
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Linear theory of particulate Rayleigh-Bénard instability
Suryansh Prakhar and Andrea Prosperetti

Phys. Rev. Fluids 6, 083901 — Published 11 August 2021
DOI: 10.1103/PhysRevFluids.6.083901

https://dx.doi.org/10.1103/PhysRevFluids.6.083901


Linear Theory of Particulate Rayleigh-Bénard Instability1

Suryansh Prakhar1, ∗ and Andrea Prosperetti1, 2, 3, †2

1Department of Mechanical Engineering, University of Houston,3

4726 Calhoun Rd, Houston, TX 77204-4006, USA4

2Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics,5

University of Twente, P.O. Box 217,6

7500 AE Enschede, The Netherlands7

3Department of Mechanical Engineering,8

Johns Hopkins University, Baltimore, MD 21218, USA9

(Dated: July 26, 2021)10

Abstract11

A two-fluid model is used to study the effect of point particles on the Rayleigh-Bénard stability12

threshold in a laterally unbounded cell. Equal particles are steadily and uniformly introduced at13

the top plate at their terminal velocity with a fixed temperature. Both velocity and temperature14

are allowed to vary while, falling, the particles interact with the fluid. This interaction is modulated15

by the ratio of the particle density and heat capacity to those of the fluid. Particles are found to16

have a stabilizing effect, which increases with their concentration and density up to several orders of17

magnitude above the single-phase stability threshold. This result is primarily a consequence of the18

particle mechanical, rather than thermal, coupling, with the fluid. The particle initial temperature19

has a strong effect on the undisturbed temperature distribution in the cell, which is a significant20

factor for the stability of the system. The addition of particle greatly increases the dimension of21

the parameter space necessary to characterize the flow.22
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I. INTRODUCTION23

The importance of particulate flows in nature and technology has motivated a rich litera-24

ture devoted to improving our understanding of the physical processes that determine their25

behavior. The major part of this work has dealt with isothermal systems [see e.g. 4, 25, 32,26

for recent reviews], but study of the effect of suspended particles on heat transfer processes27

– and, in particular, on Rayleigh-Bénard convection, which is the topic of the present paper28

– is gaining importance.29

A significant impulse to this line of research was given by interest in the heat transport30

properties of so-called nanofluids. In a series of papers, Nield and Kuznetsov studied natural31

convection of nanofluids in different situations [35–38] on the basis of the mathematical32

model proposed in Ref. [8]. This and related work is reviewed in [19, 23, 29], among others.33

Nanoparticles are sensitive to processes, such as Brownian motion and thermophoresis, which34

quickly become unimportant as the particle size grows to the micrometer scale and beyond.35

In this size range particle inertia becomes significant and the homogeneous-fluid model often36

adopted for nanofluids is no longer appropriate.37

There are a few theoretical studies dealing with particle-resolved simulations of particu-38

late Rayleigh-Bénard convection [see e.g. 18, 24, 48–50], but much of the work on this topic39

has relied on extensions of the Lagrangian-Eulerian point-particle model widely used in the40

study of adiabatic turbulence in particulate flow. Refs. [39, 40] studied the effect on the41

Nusselt number of particles introduced at the upper plate of a cylindrical Rayleigh-Bénard42

cell at a weakly turbulent Rayleigh number of 2×106. The particle-fluid mechanical coupling43

was found to be more significant than the thermal coupling in affecting the heat transfer44

through the cell. This conclusion was also reached in Ref. [41] at the same Rayleigh number.45

The Nusselt number was found to increase with the particle loading and the particle specific46

heat reaching a maximum for a particle Stokes number of about one. This effect occurs in47

spite of an attenuation of the turbulent kinetic energy and is due to the direct transport of48

thermal energy by the particles which are picked up by the turbulent eddies near the hot49

bottom plate and carried up by the rising plumes. When the Rayleigh number is increased50

up to 1012 the situation becomes more complex [42]. At such large Rayleigh numbers there51

are large-scale circulating structures that carry the particle for a long time hindering their52

settling. Furthermore, particles do not settle uniformly on the base of the cell but pref-53
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erentially under regions of large upwelling. A very recent study focuses on micron-sized54

particles and describes implication for the spreading of pollutants and contaminants [52].55

Other situations have been studied theoretically by similar means. Refs. [16, 17, 44] studied56

particle transport and settling in a differentially heated cavity at Rayleigh number up to57

7×108 using one-way and two-way coupling. Ref. [26] studied the transport of particles in a58

laminar thermal plume. Buoyancy effects caused by the direct heating of the particles have59

been investigated in the context of solar energy harvesting [see e.g. 14, 43, 46].60

The abundance of studies devoted to effects of buoyancy in particulate flows that can be61

deduced from these examples is a witness to the practical importance of these phenomena62

in nature (e.g., crystallization in magma chambers, snow and rain formation), technology63

(e.g. metallurgy, fluidized beds, solar energy) and society (e.g., dispersion of pollutants).64

Motivated by these applications, this paper presents a study of the linear stability of a lat-65

erally unbounded particulate Rayleigh-Bénard system based on a standard two-fluid model.66

Particles are assumed to be introduced steadily and uniformly at the upper plate and to67

be removed at the bottom plate. The downward motion of the particles renders the spatial68

operator of the problem non-self-adjoint so that the principle of exchange of stabilities pre-69

vailing in the single-phase version of the problem [see e.g. 9] does not apply and some of the70

eigenvalues are complex. The numerical solution of the eigenvalue problem shows however71

that the eigenvalues with the largest real part, on which the stability of the system depends,72

are real. Near marginal conditions, the complex eigenvalues have a negative real part and73

do not affect the stability of the system.74

The mathematical setup that we develop has some similarities with Rayleigh-Bénard75

convection in a porous medium which has been studied extensively [see e.g. 5, 34, 51], both76

in connection with geothermal energy and geological sequestration of carbon dioxide [see77

e.g. 13, 22, 30, 45], and in view of its intrinsic scientific interest [see e.g. 3, 20, 21, 27].78

