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Abstract Recent investigations on electrokinetic (EK) flows have indicated turbulent-like flow can be realized by applying strong and high 

frequency AC electric field to flows with high-conductivity-gradient interface, even though under low bulk flow Reynolds number. Relative 

to conventionally hydrodynamic turbulence in high Reynolds number, the AC EK turbulent flow exhibits high randomness with stronger 

intermittency (Wang et al, Physical Review E, 013106, 2016). The abnormally high intermittency could be attributed to the ascending 

probability density function (PDF) of velocity gradients (dominated by small scale velocity structure function) far from equilibrium state. 

By evaluating the intermittency of the AC EK turbulent flow with hierarchical structures, we astonishingly find the intermittency factor of 

hierarchical structures in SL94 law, i.e. 𝛽 factor, which is commonly believed to be between 0 and 1, exhibits larger value than 1 in the 

AC EK turbulent flow. This result indicates the different hierarchical relations of flow structures in AC EK turbulence flow from that in 

the conventional hydrodynamic turbulence, as further illustrated by the probability density function of velocity structures among different 

spatial scales.  

 

 

Turbulence is a complicated concept and normally, it is 

described as a spatial-temporal random flow which has continuous 

kinetic energy cascade between large (integral scale) and small 

scale (e.g. Kolmogorov scale). To characterize the feature of 

multiscales, scaling laws of velocity structure functions are 

commonly used. Kolmogorov [1,2] advanced the classical self-

similarity law of turbulence for high Reynolds number limit in 

1941 as: 

𝑆𝑝(𝑙) = 〈|∆𝑢(𝑙)|𝑝〉~𝑙𝜉𝑝              (1) 

where ∆𝑢(𝑙) = 𝑢(𝑥 + 𝑙) − 𝑢(𝑥) , 𝑆𝑝(𝑙)  is the 𝑝th  moment of 

∆𝑢  on spatial scale 𝑙  and 𝜉𝑝  is the corresponding scaling 

exponent. The usage of absolute value of ∆𝑢(𝑙) ensures that 𝑝 

can be taken as continuous real number usually being non-negative. 

By Kolmogorov’s prediction, there should hold 𝜉𝑝 = 𝑝/3 . 

However, it has been well known by a great deal of later 

experiments and numerical simulations that 𝜉𝑝  is actually a 

nonlinear function with respect to 𝑝. Later, in 1962, Kolmogorov 

[3] advanced a refined similarity hypothesis which accounts for the 

influence of locally averaged energy dissipation ( 𝜀𝑙 ), as 

𝑆𝑝(𝑙)~〈𝜀𝑙
𝑝〉𝑙𝜉𝑝. By applying logarithmically normal distribution on 

energy dissipation, he found 〈𝜀𝑙
𝑝〉~𝑙−

𝜇𝑝

18
(𝑝−3)

 , and accordingly, 

𝜉𝑝 = 𝑝 3⁄ −
𝜇𝑝

18
(𝑝 − 3)  [1,4], with 𝜇  being an exponent. The 

departure of 𝜉𝑝 from 𝑝 3⁄  implies turbulence is intermittent for 

small length scales, accompanied with several aspects, such as 

probability density function (PDF) of velocity increment departs 

from Gaussian distribution etc. For fifty years, various 

phenomenological models are proposed to depict the intermittency 

with a more applicable scaling exponent function. In 1994, She and 

Leveque advanced a celebrated model [5] on the basis of 

hierarchical structures. In the following years, the SL94 model is 

supported by both experiments and numerical simulations, in 

hydrodynamic turbulence [6,7], thermal convection [8] and 

magnetohydrodynamic (MHD) turbulence [9] etc. The 

corresponding 𝜉𝑝 in SL94 model can be generally described by 

the three parameters directly as  

𝜉𝑝 = 𝛾𝑝 + 𝐶(1 − 𝛽𝑝)               (2) 

where 𝛾 the scaling exponent of the most singular structures and 

𝐶  is the co-dimension. 𝛽  is an intermittency factor which is 

crucial for describing the similarity of hierarchical structures, 

especially, it characterizes the intermittency of energy dissipation 

[10]. Normally 𝐶 > 𝛾 > 0 . In the original SL94 model, 𝛽  is 

constant and 0 < 𝛽 ≤ 1 , which has also been supported by 
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various reports [9,11,12].  

