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Rectangular propulsion nozzles offer thrust-vectoring and air-frame-integration advantages over
their more commonly studied circular counterparts. However, they display many distinguishing
features which violate assumptions, such as azimuthal homogeneity, typically used in prediction tools
for circular jets. In the present work, we examine the utility of an azimuthal Fourier decomposition
for rectangular Mach 1.3 jets of aspect ratios (AR) 1, 4 and 8 using Large-Eddy Simulations, with
a circular jet of same equivalent diameter for reference. The simulations manifest key features
of rectangular jets, including higher spreading rates and shorter potential cores with increasing
AR, axis switching (AR=4) and azimuthal variation in peak acoustic intensity (AR=8). We show
that, after projection on a cylindrical frame, a sine-cosine ansatz for the azimuthal Fourier series
affords a more convenient representation of non-axisymmetric flow features than the commonly
used complex exponential ansatz. Fluctuation magnitudes of the higher azimuthal modes show
rapid reduction in amplitude, similar to those observed in circular jets, especially if an acoustic
fluctuation field based on momentum potential theory is chosen instead of pressure fluctuations.
The leading modes differ, however, from those of a circular jet in two important aspects, namely,
the mechanisms represented by the sine and cosine coefficients of the first azimuthal mode and the
rate of streamwise decay of all modes with increasing AR. These differences are traced to the near
and farfield rectangular jet asymmetry by examining azimuthal inhomogeneity, whose implications
are assessed with a generalized expression for acoustic intensity based on energies of leading modes.
The significant simplicity of circular plumes is recovered as a special case of the analysis. Invocation
of the two-fold mirror symmetry property of rectangular jets eases the prediction procedure so that
only two extra terms, representing mechanisms unique to rectangular jets, specifically preferential
flapping in the minor axis direction and coupling of axisymmetric and second azimuthal modes, are
sufficient to recover the advantages of azimuthal decomposition.

I. INTRODUCTION

Increasing engine power requirements for commercial and military aircraft have continued to raise concern about
acoustic radiation from jets. This has motivated new research on noise production and propagation mechanisms in
both perfectly and imperfectly expanded conditions. Several review articles provide overview snapshots of the state-of-
the-art [1-5]. Major recent advances have leveraged the better understanding to derive low rank models of turbulent
fluctuations [6-9] and relatively simple tools for noise predictions [2, 10-13]. These efforts are interrelated since the
growth and decay of large scale turbulent structures, which are the dominant dynamic feature of jet turbulence, have
also been linked to the peak turbulent mixing noise emitted in the downstream shallow angle direction [1].

Most studies in this vein have addressed jets issuing from circular nozzles, which display inherent symmetries that
can be exploited for model simplification. A cylindrical coordinate system is a natural choice for these jets and it
simplifies the application of the azimuthal periodicity property of the statistics through an azimuthal Fourier series
decomposition, offering several advantages. For example, Michalke and Fuchs [14] showed that the fluctuating pres-
sure field of a turbulent circular jet could be represented to reasonable accuracy with only the first three azimuthal
modes, since they contain most of the fluctuation energy, allowing for significant data reduction by a truncation of
the Fourier series beyond the leading terms. Moreover, Schmidt et al. [7] used Spectral Proper Orthogonal Decom-
position (SPOD) to show that the axisymmetric and first azimuthal mode exhibit pronounced low-rank behavior for
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a range of acoustically significant frequencies. In addition to these advantages, an azimuthal homogeneity arising out
of the polar symmetry of circular jets further simplifies their modelling [6, 15].

Besides data driven methods like Fourier analysis or Proper Orthogonal Decomposition (POD), the linear Navier-
Stokes operator can also be used to model the dominant dynamic features of the jet [16]. Gudmundsson and Colonius
[8] used the linear framework of the Parabolized Stability Equations (PSE) to model coherent fluctuations in the jet
and demonstrated close agreement with the nearfield low frequency turbulent statistics for the first three azimuthal
modes. The assumption of mean flow homogeneity in the azimuthal direction, used in several earlier linear analyses,
can also be relaxed as shown by Lajus et al. [17] who used Floquet theory to model the axisymmetric instability
waves of corrugated jets. While such studies lay the groundwork for a linear analysis of the azimuthal modes of more
complex rectangular jet flowfields, the turbulence statistics of the azimuthal Fourier modes in rectangular jets have
not yet been analyzed.

