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The relaxation dynamics of a fluid-filled blister between an elastic sheet and a porous substrate
are controlled by the deformation of the elastic sheet, the viscous stresses in the pores, and the
capillary pressure at the liquid-air interface due to imbibition. We develop a mathematical model
to study the effects of varying the permeability of the porous substrate, the bending stiffness of
the elastic sheet, and the blister size on the relaxation dynamics. Experiments are conducted by
injecting a finite volume of viscous fluid between the porous substrate and an elastic sheet, where
fluid first invades the pores, and subsequently, as the pressure in the fluid increases, the elastic sheet
is peeled and uplifted from the substrate to form a fluid-filled blister. After injection is stopped, the
fracture front is static, and the elastic stresses in the overlying sheet and the capillary pressure at
the liquid-air interface drive the drainage of the blister into the pores. We identify two regimes of
drainage. For thick sheets and more permeable substrates, drainage is primarily due to the stresses
in the deformed elastic sheet, and for thin sheets and less permeable substrates, drainage is driven
by the imbibition of the liquid into the pore space. Our model and experiments are relevant to the
drainage of fluid-driven fractures in porous media.

I. INTRODUCTION

Fluid-driven fracture involves the injection of a viscous fluid into an elastic material in order to form a fluid-filled
cavity. This process is ubiquitous in geophysical systems, including hydraulic fracturing for the extraction of oil and
gas [1] and for the creation of enhanced geothermal systems [2], ice sheet uplift due to supraglacial lake drainage [3],
and transport of magma in the lithosphere [4]. The interplay of viscous flow and deformation of an elastic material
is also relevant in biofluid mechanics involving flow through elastic tubes [5], fractures in epithelial cell sheets [6],
subcutaneous injections [7], and soft actuators for robotics [8].

Theoretical elastohydrodynamic models and laboratory experiments have been used to study fluid-driven fracture of
elastic media. Such models predict the fracturing dynamics and crack geometry by coupling viscous flow, deformation
of the elastic media, and the fracture or delamination energy required to form the crack. One typical laboratory
experiment is conducted by injecting viscous fluid into a block of elastic material, like gelatin, to form a penny-
shaped cavity [9–11]. In a second type of experiment, fluid is injected between a rigid substrate and an overlying
thin elastic sheet, either adhered to the substrate or separated by a thin layer of fluid, to form a fluid-filled blister
where viscous flow in the blister is driven by gradients in elastic stresses or hydrostatic pressure [12–14]. Two cases
have been proposed to regularize the tip dynamics as the fluid is driven into a narrowing gap. For an adhered sheet,
the diverging viscous stresses at the front lead to a vapor tip with the liquid front lagging the fracture front [13, 15].
Alternatively, a prewetting thin fluid film between the substrate and overlying elastic sheet can be used to regularize
the tip dynamics by matching the tip region to the interior [12, 16].

A fluid-filled crack formed in porous media, as is common in natural systems, can simultaneously drain into the
surrounding media during injection. The dynamics of the formation of a fluid-filled cavity between a porous or
permeable substrate and an overlying elastic sheet has been studied theoretically [17, 18]. Another instance of fluid-
driven fracturing in porous media is “leak-off”, which is a phenomenon in hydraulic fracturing, where, during the
fracturing process, some of the high pressure fluid within the crack leaks into the surrounding rock from the crack
faces [19]. Following the formation of a fracture, if the injection pressure is removed, the process reverses, and the
crack can drain from the site of injection [20]. The drainage of fluid-filled cracks is relevant to many environmental
phenomena including flowback in hydraulic fracturing when the injected fluid returns to the surface as wastewater. In
porous media, the crack can also drain into the surrounding media after the it has been formed. One example is when,
subsequent to the formation of a fluid-filled blister beneath an ice sheet at the ice-bed interface due to supraglacial
lake drainage, the elastic stresses in the uplifted ice sheet drive the relaxation of the blister through the subglacial
drainage system [21]. To the best of our knowledge, there have been no experimental studies of the drainage of
fluid-filled cracks into a surrounding porous media. This topic is the subject of the present paper.
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In particular, we study the relaxation dynamics of a fluid-filled blister between an elastic sheet and a porous
substrate driven by bending and stretching of the elastic sheet and the capillary pressure at the liquid-air interface
and resisted by the viscous stresses in the pores . We first present a model for relaxation driven by elastic deformation
and imbibition in Section II, explain our experimental setup in Section III, and finally, in Section IV, we compare the
results of the experiments with our model.