Nevertheless, a basic question arises: is 𝛽 always limited to be 

within 0 and 1? Recall that the SL model implies a log-Poisson 

distribution of random multiplier connecting any pair of 

fluctuations at a small scale 𝑙  and a large scale 𝑙0  respectively 

(see She and Waymire [4]). Based on this observation and 

thereafter by means of some techniques from probability theory, a 

rigorous relation can be derived linking the PDF of velocity 

increment at small scale and the one at large scale [13]. Let 𝑃𝑙 =

𝑃𝑙[∆𝑢(𝑙)]  which represents the PDF of ∆𝑢(𝑙) , the relations 

between 𝑃𝑙0
 and 𝑃𝑙  can be expressed as 

𝑃𝑙 = 𝑇𝑙,𝑙0
∑ 𝑊𝑘𝑃𝑙0

[𝛺𝑙,𝑙0
𝛽−𝑘∆𝑢(𝑙0)]∞

𝑘=0           (3) 

where 𝑊𝑘 = (𝛽−1 𝑙𝑛 𝑀𝑙,𝑙0
)

𝑘
𝑘!⁄  is a weight function and  

{

𝑇𝑙,𝑙0
= 𝑙∗𝐶−𝛾 < 1

𝛺𝑙,𝑙0
= 𝑙∗−𝛾 > 1

𝑀𝑙,𝑙0
= 𝑙∗−𝐶 > 1

                  (4) 

where 𝑙∗ = 𝑙 𝑙0⁄   is dimensionless length scale and 0 < 𝑙∗ < 1 . 

For the reference [13] is not in English, we would like to comfort 

readers by indicating that from the PDF one can readily confirm 

by working with Eq.(3) that 

𝑆𝑝(𝑙) = 〈|∆𝑢(𝑙)|𝑝〉 = ∫|∆𝑢(𝑙)|𝑝𝑃𝑙[∆𝑢(𝑙)]𝑑∆𝑢(𝑙) 

= (𝑙∗)𝛾𝑝+𝐶(1−𝛽𝑝) ∫|∆𝑢(𝑙0)|𝑝𝑃𝑙0
[∆𝑢(𝑙0)]𝑑∆𝑢(𝑙0) 

= (𝑙∗)𝛾𝑝+𝐶(1−𝛽𝑝)𝑆𝑝(𝑙0)                       (5) 

The Eq. (3) could provide a potential way to expand 𝛽 to a wider 

parameter space, e.g. 𝛽 > 1 , as follows. In conventional 

turbulence, where 0 < 𝛽 ≤ 1 , considering 𝐶 > 𝛾 > 0 , we have 

Ω𝑙,𝑙0
𝛽−𝑘 ≥ 1 for all 𝑘, thus: 

𝑃𝑙 = 𝑇𝑙,𝑙0
∑ 𝑊𝑘𝑃𝑙0,>[∆𝑢(𝑙0)]∞

𝑘=0            (6) 

where 𝑃𝑙0,>[∆𝑢(𝑙0)] = 𝑃𝑙0
[∆𝑢(𝑙0)]|∆𝑢(𝑙)≥∆𝑢(𝑙0)  and 

𝑃𝑙0,<[∆𝑢(𝑙0)] = 𝑃𝑙0
[∆𝑢(𝑙0)]|∆𝑢(𝑙)<∆𝑢(𝑙0)  denote the 𝑃𝑙0

  at the 

higher and lower sides of ∆𝑢(𝑙0)  which is equal to ∆𝑢(𝑙) , as 

diagramed in Fig. 1(a). Eq. (6) implies, in conventional turbulence, 

the PDF of ∆𝑢(𝑙) at small scales (for instance, marked by the red 

circle) is solely determined by the PDF of stronger velocity 

increments at large scales, i.e. 𝑃𝑙0,>[∆𝑢(𝑙0)] , as plotted by the 

green shadow region in Fig. 1(a). If 𝑃𝑙0,>[∆𝑢(𝑙0)] is increased, 𝑃𝑙  

is increased too. Meanwhile, if 𝑙  is significantly decreased, 

Ω𝑙,𝑙0
𝛽−𝑘  can be much larger than unity. The PDF of ∆𝑢(𝑙)  on 

small scale is tightly related to the small probability event of 

∆𝑢(𝑙0).  

