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While wall modeling enables significant reduction in computational cost compared to wall-resolved
large eddy simulations (LES), it often fails to capture laminar-to-turbulence transition processes
realistically. This issue arises, in part, because wall models typically assume that the near-wall flow
is in a statistically quasi-equilibrium turbulent state and hence incorrectly prescribes turbulent wall
stresses in regions that are still laminar during transition. In this work we propose an approach in
which the application of the wall model is retained within the turbulent regions of transitional flow
where even nascent spots exhibit high-Reynolds number characteristics, but the wall model is not
applied in laminar regions. The local distinction between turbulent and laminar regions is performed
using a self-organized map (SOM, see Wu et al, Phys. Rev. Fluids 4, 023902, 2019), an unsupervised
machine learning classifier. We demonstrate the capability of Wall-Modeled LES (WMLES) with
SOM-based turbulent/non-turbulent classification (WMSOM) in predicting both bypass and orderly
transitions in channel flow at target Reynolds numbers of Reτ = 130 and Reτ = 200, respectively.
Predictions of bypass transition initiated from localized initial disturbances agree well with DNS.
For orderly transition, we simulate K- and H-type transition, due to the interaction of two- and
three-dimensional instability waves. We show good predictions for both scenarios, with a slight
delay in the transition time. The WMSOM approach offers a significant reduction in computational
cost compared to Wall-Resolved LES (WRLES).

I. INTRODUCTION

Transition to turbulence in wall-bounded flows leads to significant increase in viscous losses and wall heat
transfer, which has important practical implications, e.g. in turbomachinery [1]. Owing to this practical
importance, modeling the transition process is an important challenge. In boundary layers and channel
flows, the laminar-turbulent transition is often classified as either orderly (natural)[2] or bypass transition
[3, 4]. The orderly scenario is mediated by Tollmien-Schlichting (TS) instability waves which form, amplify,
undergo secondary instability and ultimately lead to the formation of lambda-shaped vortices that become
sites for breakdown to turbulence. Based on the arrangement of the lambda vortices, orderly transition
can be further classified as fundamental (K-type) or sub-harmonic (e.g.H-type) [5, 6]. The other route to
turbulence, termed bypass transition [7], encompasses all scenarios that do not fit the orderly description.
The most common case of bypass transition takes place when wall-bounded flows are exposed to vortical
forcing which leads to the amplification of streamwise-elongated streaks through lift-up mechanism [8, 9],
followed by secondary instability [10, 11], and non-linear breakdown into turbulence spots [12].
The traditional computational approaches to study these transition mechanisms has been either by per-

forming stability analyses [6, 13] or direct numerical simulation (DNS) [14–16]. Stability analyses involve
using the linearized Navier-Stokes (NS) equations from which the different instability mechanisms that lead
to the growth of perturbation amplitude can be investigated. However, owing to the linear nature of the
governing equations, the non-linear interactions responsible for transition to turbulence are not captured.
Conversely, DNS of the laminar-turbulent transition process avoids this drawback since the full NS equations
are used and it is possible to simulate the complete transition process. Nevertheless, due to the wide range
of spatial and temporal scales involved, performing DNS is computationally expensive in general, including
DNS of laminar-turbulent transition. As an alternative, large eddy simulation (LES) that has lesser com-
putational cost than DNS [17, 18] can be considered for studying the laminar-turbulent transition [19–21].
LES can be performed either by resolving (Wall-Resolved LES, WRLES) or modeling (Wall-Modeled LES,
WMLES) the inner layer of a turbulent flow [22, 23]. WMLES can be computationally much less expensive
than WRLES.
Various studies [19, 24, 25] have shown transition to turbulence in wall-bounded flows using WRLES. In

[19], the natural transition in a plane channel flow is simulated using a scaled Smagorinsky model. The eddy
viscosity in the scaled Smagorinsky model is modified using a scaling factor based on the shape factor for



laminar and equilibrium turbulent flow. The scaling factor decreases SGS dissipation in the laminar stages
of transition. In [24], the ability of WRLES in predicting K and H-type transition mechanisms in a boundary
layer was tested using different sub-grid scale (SGS) models. It was observed that the LES with constant
Smagorinsky model did not undergo transition as the laminar fluctuations were damped by the SGS stress.
Whereas, dynamic SGS models had negligible eddy viscosity in the laminar regions enabling transition to
occur at the right location. However, the dynamic SGS models on a coarser grid under-predicted the skin
friction overshoot in the fully turbulent regions. In [25], LES of bypass transition in a boundary layer was
studied whose properties were matched with experiments by applying a constant Smagorinsky model. An
empirical low Reynolds number laminar correction suggested in [26] was applied to damp the eddy viscosity
in the laminar regions of the flow similar to the idea used in [19].
In WMLES, the most frequently used approach is the equilibrium wall model which assumes the near-wall

flow is in near-equilibrium with the velocity profile exhibiting a universal logarithmic profile. This assumption
enables relating the velocity at some distance to the wall to the wall stress [22, 23, 27]. However, applying
WMLES in a transitional flow would predict wrong wall stresses in the laminar regions, hence possibly not
capturing the correct transition mechanism or location. In order to alleviate this problem, in [28] a sensor
based WMLES approach was used to simulate laminar-turbulent transition. The sensor identifies laminar
and turbulent regions of the flow. Once the distinction is made, the wall-model is selectively applied only
in the turbulent regions while a standard no-slip boundary condition is applied in the laminar regions. Ref.
[28] used a sensor based on the turbulent kinetic energy to distinguish the Turbulent (T) and Non-Turbulent
(NT) regions of the transitional flow. The WMLES with this sensor rightly predicted the wall stresses in
the transitional regions of the boundary layer. The transition location from WMLES also matched with the
DNS. However, a threshold for the sensor needed to be prescribed to classify a point in the flow as either
laminar or turbulent. Having to specify thresholds requires ad-hoc user input which is often undesirable if
one wishes to avoid having to tune a model.
In the current study, a different sensor-based WMLES of the transition processes is investigated. Instead

of using turbulent kinetic energy with a subjectively chosen threshold as the sensor, T-NT classification is
performed using Self-Organizing Map (SOM). This classifier uses a type of k -means clustering technique,
one of several unsupervised learning algorithms discussed in [29]. Alternative methods exist [29] such as
the unsupervised spectral clustering algorithm and supervised-learning classifiers. For supervised learning
methods, the training data must be labelled beforehand as T or NT, and a threshold needs to be selected
for training the classifier. Since the SOM unsupervised learning method does not require such labelling and
threshold choices even during training, we find it preferable for present applications while stressing that SOM
is by no means the only possible tool that can be applied for machine-learning based T-NT classification.
The details of the T-NT classification method used in this paper are explained in the following section §II.
The governing equations for the LES are discussed in section §III. Transition by both orderly and bypass
mechanisms are investigated in this study. The key results for bypass transition are discussed in section §IV
and for orderly transition in section §V. The study’s main conclusions are summarized in section §VI.