In addition to modeling turbulent fluctuations in the jet, the azimuthal Fourier basis is also particularly suited to
the problem of jet aeroacoustics because higher azimuthal modes have lower acoustic efficiency [18], and thus have
a progressively smaller impact on the peak acoustic radiation in the downstream shallow angle direction. This is
also corroborated by experimental results, where the peak jet noise field is found to be predominantly axisymmetric.
Cavalieri et al. [19] further showed that higher azimuthal Fourier modes (m = 1 and m = 2) of circular jets contribute
progressively less with increasing Mach number, and have a relatively minor influence in transonic and supersonic
jets.

These favorable properties of azimuthal Fourier modes, coupled with an improved understanding of jet turbulence,
have led to the development of a variety of models for jet acoustic radiation. These can be broadly categorized
into dynamic and kinematic models. The former educe the farfield acoustic radiation based solely on the dominant
dynamical features of the jet. For instance, Sinha et al. [20] were able to capture the two leading azimuthal modes of
the farfield acoustics of a circular supersonic jet with appreciable accuracy using both a PSE framework established
by Gudmundsson and Colonius [8], as well as the leading SPOD modes of the jet. Kinematic models, on the other
hand, employ carefully chosen statistics within the core of the jet, with some empiricism, to model the acoustic source
field and have received significant attention in recent years [2, 10, 13, 21]. Some of these kinematic models have shown
that the statistics of the fully turbulent flow can yield erroneous farfield acoustics [22]. Given the acoustic significance
of the axisymmetric azimuthal mode, better results are obtained when quantities such as the amplitude envelope [11],
two point coherence length [22], and cross spectral density are evaluated for the axisymmetric azimuthal mode alone
instead of the full turbulent data. Thus, azimuthal mode decomposition of fluctuation data is a key component of
most acoustic models for circular jets.

While much of the literature cited above has focused on circular jets, interest in rectangular jets has grown in recent
years. Among their advantages are higher rates of entrainment [23, 24], thrust vectoring potential, and easier airframe
integration. The nearfield dynamics of rectangular jets, however, are more complex than those of circular jets, and can
include axis-switching [25, 26], preferential flapping in the minor axis direction [27, 28], warping of azimuthal vortex
rings [29, 30|, and different forms of streamwise vorticity generation [26]. These features can manifest their signature
in the farfield acoustics as well. In addition to the variables that affect the dynamics and acoustics of circular jets such
as operating conditions, rectangular jets are characterized by their aspect ratio [31] and upstream duct geometry [26].

Bridges [31] performed a detailed comparison of the acoustics of circular and rectangular jets. Key findings were
that the farfield acoustics of low AR rectangular jets were essentially axisymmetric and closely matched those of a
similarly sized circular jet. However, at high AR such as AR = 8, several distinct features emerged relative to circular
jets. While qualitative features such as superdirectivity were retained, the minor axis direction exhibited 2 dB excess
farfield acoustic radiation compared to the major axis direction, marking a loss in the acoustic axisymmetry.

The rectangular jet aeroacoustic field is also affected by imperfect expansion in a manner distinct from circular jets.
For example, Veltin and McLaughlin [32] found the minor axis plane of an AR = 1.75 jet to be 3 dB louder than the
major axis plane in the sideline direction due to the shock component of the noise. This disparity, however, did not
significantly affect the peak noise in the downstream shallow angle direction which remained axisymmetric for this
AR. Heeb et al. [33] also measured noise in the downstream shallow angle direction to be axisymmetric for an AR=2
shock-containing jet. Thus, although there are a variety of flowfield differences, the peak noise from low AR jets in
the downstream shallow angle direction is similar to that of circular jets for a range of operating conditions [34].