However, when 𝛽 > 1, 𝛽−𝑘 < 1 and 𝛺𝑙,𝑙0
> 1. There exists a 

𝑘𝑐 = ln 𝛺𝑙,𝑙0
/ ln 𝛽 with: 

{
𝛺𝑙,𝑙0

𝛽−𝑘 > 1,     𝑓𝑜𝑟 0 ≤ 𝑘 < 𝑘𝑐

𝛺𝑙,𝑙0
𝛽−𝑘 < 1,      𝑓𝑜𝑟 𝑘 ≥ 𝑘𝑐

            (7) 

The PDF of ∆𝑢(𝑙) can be presented as 

𝑃𝑙 = 𝑃𝑙,1 + 𝑃𝑙,2                   (8) 

where  

𝑃𝑙,1 = 𝑇𝑙,𝑙0
∑ 𝑊𝑘𝑃𝑙0,>[∆𝑢(𝑙0)]𝑘𝑐−1

𝑘=0           (9a) 

𝑃𝑙,2 = 𝑇𝑙,𝑙0
∑ 𝑊𝑘𝑃𝑙0,<[∆𝑢(𝑙0)]
∞

𝑘=𝑘𝑐
          (9b) 

𝑃𝑙0,<[∆𝑢(𝑙0)] is plotted by the gray shadow region as diagramed 

in Fig. 1(a). Compared to Eq. (6), in the calculation 𝑃𝑙  of ∆𝑢(𝑙), 

both 𝑃𝑙0,<[∆𝑢(𝑙0)] and 𝑃𝑙0,>[∆𝑢(𝑙0)] must be taken into account, 

as can be seen in Eq. (8) and (9a,b). Or in other words, both the 

high and low probability events of ∆𝑢(𝑙0) have influence on the 

PDF of ∆𝑢(𝑙), as schematically plotted in Fig. 1(b). At large scales, 

the PDF of weak velocity increments could be much higher than 

that of strong counterparts, i.e. 𝑃𝑙0,<[∆𝑢(𝑙0)] ≫ 𝑃𝑙0,>[∆𝑢(𝑙0)] . 

There also exists a 𝑘𝑤 for weight function 𝑊𝑘. For 1 < 𝑘 ≤ 𝑘𝑤, 

𝑊𝑘 ≥ 1 , while for 𝑘 > 𝑘𝑤 , 𝑊𝑘 < 1 . For the case 𝑘𝑤 ≈ 𝑘𝑐 

(approximation relation is only for theoretical analysis and not true 

with high probability), even though 𝑊𝑘 < 1 , 𝑊𝑘𝑃𝑙0,<[∆𝑢(𝑙0)] 

can still be more important than 𝑊𝑘𝑃𝑙0,>[∆𝑢(𝑙0)] . The overall 

contribution from 𝑃𝑙,2 can be non-neglectable. This may lead to 

abnormally high 𝑃𝑙  at large |∆𝑢|. The dependence of 𝑃𝑙  on the 

large-scale counterpart 𝑃𝑙0
 can be clearly distinguished from two 

symmetrical 𝑃𝑙0
  which are typical in turbulence (asymmetry is 

not discussed here, even though it is commonly existed in 

turbulence). One is Gaussian distribution  

𝑃𝑙0
=

1

𝜎𝑙0√2𝜋
𝑒𝑥𝑝 {−

[∆𝑢(𝑙0)]2

2𝜎𝑙0
2 }             (10) 

where 𝜎𝑙0
  is the standard derivation of ∆𝑢(𝑙0) . The other is 

exponential distribution to describe the influence of exponential 

tail as a representation of strong intermittency in following 

𝑃𝑙0
=

𝐴

2
𝑒𝑥𝑝{−𝐴∆𝑢(𝑙0)}              (11) 

The results are plotted in Fig. 2, where 𝑙∗ = 0.01, 𝐶 = 2, 𝛽 =

3/2 , and 𝛾 = 2/3 . From Fig. 2(a), when 𝑃𝑙0
  has a Gaussian 

distribution which means weak intermittency, 𝑃𝑙,1 decreases faster 

than Gaussian distribution, as shown by the blue dashed line. In 

the region ∆𝑢(𝑙) ≤ 0.6, 𝑃𝑙,2 ≤ 𝑃𝑙,1, and 𝑃𝑙  is dominated by 𝑃𝑙,1. 