FIG. 1. Blister relaxation experiment. (a) Schematic of experimental setup and theoretical model. (b) Time sequence images
of the experimental relaxation dynamics where fluid from the blister (dark blue) drains into the porous substrate (light blue).
The blister and fluid front in the pores are outlined.

II. THEORETICAL MODEL

We study the drainage into a porous substrate of a liquid with viscosity µ and surface tension γ from a blister
beneath an elastic sheet (Fig. 1). The elastic sheet has thickness d and bending modulus D = Ed3/12(1− ν2), where
E is the elastic modulus and ν is Poisson’s ratio. The porous substrate has pillars of height h0, porosity φ, and a
permeability k. The relaxation is driven by the pressure due to deformation of the elastic sheet and the capillary
pressure at the liquid-air interface in the porous substrate due to imbibition and is resisted by the viscous stresses
due to the flow through the porous substrate. To form the blister, a fixed volume of fluid Vtot is injected between the
porous substrate and the elastic sheet, where the pore space is initially filled with air. The blister has initial volume
V0 and radius R, and our experimental observations confirm that the radius of the blister is constant throughout
the time of the relaxation experiment (as shown in Fig. 3c). The blister radius and initial volume are determined
by parameters including: bending modulus of the elastic sheet, adhesion between the porous substrate and overlying
elastic sheet, fluid injection rate, fluid viscosity, and wettability and permeability of the substrate. The process of the
blister formation is the subject of future work.

We assume axisymmetry for both the blister shape and the drainage into the pores. The blister volume is given
by V (t) and the fluid volume in the pores is φh0πRp(t)

2, where Rp(t) is the extent of the invasion of fluid into the
porous substrate. The total volume in the system is thus

Vtot = V (t) + φh0πRp(t)
2. (1)

The volume flux out of the blister is defined by the time derivative of Eq. (1).

By mass conservation, the horizontal flux in the pores outside the blister must be constant along r,
∂(rφup)
∂r = 0,

where up is the depth-averaged velocity of the fluid in the pores. Therefore, rφup|r = Rpφup|Rp . At the fluid-air

boundary, r = Rp(t), and the velocity in the pores is defined as up|r=Rp
=

dRp

dt . The volume flux from the blister is
then defined in terms of the fluid velocity.

dV

dt
= −2πφh0rup. (2)

A. Flow in the porous substrate

The fluid flow in the porous substrate follows Darcy’s law, ∂p∂r = −φµk up. Using Eq. (2), Darcy’s law can be written
in terms of the volume flux from the blister and integrated from the radial boundary of the blister, r = R, to the
fluid-air interface in the porous layer, r = Rp,∫ Rp

R

∂p

∂r
dr =

∫ Rp

R

µ

2πh0k

dV

dt

1

r
dr. (3)
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Assuming quasistatic pressure pe(t) everywhere in the blister, due to deformation of the elastic sheet, then at the
boundary of the blister the fluid pressure is p(r = R, t) = pe(t). Also, we recognize the capillary pressure pc at the
liquid-air interface Rp(t), so that p(r = Rp, t) = −pc, which is the reference atmospheric pressure minus the Laplace

pressure jump across the interface. Using Eq. (1),
Rp(t)
R =

√
Vtot−V (t)
φπh0R2 , Eq. (3) can be written

pe(t) + pc = − µ

4πh0k

dV

dt
ln

(
Vtot − V (t)

φπh0R2

)
. (4)

B. Blister pressure

A fluid-filled blister beneath an elastic sheet has a pressure that is due to the deformation of the elastic sheet. The
pressure in the blister is assumed to be quasistatic, meaning we neglect viscous flow within the blister, and the blister
shape is assumed to be radially symmetric. We consider two cases: thin sheets (d/R < 0.1, h ∼ d) where the pressure
within the blister is due to bending and stretching of the elastic sheet and thick sheets (h� d) where bending stresses
are the dominant contribution to the pressure.