Despite qualitative similarities such as superdirectivity and acoustic axisymmetry (for low AR), many of the sophis-
ticated analyses tools developed for the circular jet acoustics have not been extended to rectangular jets. One of the
difficulties encountered is that unlike the azimuthal Fourier modes for circular jets, there is no obvious set of spatial
functions in which to expand the instantaneous statistics of rectangular jets. Kinzie and McLaughlin [35] address the
related problem for elliptical jets by considering Mathieu functions, which have an elliptical variation in the azimuthal
direction, in line with the shape of the nozzle exit. The sharp corners of rectangular jets pose an even greater difficulty
in the isolation of such functions. Additionally, the form of the plume can change quite drastically downstream of
the nozzle exit due to axis-switching, rendering spatial functions derived for a specific nozzle exit shape less useful in



these regions. Even if such functions are found, they may not possess the many simplifying characteristics of Fourier
modes, such as mutual orthogonality and decreasing acoustic efficiency.

Techniques to deploy an azimuthal Fourier decomposition for rectangular jets have the potential to vastly simplify
their analyses and facilitate adaptation of key modeling procedures from those evolved for circular jets. The utility
of any azimuthal mode decomposition for rectangular jets can be broken down into a test for two features. First, a
rapid convergence of the instantaneous statistics of the jet in the azimuthal Fourier space is desired, since this fosters
a simplified error bound truncation of the Fourier series beyond the dominant modes. Unlike for circular jets, this
property is not guaranteed for rectangular jets since a projection on a cylindrical coordinate system, necessary for
the azimuthal Fourier decomposition, may not be well suited due to a lack of polar symmetry. This is especially
true for the region near the nozzle exit where such jets are predominantly rectangular in cross section; sharp corners
immediately downstream of the nozzle exit may require infinitely many Fourier modes for a complete representation.
Nonetheless, instabilities arising at the corners of rectangular jets in the near nozzle region smooth out mean flow
gradients [36], which may help ameliorate this difficulty. Recently, Chakrabarti et al. [37] demonstrated promising
preliminary results in reconstructing the instantaneous statistics of an AR = 4 rectangular jet using the leading
azimuthal modes.

The second, related, desired feature is an ability to reconstruct the Overall Sound Pressure Levels (OASPL) using
the leading Fourier modes. In circular jets, azimuthal homogeneity of the statistics enables a reconstruction of the
RMS of fluctuations as the sum of squares of the RMS of individual modes; this greatly reduces the complexity of
modeling [15, 19]. The lack of azimuthal statistical homogeneity in rectangular jets introduces additional complication,
since it implies that constructive interference between all pairs of azimuthal modes must be accounted for while
reconstructing the RMS. However, some simplification is afforded by leveraging mirror symmetry of rectangular jets
along the minor and major axis planes. Verifying the applicability of such simplifying techniques for rectangular jets
is thus non-trivial.

The present work thus examines ways of using azimuthal decomposition approaches to facilitate the description of
rectangular jet evolution for a range of aspect ratios. Specifically, we examine the statistics of the leading azimuthal
modes of rectangular jets and assess their features relative to those of a circular jet. To that end, Large-Eddy
Simulations (LES) are performed for rectangular jets of ARs 1, 4, and 8 along with a circular jet of equivalent
diameter. The details of the numerical algorithm and flow conditions used, are described in section II. Key differences
between the rectangular and circular jets, including critical mean flow parameters and the farfield acoustics, are
highlighted in section III. Although the pressure field is typically employed for such procedures, we rely primarily
on an acoustic variable derived from a physics-based fluid thermodynamic (FT) component (vortical, acoustic, and
entropic) decomposition of the turbulent fluctuation field [38]. The FT decomposition provides greater insights
into the acoustic dynamics and improves the convergence of modal decomposition techniques [39]; a summary of
this decomposition and dominant features of the individual FT components of the rectangular jets are presented
in section IV. The effectiveness of azimuthal decomposition is investigated by mapping fluctuation fields onto a
cylindrical mesh. The consequences of the departure from axisymmetry are then evaluated in section V by examining
the dynamics of higher azimuthal Fourier modes of the acoustic fluctuations. The implications of the azimuthal
inhomogeneity of rectangular jets as well as some specific dynamic features associated with their nearfield asymmetry
are discussed in section VI. Using these considerations, a reduced order model for rectangular jets is developed in
section VII using only three leading azimuthal modes. Finally, a summary of the paper is presented in section VIII.