While ∆𝑢(𝑙) > 0.6, 𝑃𝑙,2 > 𝑃𝑙,1. In this region, 𝑃𝑙  is dominated by 

𝑃𝑙,2  instead, with an approximately overlapping of 𝑃𝑙   and 𝑃𝑙,2 . 

When ∆𝑢(𝑙) > 1.8 , 𝑃𝑙,2  becomes even larger than 𝑃𝑙0
 . The 

slowly decaying 𝑃𝑙,2 leads to a nearly exponential fall of 𝑃𝑙  from 

the Gaussian distribution of 𝑃𝑙0
 . It indicates, with 𝛽 > 1 , a 
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turbulent flow without intermittency on large scale 𝑙0  could 

become eventually intermittent on small scale 𝑙. Nevertheless, for 

𝑃𝑙0
  with exponential decay (Fig. 2(b)), 𝑃𝑙   is dominated by 𝑃𝑙,2 

when ∆𝑢(𝑙) > 0.5. 𝑃𝑙  also exhibits less steep than 𝑃𝑙0
. 𝑃𝑙 > 𝑃𝑙0

 

only emerges when ∆𝑢(𝑙) > 2.4. We can also find from Fig. 2 that 

at sufficiently large ∆𝑢(𝑙), 𝑃𝑙  is always dominated by 𝑃𝑙,2 which 

leads to much flatter distributions.  

Similar results can also be found at larger 𝑙∗ = 0.1, with 𝐶 = 2, 

𝛽 = 3/2 , and 𝛾 = 2/3 , as plotted in Fig. 3. As a result of the 

increasing 𝑙∗ , the critical ∆𝑢(𝑙)  where 𝑃𝑙   becomes larger than 

𝑃𝑙0
, are 1.9 (Gaussian) and 2.3 (exponential decay) respectively. 𝑃𝑙  

become dominated by 𝑃𝑙,2  when ∆𝑢(𝑙)  are over 0.5 (Gaussian) 

and 0.4 (exponential decay) respectively. The results for 𝑙∗ = 0.1 

and 0.01  indicate, when 𝑙∗  is increased, 𝑃𝑙,2  becomes more 

important. 

A direct comparison of 𝑃𝑙,2 for both Gaussian and exponential 

decay with cases of 𝑙∗ = 0.1 and 0.01 are plotted in Fig. 4. With 

fixed 𝐶 , 𝛽  and 𝛾  in Fig. 4(a) are larger than those in Fig. 4(b) 

respectively. In Fig. 4(a), for the 𝑃𝑙0
 of Gaussian distribution, as 

𝑙∗  is increased, 𝑃𝑙,2  curves become steeper. This means, at 

smaller 𝑙∗, the small ∆𝑢(𝑙) components of 𝑃𝑙0
 contribute more to 

the large ∆𝑢(𝑙)  components of 𝑃𝑙   through 𝑃𝑙,2 . In contrast, for 

the 𝑃𝑙0
 of exponential distribution, 𝑃𝑙,2 curves become less steep 

with increasing 𝑙∗ . There exists a hump around ∆𝑢(𝑙) = 0 . At 

smaller 𝑙∗, the small ∆𝑢(𝑙) components of 𝑃𝑙0
 contribute more to 

the small ∆𝑢(𝑙) components of 𝑃𝑙  through 𝑃𝑙,2.  

Unfortunately, these trends are not universal, but relying on 𝛽 

and 𝛾. When 𝛽 and 𝛾 are decreased to 9/8 and 5/12 respectively, 

as plotted in Fig. 4(b), the hump of 𝑃𝑙,2  for exponential decay 

becomes non-significant, and the 𝑃𝑙,2  curves becomes steeper 

with increasing 𝑙∗  at the far end of ∆𝑢(𝑙) . For the 𝑃𝑙0
  of 

Gaussian distribution, 𝑃𝑙,2 curves are nearly parallel to each other.  

By comparing Fig. 4(a) and (b), it can be seen, the increasing 𝛽 

and 𝛾 generally lead to: (i) more contributions from 𝑃𝑙,2 and (ii) 

less steeper of 𝑃𝑙,2 curves. Even for turbulent flows with 𝑃𝑙0
 of 

Gaussian distribution, i.e. no intermittency on large scale, 𝑃𝑙,2 can 

still be non-negligible at large ∆𝑢(𝑙) on small scale, or in other 

words, small scale intermittency. The intermittency of turbulent 

flow with higher 𝛽 and 𝛾 is predictably stronger.  