II. MATHEMATICAL MODEL79

One of the basic frameworks for the study of particulate flows is the so-called point-80

particle model in which the finite size of the particles is disregarded. This model goes back81

to the early days of the study of these systems [see e.g. 12, 31, 33] and has been widely82

used ever since [see e.g. 4, 11, 15, 32]. Its use is justified when the fluid-particles mixture is83
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dilute and the particles are much smaller than all the flow length scales. In the Eulerian-84

Lagrangian version of the point-particle model, the effect of the particles is included in85

the fluid equations as a sum of delta-functions centered at the particle positions multiplied86

by appropriate sources, i.e., forces for the momentum equation and energies for the energy87

equation [see e.g. 4, 11]. The position, velocity and energy of the particles, on the other hand,88

are found by integrating the momentum and energy equations for each particle. It is not89

straightforward to adapt this framework to the study of the linear stability of the Rayleigh-90

Bénard problem, while an Eulerian-Eulerian description, with quantities pertaining to both91

the fluid and the particulate phase described by continuous fields, considerably simplifies92

the task. Conceptually, this latter description can be connected to the Eulerian-Lagrangian93

one by replacing the sum over the sources representing the contribution of the particle94

contained in a macroscopically small volume of the mixture by the product of the number95

of contributing particles multiplied by average values of the sources. With the Boussinesq96

approximation [see e.g. 6, 9, 34], the fluid momentum equation modified to include the effect97

of the particles is then given by98

ρf (∂tu+ u · ∇u) = −∇p + µf∇2u+ ρf [1− β(T − Tr)] g− nmpf . (II.1)

Here u, p and T are the fluid velocity, pressure and temperature fields, µf , β and ρf the fluid99

viscosity, thermal expansion coefficient and density at the reference temperature Tr, and g100

is the (vector) acceleration of gravity. The particles are assumed to be equal spheres with101

mass mp, density ρp and diameter dp, and to be distributed with a local number density n.102

The force per unit particle mass exerted by the fluid on the particles is denoted by f . We103

model this quantity in a fairly standard way as104

f =
u−w

τp
, (II.2)

in which w is the velocity field of the particulate phase and τp is the particle characteristic105

time given by106

τp =
ρpd

2
p

18ρfνfrRe

, (II.3)

with νf = µf/ρf the fluid kinematic viscosity. The factor rRe, defined by107

rRe = 1 + 0.15Re0.687p , (II.4)
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represents a finite-Reynolds-number correction to the Stokes drag force [see e.g. 10]; the108

particle Reynolds number Rep is defined later in (II.15). Consistently with the point-particle109

approximation, the particle effect on the fluid continuity equation is neglected so that110

∇ · u = 0 . (II.5)

In a field framework, the ordinary time derivative following each particle of the Eulerian-111

Lagrangian description is replaced by a convective derivative so that conservation of the112

particle number density is expressed by113

∂tn +∇ · (nw) = 0 , (II.6)

while the momentum equation for the particulate phase is114

∂tw +w · ∇w = f +

(

1− ρf
ρp

)

g , (II.7)

in which the last term represents the particle weight corrected for the buoyancy force.115

Similarly to (II.1), the fluid energy equation is written as116

∂tT + u · ∇T = Df∇2T + n
Qp

ρfcpf
, (II.8)

with cpf the fluid specific heat and Qp the heat transferred by the particles to the fluid, for117

which we assume the form118

Qp = πd2php(Tp − T ) , (II.9)

in which Tp is the temperature field of the particulate phase. The heat transfer coefficient119

hp is expressed in terms of the Nusselt number Nup, for which we use a standard correlation120

applicable to spheres, namely [see e.g. 7, 10, 47]121

Nup =
dphp

kf
= 2 + 0.6Re1/2p Pr1/3 , (II.10)

with kf the fluid thermal conductivity and Pr the fluid Prandtl number. The particle122

temperature is treated in the lumped-capacitance approximation so that the energy equation123

for the particulate phase is124

mpcpp (∂tTp +w · ∇Tp) = −Qp , (II.11)

with cpp the specific heat of the particle material. On the basis of this equation we can define125

a temperature relaxation time for the particles similar to (II.3), namely126

τth =
mpcpp
πd2php

, (II.12)
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in terms of which (II.11) becomes127

∂tTp +w · ∇Tp =
T − Tp

τth
. (II.13)

A. Unperturbed state128

We assume a base state in which the fluid is at rest and the particles are uniformly129

distributed with a number density n0 and fall at their terminal velocity w0 given, from130

(II.7), by131

w0 =

(

1− ρf
ρp

)

τpg ≡ −w0k , (II.14)

with k a unit vector in the z direction directed upward against gravity. The particle Reynolds132

number in terms of this velocity is given by133

Rep =
dpw0

νf
=

(ρp/ρf − 1)gd3p
18ν2

frRe

. (II.15)

As discussed in Ref. [40] if, at the upper boundary, particles were introduced with zero134

velocity and allowed to accelerate to their terminal velocity, a dense, non-uniform particle135

layer would form which would obscure the interpretation of the stability results. To avoid136

this inessential complication, we assume that particles are introduced at their terminal137

velocity. This procedure is equivalent to assuming that the distance travelled by the particles138

during the acceleration phase, of the order of w0τp, is much smaller than the cell height.139

Accumulation of particles at the lower boundary is also assumed to be a negligible effect.140

