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Oscillating foils in synchronized pitch/heave motions can be used to harvest hydrokinetic energy.
By understanding the wake structure and its correlation with the foil kinematics, predictive models
for how foils can operate in array configurations can be developed. To establish a relationship
between foil kinematics and wake characteristics, a wide range of kinematics is explored in a two-foil
tandem configuration with inter-foil spacing from 4-9 chord lengths separation and multiple inter-foil
phases. Using data from experiments and simulations, an in-depth wake analysis is performed and
the mean velocity and the turbulent kinetic energy are quantified in the wake. With this energy
quantification, the trailing foil efficiency is modified to account for the mean flow in addition to
the energy transported by the coherent leading edge vortices (LEVs) shed from the leading foil.
With the mean wake velocity, a predictive wake model is able to distinguish three regimes through
analyzing trailing foil efficiency profiles and the strength of the primary LEV shed from the leading
foil. Dividing the wake into regimes is an insightful way to narrow the range of foil kinematics and
configurations and improve the energy harvesting in a two-tandem foil-array.

I. INTRODUCTION

Oscillating foils in a combined heave/pitch motion are an effective way to extract hydrokinetic energy [1, 2] and
offer benefits of shallow water operation, scalability, and low cut-in speeds. The efficiency and kinematics of a single
foil in freestream conditions are well understood both numerically [3–7] and experimentally [8–12], however foils in
coordinated array configurations have not received as much attention. As observed in other wind and hydrokinetic
turbines, the downstream foils of arrays suffer from reduced freestream velocity and wake disturbances. Thus, a
major challenge within the industry is to accurately predict and model how the wake of one turbine affects the others
downstream. Progress has been made in wind farm layouts [13, 14], however due to the oscillatory, rather than
rotational, kinematics the wake structure of oscillating foils is vastly different from that of traditional horizontal-axis
turbines. Moreover, the wake structure is a strong yet nonlinear function of the precise kinematic motion of the foil.
Using a two-foil in-line array, this paper aims to quantify the wake structure in terms of the leading foil kinematics
and subsequently model the downstreams foil performance.

McKinney and DeLaurier [8] introduced the first modern demonstration of oscillating foils for energy harvesting.
To extract hydrokinetic energy, oscillating foils heave and pitch periodically with the pitch leading the heave by 90
degrees. When operated at optimal frequencies, this motion creates a heave stroke at high angle of attack, subsequently
generating a strong lift force, which is converted to linear power. Depending on the precise kinematics, power can also
be generated through torque on the foil. The kinematics strongly affect the foil’s performance, as discussed thoroughly
in review articles by Young et al. [2] and Xiao and Zhu [1]. The kinematic motion with respect to the freestream flow
is summarized in Figure 1, with h(t) denoting the heave position and θ(t) the pitch angle. The frequency of oscillation,
f , non-dimensionalized by chord length c and freestream velocity U∞, is in the range fc/U∞ = 0.10−0.15, lower than
that found in propulsive oscillating foils. The heave and pitch kinematics are typically sinusoidal and characterized
by high amplitudes, where the pitch amplitude θo ranges from 55−85 degrees, and the heave amplitude ho is between
0.5− 2.0 chord lengths.

A distinguishing flow feature of the high-pitch and high-heave kinematics is the trail of coherent vortices formed in
the wake. Throughout most of the energy harvesting kinematic parameter space one or more leading edge vortices
(LEVs) are shed on each half-stroke, sometimes accompanied by a trailing edge vortex (TEV) [4, 5]. The struc-
tured pattern of these relatively two-dimensional coherent vortices differs widely from the three-dimensional wake of
horizontal-axis turbines [1, 2, 15]. The formation and wake dynamics of the shed vortices are strongly correlated with
the specific kinematic parameters. However, for the optimal kinematics it has been shown that the boundary layer
separates very close to the leading edge of the foil. Due to the leading edge separation the dynamics and energy
harvesting performance are relatively insensitive to Reynolds number [16] and blade geometry [10]. Evidence has also
indicated that although the wake structure is tied to the kinematics, it is relatively independent of Reynolds number
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Figure 1: Foil kinematics: pitch amplitude θo, heave amplitude ho, reduced oscillating frequency fc/U∞, swept area
Yp.

and inflow conditions [16, 17], unlike horizontal-axis turbines whose wakes are very sensitive to Reynolds number and
the turbulent characteristics of the oncoming flow [15, 18].

When foils are arranged in a tandem array the layout introduces two configuration parameters, the inter-foil distance,
Sx, and inter-foil phase, ψ. Inter-foil phase describes the phase difference between leading and trailing foils which
are both undergoing the same kinematics. Through experiments in a water tunnel at Re = 20, 000 and using fixed
foil kinematics of fc/U∞ = 0.80; ho/c = 1.05; θo = 73◦, Platzer et al. [19] discovered that any slight change in the
configuration parameters will affect the trailing foils performance. Using the same flow conditions and kinematics as
Platzer et al., Ashraf et al. [20] performed numerical simulations using two mesh zones, a dynamic mesh close to the
foil and a stationary zone with a sliding interface in-between zones. They varied Sx from 2c to 6c demonstrating that
the trailing foil efficiency increased when the inter-foil phase was nonzero. Subsequent simulations by Broering and
Lian [21] and Broering et al. [22] at Re = 10, 000 observed that both inter-foil phase and spacing had similar effects on
power generation, however these were performed at lower pitch and heave amplitudes (ho/c = 0.50; θo = 20◦), likely
avoiding the flow separation and LEV generation characteristic of higher amplitudes. Karakas and Fenercioglu [23]
experimentally investigated the inter-foil phase effects on power generation of a two-foil fixed set of kinematics and
obtained an optimal inter-foil phase of 135◦ from the observation of wake-foil interactions through a inter-foil phase
variation of −180◦ −+180◦. Numerical work from Ma et al. [24] has coupled the motion of the leading and trailing
foils in passive tandem arrays and noted how the inter-foil distance impact the system dynamics. Experimental work
from Ramananarivo et al. [25] and Newbolt et al. [26] showed that when two foils are arranged in a tandem array
and are randomly perturbed, the flow interaction between the trailing foil and the wake generated by the leading
foil promoted group cohesion, similar to those found in fish schooling and bird flocking. Their results show that foil
kinematics and configuration parameters can be used to control locomotion within wakes.

To combine the two configuration parameters into a single variable, Kinsey and Dumas [27] introduced a global
phase parameter, Φ,

Φ = 2π
Sx
U∞T

+ ψ. (1)

The global phase parameter is defined as the summation of the inter-foil phase and a non-dimensional term comprised
of the inter-foil distance, freestream velocity, and the oscillation period, T . Kinsey and Dumas performed numerical
simulations at Re = 500, 000 varying the frequency of oscillation and inter-foil spacing for two distinct phases,
ψ = −90◦,−180◦. From this data they determined a global phase of 90◦ typically leads to an increase in trailing
foil performance. However, they emphasize that cases with the same global phase do not share the same wake-foil
interactions, unless they all have same kinematics and configurations parameters. Xu and Xu [28] also investigated
the global phase model using potential flow theory and through a variation of inter-foil distance (Sx = 3.4c − 6.7c)
and inter-foil phase (ψ = −180◦−+180◦), they discovered an optimal global phase of 160◦ that increased trailing foil
performance. The optimal phase was different than that found by Kinsey and Dumas [27], which could be explained
by the single set of kinematics Xu and Xu investigated compared to the variation in foil kinematics performed by
Kinsey and Dumas. Similar to Broering and Lian [21] and Broering et al. [22], Xu and Xu also noticed that a similar
trailing foil performance can be achieved by either changing inter-foil phase or inter-foil distance.