II. SOM TRAINING AND TURBULENT/NON-TURBULENT (T-NT) CLASSIFICATION

In this section, the T-NT classification using SOM and its application in WMLES are discussed. In a
recent study [30], SOM was introduced for T-NT classification. The method was subsequently applied to
study the fractal dimension of the T-NT interface that surrounds turbulent spots [31] using DNS data of
a transitional boundary layer [32]. In the approach, every spatial location in the flow is characterized as
either T or NT using a 16-dimensional data vector (X) which contains the magnitudes of total velocity (if
the problem is formulated in a frame in which the wall moves, then the input should be the velocity relative
to the wall), fluctuating velocity, velocity gradient components, streamwise and wall-normal coordinates,

X =

[
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Since the streamwise direction is non-periodic in the transitional boundary layer, x was included in the input
vector for training [30]. Each input is normalized by its global standard deviation computed over the entire
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domain containing both turbulent and laminar regions in the transitional boundary layer dataset. Given
this input vector for the training data the SOM seeks to identify 2 distinct clusters. On output, it gives the
coordinates of the two nodes, or the centroids, of T-NT clusters in the 16-dimensional hyperspace. From
these coordinates, the equation of the hyperplane that bisects the T-NT clusters in the hyperspace,

a ·X + 1 = 0, (2)

is obtained. In Eq. (2), a is the weight vector or the coefficients associated with each input. At a given
point, if a · X + 1 < 0, the point is characterized as Turbulent and Non-Turbulent if a · X + 1 > 0.
Hence, SOM allows to classify the T-NT regions without using any subjectively chosen threshold value (the
value of 1 is the SOM method context-independent default value). An additional post-processing step is
required since the resulting Turbulent regions of the flow still contains many very small regions of “holes”
that should be considered part of the Turbulent region. In [30], these laminar hole regions are reclassified
into Turbulent regions through a standard hole filling post-processing step. In Ref. [30] it was shown that
the set of variables in Eq. 1 provided very good results (i.e. there was no motivation to increase the number
of variables). Conversely, none of the coefficients of the vector a were found to be significantly smaller than
others, so that decreasing the number of variables also was not called for. In the present work we therefore
elected to use the tested methodology documented in detail in [30] without further modifications (except
omission of streamwise coordinate x when applying the method to channel flow that is homogeneous in the
streamwise direction).
In the current study, LES of laminar-turbulent transition in a pressure driven channel flow is targeted,

while in [30] SOM was applied to a spatially developing transitional boundary layer. There, any given
snapshot contained both laminar and turbulent regions at any given time and a single snapshot could thus
be used for training. To obtain the corresponding SOM coefficients (training) for a channel flow, snapshots
at different times must be considered in order to include data from both laminar and turbulent regions. For
SOM training for channel flow, we use a DNS in which the flow starts in a laminar Poiseuille state and
localized perturbations are added to it (more details provided in §IV). The flow undergoes transition and
at some later time becomes fully turbulent and statistically in equilibrium. A laminar snapshot (t = 0) and
a fully turbulent snapshot (t = 282) are chosen from such a DNS and combined together as the training
data. The training dataset is chosen such that it contains about the same number of points in a laminar and
turbulent state. The code used for the DNS is described in the next section, and the computational domain
size and grid resolution used for DNS of transitional channel flow are given in table I.

Re Domain size Number of grid points Reτ Grid resolution
(Lx × Ly × Lz) (Nx ×Ny ×Nz) (∆x+ ×∆y+

min ×∆z+)

2000 48× 2× 24 384× 384× 384 134.71 17× 0.7× 8

TABLE I: Computational domain size and grid points for DNS of localized perturbation.

The input vector X in equation (1) is constructed from the training data. Because the streamwise
coordinate (x) is in a periodic direction for the channel, it is not included in X which becomes a 15-
dimensional vector. The input vector is then normalized by the standard deviation of each of its elements,
and SOM training is performed to obtain the coefficients (a) of the hyperplane equation (2). The Table II
lists the input vector (X) of normalized variables, global standard deviation (σ) used for normalizing the
original vector element data, and the SOM coefficient vector (a) that results from the training.
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input no Description Expression (X) Standard deviation (σ) SOM coefficient (a)

1-3 Velocity |u|, |v|, |w| 0.371,0.023,0.031 -0.0147,-0.1226,-0.1168
4-5 Perturbation velocity |u′|, |v′| 0.06,0.023 -0.1154,-0.1226

6-14 Velocity gradient
|∂u/∂x|, |∂u/∂y|, |∂u/∂z| 0.108,1.77,0.323 -0.1154,0.0341,-0.109
|∂v/∂x|, |∂v/∂y|, |∂v/∂z| 0.061,0.151,0.124 -0.1155,-0.1154,-0.1178
|∂w/∂x|, |∂w/∂y|, |∂w/∂z| 0.078,0.358,0.133 -0.1196,-0.0918,-0.1187

15 Wall normal height y 0.58 −2.314× 10−4

TABLE II: Input vector (X) normalized by standard deviation (σ) and the corresponding SOM coefficients
(a).

Additional tests including training data during transition did not yield significantly different hyperplane
parameters and hence we opted to train using only a laminar and fully turbulent dataset. The same standard
deviation (σ) and the SOM coefficients (a) obtained from the training of DNS snapshots are used in the
Wall-Modeled LES (WMLES) of transitional channel flow. Also here the laminar hole regions in the resulting
T-NT contours are filled using morphological operations with a single cycle of binary dilation followed by
erosion [33].
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FIG. 1. Streamwise velocity (u) contour from DNS training data with T-NT interface at y = 0.53.

Once the laminar and turbulent regions of the flow are classified in the LES, the wall stress boundary
condition from the wall-model is applied only in the turbulent regions of the flow, while a standard no-slip
boundary condition is applied in the laminar regions,

τw =

{

τw,wm if a ·X + 1 < 0 (T),

τw,ns if a ·X + 1 > 0 (NT),
(3)

where, τw,wm is the wall stress obtained using an equilibrium wall-model (described in more detail in Ap-
pendix A), τw,ns is the wall stress assuming no-slip boundary condition. Similarly, in the subgrid model
used for LES (more details provided in §III and Appendix B), the total viscosity is chosen according to

νtot =

{

ν + νT if a ·X + 1 < 0 (T),

ν if a ·X + 1 > 0 (NT),
(4)

where ν and νT are the molecular and turbulent subgrid-scale viscosities, respectively. The capability of
such a Wall-Modeled LES with T-NT classification in predicting the transition processes is investigated in
the following sections.
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III. LARGE EDDY SIMULATION EQUATIONS, MODELS AND NUMERICAL METHODS

The governing Navier-Stokes equations for the filtered velocity and pressure are

∂ũi
∂xi

= 0, (5)

∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
+
∂τ̃ij
∂xj

−
∂τSGS,d

ij

∂xj
. (6)

The tilde represents spatial filtering, ũi = (ũ, ṽ, w̃), xi = (x, y, z) and τ̃ij = 2νS̃ij is the viscous stress tensor,

τSGS,d
ij = −2νT S̃ij is the deviatoric part of the subgrid-scale (SGS) stress tensor modeled using the eddy
viscosity model. The SGS eddy viscosity νT is evaluated as

νT = C2
s ∆̃

2|S̃|. (7)

Here, |S̃| = (2S̃lmS̃lm)1/2, ∆̃ = (∆x ∆y ∆z)1/3 are the filter length scale and the model coefficient C2
s

is obtained from the Dynamic Smagorinsky SGS model [34, 35] with a non-dynamic correction for scale
dependence that is necessary in WMLES [36]. Details of the SGS model are discussed in the appendix B.