From the investigation above, it can be seen 𝛽 > 1  is not 

strictly forbidden in SL model and may induce stronger 

intermittency at small scales. However, 𝛽 > 1  has never been 

reported in any type of turbulence. In this investigation, we applied 

SL94 model in a newly observed micro electrokinetic (EK) 

turbulent flow.  

The experiment is conducted in an EK micromixer driven by AC 

electric field [14-16]. The quasi T-shape microfluidics channel is 

plotted schematically in Fig. 5(a). Two electric conductive side 

walls were used as electrodes. Two streams with a conductivity 

ratio of 5000:1 were separated by a plastic splitter plate and 

delivered into the microchannel by a syringe pump. An AC signal 

with 100 kHz and 20 Vp-p was applied to generate the EK 

turbulence. The velocity fluctuation was measured by laser 

induced fluorescence photobleaching anemometer (LIFPA) [17]. 

The measurements were pursued at downstream position (𝑥∗ =

𝑥/𝑤𝑐 ≥ 0.7) from the entrance where the microEK turbulent flow 

becomes more homogeneous and isotropic. Typical velocity 

fluctuations at different downstream positions of the microEK 

turbulent flow have been plotted in Fig. 5(b). Compared to the 

velocity fluctuations of unforced flow which behave like white 

noise, the velocity fluctuations at four different 𝑥∗ of the microEK 

turbulent flow all exhibit less small-scale components, and behave 

like random signal accompanied with burst-like events. 

In Fig. 6(a), the relations of 𝑆2(𝑙), 𝑆3(𝑙) and 𝑆6(𝑙) with spatial 

scale 𝑙  are plotted. The Kolmogorov self-similarity of velocity 

structure functions can be clearly found within inertial subrange. 

Compared to the width of inertial subrange evaluated from the 

velocity power spectrum by Wang et al [15], which is more than a 

decade long, the ones estimated from Fig. 6(a) are slightly shorter. 

This is consistent to the investigation of Davidson and Krogstad 

[18] who found the width of inertial subrange from power spectra 

was always larger than that of velocity structure functions, since 

the higher-order (including second-order) velocity structure 

functions are poor filters and can be contaminated by enstrophy 

information.  

The streamwise evolution of 𝑆2(𝑙) is plotted in Fig. 6(b). The 

width of inertial subrange decreases slightly along streamwise 

position from 𝑥∗ = 0.77  to 3.84. At 𝑥∗ = 3.84 , the width of 

inertial subrange is only half decade, accompanied with an 

increasingly departure of 𝜉2  from 2/3 predicted by the classical 

Kolmogorov self-similarity law. The decreasing of the width of 

inertial subrange and 𝜉2  can be attributed to the decreasing 

electric Rayleigh number (𝑅𝑎𝑒,𝑙0
= 4〈|∆𝜎(𝑙0)|〉𝜀𝐸𝑊

2 𝑙0
2 〈𝜎〉𝜌𝜈𝐷⁄  , 

where 〈|∆𝜎(𝑙0)|〉 represents the increment of electric conductivity 

(𝜎), 𝜀 is the electric permittivity of fluid, 𝐸𝑊 is the bulk electric 

field intensity and 𝐷  is the effective diffusivity of 𝜎 ). As the 

continuous consumption of 〈|∆𝜎(𝑙0)|〉 , the electric body force 

(EBF) is reduced, and accordingly, the kinetic energy injection by 
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EBF is reduced [19,20]. In the meanwhile, the kinetic energy is 

continuously dissipated by viscosity. When the energy injection 

rate by EBF is smaller than the dissipation rate, kinetic energy is 

mainly dissipated and only a small part of residual energy can form 

inertial subrange. This is why the width of inertial subrange 

continuously decreases with 𝑥∗.  

Interesting is that the persistence time of turbulent state in this 

micro EK turbulence is more than 0.15s (calculated from 𝑥∗ = 0 

to 2.31), which is much larger than the lifetime of conventional 

hydrodynamic turbulence, e.g. in macroscale pipe flow, where the 

persistence time at this low Re (<10 based on bulk flow velocity) 

is only 3 × 10−25s [21,22]. In other words, if the turbulent state 

can be present in such low Re flow by hydrodynamics, it can only 

exist for 3 × 10−26s which is much, much shorter than a spark. 