First we consider the most general case, for elastic sheets with d/R < 0.1, the Föppl-von Kármán plate equations
for a pressurized blister are

pe(r, t) = D∇4h− 1

r

∂

∂r

(
∂T

∂r

∂h

∂r

)
(5a)

0 = ∇4T +
Ed

2

1

r

∂

∂r

(
∂h

∂r

)2

, (5b)

where h(r, t) is the blister height and T (r, t) is the radial tension in the sheet due to stretching. The Airy function

T for the stress potential is defined as σrr = 1
r
∂T
∂r and σθθ = ∂2T

∂r2 , where σij are the components of the stress tensor.
Integrating the height profile defines the blister volume

V (t) =

∫ R

0

2πrh(r, t) dr. (6)

The boundary conditions at the center of the blister, r = 0, are

∂h

∂r
=
∂3h

∂r3
=
∂T

∂r
=
∂3T

∂r3
= 0. (7)

The elastic sheet is adhered to the porous substrate, requiring zero displacement and zero tension in the elastic sheet
beyond the edge of the blister, so the boundary conditions at the edge of the blister, r = R, are

h =
∂h

∂r
= T = σθθ − νσrr = 0. (8)

1. Thin elastic sheets

A scaling analysis of Eqs. (5a) and (5b) shows that the relative magnitude of contributions to the pressure by

bending, EB ∼ Dh
R4 , and stretching, ES ∼ Th

R4 ∼ Edh3

R4 , results in EB/ES ∼ d2/h2. Hence, if d ∼ h, contributions to the
elastic pressure by bending and stretching are comparable in magnitude, as is the case for our experiments using thin
sheets, so both terms in Eq. (5a) contribute to the blister pressure.

Using Eq. (4), the set of partial differential equations (PDEs) for blister drainage are Eq. (5b) and

D∇4h− 1

r

∂

∂r

(
∂T

∂r

∂h

∂r

)
+

µ

4πkh0

dV

dt
ln

(
Vtot − V (t)

φπh0R2

)
+ γ (κ1 + κ2) = 0, (9)

which can be solved with Eq. (6), and boundary conditions given by equations (7-8). The first and second terms of
Eq. (9) are the contributions to the blister pressure from bending and stretching, respectively. The third term defines
the viscous resistance in the porous substrate. The last term is the capillary pressure at the liquid-air interface, where
κ1 and κ2 are the out-of-plane and in-plane curvatures of the interface, respectively (see Section II C for details).
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Dimensionless versions of the variables V , t, r, T , and h are defined by

V ≡ V

V0
, τ ≡ t4πkh0γ (κ1 + κ2)

µV0
, r̃ ≡ r

R
, T̃ ≡ T

(192)2EdV 2
0 /π

2R4
, h̃ ≡ h

192V0/πR2
, (10)

where the timescale is chosen to balance the viscous and capillary terms, since for thin sheets, the capillary pressure
is the dominant driving pressure. The dimensionless equations are

1

p̃c

(
∇̃4h̃− Λ

1

r̃

∂

∂r̃

(
∂T̃

∂r̃

∂h̃

∂r̃

))
+
dV
dτ

ln

(
B − V
C

)
+ 1 = 0 (11a)

∇̃4T̃ +
1

2

1

r̃

∂

∂r̃

(
∂h̃

∂r̃

)2

= 0 (11b)

384

∫ 1

0

r̃h̃(r̃, τ) dr̃ = V(τ) (11c)

with dimensionless quantities

B ≡ Vtot
V0

, C ≡ φπh0R
2

V0
, Λ ≡ (192)2EdV 2

0

Dπ2R4
, p̃c ≡

πR6γ (κ1 + κ2)