When run in DNS mode, the code is used with τSGS,d
ij = 0. The wall boundary condition can be either no-slip

at the walls for DNS or WRLES or a prescribed wall stress for imposition of an explicitly fitted equilibrium
wall model. More details about the wall model are provided in Appendix A.
The TransFlow solver [37, 38] adopted in this work uses a control volume formulation in generalized

curvilinear coordinates [39] to discretize the filtered Navier-Stokes equations (6). The fractional-step method
is adopted, with explicit Adams-Bashforth scheme used for temporal discretization of the non-linear advection
terms and the diffusion terms are advanced using implicit Crank-Nicolson scheme. The pressure Poisson
equation is solved to enforce mass conservation using Fourier transform in the streamwise and spanwise
directions with tridiagonal inversion in the wall-normal direction.
The wall boundary condition is imposed using a ghost cell approach. TransFlow uses a staggered grid with

velocity fluxes stored at cell faces and pressure at cell centers. The wall stresses τ̃yx,w and τ̃yz,w corresponding
to either no-slip condition or wall model are evaluated or modeled, respectively, for each computational cell
at the wall. Wall stresses along with no penetration (ṽ = 0) condition are then applied as the boundary
condition using the velocities at the first grid point (ũ1) from the wall and at the ghost cell (ũg) that are
∆y distance apart,

τ̃yx,w = ν

(

ũ1 − ũg
∆y

)

, τ̃yz,w = ν

(

w̃1 − w̃g

∆y

)

. (8)

In (8), for a given wall-modeled stress τ̃xy,w and τ̃yz,w, the corresponding ghost cell velocities ũg are obtained
which in turn impose the required wall stress boundary condition. For imposition of the no-slip boundary
condition in the laminar regions, ũg is prescribed as usual so as to be consistent with the no-slip condition
at the wall.
In this study, the code is applied to perform LES of laminar-turbulent transition in channel flow through

bypass as well as orderly transition routes. The transition through bypass route discussed in section IV
is achieved by introducing a localized 3D perturbation in the Poiseuille base flow. The orderly transition
discussed in section V also starts with a Poiseuille base flow but perturbed by 2D Tollmien-Schlichting (TS)
and 3D oblique waves. In both cases, results from Wall-Modeled LES with T-NT classification (WMSOM)
are compared against results from DNS, Wall-Resolved LES (WRLES) and Wall-Modeled LES without T-NT
classification (WMLES).

IV. RESULTS: BYPASS TRANSITION

Simulations of laminar-turbulent transition through the bypass mechanism uses the computational domain
shown in figure 2. The Reynolds number of the flow based on the bulk velocity (Ub) and half-channel
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height (h) is Re = Ubh/ν = 2000. The domain size and the grid parameters for the DNS, WRLES and
WMLES/WMSOM are given in table III. We investigate the evolution of a 3D localized perturbation in the
presence of the base flow very similar to prior cases that were studied using DNS [16, 37].

Case Re Domain size Number of grid points Reτ Grid resolution ywm

(Lx × Ly × Lz) (Nx ×Ny ×Nz) (∆x+ ×∆y+
min ×∆z+)

DNS [37] 2000 48× 2× 24 1024× 400× 512 132.05 6.19 × 0.03× 6.19 -
WRLES 2000 48× 2× 24 204× 128× 100 114 27× 0.2× 27 -

WMLES/WMSOM 2000 48× 2× 24 100× 20× 50 130 62× 13× 62 0.25

TABLE III: Computational domain size and grid points for LES and DNS of bypass transition. ywm is the
wall-model height.

FIG. 2. Schematic of computational domain with the base flow, and the initial perturbation visualized using iso-
surfaces of streamwise vorticity ω̃x. The iso-surfaces shown correspond to ω̃x = +0.003 (red) and ω̃x = −0.003
(blue).

A. Initial condition

The initial velocity field for the bypass transition consists of Poiseuille base flow and a localized pertur-
bation

u(x, t = 0) =
3

2
[1− (y − 1)2] ex + u

′(x, t = 0), (9)

where,

u
′(x, t = 0) = (u′, v′, w′) =

(

−∂ψ
∂y

sin θ,
∂ψ

∂z′
,−∂ψ

∂y
cos θ

)

, (10)

ψ = ǫ f(y)

(

x′

lx

)

z′ exp

[

−
(

x′

lx

)2

−
(

z′

lz

)2
]

,

x′ = x cos θ − z sin θ, z′ = x sin θ + z cos θ,

f(y) = yp(2 − y)q.

The perturbation (10) takes the form of two pairs of counter rotating vortices as shown in the figure 2. This
was first proposed in [40] which was later generated experimentally in [41]. The ψ is the streamfunction of the
perturbation with initial orientation θ. The function f(y) ensures the disturbance is zero at the boundaries.
The decay length-scale of the perturbation is lx = 2, lz = 2 and p = 2, q = 2 are used for the function f(y).
In this study, the time evolution of perturbations with different initial orientations θ = 0◦, 10◦, 20◦, 45◦ and
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two different amplitudes ǫ = 1.5 × 10−4 (small), 0.2097 (large) are considered. The contours of v′, w′ with
θ = 0◦ and θ = 20◦ of the large-amplitude perturbation are shown in the figure 3.
Prior DNS of the time evolution of such localized perturbations [16, 37] showed that the laminar-turbulent

transition starts with an initial linear stage characterized by amplification of streamwise perturbation through
a lift-up mechanism. The disturbance further amplifies owing to secondary instability leading to the forma-
tion of a turbulent spot which marks the final stage of breakdown to turbulence. Here, the bypass transition
of the localized perturbation is simulated using Wall-Modeled LES with the T-NT classification (WMSOM)
method described in section §II. The computational cost of this LES is much smaller than the DNS since
the WMSOM is performed with a grid resolution that is roughly ten times coarser in each direction than
the DNS (Table III). In the following sections, simulations of the evolution of small and large amplitude
localized perturbations using WMSOM are discussed.
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FIG. 3. Large-amplitude (ǫ = 0.2097) localized perturbation contours of (a) v′ and (b) w′ with θ = 20◦ at y = 0.25.
The contours of (c) v′ and (d) w′ at z = 12.96 are from the initial perturbation with θ = 0◦.

B. Wall-modeled LES of evolution of small-amplitude perturbations

In this section the evolution of a small-amplitude (ǫ = 1.5 × 10−4) disturbance with initial orientations
θ = 0◦, 10◦, 20◦, 45◦ is presented and discussed. The perturbation velocities u

′ = (u′, v′, w′) at different
instances of the evolution are obtained from the total velocity field (u) using

u
′(x, y, z, t) = u(x, y, z, t)− 〈u〉xz(y, t), (11)

where 〈u〉xz is the instantaneous mean flow obtained by horizontal planar averaging. From prior DNS studies
[16], it is known that the small-amplitude perturbation does not lead to transition to a turbulent state for
any of the orientations; the flow remains laminar throughout the evolution. There only is an initial transient
growth of the energy which is associated with the non-normality of eigenfunctions from the linear stability
equations [42]. For longer times, the viscous dissipation dominates and the energy decays in time.
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In figure 4a-b, the transient growth and viscous decay of the localized perturbation with θ = 0◦ are shown.
In figure 4a, the v′ structure is dispersive and its magnitude is smaller than u′ although the strength of the
streamwise perturbation was zero initially. The u′ also becomes elongated downstream. This transient growth
of u′ is associated with the lift-up mechanism where the u′ grows linearly in time owing to forcing of wall-
normal vorticity by wall-normal velocity. The transient growth is larger for small streamwise wavenumbers
leading to an elongated shape for the u′ perturbation.
The total perturbation kinetic energy,