This aspect of the model may be justified if the particle-fluid mixture is dilute and the particle141

size is much smaller than the cell height so that the thickness of the particle layer grows142

very slowly essentially maintaining the temperature of the bottom plate. Both assumptions143

are satisfied when reliance on the point-particle model is justified. It may also be noted144

that a similar device to avoid the inessential effects introduced by the boundary layers145

that form near the plates is adopted in the so-called “homogeneous models” of single-phase146

Rayleigh-Bénard convection in which the top- and bottom-temperature boundary conditions147

are replaced by periodic ones, with a temperature gradient imposed [see e.g. 1, 28].148

The undisturbed fluid pressure field corresponding to the situation envisaged is found149

from (II.1) as150

∇p0 = ρf [1 + β(T0 − Tr)] g +
mpn0

τp
w0 , (II.16)
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in which T0 = T0(z) is the undisturbed temperature field in the fluid. It is evident from151

this result that horizontal variations of the undisturbed particle number density n0 or fluid152

temperature T0 would induce horizontal variations of the pressure field which, in turn, would153

give rise to fluid flow. We return on this point in section IIC.154

A consideration of the energy equations leads to the identificaton of two characteristic155

length scales which play an important role in what follows. In the first place, the steady156

version of the particulate energy equation (II.11) may be written as157

T0 = −ℓ∂zTp0 + Tp0 , (II.17)

in which Tp0 = Tp0(z) is the temperature field of the particulate phase in the unperturbed158

base state. The length ℓ, defined by159

ℓ =
mpcppw0

πd2php0
, (II.18)

characterizes the distance traversed by a particle during the time necessary for its tempera-160

ture to equalize with that of the surroundng fluid. This interpretation is justified by noting161

that, if ∆T is a typical fluid-particle temperature difference, (mpcpp∆T )/(πd2php0∆T ) is the162

ratio of the energy content of the particle to the rate at which this energy is transmitted to163

the fluid, so that ℓ equals the particle fall velocity w0 multiplied by this time scale. Secondly,164

upon eliminating Qp between the two energy equations (II.8) and (II.11), we find165

∂2
zT0 +

ℓ

L2
∂zTp0 = 0 , (II.19)

in which166

L =

√

kf
πd2phpn0

∼
√

kf∆T

n0Qp

, (II.20)

with ∆T a typical temperature difference as before. To elucidate the physical meaning of167

this length scale we rewrite (II.19) in order of magnitude as168

∆qf ∼ ℓ

L2
kf∂zTp0 , (II.21)

in which ∆qf is the difference between the conduction heat fluxes in the fluid over a distance169

L (which would of course vanish in the absence of the particles). Since L/ℓ is the number170

of layers over which the fluid and particle temperatures equalize, this relation states that171

the change of qf equals the mean heat flux induced by the particle temperature gradient.172
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FIG. 1. The normalized undisturbed temperature distribution in the cell [T0(z/H)−Tc]/(Th −Tc)

for, from left to right, (Tpt − Tc)/(Th − Tc) = −1, 0, 1 and 2. The particle volume fraction is

α0 = 10−4, the dimensionless particle diameter δ = 0.01 and the particle Reynolds number Rep = 1;

the parameters R, E and Pr have the same values as in figure 2 below.

In other words, L is the characteristic distance over which the heat conduction in the fluid173

is significantly affected by the particles. This interpretation is also supported by rewriting174

(II.20) as175

Akf
∆T

L
∼ ALn0Qp , (II.22)

in which A is an arbitrary horizontal area. The left-hand side is the heat flow rate in the176

fluid through the area A while the right-hand side is the number of particles in a layer of177

thickness L, each one exchanging heat with the liquid at the rate Qp.178

Upon elimination of T0 between (II.17) and (II.19) we have179

∂z

(

−ℓ∂2
zTp0 + ∂zTp0 +

ℓ

L2
Tp0

)

= 0 . (II.23)

We assume that the particles are injected with the temperature Tpt at the top plate z = 1
2
H ,180

with H the height of the cell. The solution of this equation may then be written as181

Tp0(z) = Tpt +K1

[

1− e−k1(H/2−z)
]

+K2

[

1− e−k2(H/2−z)
]

, (II.24)
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with K1 and K2 integration constants and182

k1,2 =
1

2ℓ

(

1±
√

1 + 4
ℓ2

L2

)

. (II.25)

From (II.17) we then find the temperature field in the fluid phase as183

T0(z) = Tpt +K1

[

1− (1− ℓk1)e
−k1(H/2−z)

]

+K2

[

1− (1− ℓk2)e
−k2(H/2−z)

]

. (II.26)

The fluid temperature boundary conditions T = Tc and T = Th at the top and bottom of184

the cell, z = ±1
2
H , determine the integration constants as185

K1 =
(Tc − Tpt)

[

1− (1− ℓk2)e
−k2H

]

− ℓk2(Th − Tpt)

ℓk1 [1− (1− ℓk2)e−k2H ]− ℓk2 [1− (1− ℓk1)e−k1H ]
, (II.27)

186

K2 = − (Tc − Tpt)
[

1− (1− ℓk1)e
−k1H

]

− ℓk1(Th − Tpt)

ℓk1 [1− (1− ℓk2)e−k2H ]− ℓk2 [1− (1− ℓk1)e−k1H ]
. (II.28)

It can be checked that, for neutrally buoyant particles, for which ℓ = 0, the fluid temperature187

(II.26) reduces to the single-phase linear solution188

T0 =
1

2
(Th + Tc)− (Th − Tc)

z

H
. (II.29)

For future reference we show some examples of the normalized temperature profile [T0(z)−189

Tc]/(Th − Tc) in figure 1 for four values of the normalized particle injection temperature,190