Understanding the wake dynamics is critical for developing a physics-based model of how the kinematics and
array configuration parameters influence energy harvesting performance. The path of individual vortices within the
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wake is highly dependent on the leading foil kinematics [16] and affects how or if the trailing foil interacts with the
vortices originating from the leading foil. Through experiments and simulations performed in a flow at Re = 30, 000,
Rival et al. [29] discovered two types of wake-foil interactions. The first type occurs when the LEV from the
leading foil induces a leading edge suction region generating a thrust force on the trailing foil, hence decreasing
power generation. The second type of interaction occurs when the trailing edge vortex (TEV) from the leading foil
induces flow separation on the trailing foils upper surface, increasing power generation. Their conclusions are obtained
using a two-foil system placed in close proximity to one another (Sx = 2c) with small heave and pitch amplitudes
(ho/c = 0.50; θo = 8◦). Through two-dimensional simulations at Re = 44, 000 and fixed kinematics and configuration
parameters of ho/c = 1.00; θo = 70◦; ψ = 180◦ and Sx = 5.4c, Xu et al. [30] demonstrate that the array efficiency
linearly increases with increasing frequency, reaching a maximum at fc/U∞ = 0.14. As the frequency surpasses
fc/U∞ = 0.14 the trailing foil performance is heavily influenced by the TEV from the leading foil.

Using actuator disk theory, the optimal efficiency of a single turbine is up to 59.3%, as attributed to Betz [31].
This is expanded to inline turbine arrays by Newman, who demonstrates an optimal system efficiency of 64% [32],
meaning that the sum of the power extracted by two devices is 64% of the freestream kinetic energy. These traditional
actuator disk models have been recently revisited by considering both the steady and unsteady components within
the flow. Dabiri [33] has developed a theoretical framework that surpasses Betz’s limit by relaxing the steady flow
assumption, noting that this approach may be particularly useful in oscillating foil arrays to increase performance.
From his framework, a theoretical time-averaged power coefficient of 76.4% was obtained, which is significantly higher
than Betz’s limit. Inspired by Dabiri’s framework, Young et al. [34] analyzed the mean and unsteady flow around
oscillating foils using a control volume analysis to compute efficiency in single and tandem arrangements. The unsteady
terms that arose from the formation and shedding of vortices would entrain additional energy and momentum into
the wake, which could be used to increase energy and hence efficiency on downstream foils. Young et al. validated
their methodology through a numerical analysis on optimal kinematics obtained from Kinsey and Dumas [27] and
achieved similar efficiencies with the control volume analysis as obtained via force computations. They estimated
a theoretical maximum efficiency of 77.7% for the tandem foil arrangement, emphasizing the effect of the unsteady
terms not previously incorporated by Newman’s limit.

Through these recent investigations there is strong evidence that the structured wake, including the unsteadiness
imposed by the coherent vortices in the wake, can be utilized beneficially in oscillating foil arrays. However, the
generation of the vortices and wake dynamics are primarily governed by the kinematics, which in turn have a large
parameter space within energy harvesting regime. Understanding how the leading foil kinematics change the wake
structure and dynamics will lead to better wake-foil models, and development of optimal array configurations for
energy harvesting. This can lay the foundation for models and control laws that govern the optimization of kinematics
between foils within an array, and may also have implications in the bio-inspired propulsion field in terms of interactions
between groups of swimmers or fliers.

This paper focus on quantifying the effects of foil kinematics within the wake structure and dynamics, and using this
information to model the trailing foils performance. Simulations are performed with two-dimensional direct numerical
simulation (DNS), along with experiments and Particle Image Velocimetry (PIV). A wide range of kinematics with
varying reduced frequencies, heave and pitch amplitudes, inter-foil phase and spacing will be used in a two-foil
(tandem) array configuration in order to quantify the effects of foil kinematics in the wake. The vortex structure is
used to characterize the wake into three main regimes, that correlate strongly with foil kinematics, and are described
by the steady and unsteady components within the flow. Furthermore, a modification to the global phase model
is proposed that can predict trailing foil performance over a wide range of kinematics, and a modified efficiency is
introduced that incorporates available energy from steady and unsteady regions within the wake.

II. METHODS

A. Tandem-foil array parameters and performance metrics

The kinematic motion of the foil is described below in lab-fixed coordinates as

h(t) = ho cos(2πft+ ψ) (2)

and

θ(t) = θo cos(2πft+ π/2 + ψ) (3)
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where h(t) and θ(t) are the prescribed heave and pitch kinematics, respectively, with a pitching motion about the
center-chord. Using a fore-aft symmetric elliptical cross-section with a c/2 pivot location enables the design to be
used in tidal flows that have regular flow reversal. Both the leading and trailing foil have the same kinematics except
for an inter-foil phase (ψ) which is zero for the leading foil, and varies between −180◦ and 180◦ for the trailing
foil. Modifying pitch and heave simultaneously generates a time-varying relative angle of attack with respect to the
freestream flow, which is given by

αrel(t) = tan−1(−ḣ(t)/U∞) + θ(t), (4)

with ḣ(t) representing the time derivative of the heave motion and αrel(t) is in radians.
A representative relative angle of attack is evaluated when the foil is at maximum θ and maximum heave velocity,

which occurs at one quarter of the cycle period T , or

αT/4 = αrel(t = 0.25T ). (5)

In order to evaluate the performance of different kinematic conditions, the foil’s efficiency is defined as

η =
P

1
2ρU

3
∞Yp

(6)

which is the ratio of the average power extracted, P , to the power available in the oncoming flow window defined by
the swept area Yp. Power generation on an oscillating foil is defined as

P (t) = Fyḣ+Mz θ̇ (7)

which is comprised on a translational component from the vertical force Fy, and an angular component from the
spanwise moment Mz. All quantities reported are non-dimensionalized by the freestream velocity, U∞, and the chord
length of a single foil, c. To remove small cycle-to-cycle variations, the efficiency, forces, and flow fields are all
phase-averaged over the last two cycles of simulation and the experiments are phase-averaged over 10 cycles.

The array configuration parameters of inter-foil phase, ψ, and inter-foil distance, Sx, are varied between computa-
tions and experiments in order to cover a wider parameter space, but contain overlap for validation purposes.

The computations are performed with three heave amplitudes in the range of ho = 0.75−1.25, three pitch amplitudes
between θo = 55◦ − 75◦, and eight reduced frequencies in the range of fc/U∞ = 0.10 − 0.17 for a total of 21 unique
kinematics. These kinematics are performed at an inter-foil distance of Sx = 6 for 12 distinct inter-foil phases. To
further explore separation distance, the kinematics of fc/U∞ = 0.12;ho = 1.00; θo = 65◦ is also explored for separation
distances of Sx = 4 and 5 at 12 inter-foil phases. There is a total of 276 unique simulations.

The experiments are performed with a fixed heave/pitch amplitudes of ho = 1.0 and θo = 65◦, with six reduced
frequencies from fc/U∞ = 0.10− 0.15 for a total of the six unique kinematics. Experiments are performed at a single
inter-foil distance of Sx = 6 with 36 different inter-foil phases. To explore separation distance, the same set of foil
kinematics as the simulations is performed at Sx = 8 and 9, for 36 inter-foil phases. In experiments the inter-foil
phase is varied from −180◦ to 180◦ in increments of 10◦ for each set of kinematics, whereas the simulations explore
the same range of inter-foil phase sampled at every 30◦.

Table I summarizes the kinematics and configuration of all cases, including the αT/4 values.

B. Numerical methods

1. Governing Equations and Numerical Techniques

The numerical simulations utilize a direct numerical simulation (DNS) to solve the incompressible Navier-Stokes
equations,

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = ∇ · µ

(
∇u +∇uT

)
(8)
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Table I: Kinematics and array configurations with their respective αT/4 values. S: Simulations; E: Experiments;
PIV: Particle Image Velocimetry. Markers used in the results section are shown.