E(t) =
1

LxLyLz

Lx
∫

0

Ly
∫

0

Lz
∫

0

1

2
(u′

2
+ v′

2
+ w′2) dx dy dz, (12)

is computed at each timestep and its evolution is plotted in figure 5a. An enlarged view near the initial linear
growth region (0 < t < 40) is shown in figure 5b. The energy evolution from WMSOM (red lines) agrees well
with the energy evolution from DNS (black markers) from [16]. The fact that SOM in WMSOM correctly
characterizes all of the points in the domain as laminar for the small amplitude perturbation ensures that
wall and SGS models are not activated anywhere in this flow. Even with different initial orientations, where
the disturbance with θ = 45◦ undergoes the largest amplification, SOM still treats the flow as laminar. Note
that the initial perturbation is of relatively large size and is therefore well resolved initially even at the LES
resolution. Hence, the results from WMSOM of small-amplitude perturbations validate the proper, albeit
trivial, working of the SOM in this case. Also, the excellent agreement with DNS observed in Fig. 5b provides
supporting evidence for the accuracy of the numerical code used in this study.
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FIG. 4. Evolution of small-amplitude (ǫ = 1.5×10−4 , θ = 0◦) (a) v′, (b) u′ perturbation at y = 0.25, t = 10, 20, 30, 40.
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FIG. 5. Total perturbation kinetic energy for small-amplitude localized disturbance (ǫ = 1.5 × 10−4); (a) energy
decay for different initial orientations, (b) comparison between WMSOM (red lines) and DNS (black markers) [16].
E0 = E(t = 0) is initial energy of the perturbation.

C. Wall-modeled LES of bypass transition with large-amplitude perturbation

In this section, the time evolution of large-amplitude perturbation (ǫ = 0.2097) is discussed, with initial
orientation θ = 0◦. The wall stress (τw) contours from WRLES, WMLES and WMSOM at the wall-model
height y = 0.25 and times t = 20, 80, 110, 300 are shown in figure 6a-c. The time evolution of Reτ from LES
and DNS are plotted together for comparison in figure 6d. The vertical dotted lines are the times at which
the contours are plotted. At t = 20, the region of the localized disturbance from all the LES cases has a
higher wall stress than the surrounding regions. The SOM (c) identifies the perturbation as turbulent and
the points surrounding it as laminar. In the Reτ plot, t = 20 occurs before the overall transition. Therefore,
the flow is laminar and the SOM rightly identifies the T-NT interface as enclosing only a very small portion
of the overall domain.
The wall stress from WMLES (without SOM) is noticeably higher than the WRLES and WMSOM cases.

The equilibrium wall-model assumes the flow is stationary and the wall stress is obtained from a turbu-
lent mean flow profile, even in a wall-model that smoothly merges between the viscous sublayer and the
logarithmic layer as used here (see Appendix A). When this wall-model is applied to a laminar flow, the
corresponding wall stress can be significantly higher than the wall stress inferred from a no-slip boundary
condition. This is evident in figure 6d, where the Reτ for WMLES in the laminar and transitional regions
are higher than the Reτ from WRLES and WMSOM.
In the DNS [37] of the large-amplitude perturbation, a secondary instability leads to the formation of a

turbulent spot that spreads and fills the domain, thus leading to a fully turbulent state. The formation
of the turbulent spot occurs at around t = 40. This is also the time at which the Reτ increases from its
laminar value and reaches a turbulent state for t > 200. The transition time of WRLES is slightly before
the DNS while the WMSOM is closer to the DNS. Once the turbulent spot is formed, it advects downstream
and spreads the turbulence in the entire domain. This is seen in the wall stress contours of figure 6a-c at
t = 80, 110 for all the LES cases. In the contour from WMSOM, the SOM clearly separates the growing
spot from the laminar flow surrounding it. The growth of the spot is similar for the WMSOM and WRLES.
A higher wall stress from the wall-model leads to a larger growth of the perturbation in WMLES case.
Note that like other sharp sensor based methods, the WMSOM approach introduces sharp switches between
modeled wall and SGS stresses at the interface. In our present applications, no adverse numerical effects
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were observed from this model feature. However, if numerical problems were to arise e.g. in the context of
other numerical methods, a smoothing operation based e.g. on the distance to the SOM hyperplane could
be envisioned. The Reτ from WMSOM is under-predicted compared to the DNS in the transitional regime.
This mismatch can arise due to a slower spreading rate of the spot, a lower prediction of the stress within the
spot or a combination of both factors. The latter is more likely since the ensemble averaged stress within the
spot is spatially heterogeneous [43], while the WMSOM assumes equilibrium and stress homogeneity within
the identified turbulent region.
At t = 300, the flow has reached a fully turbulent state for all the cases and Reτ has reached an equilibrium

value. In the WMSOM contour, SOM identifies most of the regions as T with small islands of NT regions.
Even in the presence of these NT regions, the Reτ closely agrees with the DNS. Noticeably, for the WRLES,
the Reτ in the stationary state is underpredicted. A similar underprediction of the friction coefficient was
reported in [24] in the case of boundary layer transition. In that study, the friction coefficient underprediction
was attributed to inadequate reproduction of SGS stresses which could also be at play here. It was also
shown that refining the grid leads to better match of the friction coefficient between WRLES and DNS.
In order to ensure that the WMSOM is robust, we vary the orientation angle of the initial disturbance.

The time evolution of |u′| and Reτ from WMSOM is shown in figure 7a-b. All cases undergo transition
to a stationary state as is evident from the saturated Reτ (figure 7b). Increasing the orientation angle of
the initial perturbation delays the transition slightly. Whether the earlier disturbance amplification plays a
role will be examined; here we only note that in linear theory streamwise rolls lead to the most amplifying
response in wall-bounded shear flows [42]. But with interest in transition, the late stages including secondary
instability and energy cascade all contribute to the onset and increase in intermittency as we approach a
fully turbulent state.
At t = 20 (figure 7a), the turbulent spot structures of the different initial conditions vary significantly

from each other. For θ = 0◦, the spot structure is symmetric and the entire core region of the perturbation is
classified as turbulent by the SOM. For θ = 10◦, the spot is asymmetric with larger region in z > 12 classified
as turbulent. When the orientation angle is increased to θ = 20◦, the spot structure is again asymmetric.
The perturbation in z < 12 is much weaker than the disturbance with θ = 0◦, 10◦ cases. A similar scenario
is seen for the θ = 45◦ case. However, the turbulent region is smaller compared to the other cases, leading
to a lower value of Reτ for θ = 45◦ as seen in figure 7b.
At a later time t = 80, the spot has grown in size and turbulence is spread throughout the streamwise

extent of the channel. The turbulent spot size of the θ = 45◦ case is slightly smaller compared to the other
cases as the transition progresses more slowly for this case. No matter the angle, however, once the spots
are formed transition to a fully turbulent state seems inevitable in this configuration. The final state is also
statistically similar among all cases, with the Reτ saturating around 130 which is very close to the DNS[37]
value of Reτ = 132 for θ = 0◦.
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D. Perturbation kinetic energy evolution