192DV0
. (12)

The dimensionless quantity p̃c indicates the relative magnitude of the capillary term to the bending term. For less
permeable substrates, small k, and thin sheets, so small D, p̃c is large indicating that capillary effects are the dominant
drainage mechanism, and the dimensionless bending and stretching terms in Eq. (11a) are small. The corresponding
initial conditions are

V(τ = 0) = 1, h̃(r̃, τ = 0) = h̃0(r̃), T̃ (r̃, τ = 0) = T̃0(r̃), (13)

where h̃0(r̃) and T̃0(r̃) are determined using Eqs. (11a-11c). Also, dimensionless boundary conditions at r̃ = 0 are

∂h̃

∂r̃
=
∂3h̃

∂r̃3
=
∂T̃

∂r̃
=
∂3T̃

∂r̃3
= 0, (14)

and at r̃ = 1,

h̃ =
∂h̃

∂r̃
= T̃ =

∂2T̃

∂r̃2
− ν ∂T̃

∂r̃
= 0. (15)

2. Thick elastic sheets

For elastic sheets where h(r, t) � d, the dominant contribution to the fluid pressure in the blister is bending.
Neglecting the tension in the sheet, the blister pressure (Eq. (5a-5b)) simplifies to

pe(t) = D∇4h(r, t). (16)

For a fluid blister of radius R under an elastic sheet with bending rigidity D, Eq. (16) is applicable for elastic
sheets with aspect ratios d/R < 0.1, and solved with boundary conditions h(r = R, t) = 0, h′(r = 0, t) = 0, h′(r =
R, t) = 0, and h′′′(r = R, t) = 0 (primes denote r-derivatives). These steps give the bell-shaped profile, h(r, t) =
pe(t)R

4

64D

(
1− r2

R2

)2
.

The parameters of our experiments often have d/R > 0.1, for which the Kirchhoff hypothesis no longer applies
because the transverse shear deformations cannot be neglected [22]. Accounting for the contributions of the transverse
shear deformations in the elastic sheet gives a modified solution for thick plates, and the height profile of the blister
is now

h(r, t) =
pe(t)R

4

64D

((
1− r2

R2

)2

+
4

1− ν
d2

R2

(
1− r2

R2

))
. (17)
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Using Eq. (17) in Eq. (6), the fluid pressure in the blister due to bending deformation of a thick elastic sheet is

pe(t) =
192D

πR6

(
1 +

6

1− ν
d2

R2

)−1
V (t). (18)

It follows that Eq. (4) can be written as an ODE for the blister volume V (t),

192D

πR6

(
1 +

6

1− ν
d2

R2

)−1
V (t) +

µ

4πh0k

dV

dt
ln

(
Vtot − V (t)

φπh0R2

)
+ γ (κ1 + κ2) = 0, (19)

with the initial condition V (t = 0) = V0. The first term of (19) is the bending pressure, the second term corresponds
to the viscous resistance in the pores, and the last term is the capillary pressure at the fluid-air interface in the pores.
For this thick plate limit, we define dimensionless volume and time as

V ≡ V

V0
and τ ≡ t768Dkh0

µR6

(
1 +

6

1− ν
d2

R2

)−1
, (20)

where in contrast with the thin sheet model, the timescale is chosen to balance the bending term with the viscous
term. In this case, Eq. (19) becomes the dimensionless ODE,

V(τ) +
dV
dτ

ln

(
B − V
C

)
+ p̃c = 0, (21)

with an initial condition V(τ = 0) = 1. Dimensionless parameters B and C are defined by Eq. (12)) and

p̃c ≡
γ (κ1 + κ2)

Pe
, (22)

where Pe is the characteristic elastic pressure of a blister under a thick elastic sheet, Pe ≡ 192DV0

πR6

(
1 + 6

1−ν
d2

R2

)−1
. For

large Pe, p̃c is small, and the blister pressure due to bending of the elastic sheet is the dominant drainage mechanism.