Therefore, the turbulent flow region we observed is only sustained 

because of the continuously injection of kinetic energy from EBF.  

At 𝑥∗ = 0.77  and 1.54, the intermittency evaluated by 𝜇 =

2 − 𝜉6  [1] is 0.48 and 0.38 respectively. Both of them are 

apparently larger than the 0.22 of high Re hydrodynamic 

turbulence [8]. The PDF of velocity increment should have larger 

deviation from Gaussian process. This can be clearly observed 

from Fig. 7. We selected the same three length scales, i.e. 𝑙1, 𝑙2 

and 𝑙3, as marked in Fig. 6(b). The smaller the length scale, the 

stronger the deviation from Gaussian distribution, and the stronger 

the intermittency accordingly.  

Nevertheless, in Fig. 7, 𝑃𝑙   abnormally ascends at large 

∆𝑢(𝑙)/[∆𝑢(𝑙)]𝑟𝑚𝑠  for length increment 𝑙1 . These parts can 

significantly contribute to the intermittency of velocity structure 

functions. The flatness of velocity structure functions ( 𝐹𝑛 =

𝑆4(𝑙)/𝑆2
2(𝑙)) varies between 3.9 and 3.3. The intermittency can be 

further evaluated by the intermittency factor 𝛽  of hierarchical 

structures, which is the focus of our concern. It is calculated by β-

test for each 𝑝 and 𝑚, as [23,24] 

𝐻𝑝+1,𝑚+1(𝑙) = 𝐻𝑝,𝑚(𝑙)𝛽(𝑝,𝑚)          (12) 

where 𝐻𝑝,𝑚(𝑙) =
𝐹𝑝(𝑙)

𝐹𝑚(𝑙)

𝐹𝑚(𝑙0)

𝐹𝑝(𝑙0)
 and 𝐹𝑝(𝑙) = 𝑆𝑝+1(𝑙) 𝑆𝑝(𝑙)⁄ . 𝑙0 is a 

reference scale which is the upper limit of inertial subrange. By 

linearly fitting the ln 𝐻𝑝+1,𝑚+1 ~ ln 𝐻𝑝,𝑚 curve under each 𝑝, the 

corresponding exponent 𝛽(𝑝, 𝑚) can be simply calculated. 

In Fig. 8, the curves of ln 𝐻𝑝+1,𝑚+1 ~ ln 𝐻𝑝,𝑚 under different 

𝑝  and 𝑚  are plotted. Generally speaking, all the plots show 

approximately linear relationships between ln 𝐻𝑝+1,𝑚+1 and 

ln 𝐻𝑝,𝑚 , which indicate the similarity of hierarchical structures. 

The slopes, e.g. 𝛽(5,1) and 𝛽(5,4), are 1.8 and 1.76 respectively. 

We expand the calculation of 𝛽  to all 𝑝  and 𝑚  at 𝑥∗ = 0.77 

and 1.54 where the inertial subrange is approximately a decade 

long. The statistical results of 𝛽 is plotted in Fig. 9. It can be seen, 

almost all 𝛽(𝑝, 𝑚)  is above 1, which supports the existence of 

𝛽 > 1 in turbulent flows. The overall averaged 𝛽, which is 

𝛽𝑎𝑣𝑔 =
1

𝑀𝑁
∑ ∑ 𝛽(𝑝, 𝑚)𝑀

𝑚=1
𝑁
𝑝=1           (13) 

are 1.51 and 1.13 at 𝑥∗ = 0.77  and 1.54 separately. Their 

influence on the PDF of velocity increment can be inferred from 

Fig. 4(a) and (b) respectively. Besides, decreasing of 𝛽𝑎𝑣𝑔 with 

𝑥∗  implies the decreasing of intermittency along streamwise 

direction. 