Marker Kinematics αT/4 Sx Data

fc/U∞ = 0.12;ho = 1.50; θo = 55◦ 0.11 6 S

fc/U∞ = 0.17;ho = 1.00; θo = 55◦ 0.14 6 S

fc/U∞ = 0.16;ho = 1.00; θo = 55◦ 0.17 6 S

fc/U∞ = 0.15;ho = 1.00; θo = 55◦ 0.20 6 S

fc/U∞ = 0.15;ho = 1.25; θo = 65◦ 0.27 6 S

fc/U∞ = 0.12;ho = 1.00; θo = 55◦ 0.31 6 S

fc/U∞ = 0.12;ho = 1.25; θo = 65◦ 0.38 6 S

S E fc/U∞ = 0.15;ho = 1.00; θo = 65◦ 0.38 6 S,E,PIV

fc/U∞ = 0.10;ho = 1.00; θo = 55◦ 0.40 6 S

S E fc/U∞ = 0.14;ho = 1.00; θo = 65◦ 0.41 6 S,E

S E fc/U∞ = 0.13;ho = 1.00; θo = 65◦ 0.45 6 S,E

fc/U∞ = 0.10;ho = 1.25; θo = 65◦ 0.47 6 S

fc/U∞ = 0.12;ho = 1.00; θo = 65◦ 0.49 4 S

5 S

S E 6 S,E,PIV

8 E

9 E

fc/U∞ = 0.15;ho = 0.75; θo = 65◦ 0.52 6 S

S E fc/U∞ = 0.11;ho = 1.00; θo = 65◦ 0.53 6 S,E

fc/U∞ = 0.15;ho = 1.00; θo = 75◦ 0.55 6 S

S E fc/U∞ = 0.10;ho = 1.00; θo = 65◦ 0.57 6 S,E,PIV

fc/U∞ = 0.12;ho = 0.75; θo = 65◦ 0.62 6 S

fc/U∞ = 0.12;ho = 1.00; θo = 75◦ 0.66 6 S

fc/U∞ = 0.10;ho = 0.75; θo = 65◦ 0.69 6 S

fc/U∞ = 0.10;ho = 1.00; θo = 75◦ 0.75 6 S

∇ · u = 0 (9)

where u is the velocity vector, p is the pressure, ρ is the fluids density, and µ is the fluids dynamic viscosity. All
numerical simulations are performed using a second-order accurate finite volume, pressure-implicit split-operator
(PISO) method [35] implemented in OpenFOAM [36].

In order to impose motion on the foils, a dynamic meshing algorithm is implemented. The mesh motion is initiated
by prescribing the position of the cells on the foil’s boundary, which align with the desired foil kinematics. The
location of all the mesh nodes in the domain are solved at every time step using a solid body rotation (SBR) mesh
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motion equation [37],

∇ · (λ∇xm) +∇
(
λ
(
∇xm −∇xm

T
))
− νTr (∇xm) = 0 (10)

where ν is the Lam constant, Tr represents the mathematical trace operation and λ = 1/r is a diffusion constant for
the motion of mesh nodes relative to the boundary motion where r represents the distance from the foil (i.e. solid
body). The mesh motion methodology has been previously validated for propulsive oscillating foils [38].

A schematic of the computational domain is shown in Figure 2. The domain is 51c in the vertical direction with 25c
upstream of the first foil and 25c downstream of the second foil in the horizontal direction. Inlet boundary conditions
are imposed on the left side, and outlet conditions on the top, bottom and right sides. A non-slip wall condition is
imposed on the foil surface. The mesh motion is constrained to zero at all outer boundaries. The two foils are at
rest position (no mesh deformation) at the bottom of the stroke when θ = 0◦, and positioned so the heave stroke is
vertically centered in the domain.

Figure 2: Two-foil schematic with boundary conditions and configuration parameters.

2. Mesh Details

A 2D unstructured mesh is generated using Gmsh [39] for each simulation as shown in Figure 3. To properly
capture the boundary layer and separation phenomena there is a higher clustering of points around the foils compared
to the outer domain, as well as a higher concentration of points within the region between the two foils. Mesh
independence is analyzed on eight different meshes with varying resolution as measured in the boundary layer and in
the wake between the two foils. Table II summarizes the characteristics for each of the eight meshes. Meshes 1 to
4 have decreasing ∆x values in the wake and close to the foil, and the letters A and B denote the number of nodes
along the foil circumference. Figure 4 illustrates the cell sizes in the wake and the number of nodes around the foil.
For comparison, results from a DNS of a stationary mesh is also displayed on Table II. The stationary mesh uses a
non-inertial reference frame to prescribe motion and is only computed with a single foil [16].

Mesh sensitivity is evaluated by comparing the forces directly on the foil and the resolution of flow structures within
the wake. Figure 5a shows the phase-averaged lift coefficient of the leading foil computed with meshes 1B, 2B, 3B, and
4B, each compared to the stationary mesh. Since high heave and high pitch amplitudes increase mesh deformation,
the forces are evaluated at a representative low (αT/4 = 0.38) and high (αT/4 = 0.55) relative angles of attack. As
the number of mesh cells N increases, the solution converges to the stationary mesh solution, with minor differences
between mesh 3B (N ≈ 1.1× 105) and mesh 4B (N ≈ 2.55× 105). Due to the high resolution and high deformation,
mesh 4B does not work with the higher angle of attack. Figure 5b demonstrates the convergence of the solution with
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Figure 3: Mesh 3B; whole domain (left); immediate vicinity of the two foils (right).

Table II: Mesh characteristics. N is the number of nodes. The wake ∆x corresponds to the cell size at a equidistant
position between foils. Nθ represents the number of nodes in the azimuthal direction on foil’s surface. The foil ∆x

corresponds to the cell size at around 0.20c from each foil.

Wake Foil
Mesh N ∆x Nθ ∆x

Mesh 1A 0.21 × 105 0.20 150 0.15
Mesh 2A 0.61 × 105 0.10 150 0.05
Mesh 3A 1.07 × 105 0.07 150 0.03
Mesh 4A 2.46 × 105 0.05 150 0.01
Mesh 1B 0.22 × 105 0.20 240 0.15
Mesh 2B 0.64 × 105 0.10 240 0.05
Mesh 3B 1.10 × 105 0.07 240 0.03
Mesh 4B 2.55 × 105 0.05 240 0.01

Stationary 1.08 × 105 - 240 0.02

increasing resolution by comparing the L2-norm of the difference between the stationary mesh and the dynamic mesh,
computed as

||∆CL|| =

√√√√ 1

n

n∑
k=1

(CkL,stationary − CkL,dynamic)2. (11)

A similar analysis is performed comparing the ‘A’ and ‘B’ meshes, yielding small differences between 3A and 3B. Thus
the final mesh is chosen to be mesh 3B.

Figure 6 shows the instantaneous spanwise vorticity field, ωz, for all B meshes at αT/4 = 0.38. For the chosen
kinematics there are multiple vortices present within the wake. To ensure the mesh resolution between the two foils
is adequate to capture the vortices interacting with the trailing foil, a qualitative comparison is shown between the
four resolutions. There is a significant difference in vorticity strength between mesh 1B and 2B, indicating that 1B
is under-resolved. Meshes 2B, 3B, 4B show the same number of vortices in the wake, however some resolution effects
are still detected in 2B, whereas 3B and 4B demonstrate very similar vorticity fields.

In summary, mesh 3 shows minimal force and flow-field differences with respect to mesh 4, and mesh 3B is only 6%
more computationally expensive than mesh 3A. Thus, mesh 3B is selected for all simulations. With mesh 3B selected
for all simulations, 8 cycles are simulated. As a benchmark for computational time, the simulations took 9 hours to
run 10 convective time units on an Intel Scalable 2.6GHz processor for a serial run. Job arrays are used to automate
the process of running the simulations.
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Figure 4: Cell sizes at an equidistant position between foils and number of nodes around foil. Top left: Mesh 1B.
Top right: Mesh 3A. Bottom left: Mesh 3B. Bottom right: Mesh 3B.