C. Capillary pressure

𝜅1

  

FIG. 2. (a) Pillar array geometry for three substrates. (b) Out of plane curvature, κ1, between the bottom of the porous
substrate and the elastic top sheet. (c) In plane curvature, κ2, between two adjacent pillars. (d) Solutions of Eq. (4) for varying
p̃c (solid lines) to determine best fit of p̃c for an experiment (black dots with representative error bars). (e) Best fit of p̃c for
experiments of varying characteristic elastic pressure, Pe, and permeability, k.

The liquid draining from the blister displaces air from the porous substrate. The pressure in the liquid at the
air-liquid interface in the porous substrate is p(r = Rp) = −pc. The Laplace pressure jump across the interface
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is pc = γ(κ1 + κ2), where γ is the interfacial tension and κ1 and κ2 are the out-of-plane and in-plane curvatures,
respectively (see Fig. 2a-c). The out-of-plane curvature is defined as

κ1 =
2 cos θ

h0
, (23)

where θ is the contact angle (Fig. 2b) and h0 is the micropillar height. The in-plane curvature κ2 depends on the
pore throat dimensions w and l (Fig. 2a), and a wettability dependent parameter f(θ),

κ2 =
1

f(θ)

2

(w + l)/2
. (24)

The parameter f(θ) is used to describe the variation of the in-plane curvature as the fluid enters and exits a pore
throat, and it ranges in magnitude from 1 for nonwetting substrates to 10 for a highly wetting substrates [23]. We
determine the value of f(θ) for the model by using the average of the best fit of p̃c (Eq. (22)) in Eq. (21) and comparing
to our experimental data. An example of this fitting is shown in Fig. 2d where p̃c = 0.62 fits experimental data (see
Section III C for details).

III. EXPERIMENTAL METHODS

A. Experimental Setup

The experimental system (Fig. 1a) consists of a porous substrate and an overlying elastic sheet, both made of
polydimethylsiloxane (PDMS). The porous substrate is a circular disk, 8 cm in diameter, patterned with micropillars
of diameters of 125, 250, or 500 µm (see geometries in Fig. 2a). For all geometries, the porosity, φ, of the porous
layer is 0.5 and the height of the pillars is h0 = 90 µm. The permeabilities were measured experimentally to find
k = 20, 52, and 98 µm2 for arrays with pillar diameters of 125, 250, or 500 µm, respectively. The elastic sheets have
an experimentally measured Young’s modulus, E = 1.25 ± 0.04 MPa, and varying thicknesses, d. The Poisson ratio

of PDMS is ν = 0.5 [24]. The bending modulus of the elastic sheet is given by D = Ed3

12(1−ν2) and we use sheets with

bending moduli D = 5.0× 10−6− 3.6× 10−3 Pa m3, measured experimentally. Both the micropillar arrays and elastic
sheets are corona treated before every experiment to increase the wettability of the PDMS. If the PDMS is nonwetting,
the blister will only drain either partially or not at all (see Supplemental Material [25]). The was measured to be
θ = 79± 7◦ after corona treatment, although we note that this is an average and there are variations in the contact
angle both spatially over the substrate and in time due to the corona treatment method.

For each experiment, a fluid-filled blister is formed between the substrate and the elastic by injecting glycerol,
with viscosity µ = 0.8 Pa s and interfacial tension γ = 64.9 mN/m, using a syringe pump. The glycerol is dyed
blue with Erioglaucine disodium salt at a concentration of 0.38 g/L for visualization. First, fluid invades the pores
and, subsequently, as the pressure in the liquid increases, the elastic sheet is peeled and uplifted from the substrate,
resulting in a fluid-filled blister. Further injection causes both the fluid front in the pores and the peeling front of the
blister to propagate radially. This process is the subject of future work. After injection is stopped, the peeling front
of the blister is static and the blister has radius R, and the initial volume of the blister is V0. The position of the fluid
in the pores, Rp, continues to advance radially as the stresses due to the deformation of the uplifted elastic sheet and
the capillary pressure at the fluid-air interface in the pores drive drainage of the blister. The blister is illuminated
from below using an LED light panel and imaged from the top using a Nikon D5100 camera operating at a frame rate
of 0.5 fps until the blister is completely drained. As an example, Fig. 1b shows a time sequence of blister drainage
where darker blue indicates larger fluid depth. A similar system was developed and applied to model the relaxation
of ice sheet uplift following the drainage of supraglacial lakes on the Greenland Ice Sheet [21].