The perturbation kinetic energy evolution for the different initial orientations are plotted in figure 8a-
b. For t < 10 in figure 8b, the large-amplitude perturbation for all θ has energy growth similar to the
small-amplitude case. This initial time until t ∼ 10 is the transient growth phase associated with the non-
orthogonality of the eigenfunctions of the linear stability equations. Following this transient growth phase,
viscous dissipation dominates for small-amplitude perturbation leading to decaying of kinetic energy.
For the large-amplitude disturbance, the non-linearity is stronger which further excites the perturbation

energy [16]. In figure 8b, the non-linear excitation of energy could be clearly seen for θ = 0◦, 10◦, 20◦ cases
where the large-amplitude curves deviate significantly from their corresponding small-amplitude counterpart.
For θ = 45◦, the energy growth of large-amplitude perturbation is not as rapid as for the other orientation
angles. The energy is smaller than the small-amplitude case until t ∼ 40 beyond which the curves rapidly
separate. This also means that the transition time is delayed for the θ = 45◦ case.
The initial localized disturbance and its early evolution have energy in large scales [16]. Nonlinearity,

however, transfers energy to higher harmonics and ultimately cascades energy through the entire wavenumber
range within the spots. These effects can be seen in the plots of the energy spectra in the figures 10 and 11.
These spectra elucidate the differences between the evolution of θ = 0◦ and θ = 45◦ cases during the early
times. In figure 10a-b, the evolution of streamwise averaged energy spectra of streamwise perturbation

Eu(nz) =
1

2
〈û′2(x, y, nz)〉x (13)

at the wall model height y = 0.25 is plotted as a function of the spanwise integer wavenumber (nz =
Lz/(2π/kz)) for θ = 0◦, 45◦ cases. Here, 〈·〉x represents streamwise averaging while u′ is defined as the devi-
ation from the horizontally averaged velocity. For θ = 0◦, the initial u′ = 0 according to the initial condition
(10) and therefore energy spectra is also 0. For the rotated initial condition, θ = 45◦, the perturbation u′ is
finite and the corresponding energy spectral density is reported in the figure. While this initial difference is
consequential at long times, it is nearly indiscernible at t = 10 where the energy spectral distributions appear
similar for both θ = 0◦, 45◦ cases. As time evolves, at t = 20, non-linearity affects the θ = 0◦ case. The
energy spectrum peaks at higher wavenumbers for θ = 0◦ whereas there is only a single peak for θ = 45◦.
A similar scenario can be seen for times t = 30, 40 as well. For θ = 0◦, the energy associated with nz = 0
which represents the distortion to the base state increases rapidly. This is also an effect of non-linearity.
The spectral content for nz = 1 also grows significantly as the spot occupies nearly half the spanwise extent
of the domain at that time as shown in figure 9. In contrast, for θ = 45◦, the energy growth for nz = 0, 1
wavenumbers is moderate, suggesting that the effect of non-linearity is weaker at the reported times for this
case. Based on the instantaneous fields (figure 9), this configuration has the smallest turbulent region at
t = 20, which is consistent with such delay in the broadening of the spectrum.
The early evolution of the spanwise averaged streamwise energy spectra

Eu(nx) =
1

2
〈û′2(nx, y, z)〉z (14)

for θ = 0◦, 45◦ as a function of streamwise integer wavenumber nx = Lx/(2π/kx) is plotted at the wall
model height y = 0.25 in figure 11a-b. At t = 10, the energy spectra for both θ = 0◦ and θ = 45◦

cases appear similar with only small differences. For subsequent times, the spectral content for smaller
streamwise wavenumbers grows and at t = 40 the spectra peak at nx = 1 for both cases. The growth
for the θ = 0◦ is more pronounced than for the θ = 45◦ case. The energy associated with the base flow
which corresponds to nx = 0 also increases for both cases. The energy growth for the smaller streamwise
wavenumber is consistent with the results from the linear stability analysis [16]. Physically, the energy
concentration at small nx represents the streamwise elongated structure of the perturbation. Together with
the energy peaks at higher nz observed earlier (they are due to non-linearity) the spectra are consistent
with streamwise elongated streaks with sharp spanwise gradients. These streaks amplify further owing to a
secondary instability mechanism and form the turbulent spot which undergo final breakdown to turbulence.
We may conclude that LES with the WMSOM provides rich information regarding the large scales of this
flow during transition even using a relatively coarse resolution.
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V. RESULTS: SUBCRITICAL ORDERLY TRANSITION

In this section we consider LES of channel flow undergoing orderly transition, due to the interaction of
discrete modes of the linear stability operator. Details of the computational domain and grid parameters for
the simulations are summarized in table IV.
The transition is subcritical as the Reynolds number is Re = Ubh/ν = 3333.33 based on the bulk velocity

(Ub) and the half channel height (h), which is less than the critical value Recr = 3848 [42]. The computational
domain is shown in the schematic of figure 12. The streamwise (x) and spanwise (z) directions are periodic
for all the simulations. A hyperbolic tangent stretched grid is used in the wall-normal direction for DNS and
WRLES. For WMLES and WMSOM, a uniform grid is used in the wall-normal coordinate. For WRLES,
no-slip the boundary condition is used at the wall-normal boundaries y = 0 and y = 2. For WMLES and
WMSOM, y = ywm = 0.18 is chosen as the wall-model height which corresponds to a wall-normal location
y+wm = 36 in inner units for the conditions once a fully turbulent state is achieved. As in the prior section,
for WMLES the wall stress from the equilibrium wall-model (see A) is applied as the boundary condition
everywhere on the top and bottom walls. For WMSOM, based on the T-NT classification at the wall-model
height, no-slip condition is used in the NT regions and the wall stress from equilibrium wall-model is used
in the T regions.

Case Re Domain size Number of grid points Reτ Grid resolution ywm

(Lx × Ly × Lz) (Nx ×Ny ×Nz) (∆x+ ×∆y+
min ×∆z+)

DNS 3333.33
2π

1.12
× 2×

2π

2.1
192× 192× 192 206.33 6.03× 0.1× 3.2 -

WRLES 3333.33
2π

1.12
× 2×

2π

2.1
64× 64× 64 203.8 18× 0.37× 17 -

WMLES/WMSOM 3333.33
2π

1.12
× 2×

2π

2.1
12× 28× 12 197 92× 14× 49 0.18

TABLE IV: Computational domain size and grid points for LES and DNS of orderly transition.

FIG. 12. Schematic of the flow configuration with the initial perturbation velocity profiles for orderly transition.

A. Initial conditions

Following prior work [44], the initial condition consists of a Poiseuille base flow with 2D Tollmien-
Schlichting (TS) waves and 3D oblique waves as perturbation components,

u(x, 0) =
3

2
[1− (y − 1)2] ex +Re

{

ǫ2D u2D(y) eikxx

+
1

2
ǫ3D u

+
3D(y) ei[(kx/sx)x+(kz/sz)z+φ] +

1

2
ǫ3D u

−

3D(y) ei[(kx/sx)x−(kz/sz)z+φ]

}

, (15)
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where u2D(y) and u
±

3D are the eigenmodes corresponding to 2D TS and 3D oblique waves, respectively, and
ex is the streamwise unit vector. These eigenmodes are obtained from the linear stability analysis using
Orr-Sommerfeld and Squire equations [42].

Wave type Re = Ubh/ν kx kz ωr + iωi Amplitude
(ǫ2D & ǫ3D)

TS 3333.33 1.12 0 0.4733 − i 0.0041 0.045

Oblique 3333.33 1.12 2.1 0.5455 − i 0.1178
1.5 × 10−3

6× 10−3

TABLE V: Amplitude and growth rate of TS and oblique waves.
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FIG. 13. Eigenfunction profiles at Re = 3333.33 of streamwise ((a) & (c)) and wall-normal ((b) & (d)) components
of Tollmien-Schlichting and oblique waves.The plots show the real ( ), imaginary ( ) and absolute ( ) values
of the eigenmodes.

