] to recon-481

struct φ(z, t) into its low φk<kthresh(z, t) and high φk≥kthresh(z, t) wavenumber components482

using Fourier transforms with cut-off wavenumber kthresh. In this paper, kthresh = Lb/dp,1,483

where Lb is the height of the monodispersed layer or each segregated layer in the bidispersed484

fluidized bed. Figure S1(b) shows the reconstructed low wavenumber φk<kthresh(z, t) signal.485

Compared to figure S1(a), the wavelike behavior is more distinct, and an approximate wave486
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Figure S1. Volume fraction fluctuation φ′ as a function of time t and vertical position z at Rep = 60

in the lower layer for case FB-Bi-12. (a) unfiltered φ′, (b) reconstructed low-pass filtered φ′.

speed can be computed based on the slope of the features in the z − t plane.487

For the naive approach, we approximate the wave speed directly from figure S1(b) by488

computing the average of z/t for t that results in the top five largest φk<kthresh(z, t) for each489

respective z. The naive approach wave speed cna is formally defined as490

cna =
1

NkNi

Nk∑
k=1

Ni∑
i=1

zk
tk,i

, (B1)

where Ni = 5 is a constant that determines the number of values to be used for each z, Nk491

is the number of grid points in the fluidized bed, zk is the vertical position and tk is the492

value of t that results in the top Ni largest φk<kthresh(z, t) at zk which is defined as493

tk = arg max
ψ∈φk<kthresh (z,t),|ψ|=Ni

∑
v∈ψ

v, (B2)

where |ψ| denotes the number of elements in ψ.494495

For the two-dimensional autocorrelation approach, we followed the procedure in Ref [43].496

The space-time autocorrelation of φ′ is defined as 〈φ′(z+∆z, t+∆t)〉. By assuming φ′(z, t) =497

φ′(z−ct) in the form of a propagating wave and wave speed c = ∆z/∆t, the autocorrelation498

of φ′ is reduced to (φ′)2(z, t), appearing as the maximum value in the autocorrelation plot.499

The advantage of this approach is that the dominant wave will be amplified, hence making500

the wave speed approximation more reliable. A detailed validation of this approach can501

be found in Ref [43]. Figure S2(a) shows a typical space-time autocorrelation plot of φ′.502
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Figure S2. (a) Autocorrelation of the low-pass filtered volume fraction fluctuation φ′ as a function

of time t and vertical position z and (b) Energy spectra of the reconstructed volume fraction

fluctuation φ′ as a function of wavenumber k and frequency ω at Rep = 60 in the lower layer for

case FB-Bi-12.

Although the wave-like behavior is clearer when compared to Figure S1(b), the wave-like503

bands in our simulations are not as clear as those in Ref [43]. A plausible explanation for this504

lack of obvious wave-like motion is the method of forcing in our simulations. In Ref [43], a505

triply periodic domain is used and vertical forcing is added directly to the flow to balance the506

weight of particles. Our simulations are doubly periodic with inflow and outflow specified at507

the top and bottom boundaries, thus representing a more realistic and perhaps noisier result508

characterized by disturbances propagating through the domain due to boundary effects. To509

approximate the autocorrelation wave speed cauto, equation B1 is used by computing the510

ratio of z to t.511

For the dispersion relationship approach, we construct the energy spectra of φ′ using512

the Fourier transform to compare the energy spectra as a function of frequency ω and513

wavenumber k, and then approximate the wave speed with c = ω/k. Figure S2(b) shows514

the energy spectra normalized by the maximum value in two-dimensional k − ω space. (A515

Peak is defined where the normalized energy spectrum is greater than 0.8 and each peak516

represents a wave speed ω/k). As shown in figure S2(a), three peaks are observed that fall517

on the same line defined by ω = cFTk, indicating the dominance of three different wave518

modes propagating at the same speed. The wave speed cFT is approximated by fitting the519
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Figure S3. Wave speed derived from different approaches as a function of Rep,1 for case FB-Mono-

12.

line defined by ω = cFTk to the three peaks.520

Figure S3 shows the wave speed computed with different approaches for FB-Mono-12.521

Overall, the wave speed derived from the autocorrelation function has the least uncertainty,522

indicated by the smallest standard deviation. The naive approach gives results with similar523

averages but much larger standard deviations. This is expected because of ineffective noise524

suppression as shown in figure S1(b). Interestingly, the dispersion relationship approach525

gives almost identical results as the autocorrelation approach. However, the main disadvan-526

tage of the dispersion relationship is the need for a large domain. If the domain is small such527

that the wavelength of the wave is greater than the fluidized-bed height, smeared peaks will528

be observed leading to inaccurate results. Since the segregated bed height in cases FB-Bi-12529

and FB-Bi-14 are smaller than the wavelength, the dispersion relationship is less accurate530

for these cases. In the remainder of this work, we adopt the autocorrelation approach to531

compare wave speeds.532
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