(Tpt−Tc)/(Th−Tc) = −1, 0, 1 and 2. The feature to note here is the major qualitative change191

of the temperature distribution and, in particular, of its gradient, which has such a profound192

effect on the stability problem. Very cold particles, with (Tpt − Tc)/(Th − Tc) = −1, induce193

a large and negative gradient in the lower part of the cell, which is destabilizing. As the194

particle temperature increases past that of the of the cold plate, (Tpt−Tc)/(Th−Tc) = 0, and195

approaches that of the hot plate, (Tpt − Tc)/(Th − Tc) = 1, the gradient gradually decreases196

over a large portion of the cell. When the particles become even warmer, again a strong197

negative gradient appears, this time in the upper part of the cell, which will be seen to be198

destabilizing in certain ranges of the other parameters.199

B. Linearization200

We now linearize the mathematical model of the previous section by setting201

u = u′ , p = p0 + p′ , T = T0 + T ′ , (II.30)
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202

n = n0 + n′ , w = −w0k+w′ , Tp = Tp0 + T ′
p , (II.31)

with the primed quantities assumed small with respect to the corresponding base-state203

fields carrying the index zero (for the fluid velocity smallness is understood in the sense that204

|∂tu′| ≪ |u′ · ∇u′|). For simplicity, we omit to perturb the drag force and the heat transfer205

coefficients evaluating them at base-state conditions. This slight inconsistency affects the206

particle mechanical relaxation time via the Reynolds-number correction rRe defined in (II.4)207

and the thermal relaxation time via the Nusselt number (II.10), neither of which depends208

strongly on Rep in the range investigated in this paper.209

After subtraction of the base-state relations, and omitting quadratic terms in the per-210

turbed quantities, the fluid model equations become211

∇ · u′ = 0 , (II.32)
212

∂tu
′ = − 1

ρf
∇p′ + νf∇2u′ − βT ′g +

ρp
ρf

n0vp
w′ − u′

τp
− mpw0

ρfτp
n′k , (II.33)

213

∂tT
′ + u′

z∂zT0 = Df∇2T ′ +
Qp0

ρfcpf
n′ − ρpcppn0vp

ρfcpf

T ′ − T ′
p

τth
. (II.34)

In (II.33) vp =
π
6
d3p is the particle volume and, in (II.34), u′

z is the vertical component of the214

fluid perturbation velocity. The corresponding equations for the particulate phase are215

∂tn
′ − w0∂zn

′ + n0∇ ·w′ = 0 , (II.35)
216

∂tw
′ − w0∂zw

′ =
u′ −w′

τp
, (II.36)

217

∂tT
′
p − w0∂zT

′
p +w′ · ∇Tp0 =

T ′ − T ′
p

τth
. (II.37)

It is interesting to point out a similarity between the momentum equation (II.33) and218

the corresponding equation of the Brinkman model for flow in a fluid-saturated porous219

medium [see e.g. 5, 34]. Indeed, written out in detail, the term multiplying w′ − u′ is220

ρpn0vp
ρfτp

=
18n0vprRe

d2p
νf . (II.38)

The permeability κ of a porous medium is defined in such a way that the pressure gradient221

equals (−µf/κ) times the (relative) velocity. For the present case in which the particles222

apply a point force to the fluid, this definition leads to223

κ =
d2p

18n0vprRe
, (II.39)
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which is precisely the inverse of the fraction in (II.38). A similar interpretation can be224

developed for the fraction multiplying T ′ − T ′
p in the energy equation (II.34), bringing this225

term to a form similar to the one adopted in the local thermal non-equilibrium model of226

heat transfer in fluid-saturated porous media. One difference is that, in a porous medium,227

the solid phase is stationary while, here, it is falling. This is not a major difference as long228

as the particles are uniformly distributed which, as explained in section III below, is the229

situation explored in detail in this paper. Nevertheless, it may be noted that, in principle,230

a spatial particle non-uniformity can give a mechanical contribution to the instability of the231

system, an effect that is absent in a porous medium in which, at most, non-uniformities of the232

solid-phase distribution can only affect stability by thermal processes. Another difference is233

that, here, the particles can be introduced with an arbitrary temperature while, in a porous234

medium, the solid phase temperature may lag that of the fluid, but is usually enslaved235

to it, at least in the absence of radiation or radioactive heating. As shown in figure 1,236

the undisturbed particle temperature can have a major effect on the fluid temperature237

distribution in the cell which, as will be shown below, has some interesting consequences for238

the stability of the system.239

C. Boundary conditions240

We envisage a cell with a height H and much larger dimensions (infinite in the limit) in241

the horizontal directions. Since the fluid is confined within the cell, its normal velocity on242

the horizontal boundaries must vanish. Standard conditions of prescribed temperatures at243

the boundaries are also assumed so that244

u′
z = 0 and T ′ = 0 at z = ±1

2
H . (II.40)

We consider the case of no-slip conditions at the boundaries so that, from the fluid continuity245

equation [see e.g. 9],246

∂zu
′
z = 0 , at z = ±1

2
H . (II.41)

These boundary conditions on the fluid fields are the same ones adopted in the linear stability247

theory of the single-phase Rayleigh-Bénard problem.248

For the particulate phase, the present mathematical model can describe various situa-249

tions, all compatible with the postulated uniform base state. For example, particles can be250
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introduced at the upper plate with a small spatial non-uniformity, a small temperature non-251

uniformity, or both. As can be understood from the expression (II.16) of the undisturbed252

pressure field, in these situations one would expect to encounter fluid flow for any tempera-253

ture difference so that the stability threshold Th−Tc would effectively vanish. As a matter of254

fact, with a horizontal particle number non-uniformity, the stability threshold may even turn255

negative. While these are interesting situations well deserving to be investigated, a natural256

first step in a study of particulate Rayleigh-Bénard convection is to consider how the fluid257

stability is affected by particles introduced uniformly with a uniform temperature. This is258

the problem on which we focus the analysis that follows. Thus, on the upper boundary at259

z = 1
2
H , we impose that260

T ′
p = 0 , w′

z = 0 , (II.42)

in which w′
z is the vertical component of the particle velocity field. No conditions can be261

imposed on the disturbance velocity and temperature fields at the lower boundary z = −1
2
H .262