B. Image Processing

A typical image processing sequence is shown in Fig. 3. The original image is shown with subsequent images cropped
to the region of interest. The background image (I0) is taken before fluid is injected. The captured RGB image with
blue dye is first converted to grayscale (I) and subsequently normalized by the background intensity (I/I0). To remove
spatial noise in the image due to the pattern of the pillars, the normalized image is filtered using a Gaussian filter
G(I/I0). The filtered image is segmented into three parts: fluid in the blister, fluid in the pores, and no fluid using two
intensity thresholds. The area of these segments, Ablister and Apores, representing the area of the blister and of fluid
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in the pores, respectively, are tracked in time to calculate the blister volume using V (t) = Vtot−φh0Apores. Plotting a
profile of normalized intensity across the centroid of the blister (Fig. 3b) shows the noise due to the spatial pattern of
the pillars. The results in Fig. 3c demonstrate the elimination of the noise after using a Gaussian filter; the results in
Fig. 3b-c also satisfy our assumption of constant blister radius R. For G(I/I0) = 1, meaning that the image intensity
is equal to the background image intensity, h = 0 µm and there is no fluid in the pores. For G(I/I0) = 0.9, there is
fluid in the pores but the height of the blister h = 0 µm. For G(I/I0) < 0.9, the height of the blister can be measured
using a calibration method to correlate G(I/I0) to a known depth of fluid (see Supplementary Material [25]).

C. Determining f(θ)

To determine the wettability dependent parameter f(θ), which characterizes the in-plane curvature κ2 (Eq. 24), we
find the best fit of p̃c (Eq. (22)) in Eq. (21) for nine experiments with varying permeability and characteristic elastic

pressure, Pe = 192DV0

πR6

(
1 + 6

1−ν
d2

R2

)−1
. Fig. 2d shows an example of the fit, where p̃c = 0.62 achieves the best fit.

Fig. 2e shows the results of the best fits for nine experiments, where for small characteristic elastic pressure and low
permeability substrates the best fit of p̃c is larger. This result is consistent with the expectation given p̃c represents
the magnitude of capillary pressure compared to elastic pressure. Using the data in Fig. 2e, we calculate f(θ) for
each of the nine experiments using Eq. 22. Because f(θ) should be independent of pore geometry and depend only
on the contact angle, we use the average value of f(θ) = 3.23 in the model for all pillar geometries. For simplicity, we
assume a constant f(θ) in time. We note, however, that the contact angle is increasing in time (as the effect of the
corona treatment decreases), so f(θ) is likely decreasing over the time of the experiment.

IV. RESULTS AND DISCUSSION

In this section we present experimental results of the blister shape and of the drainage dynamics for blisters beneath
both thick and thin elastic sheets. We compare the experimental results with the corresponding theory presented
above.

FIG. 3. (a) Image processing to determine the regions of the blister and of the fluid in the pores. (b) Normalized image intensity,
I/I0, profiles through the centroid of the blister are shown for 90 second intervals. Noise is due to the spatial structure of the
pillars. Note that at the center, the signal is blocked due to the injection hole. (c) Normalized intensities from (b) are filtered
using a Gaussian filter, G(I/I0), to remove noise. The profiles through the centroid are plotted for 90 second intervals.
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FIG. 4. Blister relaxation experiments. (a) Time sequence of images showing blister height measured using the dye intensity
calibration method. The centroid of the blister is shown by the white dot near the injection hole. The subsequent plots are
profiles of the horizontal line through the centroid. (b) Blister shape as a function of time. Theoretical blister profiles (black
curves, Eqns. 17,18) are plotted using the volume of fluid in the blister calculated from taking the sum of the height of each
pixel within the blister at each time step compared to experimental data (colored symbols) (c) Dimensionless blister shape
where h is rescaled by the maximum theoretical height, hmax, and r is rescaled by R. R = 11 mm, D = 5.7× 10−4 Pa m3