-2

0

2

0 0.2 0.4 0.6 0.8 1

-2

0

2

(a)

0.22 0.64 1.10 2.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
5

(b)

Figure 5: (a) Phase-averaged lift coefficient, CL, of the leading foil as a function of non-dimensional time, t/T , for
each dynamic mesh ’B’ compared to stationary mesh; (b) L2-norm of the difference between the dynamic mesh and

the stationary mesh for increasing mesh size, N (Please refer to Table II for mesh characteristics).

C. Experimental methods

The experiments are conducted in a closed-circuit water flume (cross section: 0.8 m (wide) x 0.6 m (deep)) at
Brown University. As shown in Figure 7 (side view), two rectangular hydrofoils (chord, c = 0.076 m, span b = 0.457
m, thickness σ = 0.007 m) are vertically mounted in a tandem configuration in the flume with a uniform freestream
velocity, U∞, measured by an Acoustic Doppler Velocimeter (Vectrino) (Re = 30, 000 based on the chord length).
The motions of each foil (Equations 2 and 3) are controlled by two servo motors (AeroTech) for heaving motion,
and two stepper motors (Applied Motion Products) for pitching motion. The heaving and pitching positions (h and
θ) are recorded by Optical encoders (US Digital). The lift (Fy) and torque (Mz) on the foils are measured by two
six-axis force transducers (ATI IP65) mounted directly on the foils. With the measured forces and the corresponding
foil positions, the energy harvesting efficiency is evaluated using Equations 6 and 7. To account for the finite size of
the flume a blockage correction based on the method described by Houlsby [40] is performed on the data. For more
details on blockage correction procedure, please see Appendix A.

Particle Image Velocimetry (PIV) measurements are performed to visualize the flow field around the tandem foils.
As shown in Figure 7, the laser sheet, generated using a double-pulsed Nd:YAG laser, (Quantel Evergreen, λ = 532
nm, upto 200 mJ/pulse) is positioned the mid-span of the foil, with four cameras (LaVision Imager sCMOS, 2560
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Mesh 1B

Mesh 2B

Mesh 3B

Mesh 4B

Figure 6: Instantaneous vorticity field in the z direction, ωz. Kinematics: f = 0.15;ho = 1.00; θo = 65◦

pixels by 2160 pixels) and 35-mm lenses (Nikon) placed beneath the test section to capture the flow field. The flow
is seeded with silver-coated hollow ceramic spheres of 100 µm (Potter Industries). The image pairs are acquired at a
frame rate of 25 Hz and then processed for velocity vectors by DaVis 8 (LaVision) using sequential cross-correlations
with decreasing interrogation window sizes (initial: 64 pixels by 64 pixels, final: 32 pixels by 32 pixels), producing a
field of view measuring around 5 chords x 4 chords after stitching together the images from the four cameras.

D. Comparison between experiments and simulations for a single foil

Using a single foil, the energy harvesting performance is compared over a range of reduced frequencies to validate
the computational and experimental set-ups. Figure 8 shows the foil’s efficiency at heave amplitude ho = 1.00 and
pitch amplitude θo = 65◦. Experiments are performed with a rectangular cross-sectional foil shape. To demonstrate
the insensitivity of foil shape and make a direct comparison with the CFD, experiments are also performed with an
elliptical cross-sectional foil, which yield very similar results to the rectangular foil. Once a blockage correction is
applied, the experiments and simulations have a strong agreement, with the maximum efficiency peaking at a slightly
earlier reduced frequency for the simulations. The small discrepancies between the simulations and the experiments
are likely caused by differences in Reynolds number (1000 for simulations and 30, 000 for experiments) [16], and the
three-dimensional effects inherent to experiments but not captured by the two-dimensional simulation.
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Figure 7: Side view of tandem-foil system in the flume, with identical leading (left) and trailing (right) foils, force
transducers, encoders, actuators, laser sheet and cameras for PIV measurements.
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Figure 8: Foil efficiency, η, as a function of reduced frequency, fc/U∞. Corrected data correspond to the
experimental blockage correction (Appendix A). Kinematics: ho = 1.00; θo = 65◦.
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III. RESULTS AND DISCUSSION

A. Relative angle of attack as a predictive quantity

Given the large kinematic parameter space, it is convenient to reduce frequency, pitch and heave amplitude into
a single parameter and utilize the relative angle of attack at maximum pitch (αT/4), as defined by Equation 4, as
a representative of the sinusoidal kinematics [4, 10, 16]. Figure 9 shows the leading and trailing foil efficiency of all
kinematics listed in Table I. All points correspond to cases with the same inter-foil distance (Sx = 6) and each point
for the trailing foil corresponds to the inter-foil phase that provides the highest efficiency.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8

Figure 9: Leading and trailing foil efficiencies, η1 and η2 respectively, with respect to various αT/4 for both
simulations and experimental data.

As shown by Figure 9, αT/4 is strongly correlated with the foil’s energy harvesting efficiency [10, 12, 16, 27],
and shows strong agreement between the experiments and simulations. The leading foil efficiency increases as αT/4
increases, until around αT/4 = 0.50 where it reaches a maximum efficiency of approximately 25%. Surpassing αT/4 =
0.60, leading foil efficiency decreases slightly, indicating the foil kinematics are receding from the optimal energy
harvesting range. The trailing foil follows a similar trend at lower angles of attack, but due to less available kinetic
energy in the wake between foils it plateaus at an efficiency of 15% at αT/4 = 0.40. However, after this angle of attack
the efficiency remains constant with increasing αT/4 as opposed to the slight decay seen for the leading foil. The
data for both experiments and simulations agree that αT/4 is a predictive kinematic quantity in terms of evaluating
the energy harvesting efficiency over a range of diverse kinematics, but also that the trailing foil suffers from lower
efficiency due to the reduced velocity in the immediate wake region.

B. Wake velocity, wake width and the relationship with foil kinematics

In Figure 9, both the leading and trailing foil efficiency are computed as percent of power extracted from that
available in the freestream within the swept area Yp. However, an alternative definition for the trailing foil involves
computing the available power immediately upstream, in the wake between the two foils; this can be performed with
a more detailed analysis of the wake properties and characteristics.

First, the formation and strength of the leading edge vortices are analyzed. Depending on the specific kinematics,
there are one or multiple vortices shed per half-stroke. To understand the wake’s dependence on foil kinematics,
the strength of the primary vortex is computed as a function of αT/4 in Figure 10. The primary vortex is defined
as the strongest vortex developed on the suction side of the foil during a half-stroke. The Q criterion, defined as

Q = 1
2

(
‖Ω‖2 − ‖S‖2

)
, is computed as a vortex identification method [41], with Ω representing the vorticity tensor
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and S as the rate-of-strain tensor. Since the vortex strength generally decreases as it convects downstream, only the
maximum strength is reported for each set of kinematics in both PIV and numerical data. Thus, Figure 10 displays
the maximum non-dimensionalized Q (Q/U2

∞) with respect to αT/4.

700

600

500

400

300

200

100

0
0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9

Figure 10: Maximum Q value of the primary vortex for each αT/4. Open symbols correspond to numerical data.
Filled circles are PIV data.

In general, with increasing relative angle of attack the strength of the primary leading edge vortex increases, which
is consistent throughout the PIV and simulation data with few exceptions. As αT/4 increases, there is more scatter in
the maximum Q values between various kinematics, which is likely explained by the flow physics of the higher relative
angles of attack described below.