The values of T ′
p and w′

z there will depend on the interaction of the falling particles with the263

fluid and must be found as part of the problem solution.264

III. SET-UP FOR THE SOLUTION265

To solve the perturbation problem posed in the previous section we start by taking the266

double curl of the fluid momentum equation (II.33) and considering the z-component of the267

result which is, after using (II.32),268

∂t∇2u′
z = νf∇4u′

z − βg
[

∂2
zT

′ −∇2T ′
]

−ρp
ρf

α0
∂z(∇ ·w′)−∇2w′

z +∇2u′
z

τp
+

mpw0

ρfτp

[

∂2
zn

′ −∇2n′
]

. (III.1)

We decompose the fields into horizontal normal modes each one of which is assumed to269

depend on the horizontal coordinates (x, y) proportionally to a function f(x, y) with the270

property that271

(∂2
x + ∂2

y)f = −k2f , (III.2)
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with k the modulus of a wave number in the horizontal plane. With this ansatz, ∇2 = ∂2
z−k2

272

and the previous equation becomes273

∂t(∂
2
z − k2)u′

z = νf (∂
2
z − k2)2u′

z − βgk2T ′

−ρp
ρf

α0
∂z(∇ ·w′) + (∂2

z − k2)(u′
z − w′

z)

τp
+

mpw0

ρfτp
k2n′ . (III.3)

Upon taking the divergence of the particle momentum equation we find, using (II.32),274

∂t(∇ ·w′)− w0∂z(∇ ·w′) = −∇ ·w′

τp
. (III.4)

This equation shows that, as the particles fall from higher levels with velocity w0, ∇ · w′
275

will tend to relax to zero on a time scale τp. It is therefore evident that, if ∇ · w′ = 0 at276

the upper boundary, ∇ ·w′ will vanish for all times. An alternative way to reach the same277

conclusion is to note that, as is evident from section IIB, the spatial operator of the problem278

is independent of time and, therefore, the general solution will be the sum of terms having279

an exponential time dependence proportional to eηt, with the η’s eigenvalues of the spatial280

operator. For ∇ ·w′, each one of these terms, W ′(x), say, satisfies the equation281

ηW ′ − w0∂zW
′ = −W ′

τp
, (III.5)

with solution282

W ′(x) = W ′
t (x, y) exp

[

−
(

η +
1

τp

) 1
2
H − z

w0

]

, (III.6)

with W ′
t (x, y) the boundary condition on W ′ at the top boundary z = 1

2
H . If W ′

t is taken283

to vanish, W ′ will vanish for all times and all z’s in agreement with the previous statement.284

With this choice, particle non-uniformities cannot develop in the bulk of the system, but285

can still be introduced as boundary conditions on the upper plate. Indeed, the perturbation286

number density mode corresponding to W ′ can be found from (II.35):287

ηn′ − w0∂zn
′ + n0W

′ = 0 , (III.7)

and is288

n′(x) =

{

n′
t(x, y) + τpn0W

′
t

[

1− exp

(

−
1
2
H − z

τpw0

)]}

exp

[

− η

w0

(

1

2
H − z

)]

, (III.8)

with n′
t(x, y) the value of the n′-mode at the top boundary. As anticipated in section IIC,289

this work focuses on the effect on the stability threshold of particles introduced uniformly290
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at the top plate at the same rate as in the base state. Thus, we take n′
t = 0 so that n′ = 0291

as well. It should be noted that, with these choices, particle clustering, and the attendant292

sweeping effect [see e.g. 2], is eliminated as a potential factor affecting the stability of the293

system. Situations in which W ′ and n′ are non-zero require a separate investigation.294

The problem is now reduced to four equations in the unknowns u′
z, w

′
z, T

′, T ′
p:295

∂t(∂
2
z − k2)u′

z = νf (∂
2
z − k2)2u′

z − βgk2T ′ − ρpn0vp
ρf

(∂2
z − k2)(u′

z − w′
z)

τp
, (III.9)

296

∂tw
′
z − w0∂zw

′
z =

u′
z − w′

z

τp
, (III.10)

297

∂tT
′ + u′

z∂zT0 = Df(∂
2
z − k2)T ′ − ρpcppn0vp

ρfcpf

T ′ − T ′
p

τth
, (III.11)

298

∂tT
′
p − w0∂zT

′
p + w′

z∂zTp0 =
T ′ − T ′

p

τth
. (III.12)

It may be noted that (III.10) and (III.12) can be solved to express w′
z and T ′

p in terms of u′
z299

and T ′, respectively, so that the particle fields can be eliminated from (III.9) and (III.11).300

The resulting system of integro-differential equations can be reduced to differential equations301

by an additional differentiation with respect to z. We do not take these steps as they do302

not seem to lead to a significant simplification of the mathematical problem.303

A. Nondimensionalization and nondimensional quantities304

We nondimensionalize lengths in terms of the cell height H , velocities in terms of the305

free-fall velocity vf =
√

gβTh − Tc)H , time in terms of H/vf and temperatures in terms of306

Th − Tc. Upon so doing, equations (III.9) to (III.12) become307

(∂2
z − k2)

[

∂tu
′
z −

√

Pr

Ra
(∂2

z − k2)u′
z

]

+ k2T ′ +
M
Stm

(∂2
z − k2)(u′

z − w′
z) = 0 , (III.13)

308

∂tw
′
z −

Rep
δ

√

Pr

Ra
∂zw

′
z −

u′
z − w′

z

Stm
= 0 , (III.14)

309

∂tT
′ + u′

z∂zT0 −
1√

RaPr
(∂2

z − k2)T ′ +
E

Stth
(T ′ − T ′

p) = 0 , (III.15)