A schematic of the base flow and perturbation profiles is shown in figure 12. The linear stability equations
are solved for kx = 1.12 and kz = {0, 2.1} wavenumbers which are equivalent to the experimental conditions
in [45]. The fundamental wavelengths of the initial perturbations are λx = 2π/1.12 and λz = 2π/2.1. The
domain size is then set to Lx = sxλx and Lz = szλz, where the integers sx, sz allow for subharmonic waves
in the streamwise and spanwise directions. The parameter φ is the phase difference between the TS and
oblique waves. In the current study, several initial conditions with different phases φ = {0, 1, 2, 4, 6} (π/8)
are investigated. Table V lists the temporal eigenvalue [44] and amplitude of the initial perturbations.
For the complex temporal eigenvalue ω in table V, the corresponding eigenfunctions of the TS and oblique

waves are plotted in figure 13. Each of the wall-normal profiles in the figure is normalized by the maximum
value of |ũ2D(y)|. The perturbation velocities are constructed such that the resultant amplitude of the
TS wave component is ǫ2D = 0.045. For the oblique waves, two different amplitudes ǫ3D = {1.5, 6.0} ×
10−3 are used. Starting with this initial velocity, the orderly transition mechanisms are investigated using
DNS, WRLES, WMLES and WMSOM. The capability of WMLES and WMSOM in predicting the different
mechanisms of transition is investigated and the results are compared with DNS and WRLES.
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B. Wall-modeled LES of fundamental K-type transition

The orderly transition with an oblique wave of amplitude ǫ3D = 1.5 × 10−3 and φ = 0 is discussed. In
figure 14a-c, the evolution of wall stress (τw) contours from WRLES, WMLES and WMSOM are plotted. In
figure 14d, the friction Reynolds number (Reτ ) time-series from the different simulations are plotted together
for comparison. The various times of the wall stress contours are marked in their respective Reτ curves. The
wall stress contours from WMSOM are plotted with the T-NT interface obtained using SOM. The grayscale
colormap is used for the NT regions and hot colormap for the T regions. The Reτ time evolution from
WRLES shows excellent agreement with the DNS. The transition time is t∗ = 40 for both WRLES and DNS
and both yield a similar asymptotic Reτ ∼ 200 in the fully turbulent region at late times. Note that the
horizontal resolution in this WRLES case is finer than that used in the prior section for the bypass transition,
possibly the reason for better agreement between WRLES and DNS.
Next, we comment on the wall-modeled cases. From the τw contours (figure 14b), it is evident that the

WMLES case does not undergo transition to a turbulent state. From its initial condition, t = 0, the wall
stress for WMLES is too large and then decays as time evolves. The corresponding Reτ curve (figure 14d)
has a similar trend, where at t = 0, Reτ = 130, while at large times it asymptotes to a value of 110. The
equilibrium wall-model predicts a higher value for the stress, leading to Reτ being higher than the Reτ = 100
value corresponding to the viscous stress arising from the no-slip boundary condition in laminar flow.
In contrast, the SOM in WMSOM identifies all the points are laminar before the transition time (t∗)

leading to Reτ = 100 before the transition. For t > t∗, the WMSOM case undergoes transition (figure 14c)
as can be seen in both the contours as well as the Reτ evolution. The Reτ increases from 100 to a stationary
state value of around 197, very close to the prediction from DNS. Before the transition at t − t∗ = −20,
the contour plots show that τw predicted in the WMSOM case is laminar. At a later time t − t∗ = 10,
which occurs after the transition, τw has both laminar and turbulent features. Later on at t− t∗ = 20, the
turbulent region has grown significantly. Time t−t∗ = 810 corresponds to a fully turbulent state where SOM
identifies all the regions to be turbulent. The fully turbulent τw contours at t − t∗ = 810 from WMSOM
and WRLES are quite similar. The resulting Reτ ∼ 197 in the fully turbulent region is close to the value of
DNS and WRLES, only about 4% lower. However, the transition time for WMSOM is later than the DNS
and WRLES cases, being delayed to t∗ ∼ 100.
In figure 15, we examine whether the performance of the WMSOM is robust to changes in the relative

phase of the initial disturbances. We first draw attention to panel b where the friction Reynolds number is
plotted versus time, for different phases φ = {0, 1, 2, 4, 6}π/8. Note that WRLES for all phases undergoes
transition at a time which is insensitive to the phase. In contrast, all the WMLES cases fail to transition to
turbulence. In contrast, our WMSOM predicts transition for all but one phase (φ = 2π/8), although for the
remaining phases the transition times vary. This trend is due to the low resolution of the initial condition in
the WMSOM simulations. Contours of |u′| are plotted for the transitional cases in figure 15a. The T (red)
- NT (grayscale) regions are identified using SOM. At t − t∗ = −20, all the different phases are laminar.
The lambda structure typical of the fundamental K-type orderly transition is clearly visible at this time.
The contours for all the different phases at t− t∗ = 10 show that the flow has undergone transition and the
velocity field has features of both laminar and turbulent flow. The |u′| at t− t∗ = 20 shows that the region
of turbulence has spread and grown bigger which increase Reτ . Turbulence continues to spread and fill the
entire domain leading to a fully turbulent state. The |u′| at t− t∗ = 810 are plotted from this fully turbulent
state. Most of the regions in these contours are classified as turbulent by the SOM.
In order to document the effects of perturbation amplitude on the transition process, the amplitude of

oblique wave is increased to ǫ3D = 6× 10−3 and the corresponding Reτ is plotted in figure 16. For this ǫ3D,
WMSOM of all the phases including φ = π/4 (which did not undergo transition for ǫ3D = 1.5× 10−3) also
transitions to a fully turbulent state. Most of the phases undergo transition at the same time, and earlier
than the lower amplitude perturbation cases, closer to the WRLES transition time, and reach a steady state
value Reτ ∼ 200 (the φ = π/4 still transitions sometime later). Remarkably, even at this high amplitude
initial perturbation, the WMLES without T-NT classification did not undergo transition for any of the
different phases. The evolution of Reτ in WRLES for ǫ3D = 6 × 10−3 is similar to ǫ3D = 1.5 × 10−3 case.
Results are consistent with the anticipated impact of a coarse representation of the initial condition on the
transition process.
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C. H-type transition