Analyzing the maximum Q values and how they are correlated with αT/4, three regimes are identified and defined
by low (shear layer regime), medium (LEV regime), and high (LEV+TEV regime) αT/4 values, as shown in Figure
10. To better understand how these regimes are defined, Figure 11 shows the instantaneous vorticity and Q flow fields
for three representative αT/4, one for each regime.

Figure 11: Instantaneous vorticity, ωz, and Q flow fields for a representative αT/4 of each regime. The inter-foil
phases selected are the cases of maximum trailing foil efficiency. The primary vortex is highlighted (whose path is

shown in Figure 12), as well as the alternate signed primary vortices from the previous half-stroke.
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The first regime is characterized by low relative angles of attack, within the approximate range of 0 < αT/4 ≤ 0.20,
and is labeled the ‘shear layer regime’. For αT/4 lower than 0.20, the separation is dominated by a shear layer with very
little vortex formation, indicated by Q values close to zero in Figures 10 and 11. At αT/4 = 0.20, the shear layer shows
a small degree of separation resulting in a relatively small vortex with respect to other kinematics in Figure 11, with
Q less than or equal to 100. As αT/4 increases, Q also increases as the primary LEV grows in size and strength. The
second regime, labeled as the ‘LEV regime’ is from approximately 0.20 < αT/4 < 0.50 and has an easily identifiable
primary LEV, as highlighted on the second column in Figure 11, whose strength varies between 100 < Q < 350. At
αT/4 > 0.50, the values of Q generally grow, but have a large range from 250 to 650. A distinguishing feature for
this last and final regime is that the primary LEV is paired with a strong trailing edge vortex (TEV), thus labeled
‘LEV+TEV regime’. Due to the addition of more vortices in the wake, the wake-foil interactions are more prevalent
for this final regime as demonstrated by the stronger vortices forming around trailing foil on the third column of
Figure 11.

Next, for each of the three regimes, the velocity in the wake is averaged over time and decomposed into its steady
and unsteady components,

u(x, y, t) = u(x, y) + u′(x, y, t), (12)

where the bar (̄ ) represents a time-averaged quantity. The energy associated with the unsteady components is
computed as a turbulent kinetic energy,

k(x, y) =
1

2
(u′u′ + v′v′) (13)

where u′u′ and v′v′, correspond to the diagonal terms of the 2D Reynolds stress tensor. It is important to emphasize
that the Reynolds decomposition into unsteady components is used to characterize the unsteadiness induced by the
large scale vortices in the wake, and not fluctuations due to turbulence. In analyzing the wake characteristics between
tandem foils, the first question is whether the presence of the trailing foil modifies the wake dynamics. Figure 12 shows
the time-averaged vorticity, ω̄z, streamwise velocity, ū, and turbulent kinetic energy, k, for both single and two-foil
simulations on three representative values of αT/4, one for each regime. The trajectory of the primary clockwise-
rotating vortex (circled on Figure 11) is also displayed in each plot to check if the presence of a trailing foil changes
the vortex trajectory from the leading foil. Similar from Figure 11, the inter-foil phases selected represent the cases
of maximum trailing foil efficiency. The leading foil is at maximum pitch angle, or t/T = 0.25 for each case.

There is a strong similarity between the vortex path of single and two-foil simulations, indicating that the presence
of the trailing foil does not significantly influence the vortices shed from the leading foil, except in the immediate
upstream vicinity of the trailing foil. The flow fields are also very similar between configurations, with the major
differences observed in regions after x = 4, which is within two chord lengths of the trailing foil. This impact that
the trailing foil has on the wake is explained by the flow blockage and subsequent increase of pressure caused by the
presence of the trailing foil.

Although the wake is similar between the single and two-foil simulations, the wake is significantly different among
the three regimes. For the shear layer regime, the flow is more uniform in the x-direction compared to higher αT/4,
which is a consequence of the low energy extraction of the leading foil, characteristic of foil kinematics of low αT/4.
Consequently, the energy left in the wake is considerably higher compared to higher αT/4, which has a lower streamwise
time-averaged velocity in Figure 12. The weak vortex formation at low αT/4 is consistent with the mean k field, which
is negligible compared to that at higher αT/4. At higher αT/4, k concentrates in regions close to the leading foil,
which correspond to the maximum strength of the vortices as they shed from the foil’s surface. The vortices carve
out a path of higher k compared to the bulk flow directly behind the foil, as also observed by Young et al. [34] at
similar kinematics (fc/U∞ = 0.14;ho = 1.00; θo = 76.3◦). These streamwise time-averaged velocity and turbulent
kinetic energy fields in the wake are used to quantify the energy available in the oncoming flow to the trailing foil.

In order to quantify the total kinetic energy in the wake, a wake width is defined. Figure 13 shows the non-
dimensionalized wake deficit, defined as the difference between the freestream and the mean streamwise velocity
downstream of the first foil, 1− u(x, y). The wake deficit is measured at x = 1 for the same three characteristic αT/4
values from Figure 12. The y − z plane at x = 1 is chosen since it is close to the leading foil and assumed to be
sufficiently far from any trailing foil interference. Data is interpolated from the simulations and discretized into 100
equally spaced points between y = −2Yp and y = +2Yp.

Examining the profiles in Figure 13, three regions can be identified. Region ‘1’ is defined as the wake deficit region
as only positive wake deficit values (U∞ > u) are found. A stronger wake deficit is observed with increasing αT/4, in
accordance with Figure 12. Region ‘2’ shows negative wake deficit values (u > U∞) at the same vertical location as the
vortices shown by Figure 12. The stronger negative wake deficit corresponds with higher levels of k, likely indicating
stronger vortices and increasing αT/4. Region ‘3’ is characterized by the wake velocity approaching freestream velocity
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Figure 12: Time-averaged vorticity, ωz, streamwise velocity, u and turbulent kinetic energy, k, for single and two-foil
simulations with different αT/4 values for the three regimes. Black circles represent the path of the primary vortex

shed during foil‘s upstroke.

(U∞ ≈ u). Since the freestream region is uniform, constant, and located far away from the foil, it can be approximated
as irrotational and inviscid, and labelled as a potential flow region.

As highlighted in Figure 13, the width for regions ‘1’ and ‘1+2’ are approximately 1Yp and 2Yp, respectively, where
Yp is the height of the swept area. The value of Yp is highly correlated with the heave amplitude, but also slightly
dependent on the pitch amplitude (see Figure 1). Based on this analysis, most of the energy in the wake is within an
area defined by y = −Yp to +Yp. Thus, an averaged wake velocity, up, can be calculated at x = 1 by integrating the
velocity deficit over this region,

up = 1− 1

2Yp

∫ +Yp

−Yp

1− u(1, y) dy. (14)

The mean turbulent kinetic energy over a specific y − z plane, kp, can be computed in the same manner,

kp =
1

2Yp

∫ +Yp

−Yp

k(1, y) dy. (15)



15

Figure 13: Wake deficit, 1− u(x, y), as measured at x = 1 for three different αT/4 values, representative of the shear
layer, LEV and LEV+TEV regimes. The wake profile is divided into a pure deficit region, a LEV region, and a

potential flow region. The orange lines roughly define the deficit region and represents Yp ≈ 2.3, close in value to the
cases shown. A schematic of the foil motion in the x− y plane is shown for reference.

Applying Equations 14 and 15 to all kinematics for both experimental and numerical data, Figure 14 displays up and
kp with respect to αT/4. Similar to Figure 9, each point corresponds to the inter-foil phase with highest trailing foil
performance.
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Figure 14: Mean wake velocity (up) and turbulent kinetic energy (kp) from numerical and PIV data. The diamond
shape marker corresponds to interpolated PIV data (See Appendix A).