310

∂tT
′
p −

Rep
δ

√

Pr

Ra
∂zT

′
p + w′

z∂zTp0 −
T ′ − T ′

p

Stth
= 0 . (III.16)
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In these equations, and in all the relations that follow, time and space coordinates as well as311

all the field quantities and operators are dimensionless but, to avoid unnecessarily encum-312

bering the writing, we do not use a special notation to indicate this fact.313

In addition to the particle Reynolds number Rep defined in (II.15), the parameters ap-314

pearing here are the Rayleigh and Prandtl numbers, defined in the same way as in the315

single-phase case,316

Ra =
gβ(Th − Tc)H

3

νfDf
, P r =

νf
Df

, (III.17)

the ratio δ of the particle diameter to the cell height317

δ =
dp
H

, (III.18)

the Stokes numbers for momentum and energy,318

Stm =
vfτp
H

=
Rδ2

18rRe

√

Ra

Pr
, Stth =

vfτth
H

=
δ2E

6Nup

√
RaPr , (III.19)

and the physical properties ratios319

R =
ρp
ρf

, E =
ρpcpp
ρfcpf

. (III.20)

Other than with the Stokes numbers, the effect of the particles appears via the the mass320

loading and the analogous heat capacity quantity defined by321

M =
ρp
ρf

n0vp = Rn0vp , E =
ρpcpp
ρfcpf

n0vp = En0vp . (III.21)

Equations (III.13) and (III.15) show that these parameters modulate the effect of the par-322

ticle Stokes numbers on the fluid. The product n0vp = α0 appearing here may be seen as323

the undisturbed particle volume fraction but, since the present model neglects the volume324

occupied by the particles, α0 should more properly be regarded as a dimensionless form of325

the undisturbed particle number density. We may also note that326

M
Stm

=
18rRen0vp

δ2

√

Pr

Ra
,

E
Stth

=
6Nupn0vp

δ2
√
RaPr

. (III.22)

The first fraction in the ratio M/Stm will be recognized as the inverse of the Darcy number327

Da = κ/H2, with the permeability κ defined in (II.38). Finally, an additional independent328

degree of freedom is necessary to characterize the temperature at which the particles are329

introduced at the top boundary. For this purpose we define330

T ∗
p =

Tpt − Tc

Th − Tc
. (III.23)
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The length ℓ defined in (II.18) scaled by the particle diameter and the ratio ℓ/L appearing331

in (II.25) for the undisturbed temperature profile are332

ℓ

dp
=

RepPrE

6Nup

,
ℓ

L
= RepPrE

√

n0vp
6Nup

. (III.24)

The ratio of the particle terminal velocity to the fluid free-fall velocity is333

w0

vf
=

Rep
δ

√

Pr

Ra
. (III.25)

IV. NUMERICAL SOLUTION334

The solution of equations (III.13) to (III.16) is sought in the form of normal modes with335

a time dependence proportional to exp(λt), with the λ’s eigenvalues of the spatial operator.336

The second- and fourth-order spatial derivatives are discretized by central differences except337

for the term ∂2
zw

′
z at the node next to the bottom boundary where the lack of a boundary338

condition for w′
z forces us to use a second-order accurate one-sided derivative. First-order339

accurate upwind differencing was used for the first-order derivatives in the convective terms340

in (III.14) and (III.16). We ran several simulations with both 80 and 120 nodes to examine341

grid convergence finding essentially indistinguishable results.342

The generalized eigenvalue problem resulting from the discretization was solved using the343

function eig(·, ·) of MATLAB based on the generalized Schur decomposition of the matrices.344

Even though the spatial operator of the problem is not self-adjoint, we found that the345

dominant modes have real eigenvalues. For each wavenumber k we increased the Rayleigh346

number starting from an appropriately small value until the real part of the dominant347

eigenvalue became positive and repeated the search by gradually increasing k. The critical348

Rayleigh number reported in the figures in the next section is the smallest value of Ra349

identified in this way, typically with a relative accuracy of 0.1% or better.350

V. NUMERICAL RESULTS351

The introduction of particles greatly increases the number of dimensionless parameters352

necessary to characterize the flow. Summarizing, in addition to the Rayleigh and Prandtl353

numbers Ra and Pr, a minimal set of parameters would include the undisturbed particle354

volume fraction α0, the particle Reynolds number Rep, the ratio δ of the particle diameter355
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α

δ
δ
δ
δ

FIG. 2. Critical Rayleigh number vs. undisturbed particle volume fraction α0 for the droplets/air

case. The parameter values are R = 800, E = 3385, Pr = 0.71, T ∗
p = 0.

to the cell height, the property ratios R and E and the dimensionless temperature of the356

injected particles, T ∗
p = (Tpt − Tc)/(Th − Tc). In addition to their number, another factor357

that makes it difficult or impossible to isolate the effects of specific parameters, each one of358

which would, by itself, permit a focus on specific physical effects, are the mutual relationships359

among them. For example, the ratio of the two Stokes numbers is360

Stm
Stth

=
Nup

3rRe

R

PrE
. (V.1)

The first factor depends (rather weakly, in the range of present concern) on the particle361

Reynolds number, while the second group will be fixed once the physical properties of the362

fluid and particles are specified. Thus, Stm and Stth cannot be varied independently without363

changing other parameters. As can be seen from (II.15), for a given kinematic viscosity, i.e.,364

a given fluid, the particle Reynolds number depends on the particle-fluid density ratio R and365

on the particle diameter. Thus, for a given δ = dp/H , the Reynolds number can be changed366

either by changing the density ratio, which will affect the mechanical Stokes number, or by367

changing the cell height H , which will affect the Rayleigh number. The mass and thermal368

loadings depend on R and E, the latter dependent on Stth once δ, Rep, Pr and Ra are369

specified. Given the intricacies of this situation, the best we can do is to show some results370

useful to illustrate broad trends. We focus on two particular cases, one, with R = 800,371

E = 3385, Pr = 0.71, representative of a water-droplet/air system, and the other, with372

17



α

δ
δ
δ
δ

FIG. 3. Critical Rayleigh number vs. undisturbed particle volume fraction α0 for the sand/water

case. The parameter values are R = 3, E = 0.5, Pr = 5, T ∗
p = 0.