A. Blister shape

The blister shape is measured using the calibration of dye intensity blister height. After image processing, the
filtered images, G(I/I0) (see Section III B), are converted to height maps using the calibration curves of dye intensity
to blister height [25]. A time sequence of the experimentally measured blister shape is shown in Fig. 4a. Small
asymmetries in the blister shape are due to non-uniform adhesion between the elastic sheet and the substrate. The
non-uniform adhesion also affects the position of the center of the blister with respect to the injection hole, as the
blister likely begins to form in a location of low adhesion. Height profiles through the centroid of the blister (horizontal
white lines in Fig. 4a) are shown in Fig. 4b as colored symbols for each time point with ∆t = 90 s. The experimental
height profiles for a blister under a thick elastic sheet show excellent agreement with the theoretical height profiles
(black lines), Eqs. (17,18). The total blister volume is calculated by summing the measured height of each pixel within
the blister (Fig. 4a). Fig. 4b shows that while the height of the blister is decreasing in time as the fluid in the blister
drains into the pores, the blister radius remains approximately constant, which is an assumption of our model. Fig. 4c
shows the height rescaled by the maximum height from the theoretical profiles, hmax, and the radius rescaled by the
blister radius R, which is determined by R = (Ablister/π)1/2. The collapse of the height profiles Fig. 4c shows that
the shape of the blister is self-similar in time.

B. Relaxation of blisters under thick elastic sheets

We measure the blister volume as a function of time for substrates with varying permeability k and elastic sheets
with varying bending modulus D. The experimental results, shown in Fig. 5a, of six experiments (symbols) exhibit
good agreement with the theoretical model Eq. (19) (solid lines). All parameters are measured experimentally, except
for f(θ) = 3.23 which was determined by taking the average of the best fit of all experimental data (Section III C).
While permeability k and bending modulus D are varied directly, the blister radius R, initial volume V0, and total
volume Vtot are varied indirectly and cannot be constrained completely, so we have some variation of these parameters.
We observe that the time for relaxation is faster for thicker sheets (large D) and more permeable substrates (large
k). Fig. 5b shows the experimental results (symbols) rescaled by a bending-viscous timescale and the dimensionless
model Eq. (21) (solid lines).
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FIG. 5. (a) Blister volume V as a function of time t for varying permeability of the porous substrate, k, bending modulus of
the elastic sheet, D, blister radius, R, initial blister volume, V0, and total volume, Vtot. Symbols show experimental results
with representative error bars. Solid lines show the solution to the thick elastic sheet model, Eq. (19). (b) Rescaled blister
volume V as a function of rescaled time τ . Solid lines show the solution to the dimensionless thick elastic sheet model, Eq. (21)

There are three dimensionless parameters that account the variations that remain in the dimensionless plot (Fig. 5b).
The dimensionless parameters B and C (Eq. 12) represent the ratios of total system volume to initial blister volume
and volume of fluid in the pores beneath the blister to the initial blister volume, respectively. B ranges from 1.4−1.6,
so the initial blister volume V0 is 60 − 70% of the total volume Vtot. Values of C are 0.19 − 0.39, so the volume
in the pores beneath the blister ranges from 20 − 40% of the initial blister volume. The dimensionless capillary
pressure p̃c, which is the ratio of capillary pressure to characteristic elastic pressure, is larger for smaller permeability
substrates and thinner sheets (meaning smaller bending pressure). The two driving pressures in the system are the
dimensionless elastic pressure, V, which is unity at the initial time and zero when the blister is fully drained. The
largest dimensionless capillary pressure in our experiments is p̃c = 0.83, which is comparable to V at early times, so
the drainage due to capillary pressure is important at all times and becomes increasingly dominant at later times
when the blister volume decreases. For thicker sheets and more permeable substrates, the capillary pressure has a
smaller influence on the relaxation dynamics, e.g., p̃c = 0.42 in our experiments, meaning that the drainage due to
elastic pressure is dominant until τ ∼ 0.5 when V becomes comparable to p̃c. At later times, the capillary pressure is
the dominant drainage mechanism. We note that if the substrate is nonwetting, the blister cannot drain completely
because the capillary pressure has the opposite sign and when the elastic pressure is equal to the capillary pressure,
drainage will stop, and fluid will remain in the blister (see Supplementary Material [25]).