In contrast to K-type transition, in H-type transition the lambda structures ahead of the onset of turbulence
have a staggered arrangement. In order to test the capacity of WMSOM to reproduce H-type transition,
the initial disturbance (15) with the subharmonic sx = 2, sz = 1, φ = 0 and ǫ3D = 6 × 10−3 is considered.
The time evolution of such a perturbation is simulated in a domain of size Lx = 2λx, Lz = λz , where λx =
2π/1.12, λz = 2π/2.1 are the fundamental periodic length-scale of the TS and oblique waves respectively. To
elucidate the differences between K and H type transition, for the same domain size, the WMSOM of initial
perturbation (15) with sx = 1, sz = 1, φ = 0 and ǫ3D = 6 × 10−3 which undergo K-type transition is also
investigated.
In figure 17a-b, snapshots of |u′| at y = 0.18 and t = 25, 200 are shown as contour plots. Grayscale

contours are used for laminar regions and a hot colormap for turbulent regions. Figure 17a corresponds to
an initial perturbation with sx = 1, sz = 1 and figure 17b is from an initial disturbance with sx = 2, sz = 1.
For better visualization of the arrangement of lambda structures, since the spanwise direction is periodic,
the snapshots in 0 ≤ z ≤ λz are copied to the region λz < z < 2λz . At t = 25, before transition, the
|u′| disturbance in figure 17a has successive rows of lambda structures aligned, consistent with K-type. In
contrast, the corresponding plot in figure 17b shows |u′| with a staggered arrangement of the lambdas which
is typical of H-type transition. Both the cases undergo breakdown to a fully turbulent state as seen from
the contours at t = 200.
In figure 18a-b, the spanwise averaged energy spectra of u′ at t = 25 and y = 0.18 from both K and H type

transition are plotted as a function of the streamwise wavenumber κx = kxλx/2π. For K-type transition,
there exists only one lambda vortex within x = λx (figure 17a). The corresponding energy spectrum (figure
18a) has a peak at κx = 1 apart from the κx = 0 peak which represents the base flow. Whereas, for H-type
transition, only half of the lambda structure is present within x = λx (figure 17b). In the corresponding
energy spectrum (figure 18b), apart from the peaks at κx = 0, 1, there is an additional peak at κx = 1/2 which
is absent in the K-type spectral plot. Hence, these studies show that wall-modeled LES with SOM-based
T-NT classification can simulate both the K and H type transition mechanisms.
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FIG. 17. |u′| contours from WMSOM (φ = 0, ǫ3D = 6 × 10−3) at y = 0.18, t = 25, 200 showing (a) K-type and, (b)
H-type transition to turbulence.
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FIG. 18. Spanwise averaged streamwise energy spectra (Eu(kx) =
1

2
〈û′(kx, y, z)

2〉z) as a function of κx = kxλx/2π
at y = 0.18, t = 25 showing (a) K-type and, (b) H-type transition.

VI. CONCLUSIONS

In this study, the potential of Wall-Modeled LES of laminar-to-turbulence transition using T-NT classifi-
cation based on a Self-Organizing Map (SOM) method, is explored. The SOM is an unsupervised machine
learning classification technique that enables identifying laminar and turbulent regions without using arbi-
trary thresholds for the sensor. The ability of Wall-Modeled LES using SOM (WMSOM) to simulate both
bypass and orderly transition is tested.
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For bypass transition, when the disturbance amplitude is small, SOM correctly identifies all the points
in the domain as laminar. Similar to DNS, the perturbation undergoes an initial transient growth and
subsequently decays due to viscous dissipation. For large initial perturbation amplitude, WMLES and
WMSOM both develop into a fully turbulent state. However, WMLES predicts a higher Reτ in the laminar
and transitional regimes than the corresponding DNS values, because the model does not distinguish between
laminar and turbulent regions. Applying the wall-model only in the T regions in WMSOM predicts the
correct Reτ values in the laminar regime. Also, the transition time and the Reτ growth in the transitional
regime predicted by WMSOM are comparable to DNS results.
In the case of orderly transition, the Wall-Modeled LES without T-NT classification (WMLES) incorrectly

predicts decay of the initial disturbances, whereas the WMSOM approach can predict both K and H type
transition. However, the transition time is delayed relative to DNS and Wall-Resolved LES (WRLES). This
mismatch in the transition time can be attributed to coarseness of the grid that barely enables capturing
the amplitude of the applied perturbations. Increasing the amplitude of the oblique waves advances the
transition time, leading to results that agree more closely with WRLES.
Some additional tests were performed extending the simulations that did not exhibit transition, i.e. WM-

LES cases without SOM T-NT classification and one case of WMSOM of orderly transition with φ = π/4
and ǫ3D = 1.5×10−3, to very long times. It was observed that these cases could eventually become turbulent
but at much later times than DNS or WRLES, after the prescribed initial perturbation energy had decayed
many orders of magnitude. It could be concluded that these belated transition events occurred in response
to numerical effects that eventually come to the fore, rather than representing a physically realistic evolution
of the initially imposed perturbations.
One of the most important advantages of Wall-Modeled LES (including the SOM T-NT classification)

is reduced computational cost. The wall-clock time (Ctime) taken to compute one domain flow-through
advection time unit using a single processor was measured for DNS, WRLES and WMSOM of both orderly
and bypass transition cases. For the former, the ratio of wall-clock time required for WMSOM compared
to WRLES is 0.0027 whereas the ratio of wall-clock time required for DNS compared to WRLES is 94.
Similarly, for bypass transition, the wall-clock time ratios for WMSOM and DNS with respect to WRLES
are 0.0039 and 71, respectively. Now, consider a grid with Nx ×Ny × Nz points and let us assume that it
takes Nt time steps to simulate one convective time unit. The total operation count (Ctot) for computing
tridiagonal inversions and Fast Fourier Transforms in the pressure Poisson equation of the fractional step
algorithm can be estimated as Ctot ∼ O(NtNxNyNz[log(Nx)+log(Nz)+10]). The ratios obtained using this
estimate for total operation counts for the various NtNxNyNz values in the different runs are consistent with
the empirically measured wall-clock time ratios mentioned above. The analysis thus shows that WMSOM
is computationally much more efficient than WRLES (by about a factor of 300 in our simulations), and of
course even more so compared to DNS (by about a factor of 25,000), providing a practical tool to simulate
the laminar-turbulent transition process. Followup work could examine the performance of the WMSOM
when relaminarization occurs and consider inclusion of additional effects such as expansion/contraction,
curvature, rotation, and roughness.
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Appendix A: Explicitly fitted equilibrium wall-model

The wall stress for the turbulent regions of the transitional flow is obtained using a recently developed
version of the equilibrium wall-model [46]. The model assumes the flow is fully turbulent and in near-
wall equilibrium conditions. It has been derived by solving the RANS equations neglecting the unsteady and
acceleration terms and using a standard mixing length model with a van-Driest damping function to smoothly
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merge the viscous and log-layer regions. The outcome of the numerical integration was cast in terms of two
Reynolds numbers, the known grid-velocity Reynolds number Re∆ and the unknown grid-friction velocity
Reynolds number Reτ∆. These are defined according to

Re∆ =
Usywm

ν
, and Reτ∆ =

uτywm

ν
(A1)

respectively, where Us =
√
ũ2 + w̃2 is the local streamwise velocity available in LES at the grid point at a

distance ywm from the wall.
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FIG. 19. Red circles: numerical solution of the mixing-length RANS equations over wide range of Re∆ [46]. Dark
solid line: empirical fit given by Eq. (A2).