II. METHODOLOGY

The non-dimensionalized compressible Navier-Stokes equations cast in the strong conservation form are solved
in a curvilinear coordinate (§,7,() frame with J being the Jacobian of the curvilinear transformation given by
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where 7 refers to a vector comprised of the conserved variables. Thus, 7 = [p, pu, pv, pw, pE]*. The vectors F, G
and H correspond to the inviscid fluxes and the vectors F,,, G,, H, constitute the viscous fluxes. For example,
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The contravariant velocity component is given by U= &xu + &yv + §,w and the specific energy density is
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The deviatoric stress (o;;) and heat flux vector (©;) are given by:
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Stokes’ hypothesis is assumed for the bulk viscosity coefficient i.e A = —2/3u. Further details of the derivations may
be found in Vinokur [41]. Flow velocities and density are normalized by the jet exit velocity (u;) and density (p;),
respectively while the pressure is non-dimensionalized by p;U 3‘25 the perfect gas relationship then reads (p = pT'/yM j2),
where M; refers to the jet exit Mach number. A constant Prandtl number of 0.72 is assumed along with a constant
ratio for the specific heats (v = 1.4). Sutherland’s law is used to model the temperature dependence of viscosity.

To ensure consistency with the literature for circular jets, and an even basis of comparison, the length-scale is
chosen as the diameter of a circular nozzle with an equal exit area as the rectangular nozzles being studied (equivalent
diameter D.). The non-dimensional length of the major axis (I) as a function of the AR is given by:

l m(AR)

5=V (6)

For reference, fig. 1a. shows the nozzle exit cross sections of the jets being studied. In order to preserve a constant exit
area, the minor axis length of the nozzle progressively decreases with increasing AR, the impact of which is assessed
with the results.

The flow parameters are chosen to be representative of conditions examined in the literature. For concreteness,
perfectly expanded conditions are chosen at a design Mach number of 1.3 and a Reynolds number 106, patterned
after extensive experimental [42-44] and numerical studies [45-48]. Furthermore, the goal of evaluating distinctions
between the different AR and the circular nozzles necessitates similar nozzle exit conditions for all cases, since these
can affect the downstream growth of the plume [49-51]. For this reason, a uniform laminar nozzle exit velocity profile
is chosen for all cases, similar to those of Gaitonde [45], Gaitonde and Samimy [46]. This approach has previously
provided good agreement with the circular jet data of Samimy et al. [42]. Additionally, lower inflow turbulence levels
enhance phenomena specific to rectangular jets, such as axis-switching [23, 49], and thus provide a suitable testbed
for the azimuthal Fourier analysis. The farfield and downstream boundaries are at 10 D, and 40 D, from the nozzle
exit respectively. The mesh is gradually stretched out starting at 5D, from the individual shear layers in the cross
stream direction and 35 D, from the nozzle exit in the streamwise direction to provide a suitable sponge condition.
A method of characteristics boundary condition is used on the outflow boundary ([52]).

The Roe scheme is used for the inviscid fluxes [53] with a third-order reconstruction using the MUSCL approach [54].
Viscous terms are discretized with a second order central differencing technique. Following Pulliam and Chaussee
[55], the temporal integration is performed using an approximately factored second order Beam Warming scheme
with two sub-iterations. The rectangular jets are simulated using stretched Cartesian meshes, shown for example
for the AR = 4 jet in fig. 1b-d. The circular reference jet mesh has been presented in the literature [46]. The
streamwise (Az = 0.023D, at the nozzle exit) and cross-streamwise mesh spacing (Ay = 0.005D, along the lipline)
are chosen based on numerous prior studies using the same solution procedure at similar Mach (1.3) and Reynolds
(10%) numbers. The meshes employed for the rectangular jets comprise 15 x 10 points while that for the circular
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FIG. 1: Characteristics of inflow and spatial discretization

jet uses 18 x 10°. Note that the internal structure of the nozzle, such as considered in Chakrabarti et al. [56], is not
simulated since differences between plume development cannot then be ascribed solely to the nozzle exit profiles of
interest. Prior mesh-converged results using similar grid sizes have successfully reproduced experimental measurements
of mean centerline velocity fields, near-acoustic field, turbulent kinetic energy, and shallow-angle and farfield noise for
both circular [45, 48] and rectangular jets [56].
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FIG. 2: Iso-surfaces of Q-criterion (Q=1) colored by streamwise velocity
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FIG. 3: Contours of mean streamwise velocity at several axial stations showing the spatial development of the jets