C. Relaxation of blisters under thin elastic sheets

Experimental results with thin elastic sheets, when there are contributions to the elastic pressure from both bending
and stretching (Section II B 1), are shown in Fig. 6. Experimental data are shown by symbols with representative
error bars. The dashed lines show solutions to the model (Eq. 5-6) when tension in the sheet is neglected, and solid
lines are the solutions to the model with contributions to the elastic pressure from bending and stretching of the sheet.
For the thinner sheets (blue circle and red triangle symbols), D = 5.0× 10−6 and 2.0× 10−5 Pa m3, the contribution
due to stretching is larger than for the thicker sheet (green star symbol), D = 1.3× 10−4 Pa m3. The corresponding
dimensionless results are shown in Fig. 6b, where we choose a viscous-capillary timescale. p̃c indicates the relative
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FIG. 6. (a) Blister volume V as a function of time t for varying permeability of the porous substrate, k, bending modulus of
the elastic sheet, D, blister radius, R, initial blister volume, V0, and total volume, Vtot. Dashed lines show the solution to the
model (Eq. 5-6) neglecting tension in the sheet. The solid lines show the solution to the model including contributions from
both bending and stretching.(b) Rescaled blister volume V as a function of rescaled time τ .

importance of capillary pressure to elastic pressure in the drainage. For thinner sheets (blue circles and red triangles),
p̃c > 1 indicating that drainage is dominated by imbibition for all time. Fig. 6b shows collapse of these data when
rescaling with the viscous-capillary timescale. We expect one reason why the drainage occurs faster than the model
predicts is that the drainage time is long for thin sheet experiments, and since the contact angle increases in time,
the average value of f(θ) that we use in the model is likely larger than the actual value for late times during the
experiment. Decreasing f(θ), corresponding to a less wetting substrate, would improve the agreement between model
and experiment. Decreasing f(θ), corresponding to a less wetting substrate, would improve the agreement between
model and experiment. In both limits of thick and thin sheets, the scalings in time we identify approximately collapse
all the data for a wide range of parameters.

V. CONCLUDING REMARKS

We developed an experiment and accompanying model to study the relaxation of a fluid-filled blister on a porous
substrate. Our experiment consists of a clear PDMS elastic sheet overlying a micropillar array. We inject viscous
fluid between these two layers. First, fluid invades the pores and subsequently, the elastic sheet is peeled and uplifted
from the substrate resulting in a fluid-filled blister. Further injection causes both the fluid front in the pores and the
fracture front of the blister to propagate radially. After injection is stopped, the fracture front of the blister is fixed,
and we measured the volume of fluid in the blister as a function of time. We also measured the shape of the blister by
calibrating the dye intensity to the blister height and found that the shape of the blister is self-similar in time. This
experimental setup also allows for the study of the formation of the blister, which is the subject of future work.

We model the relaxation dynamics including the deformation of the elastic sheet and the capillary pressure at the
liquid-air interface as the driving pressures, and the viscous flow in the porous substrate as resistance of the drainage.
We find that for thicker sheets and more permeable substrates, the pressure due to the bending of the elastic sheet
primarily drives the drainage of the blister, and for thinner sheets and less permeable substrates, drainage is primarily
due to the imbibition of the liquid into the pores.
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