The wake velocity in Figure 14 has a roughly linear decay with respect to αT/4 until approximately αT/4 = 0.60.
Beyond this value, the wake velocity levels off around 0.82 for the available numerical data. The data from PIV is
generally in agreement with CFD although its magnitude at the lowest and highest available αT/4 deviate from the
CFD values by +0.04 and −0.03, respectively. The drop at αT/4 = 0.66 can be partially explained by a limitation
presented in the blockage correction method used on the experiments, which uses the measured Cd values from the
experiments, which are very high at this angle of attack (see Appendix A for further details on the blockage correction
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method).
The turbulent kinetic energy also shows a strong agreement between numerical and PIV data. As opposed to the

wake velocity, kp remains constant at kp = 0.01 and then increases with αT/4 until it appears to level off around
αT/4 = 0.70 at approximately kp = 0.09. The increase of the turbulent kinetic energy as αT/4 increases is a consequence
of the stronger wake vortices especially in the LEV+TEV regime (αT/4 > 0.50). The higher efficiency of the leading
foil in this regime compared to poor efficiency in the shear layer regime explains the decrease in wake velocity as more
energy is extracted by the leading foil and hence the stronger wake deficit. This energy is mostly carried by the wake
velocity since the energy per unit mass using the wake velocity (u2p) is considerably higher than the turbulent kinetic

energy. For instance, at αT/4 = 0.69, u2p is approximately 7.5 times higher than the turbulent kinetic energy, kp.

C. Combining foil kinematics and configuration parameters

In the previous section, Figure 14 demonstrated the steady and unsteady wake characteristics relative to the leading
foil kinematics. Next, the relationship between the wake characteristics and the trailing foil performance is analyzed.

First, the trailing foil efficiency profiles are plotted with respect to the inter-foil phase for all cases, including all
inter-foil distances. This information is split up into the three regimes, and shown in Figure 15.
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Figure 15: Trailing foil efficiency, η2, with respect to inter-foil phase, ψ. Open symbols represent the numerical data,
whereas filled ones represent experimental data. Each curve represents a set of kinematics as defined in Table I.
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In Figure 15a, the maximum trailing foil efficiency achieved in the shear layer regime is approximately 7%, whereas
for the other two regimes, the trailing foil reaches 15% at optimal inter-foil phase. For the two lowest αT/4 values
in the shear layer regime, efficiency is close or lower than 0 at almost any inter-foil phase, which is explained by
the kinematics being far from optimal within the energy harvesting range. With the combination of high reduced
frequency and low pitch there is very little flow separation and the vortices roll up along the trailing edge at stroke
reversal.

At αT/4 = 0.20, efficiency reaches 7% at the optimal inter-foil phase. Examination of the flow fields indicates that
this is a consequence of the trailing foil avoiding the path of shear layer vortices emitted from each half-stroke of the
leading foil, as highlighted in Figure 11. At this αT/4 value, three pairs of clockwise and counter-clockwise vortices
shed per half-stroke, each with low strength compared with kinematics at higher αT/4. The small and weak vortices
follow a horizontal path as shown in Figure 12, and are convected in the same direction as the freestream velocity.
Nonetheless, even for the small vortices in this regime, interactions between the primary vortices and trailing foil
affects trailing foil’s efficiency. The impact on trailing foil efficiency depends on the strength of the vortices and the
timing, as a slight shift in inter-foil phase may cause a vortex to directly impinge upon the trailing foil or miss it
completely. The timing between the interaction of primary vortices and trailing foil is also described in Kinsey and
Dumas [27] and it is a key feature for the slightly higher efficiency at the optimal inter-foil phase for both αT/4 = 0.17
and 0.20. For lower αT/4 within the shear layer regime, the flow separation is less dramatic and hence the trailing
foil is less susceptible to increase or decrease in the energy extraction from the oncoming flow. Consequently, the
efficiency is roughly constant throughout the inter-foil phases.

The LEV and LEV+TEV regimes both display a sinusoidal-like profile for the trailing foil efficiency as a function
of phase angle. However, there is a significant difference between these two regimes. The LEV regime contains
kinematics that generate stronger vortices compared to the shear layer regime (see Figure 11). As opposed to the
lowest αT/4 cases, the path of the recently shed vortices start to separate from the previous half-stroke vortices of
opposite sign. Another feature of the LEV regime is the vortex pattern of one pair and two single vortices that shed
per half-stroke. The stronger vortices have a larger convective speed, which impact the interaction timing between
the primary vortex and trailing foil. For instance, for the kinematics highlighted on the shear layer regime on Figure
11, the primary vortex reaches x = 4 at approximately t/T = 1.00. The primary vortex for the case shown in the
LEV regime reaches same position at t/T = 0.95 and this values drops to t/T = 0.75 for the LEV+TEV regime. The
result is that the efficiency variation is more dramatic, and appears very close to sinusoidal with respect to inter-foil
phase.

In contrast, in Figure 11 the LEV+TEV regime shows a clear separation between the current half-stroke and the
previous half-stroke of opposite signed vortices. The strength of the primary vortex pair and the four single secondary
vortices that shed per half-stroke are significantly higher for this final regime compared to the LEV regime, and hence
creates a more chaotic relationship between efficiency and inter-foil phase as observed on regions close to ψ = 0◦. In
particular, there is a sharp efficiency drop around ψ = 0◦, even briefly dropping below the energy harvesting threshold
for some kinematics. This break in the sinusoidal trend is explained by the unpredictable interaction of trailing foil
with the oncoming flow that includes stronger secondary vortices from the leading foil. The higher convective speed
presented in this final regime also has a major role in the sharp efficiency drop. Thus, the LEV+TEV regime has a
larger efficiency range from −5% to 15% compared to the 0%− 15% from the LEV regime.

Although information can be extracted from Figure 15, there is no clear efficiency trend with respect to the inter-
foil phase especially in the range from ψ = −120◦ to ψ = 120◦, as it is compounded by the effect of kinematics and
inter-foil distance. Instead of using inter-foil phase, a key variable to establish the relationship between the wake and
trailing foil performance is the ‘wake phase’, Φ, defined as

Φ = 2π
Sx
up
f∗ + ψ (16)

with f∗ = fc
U∞

. The ‘wake phase’ is a modification from the originally implemented global phase model proposed by

Kinsey and Dumas [27] and this model describes the phase shift between the wake trajectories of both foils considering
both wakes being convected at the freestream velocity. The difference between the ‘wake phase’ and the ‘global phase’
parameters is the use of up instead of freestream velocity, which more accurately describes the mean flow speed
between the two foils, especially for medium to high αT/4 cases, where the wake deficit is more apparent.

Kinsey and Dumas observed that their original global phase model does not provide any information on the relative
angle of attack and the related occurrence of flow separation. However, the proposed wake phase model incorporates
the streamwise velocity of the wake which subsequently correlates with the leading foil kinematics, and αT/4, as shown
in Figure 14. However, the highly variable vortex dynamics observed throughout the range of kinematics means that
the interactions with the trailing foil can again be divided into three regimes. Figure 16 organizes the trailing foil
efficiency with respect to the wake phase for all kinematics within each regime.
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For the shear layer regime in Figure 16a, the wake phase model attempts to align the variation in efficiency across
the various inter-foil phase angles for the four sets of kinematics tested numerically. By incorporating the reduced
frequency and measured wake velocity in the model, the lowest efficiency is between Φ = 0◦ and Φ = 60◦. The
two highest αT/4 cases of this regime have their minimum efficiency around Φ = 0◦ and the maximum efficiency at
approximately 7%.

The LEV regime in Figure 16b demonstrates a strong collapse of trailing foil efficiency with respect to the wake
phase. A roughly sinusoidal trend is formed with the minimum around Φ = 0◦, and the maximum around Φ = 120◦.
The maximum efficiency peaks between 10% to 15% with a single case with maximum efficiency around 7%, and
generally increases as αT/4 increases. The experiments and simulations show strong agreement for this regime.