III. OVERALL FLOWFIELD FEATURES

Figure 2 shows instantaneous snapshots of each simulated flowfield using iso-surfaces of Q-criterion (@ = 1) colored
by the streamwise velocity component. The wide spectrum of scales resolved by the LES can be clearly discerned.
The figures also show increased jet spreading rate with AR, similar to the observations of Grinstein [23], Gutmark
and Grinstein [24], who linked this behaviour to higher entrainment than in circular jets; this also results in large
scale structures spreading further from the axis in higher AR jets.

The mean flow field facilitates a more systematic assessment of the spatial development with implications to
the unsteady dynamics. For instance, in circular jets, the potential core length is correlated with the length-scale
across which coherent structures grow and decay prior to turbulent breakdown and is significant for jet aeroacoustic
modeling [11]. Figure 3 shows contours of mean streamwise velocity at several axial stations for each jet. The
square jet (AR = 1) cross section undergoes a 45° rotation downstream of the nozzle exit, so that the diagonals are
reoriented along the initially flat sides of the jet; this is most clearly evident at £ = 5D,. Similar phenomena observed
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FIG. 4: Effect of the AR on the length of the potential core shown using streamwise mean velocity

in triangular jets have been associated with corners in nozzle shapes [24]. For square jets, the effect is more pronounced
for lower inflow turbulence levels [57]. By « = 10D., however, the square jet (AR = 1) displays an axisymmetric
cross-section and is not very different from the circular jet at the same axial station. The jets from the higher AR
nozzles however, develop differently, since they combine the effects of the corners in the nozzle geometry with the
influence of unequal characteristic lengths as in elliptic jets [29]. Crucially, these jets do not evolve to an axisymmetric
form. Axis-switching is evident in the AR = 4 and AR = 8 jets, resulting in a predominantly elliptical mean flow
cross-section that is wider along the minor axis plane by /D, = 10 and /D, = 12 respectively. Axis-switching of
high AR rectangular and elliptic jets is also more pronounced for low nozzle exit turbulence levels as noted in the
previous section.

The collapse of the potential core is examined using the mean streamwise velocity. Values along the jet centerline
are shown in fig. 4a. along with the experimental data of Samimy et al. [42] for the circular jet; the undulations in
mean streamwise velocity near the nozzle exit are caused by a weak shock train in the core of the jet and result from
a slight mismatch between the reservoir and ambient conditions [43]. Similar to previously reported computational
studies where the inflow conditions are not known [46, 47, 58], the experimental core length is employed as a reference
to highlight the decay rate downstream of the potential core collapse. The potential core length of the rectangular
jets is smaller than that of the circular jet, and decreases with AR. This is most evident for the AR = 8 jet whose
potential core length (based on 90% of the jet exit velocity) is about 3D, shorter than the circular jet. The reason is
evident from the cross sectional plane data of fig. 4: increasing AR while maintaining the nozzle exit area results in a
shortening of the minor axis length (fig. 1a) and thus the distance between the shear layers on the longer nozzle sides.
These growing shear layers converge at relatively shorter streamwise distances from the nozzle exit. This effect was



investigated by Chakrabarti et al. [56] in the context of an AR = 2 rectangular jet and by Chakrabarti et al. [37] for
an AR = 4 jet. These results are consistent with those of Krothapalli et al. [59], who modeled the decay of the mean
centerline streamwise velocity of a low speed, high AR jet, with power laws for three distinct regions. For such jets,
shear layers on the minor axis plane converge to the centerline within a shorter streamwise distance compared to those
on the major axis plane, resulting in a streamwise velocity decay that follows the same power law as a planar jet. The
axisymmetric power law for streamwise velocity decay was recovered further downstream. While the present, much
higher velocity, rectangular jets do not exhibit these distinct decay regions, the convergence effects of the shear layers
on the minor axis plane towards the centerline is similar and manifests as a decrease in the potential core length.