𝛽 > 1  indicates a stronger relationship between 𝑃𝑙   and 𝑃𝑙0
 , 

compared to the conventional hydrodynamic turbulence, turbulent 

thermal convection and even MHD. As have been shown above, 

when 𝛽 > 1, even a low intermittency PDF of velocity increment 

at large scale 𝑙0  can induce a larger intermittency of PDF of 

velocity increment at smaller scale 𝑙 , with much higher 

probability of large velocity increment. These findings are 

qualitatively consistent with the recent theoretical [19,20] and 

experimental investigations (on the PDF of velocity gradient) in 

EK turbulence [15]. Zhao and Wang [19,20] show that the scaling 

subrange controlled by EBF locates on the smaller scale side of 

inertial subrange, if two subranges coexist. Although the scalar 

field (e.g. electric conductivity) experiences direct cascade, the 

turbulent kinetic energy experiences a coexistence of direct and 

inverse cascades. EBF relies on electric conductivity gradient, it 

injects kinetic energy on small scales (relevant to electric 

conductivity gradient) and causes inverse cascade to form inertial 

subrange. In the meanwhile, the initially 2D interface of electric 

conductivity [19,20] is disturbed and forms fractal 3D interfaces 

after mixing. Electric conductivity gradients also exist on large 

scales, where EBF is induced and disturbs the flow field on large 

scales accordingly. Then, this part of turbulent kinetic energy 

cascades from large to small scales and contribute to the formation 

of inertial subrange. The coexistence of both direct and inverse 

cascades could be the reason of stronger relationship between 𝑃𝑙  

and 𝑃𝑙0
. When 𝑙 approaches 𝑙𝑒𝑘 (a critical length scale between 

the inertial subrange and the EBF dominant subrange) [19,20] 

from inertial subrange, the velocity fluctuations could be 

inevitably affected by the EBF, which contributes to the deviation 

of 𝑃𝑙   from Gaussian distribution, and in turn, leads to stronger 

intermittency. The finding of 𝛽 > 1 in this investigation supports 

the conjecture of Dubrulle [10] that the conservation laws 
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dominate the value of 𝛽. 

From SL94 model, if 𝛽 > 1 , the most singular dissipation 

structures could not be necessarily bound at very small scales. 

Nevertheless, since the existence of SL94 law is limited to inertial 

subrange, the truncation of 𝑙~𝑙𝑒𝑘  prevents the unbound event 

from being present. Besides, by combining Eq. (1), (12) and 

let 𝑚 = 𝑝 − 1, it is simply seen 

𝛽 =
𝜉𝑝+2+𝜉𝑝−2𝜉𝑝+1

𝜉𝑝+1+𝜉𝑝−1−2𝜉𝑝
               (14) 

After Taylor expansion on 𝜉𝑝+𝑞  according to the subscript, 

𝜉𝑝+𝑞 ≈ 𝜉𝑝 + 𝑞𝜉𝑝
′ +

𝑞2

2!
𝜉𝑝

′′ +
𝑞3

3!
𝜉𝑝

′′′ + 𝑂(𝑞4) , where 𝜉𝑝
′ = 𝑑𝜉𝑝/𝑑𝑝 

and so forth. By applying the result in Eq. (14), 𝛽  can be 

expressed alternatively as 𝛽 ≈ 1 + 𝜉𝑝
′′′ 𝜉𝑝

′′⁄  . Apparently, the 

geometrical factor 𝜉𝑝
′′′ 𝜉𝑝

′′⁄   determines whether 𝛽  is smaller or 

larger than unity. In conventional cases, 𝜉𝑝
′′′ 𝜉𝑝

′′⁄   is a negative 

constant along with 𝑝 , and thus, the constant 𝛽 < 1 . In EK 

turbulence, 𝜉𝑝
′′′ 𝜉𝑝

′′⁄   exhibits positive values. Furthermore, 

𝜉𝑝
′′′ 𝜉𝑝

′′⁄   is sensitive to the quantity of experimental data under 

large 𝑝 . Although the data in this investigation is sufficient to 

calculate 𝜉𝑝  up to 𝑝 = 6 , the calculated 𝛽  exhibits scattering 

around its averaged value, as can be seen from Fig. 9. 

In the present work, the intermittency of a typical AC EK 

turbulence is investigated based on the scaling exponent function 

𝜉𝑝  of velocity structure functions according to SL94 model. 