R = 3, E = 0.5 and Pr = 5, representative of a sand/water system.373

A general feature of all the results that follow is that particles have a stabilizing effect, as374

can be understood from the similarity pointed out earlier with Rayleigh-Bénard convection375

in a porous medium. The effect is quite strong when the density of the disperse phase376

is much larger than that of the fluid as can be seen in figure 2 for the droplets/air case,377

particularly when the particle diameter is small. Although in all cases the critical Rayleigh378

number starts close to the single-phase value Ra = 1707 when the particle volume fraction379

α0 is small, it quickly rises with increasing α0, the faster the smaller δ and the larger Rep.380

Figure 3 is analogous for the sand/water system, with the particles introduced at the cold-381

plate temperature T ∗
p = 0 as in the previous figure, and again with δ = 0.01 and 0.05, and382

Rep = 1 and 10. In this case the effect of the particles takes longer to manifest itself, so383

much so that the case with δ = 0.01 and Rep = 1 remains indistinguishable from the single-384

phase system even at a volume fraction of 1% at which the droplet/air system is already385

considerably influenced by the disperse phase. This is a general feature of systems in which386

the density contrast is not very marked. Contrary to the previous case, this system appears387

to be affected more by the increase of δ from 0.01 to 0.05 than by the increase of Rep from388

1 to 10.389

The stabilizing effect of increasing R is easily understood from the two momentum equa-390
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FIG. 4. Examples of the velocity eigenvectors corresponding to the λ = 0 eigenvalue for two

difference ratios, R = 3 and R = 30. The other parameters are α0 = 0.01, δ = 0.05, Rep = 1,

E = 0.15R, T ∗
p = 0, Pr = 5.

tions. The coefficient of the last term of (III.13) is independent of R and, therefore, the391

stabilizing effect of this term will mostly depend on the magnitude of the velocity difference392

u′
z − w′

z. As is evident from the particle momentum equation (III.14), the particle velocity393

perturbation is a consequence of drag by the fluid, so that |u′
z − w′

z| < |u′
z|. Since particle394

inertia increases with R, the effectiveness of drag in reducing the difference u′
z−w′

z decreases.395

The last term of (III.14) gains thereby importance, which stabilizes the flow. (Indeed we396

have found that setting w′
z = 0, which increases the importance of the last term of (III.14),397

has a marked stabilizing effect.) This explanation is made evident by the eigenvectors cor-398

responding to the eigenvalue with the largest real part λ = 0, examples of which are shown399

in figure 4 for R = 3 and R = 30. When the density contrast is small, the fluid and particle400

eigenvectors are close to each other, but a significant difference appears for R = 30.401

Increasing the particle Reynolds number has a stabilizing effect for the same reason as402

increasing R. Increasing δ can be seen as amounting to increasing the particle response time403

τp and, therefore, the effect on the particle momentum is similar as can be seen comparing404

the two coefficients in (III.14) which are the only ones that matter since the time derivative405

term vanishes at marginal conditions.406

For δ = 0.05, the dimensionless wave number kH corresponding to the critical Rayleigh407
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α

FIG. 5. The dimensionless wave number kH corresponding to the critical Rayleigh number of the

droplets/air case shown in figure 2. The parameter values are R = 3, δ = 0.01, E = 0.5, Pr = 5,

T ∗
p = 0.

number appears to be little affected by the particle volume fraction in the range shown in408

figures 2 and 3. For example, for the sand/water case, kH grows from ∼3.1 to ∼ 3.25 for409

Rep = 1 and between ∼ 3.1 and ∼ 3.7 for Rep = 10. For δ = 0.01, however, the dependence410

is stronger, increasing from ∼ 3 up to ∼ 10 for both figures 2 and 3; an example for the411

former case is shown in figure 5. For the sand/water system, an increase of this magnitude412

requires a much larger volume fraction. A plausible explanation for this result is that the413

mean inter-particle distance is of the order of dp/α
1/3
0 or, in dimensionless form, δ/α

1/3
0 ,414

a fact that introduces smaller and smaller spatial scales as the particle volume fraction is415

increased.416

Figures 6 and 7 show the effect of the particle temperature for δ = 0.01 and the same417

droplets/air and sand/water systems, with α0 = 10−4 and Rep = 10 for the former and418

α0 = 0.01 and Rep = 1 for the latter. Since, as shown by (III.15), the particles act as a heat419

source for the system, increasing their temperature would be expected to enhance stability420

by decreasing the degree of stratification, which is indeed what is observed for the sand/water421

system and, in the first part of the temperature range, for the droplets/air system as well. In422

the latter case, however, the critical Rayleigh number reaches a maximum and then starts423

to decrease with further increasing the particle temperature, a phenomenon that is also424
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FIG. 6. Effect of the normalized particle temperature T ∗
p = (Tpt − Tc)/(Th − Tc) on the critical

Rayleigh number for the droplets/air system with δ = 0.01, R = 800, E = 3385, Pr = 0.71,

Rep = 1 and α0 = 10−4. Note the lack of monotonicity as T ∗
p is increased.