For subsequent reference, the OASPLs are examined to delineate the effect of the AR on acoustic intensity and
directivity. The Ffowcs-Williams and Hawkings (FWH) analogy [60] is used in the frequency domain as in Mendez
et al. [61]. Data over 100 characteristic times (defined based on the jet exit velocity and nozzle equivalent diameter)
were interpolated on a cylindrical surface three equivalent diameters away from the axis of each jet. The FWH surface
extends to the downstream end of the domain, where eddies are dissipated out using sponge zones, precluding the need
for end caps discussed by Mendez et al. [61]. The farfield acoustic spectra (Sound Pressure Levels (SPL)) are obtained
at several geometric points around the jet and the OASPL is then obtained by integrating across the frequency band
of interest (Stp,€[0.1,1]). A validation exercise for this procedure may be found in Chakrabarti et al. [37]

The azimuthal and polar angles with respect to the nozzle exit are shown schematically in fig. 5a. Figure 5b
through d display the variation of the OASPL with polar angle (0) at various azimuthal angles (¢) for each jet
simulated. The square jet (fig. 5b) is acoustically similar to the circular jet, as evidenced by its axisymmetric noise
intensity and close correspondence with the peak radiation intensity and direction of the latter. With increasing AR,
however, two key trends become apparent. First, the axisymmetry of the farfield acoustic radiation is distorted; for
the AR = 8 jet, a 2 dB variation in noise intensity is observed around the azimuth (fig. 5d). The minor axis plane
of this jet is louder than the major axis plane, matching the observations of several previous studies on rectangular
jets [31, 62]. Second, with increasing AR, the peak acoustic radiation decreases slightly and its direction moves
progressively to lower polar angles (towards the sideline direction), similar to the results of Bridges [31].

IV. FLUCTUATION FIELDS EXAMINED

The most common variable used for azimuthal mode decomposition of circular jets is typically the pressure fluctua-
tion, p’ [7, 11, 14, 20, 63]. In regions far from the turbulent fluctuations, the relationship of p’ to the acoustics is direct.
In the near-acoustic field, however, p’ is characterized by both acoustic and hydrodynamic content [64, 65]. A direct
observable consequence is the scale disparity between the pressure fluctuations in the near versus farfields of jets [10].
This property of p’ can affect conclusions on the convergence of azimuthal modes, and motivates approaches to isolate
an acoustic component for analysis. p’ splittings have been derived through several data driven techniques [65-67].
An alternative definition of an acoustic field, that avoids user-defined criteria, has recently been obtained through
the physics-based decomposition provided by momentum potential theory [38]. The approach, summarized below,
splits the turbulent field into FT components, i.e., hydrodynamic, acoustic, and thermal fluctuations. Application
to LES of circular jet flows [48] reveal several attractive properties. The acoustic component displays a jittering,
spatio-temporally modulated wavepacket form with radial decay rate, farfield Power Spectral Density (PSD) and
phase speeds that are consistent with those expected from the literature. More pertinent to this work, the acoustic
component also yields better convergence of parameters for kinematic farfield noise models, than p’ [39]. In order
to extract the FT components, a Helmholtz decomposition of the “momentum-density” field (pu) is used to define
(vector) acoustic (irrotational and isentropic fluctuations, —V)/,), thermal (irrotational and isobaric fluctuations,
—Vl.)) and vortical/hydrodynamic solenoidal fluctuations (B’) components. The vector fields satisfy the following
governing equations [38]:
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The spatio-temporally resolved fluctuation fields from the LES are used as the source fields of the Poisson equa-
tions 7 and 8 to obtain the acoustic potential (¢4) as well as the total irrotational potential (¢’). The latter, along
with the LES data for the “momentum-density” field (pu), is then used to evaluate the hydrodynamic fluctuations
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FIG. 5: Variation of farfield OASPL (Over All Sound Pressure Level) with polar angle for jets of various AR

per equation 9. Finally, the thermal fluctuation potential (¢.) is obtained using equation 10. Algorithmic details and
additional properties of the decomposition may be found in [48, 68].