For the third regime in Figure 16c, representing the highest αT/4 values, the wake phase model also shows a
minimum efficiency at approximately Φ = 0◦. The efficiency range is from 7% to 15% on wake phases close to 180◦,
similar to the LEV regime, but efficiency is from −5% to 15% on wake phase near Φ = 0◦. The two highest αT/4 show
an efficiency increase around Φ = 0◦. Compared to Figure 15c, the wake phase model in Figure 16c demonstrates a
partial collapse of the efficiency profiles bringing the minimum efficiency of each case closer to Φ = 0◦.

In contrast, the experimental data in Figure 16c still show a similar sinusoidal behavior to the LEV regime in Figure
16b, but with a plateau around the maximum efficiency between Φ = 70◦−180◦. The stark differences between various
kinematics, and between the experimental and numerical data, highlight the strong influence of the LEV and TEV
within this regime. In particular, the strong TEV formation increases the wake disturbance and vortex dynamics
more so than the other two regimes. Through analyzing the flow fields in each regime as exemplified in Figure 11, it is
found that the numerical data have more concentrated vortices than the experiments of similar angles of attack. This
is likely a result of different Reynolds numbers and the three-dimensional effects that are inevitable in experiments
and are not captured in the simulations.

In terms of the primary vortex position when it impinges on the trailing foil in an upstroke motion, Kinsey and
Dumas defined four configurations that affect the pressure field around the foil. Two configurations are favorable
for power extraction and these occur when the counter-clockwise vortex impinges on the suction side of the foil or a
clockwise vortex impinges on the pressure side of the foil. The two unfavorable conditions occur when vortices with
signs opposite to each of the above mentioned configuration impinges on the trailing foil.

Kinsey and Dumas also found a strong interaction between the primary vortex and the trailing foil at kinematics
of fc/U∞ = 0.14;ho = 1.00; θo = 70◦, which has a αT/4 = 0.50, a borderline case between the LEV and LEV+TEV
regimes. For this case at limited inter-foil phases, they obtained an optimal global phase of 90◦, which is different
than the optimal wake phase of 120◦ obtained in the LEV regime. However, the foil kinematics and configurations
from Kinsey and Dumas only explored two inter-foil phases, −90◦,−180◦, as well as small variations in the heave and
pitch amplitudes compared to the current data.

With a considerably higher parameter variation, the original global phase model is applied to the current data (see
Appendix B) to check its performance among regimes in terms of efficiency trends and optimal global phases. The
predictions between models is particularly different within the LEV regime, with the global phase model not being
able to present as clear of an efficiency trend as the wake phase model. This can be explained by the wake phase
model incorporating the mean streamwise wake velocity.

With the sinusoidal efficiency profile in the LEV regime, the wake phase model can be used to predict the efficiency
depending only on the leading foil kinematics. For instance, at αT/4 = 0.40 and Φ = −60◦, the trailing foil efficiency
should be within 1% < η < 10%. This prediction is insightful to obtain optimal configurations for better energy
harvesting. For example, a trailing foil efficiency of 15% is obtained for a wake phase of −180◦ and a case with
αT/4 = 0.49. Therefore, the same efficiency could be obtained with any set of reduced frequency, heave and pitch
amplitude as long as it provides the same αT/4 and wake phase. Kinsey and Dumas highlighted the prediction ability
of their global phase model but they found it reliable only between cases sharing the same wake profiles or similar
αT/4. The approach of dividing the wake into regimes makes prediction more feasible across regimes.

Another measure of the tandem array performance, and one that is important in practical configuration, is the
system efficiency, defined as the sum of the individual efficiency values (η1+η2) since the two foils operate over
the same swept area. System efficiency is computed with respect to wake phase for a subset of data ranging from
αT/4 = 0.11 − 0.75 in Figure 17a. Since efficiency increases with increasing αT/4 (Figure 9), system efficiency also
increases accordingly. More subtle is the trend with respect to wake phase as αT/4 increases. At the lowest αT/4
values, the system efficiency is almost constant throughout different wake phases. As αT/4 increases, a sinusoidal
profile emerges due to the regular formation of a strong LEV and wake-foil interactions become stronger as observed
in the instantaneous vorticity field across different αT/4 from Figure 11. For the highest αT/4 value, the sinusoidal
trend is disrupted and the maximum and minimum wake phase is shifted. These conclusions are also supported by
Figure 17b, where the maximum system efficiency (at optimal wake phase angle) increases as αT/4 increases, reaching
a maximum of η1 + η2 ≈ 0.40 at approximately αT/4 ≈ 0.50.

Overall, among all regimes, the wake phase model presents a maximum trailing efficiency at Φ ≈ 120◦ and a
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Figure 16: Trailing foil efficiency (η2) regimes using the wake phase model. Φ is in degrees. Open symbols stands for
numerical data, whereas filled ones are experimental data. Each curve represents a set of kinematics as defined in

Table I.

minimum at around Φ = 0. This is obtained for a wide range of kinematics including a variation of each kinematic
parameter, inter-foil phase and inter-foil distance. The maximum trailing foil efficiency is similar to the implementation
by Xu and Xu [28], where they obtained a maximum efficiency at around Φ = 160◦ and also a minimum efficiency
close to Φ = 0. However, similar to Xu and Xu [28], the result deviates from the original global phase model from
Kinsey and Dumas [27]. A possible reason for this difference is that Xu and Xu analyzed the global phase model
in a single set of kinematics. In the original model, Kinsey and Dumas [27] considered a variation of the reduced
frequency, heave and pitch amplitudes. However, Kinsey and Dumas noticed the optimal global phase of 90◦ was
found for a specific inter-foil distance, and only tested on a small subset of inter-foil phase angles.

D. Updating trailing foil efficiency using the wake characteristics

The wake velocity is not only useful to predict trailing foil efficiency and system efficiency, but can be used to
more accurately represent the kinetic energy in the wake. By incorporating energy directly from wake measurements,
the trailing foil efficiency is modified. Starting with the foil efficiency defined in Equation 6, the mass flow rate per
unit span is modified from ρU∞ to ρup and the energy available in the oncoming flow is modified from 1

2U
2
∞ to
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Figure 17: System efficiency analysis

1
2

(
u2p + 2kp

)
, incorporating energy from the mean flow in addition to the turbulent kinetic energy. The addition of

the averaged turbulent kinetic energy is correlated with the unsteady fluctuations within the coherent vortices in the
wake. Equation 17 defines the modified trailing foil efficiency, η∗2 , as

η∗2 =
P2

1
2ρup

(
u2p + 2kp

)
Yp
. (17)

Figure 18 includes numerical and experimental data using the original definition of efficiency (Equation 6), in
addition to η∗2 defined in Equation 17. The effect of η∗2 is especially prevalent at high αT/4 as the turbulent kinetic
energy is considerably higher compared to low αT/4 (Figure 14b). For instance, the difference in efficiency values
between η∗2 and η2 at αT/4 = 0.66 is approximately 8%, whereas at αT/4 = 0.20 is only 1%.

Overall Figure 18 shows that the modified trailing foil efficiency is higher than the efficiency normalized by U∞
across all αT/4, and it is bounded by the efficiency of the leading foil. The efficiency profiles from Figure 18 show
that analyzing the wake in terms of its measured mean and unsteady velocities increases the efficiency, as observed
by Young et al. [34]. Young et al. showed this potential increase in efficiency through an analysis of the additional
terms that appear when the instantaneous flow variables are split into their mean and fluctuating components. These
terms include a non-uniform and unsteady pressure across the wake between foils, unsteady transport of momentum
and energy from freestream into the wake, and viscous flow work and viscous dissipation within two control volumes
enclosing each oscillating foil. Whereas they noticed a particularly high contribution for the unsteady pressure term,
the net effects from analyzing the unsteady flow components is being considering through Equation 17 in the current
investigation. As the flow becomes more chaotic with increasing αT/4, the mean wake velocity decreases and the mean
turbulent kinetic energy increases. Thus, the difference between η2 and η∗2 is more apparent at higher αT/4.