encountered for the other system at larger values of T ∗
p . The explanation for this inversion lies425

in the effect that the particle temperature has on the undisturbed temperature distribution426

shown earlier in figure 1. As long as the temperature distribution is monotonically decreasing427

with height, warmer fluid is transported upward by the fluid disturbance velocity in the428

regions where u′
z > 0 while colder fluid is transported downward where u′

z < 0. Both effects429

are destabilizing as, being lighter, the warmer fluid will tend to rise further and the colder430

fluid, conversely, to sink deeper. Thus, the system is stabilized if the vertical temperature431

gradient becomes less negative, which is a consequence of a moderate increase of T ∗
p as can432

be seen comparing the temperature distributions for T ∗
p = 0 and T ∗

p = 1 in figure 1. This433

is the cause of the increasing critical Rayleigh number with T ∗
p in part of figure 6 and in434

figure 7. However, by inducing a non-monotonic undisturbed temperature distribution in435

the cell, a further increase of T ∗
p creates a strongly negative temperature gradient in the436

upper part of the cell, which favors instability, and the critical Rayleigh number starts to437

decrease. The undisturbed temperature is non-monotonic also for T ∗
p = −1, but the region438

where it is growing with height is smaller than that where it is strongly decreasing and this439

latter region prevails. Due to the difference in physical properties, in the case of the sand-440

water system the undisturbed temperature becomes non-monotonic only for larger values of441
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FIG. 7. Effect of the normalized particle temperature T ∗
p = (Tpt − Tc)/(Th − Tc) on the critical

Rayleigh number for the sand/water system with δ = 0.01, R = 3, E = 0.5, Pr = 5, Rep = 1 and

α0 = 0.01.

T ∗
p which are somewhat unrealistic and, therefore, are not included in the range of T ∗

p values442

covered in figure 7. We have verified however that the critical Rayleigh number starts to443

decrease for sufficiently large values of T ∗
p also for this system.444

Figure 8 shows an example of the dependence of the stability threshold on the mechanical445

Stokes number, varied by varying the ratio R of the particles-to-fluid densities. Here δ =446

0.05, α0 = 0.01, cpp/cpf = 0.15, Pr = 5 and Rep = 1. In descending order, the lines447

correspond to T ∗
p = 1, 0 and -1. As Stm increases with R, the fluid-particle velocity difference448

increases as explained before, which stabilizes the system. As shown in figure 1, warm449

particles, with T ∗
p = 1 reduce the undisturbed temperature gradient in the cell and therefore450

produce a stronger stabilizing effect. On the other hand, very cold particles, with T ∗
p =451

−1, greatly increase the negative temperature gradient in the lower part of the cell, which452

diminishes their stabilizing influence.453

An example of the effect of the thermal Stokes number Stth, varied by varying the heat454

capacity ratio E, is shown in figure 9 for the droplets/air (solid line) and the sand/water455

systems. Here δ = 0.05, α0 = 0.01, T ∗
p = 0 and Rep = 1. The general trend is similar to that456

seen before in figure 8 when the density ratio R is varied, and for a similar reason. Indeed,457

the ratio E/Stth in the fluid energy equation (III.15) is independent of E, while a large E, or458
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FIG. 8. Effect of the particle mechanical Stokes number Stm (varied by varying the density ratio

R) on the stability threshold for the sand/water case. In descending order, the particle injection

temperature is T ∗
p = 1, 0 and -1. The parameter values are δ = 0.05, α0 = 0.01, cpp/cpf = 0.15,

Pr = 5, Rep = 1.

a large Stth, hinders the equalization of the particle and fluid temperatures. This increases459

the difference T ′ − T ′
p in the fluid energy equation and, with it, the effective energy source,460

which tends to destabilize the system. This explanation is confirmed by the appearance of461

the eigenvectors, examples of which are shown in figure 10. Analogously to figure 4, we see462

that the temperature difference is small for the sand/water case, for which E = 0.5, while463

it becomes very large for the droplet/air system for which E = 3385.464

VI. SUMMARY AND CONCLUSIONS465

This paper started with the presentation of a mathematical model of the two-fluid type466

for the study of the Rayleigh-Bénard convection in a laterally unbounded cell with the467

bottom plate kept at a higher temperature than the top one. The general model was then468

specialized to the situation in which particles are introduced steadily and uniformly at the469

top plate at their terminal velocity. The effect of the particles on the stability threshold of470

the system was investigated by a standard decomposition into normal modes.471

The addition of particles greatly enlarges the parameter space of the problem and it has472

not been possible to carry out an exhaustive parameter study. Rather, we have focused473
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FIG. 9. Effect of the particle thermal Stokes number Stth (varied by varying the heat capacity ratio

E) on the stability threshold for the droplets/air (solid line) and sand/water cases with α0 = 0.01.

The parameter values are δ = 0.05, T ∗
p = 0 and Rep = 1.

FIG. 10. Examples of the temperature eigenvectors for the droplet/air and sand/water system for

α0 = 0.01. The other parameters are δ = 0.05, T ∗
p = 0, Rep = 1.

on two specific cases in which the physical properties are similar to those of a sand/water474

system and to those of a water-droplets/air system. The numerical results have shown that475

particles tend to inhibit the onset of natural convection thereby stabilizing the system. This476

effect can be understood noting that the particles resemble a distributed drag force and heat477
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source in the fluid, similarly to a porous medium. An interesting result was found to occur478

when the particles are injected at a temperature higher than that of the bottom plate. In479

this case the undisturbed temperature distribution ceases to be monotonic with the effect480

that, all other parameters being the same, the system is destabilized.481

Other situations can be studied within the framework of the mathematical model outlined482

in section II. For example, it may be expected that, if particles are introduced non-uniformly483

at the top plate, or with a variable velocity, or with unequal density, they would promote,484

rather than hinder, the onset of convection. A similar, but particularly interesting question485

due to the competition between physical effects, would be the effect of introducing particles486

at different temperatures. These problems will be investigated in future work.487
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