The numerical results obtained in Ref. [46] are shown in Fig. 19 by plotting the resulting Re∆ on the
x-axis and Reτ∆ on the y-axis. The numerical results for Reτ∆ as a function of a given Re∆ smoothly
transition from the viscous sublayer to the logarithmic layer. At small Reynolds numbers, the expected

trend is Reτ∆ ∼ Re
1/2
∆ (when ywm is in the viscous region), whereas at high Re∆ the behavior is a slow

approach to linear with sub-leading logarithmic corrections. In order to fit this numerical result [46] noted
that the function Reτ∆(Re∆) should transition between a 1/2 power law at low Re∆ towards a power law
with exponent β1 ∼ 0.9 at high Re∆. The following transition function was proposed, with a transition
sharpness controlled by parameter β2:

Refitτ∆(Re∆) = κ4Re
β1

∆

[

1 + (κ3Re∆)
−β2

](β1−1/2)/β2

, (A2)

Choosing constant values β1 = 0.9, β2 = 1.2, κ3 = 0.005, and κ4 = κ
β1−1/2
3 gives results with very small

errors for the range of Re∆ values in this study.
The wall model then consists of using the local LES velocity Us at y = ywm to evaluate Re∆, evaluating

equation A2 to determine Reτ∆ locally, then determining the friction velocity according to uτ = νReτ∆/ywm

and finally, determining the wall stress (τ̃w) and its components τ̃xy,w, τ̃yz,w for the turbulent regions accord-
ing to

τ̃w = u2τ =

(

Reτ∆
Re∆

)2

U2
s , (A3)
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τ̃xy,w =
ũ(x, ywm, z)

Us(x, ywm, z)
τ̃w, (A4)

τ̃yz,w =
w̃(x, ywm, z)

Us(x, ywm, z)
τ̃w. (A5)

Appendix B: Conditionally averaged Dynamic SGS model with non-dynamic scale dependence

For WRLES and WMLES, the model coefficient C2
s in the expression for eddy viscosity (7) is computed

through the well-known plane-averaged dynamic procedure [21]

C2
s =

〈MijL
d
ij〉

〈MklMkl〉
, (B1)

where, 〈·〉 represents planar x-z averaging and Lij = ũiũj − ¯̃ui ¯̃uj, L
d
ij = Lij − 1

3Lkkδij , Mij = 2 ∆̃2|S̃|S̃ij −
2 β| ¯̃S| ¯̃Sij , and β = C2

s (
¯̃∆)/C2

s (∆̃) is a scale-dependence correction factor [36]. The overline represents

test-filtering and the corresponding test-filter length scale is ¯̃∆ = (2∆x ∆y 2∆z)1/3. The ratio of model
coefficients, β, at two scales depends on whether one is applying WRLES or WMLES. For the Wall-Resolved
LES (WRLES), a scale independent Dynamic Smagorinsky SGS model (i.e. with β = 1) can be used since in
WRLES the grid resolution near the wall is typically much finer than the local integral scale of turbulence.
The planar averaging in equation (B1) is done considering the entire x-z plane.
For Wall-Modeled LES without T-NT classification (WMLES), a scale-dependent Dynamic SGS model

[36] must be used since the near-wall resolution (the distance to the wall) is very similar to the local integral
scale of turbulence, where the assumption of scale-invariance breaks down. In order to avoid incurring
additional computational cost involved in additional test-filtering as used in Refs. [36] and [47], here we use
a non-dynamic version of the scale-dependent model and β is modeled as the ratio of the Mason wall-damping
function [48] evaluated at two scales, i.e.

β =
C2

s (
¯̃∆)

C2
s (∆̃)

=
l2d(

¯̃∆)

l2d(∆̃)
, where l2d(∆) =

[

1 +

(

κy

C0∆

)−2
]−1

, (B2)

with κ = 0.41 (Von Karman constant), C0 = 0.16 and ∆ = ∆̃ or ¯̃∆.
For the scale-dependent Dynamic SGS model used in WMSOM, a conditional planar averaging is done

in the dynamic procedure in equation (B1). At each wall normal plane, the planar averaging is done only
considering the Turbulent regions of the flow, i.e. we compute

C2
s (y) =

〈MijL
d
ij |y,T〉

〈MklMkl|y,T〉
, (B3)

where the condition T is met at all points in the flow at a given height y when a ·X + 1 < 0 (see section
II). In the Non-Turbulent regions, the eddy viscosity is switched off by setting it to zero.
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[36] F. Porté-Agel, C. Meneveau, and M. B. Parlange, A scale-dependent dynamic model for large-eddy simulation:
application to a neutral atmospheric boundary layer, Journal of Fluid Mechanics 415, 261–284 (2000).

[37] A. Agarwal, L. Brandt, and T. Zaki, Linear and nonlinear evolution of a localized disturbance in polymeric
channel flow, Journal of Fluid Mechanics 760, 278–303 (2014).

[38] S. J. Lee and T. A. Zaki, Simulations of natural transition in viscoelastic channel flow,
Journal of Fluid Mechanics 820, 232–262 (2017).

[39] M. Rosenfeld, D. Kwak, and M. Vinokur, A fractional step solution method for the unsteady incompressible
navier-stokes equations in generalized coordinate systems, Journal of Computational Physics 94, 102 (1991).

[40] M. T. Landahl, Theoretical modeling of coherent structures in wall bounded shear flows, Eighth Biennial Sym-
posium on Turbulence, University of Missouri-Rolla (1983).

[41] K. S. Breuer and J. H. Haritonidis, The evolution of a localized disturbance in a laminar boundary layer. part
1. weak disturbances, Journal of Fluid Mechanics 220, 569–594 (1990).

[42] P. Schmid and D. Henningson, Stability and Transition in Shear Flows, Vol. 142 (Springer, New York, NY, 2001).
[43] O. Marxen and T. A. Zaki, Turbulence in intermittent transitional boundary layers and in turbulence spots,

Journal of Fluid Mechanics 860, 350–383 (2019).
[44] T. Zang, N. Gilbert, and L. Kleiser, Direct numerical simulation of the transitional zone, Hussaini M.Y., Voigt

R.G. (eds) Instability and Transition. ICASE/ NASA LaRC Series. Springer, New York, NY (1990).
[45] M. Nishioka, S. I. A, and Y. Ichikawa, An experimental investigation of the stability of plane poiseuille flow,

Journal of Fluid Mechanics 72, 731–751 (1975).
[46] C. Meneveau, A note on fitting a generalised moody diagram for wall modelled large-eddy simulations,

Journal of Turbulence 21, 650–673 (2020).
[47] E. Bou-Zeid, C. Meneveau, and M. Parlange, A scale-dependent lagrangian dynamic model for large eddy simu-

lation of complex turbulent flows, Physics of Fluids 17, 025105 (2005), https://doi.org/10.1063/1.1839152.
[48] P. J. Mason and D. J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers,

Journal of Fluid Mechanics 242, 51–78 (1992).

27

https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/jfm.2014.586
https://doi.org/10.1017/jfm.2017.198
https://doi.org/10.1017/S002211209000338X
https://doi.org/10.1007/978-1-4613-0185-1
https://doi.org/10.1017/jfm.2018.822
https://doi.org/10.1017/S0022112075003254
https://doi.org/10.1080/14685248.2020.1840573
https://doi.org/10.1063/1.1839152
https://arxiv.org/abs/https://doi.org/10.1063/1.1839152
https://doi.org/10.1017/S0022112092002271

	Large Eddy Simulation of transitional channel flow using a machine learning classifier to distinguish laminar and turbulent regions
	Abstract
	Introduction
	 SOM training and Turbulent/Non-Turbulent (T-NT) classification
	 Large Eddy Simulation equations, models and numerical methods
	 Results: Bypass transition
	Initial condition
	Wall-modeled LES of evolution of small-amplitude perturbations
	Wall-modeled LES of bypass transition with large-amplitude perturbation
	Perturbation kinetic energy evolution

	 Results: Subcritical Orderly Transition
	Initial conditions
	Wall-modeled LES of fundamental K-type transition
	H-type transition

	Conclusions
	Acknowledgments
	 Explicitly fitted equilibrium wall-model
	Conditionally averaged Dynamic SGS model with non-dynamic scale dependence
	References