This result may give insight on optimal array configurations since the system efficiency may be higher for one
configuration than the other depending on how much energy the trailing foil receives from the wake. The wake
analysis in terms of averaging streamwise velocity and turbulent kinetic energy over a y − z plane can be expanded
and applied for multiple foils downstream. In this sense, an efficiency ratio parameter (e.g. η∗2/η1) may be useful to
predict array performance.

IV. CONCLUSION

The wake structure and dynamics on a two-foil array is explored in a wide range of kinematics and configurations,
both computationally and experimentally. The goal of this paper is to quantify the effects between foil kinematics
and the wake behind leading foil in terms of vortex structure and flow velocity, and use this information to model the
trailing foil’s performance.
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Figure 18: Leading and trailing foil efficiencies (η1 and η2) normalized with freestream velocity and using
information from the wake between foils (η∗2). Each point for the trailing foil corresponds to the inter-foil phase that

provides the highest efficiency. The diamond shape marker corresponds to PIV linear interpolated data. See
Appendix A for further details on linear interpolated data.

Through an analysis of the primary vortex strength shed from the leading foil, three main regimes are defined
and characterized based on their kinematics (αT/4), vortex strength, and wake structure. The ‘shear layer’ regime
occurs at low αT/4 (αT/4 ≤ 0.20) and the wake region is dominated by a shear layer and contains very weak vortex
formations. The ‘LEV’ regime (0.20 < αT/4 ≤ 0.49) contains a primary LEV that sheds at each half-stroke forming a
path of shed vortices that are distanced from the previous half-stroke vortices of opposite sign. This is more dramatic
in the third and final regime, ‘LEV+TEV’ (0.49 < αT/4 ≤ 0.75), in which the development of a large TEV further
influences the wake structure.

The efficiency of the second foil is a function of the inter-foil distance and inter-foil phase angle, as well as the
baseline kinematics of the foils. Within the LEV regime, the efficiency is roughly sinusoidal with respect to inter-foil
phase angle. This sinusoidal behavior begins to develop in the shear layer regime but occurs to a lesser extent. At
the high αT/4 of the ‘LEV+TEV’ regime, the sinusoidal trend is not sustainable for all kinematics due to the more
unpredictable wake patterns from the TEV. When selecting the optimal inter-foil phase, the efficiency of the second
foil gradually increases with αT/4, leveling off at approximately 15% in the LEV regime at approximately αT/4 = 0.40.

Building off the global phase model proposed by Kinsey and Dumas [27], a wake phase model is introduced to
better predict the trailing foil efficiency based on kinematics and inter-foil configurations. The model shows good
agreement with the data for the LEV regime, when the wake structure is more predictable, and the experimental and
numerical data collapse nicely. The wake phase model is less successful in predicting the efficiency for the shear layer
regime in which the kinematics do not produce consistently strong vortices, or the LEV+TEV regime in which the
number of vortices increases to the point where the wake is too chaotic. Although the results shown are for the same
kinematics applied on both foils, the wake phase model can be used for distinct kinematics between foils since the
model is independent of the trailing kinematics.

Finally, the wake is decomposed into its steady and unsteady components to evaluate the contribution of available
kinetic energy for the second foil. A modification to the trailing foil efficiency is implemented utilizing measured
quantities in the wake. This modification provides a better estimate of the energy available to the trailing foil,
improving the nominal efficiency that uses the freestream velocity. These results support the findings by Dabiri [33]
and Young et al. [34] who emphasize the importance of unsteady flow in such configurations.
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APPENDIX A: COMPUTING BLOCKAGE EFFECTS

Due to the constraints of the flume, blockage effects are accounted for in the experimental data using a method
derived by Houlsby et al. [40] and later implemented by Ross et al [42].

A general schematic of an open channel used in Houlsby’s method is presented in Figure 19, including values of the
current flume’s undisturbed upstream water depth, do = 0.60 m, and the freestream velocity, Vo = 0.50 m/s. The
streamwise velocity through the turbine (ud), the velocity of the core flow (u1), and the bypass flow velocity (u2) are
iterative variables used in Houlsby’s method.

Figure 19: Streamtube model of an actuator disc in open channel flow with a deformable free surface.

The drag coefficient (Cd) is experimentally measured on the leading foil for each set of kinematics. It is also assumed
that the drag coefficient is roughly the same on both foils considering the dynamic pressure of the freestream velocity.
Additionally, Cd is normalized using the definition implemented by Gauthier et al. [43] to account for the blockage
correction on oscillating-foils turbine. The drag coefficient is normalized by the chord length c and heave amplitude
ho,

Cnormd = Cd
c

2ho
, (18)

where ho is equal to 1c for the experiments performed. The blockage ratio,

β =
2ho × span

width× depth
= 14.6%, (19)

as defined by Gauthier et al. [43], refers to the ratio of the projected area of the turbine (chord×span = 0.10m×0.35m)
and the cross-section of the flume (width × depth = 0.60m × 0.80m). The foil used for the blockage correction has
slightly different span and chord lengths, but only a 0.1% difference in blockage ratio.

The implementation of Houlsby’s correction method starts with calculating the Froude number,

Fr =
Vo√
gdo

, (20)
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where g is the gravitational acceleration. Guessing values for u2, the velocity of the core flow is obtained by iterating
the equations

u1 =
Fr2u42 − (4 + 2Fr2)V 2

o u
2
2 + 8V 3

o u2 − 4V 4
o + 4βCnormd V 4

o + Fr2V 4
o

−4Fr2u32 + (4Fr2 + 8)V 2
o u2 − 8V 3

o )
(21)

and

u1 =
√
u22 − Cnormd V 2

o (22)

until both values for u1 are equal. With u1 and u2 known, ud is calculated through

ud =
u1(u2 − Vo)(2gdo − u22 − u2Vo)

2βgdo(u2 − u1)
. (23)

Finally, with ud known, the corrected values for the freestream velocity,

V ′o =
Vo((ud/Vo)

2 + Cnormd /4)

ud/Vo
, (24)

efficiency,

η′ = η

(
Vo
V ′o

)3

, (25)

drag coefficient,

Cnorm
′

d = Cnormd

(
Vo
V ′o

)2

, (26)

and wake velocity,

u′p = up

(
Vo
V ′o

)
, (27)

can be determined.
Figure 20 shows the corrected wake velocities for the kinematics analyzed in this paper.
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Figure 20: Wake velocity comparison between CFD, PIV data corrected with measured Cd and PIV data with the
Cd = 1.00 assumption. Only a PIV data deviation is noticed at αT/4 > 0.6. For these higher values, Houslby’s
correction method is less accurate.

Different values of Cd are evaluated but did not severely impact the corrected data. For instance, even though the
measured Cd values are used for the blockage correction, the results are insensitive if Cd is assumed to be 1.00 (See
Figure 20). Figure 20 also shows the interpolated data taken at few kinematics from PIV. These data are linearly
interpolated in kinematics with fc/U∞ = 0.11, 0.13, 0.14 using fc/U∞ = 0.10, 0.12, 0.15. All the kinematics used for
the PIV interpolation were taken at ho/c = 1.0 and θo = 65◦.

APPENDIX B: GLOBAL PHASE MODEL

Figure 21 shows trailing foil efficiency profiles computed with the global phase model proposed by Kinsey and
Dumas [27].
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Figure 21: Trailing foil efficiency (η2) regimes using the global phase model from Kinsey and Dumas [27]. Open
symbols are numerical data, whereas filled ones are experimental data. Each curve represents a set of kinematics as
defined in Table I.
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