Remarkably, for the first time 𝛽 > 1  was experimentally 

observed in electrokinetic turbulence. We theoretically analyzed 

the probable influence if 𝛽 > 1. It is found, when 0 < 𝛽 ≤ 1, the 

probability density function of velocity increment at small scale 𝑙 

is only determined by 𝑃𝑙0,>[∆𝑢(𝑙0)] on large scale 𝑙0. When 𝛽 >

1, the probability density function of velocity increment at small 

scale 𝑙  can be determined by both 𝑃𝑙0,>[∆𝑢(𝑙0)]  and 

𝑃𝑙0,<[∆𝑢(𝑙0)] , which makes significant contribution to the 

intermittency of turbulence. A strong intermittency can be 

predicted from 𝛽 > 1 , and accompanied, probability density 

function of velocity increment at small scale 𝑙  exhibits 

abnormally ascending from Gaussian distribution at large ∆𝑢(𝑙).  

This study provides insight into the cause of intermittency in 

microEK turbulence. The result 𝛽 > 1 implies there exists a new 

route to turbulence, through a different but tighter relationship 

between large and small scale velocity structures. It is also 

inspiring for studying other turbulence in open system, where 

energy infill is directly executed in a wide subrange of wavelengths.  
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Figure captions 

 

Fig. 1 Influence of 𝛽 on the relation of 𝑃𝑙  and 𝑃𝑙0. (a) 0 < 𝛽 ≤ 1, (b) 𝛽 > 1. 

 

Fig. 2 Schematic of the relations between 𝑃𝑙0 and 𝑃𝑙  at 𝑙∗ = 0.01. Here, 𝐶 = 2, 𝛽 = 3/2, 𝛾 = 2/3. (a) 𝑃𝑙0 has Gaussian distributions 

with 𝜎𝑙0 = 1, and (b) 𝑃𝑙0 has exponential decaying with 𝐴 = 1. 

 

Fig. 3 Schematic of the relations between 𝑃𝑙0 and 𝑃𝑙  at 𝑙∗ = 0.1. Here, 𝐶 = 2, 𝛽 = 3/2, 𝛾 = 2/3. (a) 𝑃𝑙0 has Gaussian distributions, and 

(b) 𝑃𝑙0 has exponential decaying. 

 

Fig. 4 𝑃𝑙,2 calculated at different 𝛽 and 𝛾, when 𝐶 = 2. (a) 𝛽 = 3 2⁄ , 𝛾 = 2 3⁄ ; (b) 𝛽 = 9 8⁄ , 𝛾 = 5 12⁄ . 

 

Fig. 5 Schematic of the microchip and time series of normalized velocity fluctuations 𝑢′/√〈𝑢′2〉. (a) Schematic of the microchannel for 

AC EK turbulence. Two streams have a conductivity ratio of 5000:1. The length (𝑙𝑐), height (ℎ𝑐) and initial width (𝑤𝑐) of microchannel 

are 5 mm, 240 μm and 130 μm respectively. (b) Time series of normalized velocity fluctuations 𝑢′/√〈𝑢′2〉 at different 𝑥∗, where 𝑢′ =

𝑢 − 〈𝑢〉. 

 

Fig. 6 Scaling behavior of velocity structure function. (a) 𝑆𝑝(𝑙) vs 𝑙 at 𝑥∗ = 0.77, where 𝜉𝑝 are 0.68, 1.01 and 1.62 for 𝑝 =2, 3 and 6, 

respectively; (b) 𝑆2(𝑙) vs 𝑙 at four different 𝑥∗ positions, where 𝜉2 are 0.68, 0.69, 0.65 and 0.62 as 𝑥∗ increases from 0.77 to 3.84. 

 

Fig. 7 𝑃𝑙  of different 𝑙 at 𝑥∗ = 0.77. The length increment 𝑙1, 𝑙2 and 𝑙3 are plotted in Fig. 2(b). 

 

Fig. 8 𝐻𝑝+1,𝑚+1(𝑙) vs 𝐻𝑝,𝑚(𝑙) for β-test. The slope of the curve is equal to 𝛽. (a, b) at 𝑥∗ = 0.77 and (c, d) at 𝑥∗ = 1.54. (a, c) different 

𝑝 at 𝑚 = 1, (b, d) different 𝑚 at 𝑝 = 5. 

 

Fig. 9 Proportion of 𝛽(𝑝,𝑚) calculated from Eq. (12) for all 𝑝 and 𝑚. The red dashed line indicates 𝛽𝑎𝑣𝑔 at (a) 𝑥∗ = 0.77 and (b) 𝑥∗ =

1.54 respectively. The former has 𝛽𝑎𝑣𝑔 = 1.51 and latter has 𝛽𝑎𝑣𝑔 = 1.13. 
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