Figure 6 shows instantaneous iso-surfaces of the the acoustic, hydrodynamic, and pressure fluctuations for each
case. Here and below, the streamwise components of acoustic and hydrodynamic fluctuations ((95&_; and B.) are
plotted; these are the largest components, and facilitate better contrast because of their positive and negative values.
For s1rnphclty, 4 will be referred to as the acoustic fluctuations (or component). The magnitudes of the iso-levels
are chosen to ellclt the main components of the jet; these confirm that even in the rectangular cross-section cases,
the hydrodynamic fluctuation magnitude is much larger than the acoustic component. The circular jet results are
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FIG. 6: Iso-surfaces of 3D snapshots of the pressure fluctuations (first row) from the LES compared with those of
the acoustic (second row), and hydrodynamic fluctuations (third row) extracted from the simulated flow fields

similar to those described in the literature [39, 48]. The rectangular jets show corresponding features: hydrodynamic
fluctuations are dominated by axially extended structures, reflective of a broad spatial wavenumber range and chaotic
underlying jet turbulence, while acoustic fluctuations exhibit a more organized wavepacket structure with greater
coherence and a compact radial support. Indeed, the acoustic fluctuations for all cases resemble a spatially modulated
wavepacket with an envelope marking the growth, saturation, and decay of the waves downstream of the nozzle exit.
The differences in spreading characteristics with change in AR are captured primarily by hydrodynamic fluctuations.

The pressure field shows elements of both hydrodynamic and acoustic components. The initial region has the
nature of a spatially growing wavepacket, similar to the acoustic fluctuating field. However, further downstream,
the disorganized structuye more closely resembles the hydrodynamic component. A key distinction between the
acoustic fluctuations (%ZJ—IA) and p’ is thus that the former diminish rapidly beyond the potential core, whereas the
latter continue to grow. This has significant implications in statistical convergence of the azimuthal decomposition
properties of interest, as discussed further below. In the results below, ag—ag“ will be used most frequently, though select
results with p’ will also be put forth for reference purposes.

V. AZIMUTHAL MODES IN RECTANGULAR JETS

The advantages of rapid convergence of fluctuation statistics for circular jets, which allows modeling with only a
few modes, motivates an examination of these statistics for nearfield rectangular jet behavior.
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FIG. 7: Polar plots depicting spatial distributions of the two leading azimuthally varying Fourier modes, with nozzle
outline for orientation

A. Decomposition ansatz

The Fourier decomposition is introduced in the azimuthal direction (¢) in a different manner than for circular jets.
Specifically, rather than the more commonly used complex exponential form [14, 18, 19],

oo

a@,r 6,0 = 3 Gulert)e™ (11)

m=—0o0

the following closely related ansatz provides a more convenient representation and interpretation of non-axisymmetric
mechanisms:

Q('ra T, ¢7 t) = qg (l‘, T, t) + Z qz,n (l‘, T, t)cos(m¢) + an (JI, T, t)szn(m¢) (12)

m=1

where, ¢ (x,r,t) and ¢}*(x,r,t) refer to the 2D spatio-temporal cosine and sine Fourier coefficients respectively and
m refers to the azimuthal mode number, and:

=y [ awronds  ar = [ qwronesmods  a =2 [ awrodsnmeds (13

The relationship between the coefficients of Eq. 11 and 12 is

. qy’ +iqy" . -
Gm = %b; Gm = Q"1 (14)

Thus, while the complex exponential ansatz for the Fourier series uses a single complex amplitude to retain both
the magnitude and phase information of the m!* azimuthal mode, the sine-cosine ansatz of equation 12, introduces
two real coefficients to retain the same information. For instance, the first azimuthal mode (m = 1) is given by the
superposition of two waves, ¢l (x,r,t) cos(¢) + ¢; (z,r,t) sin(¢). These will be individually referred to as m = la and
m = 1b, respectively, in the subsequent text. Similarly, the two waves associated with m = 2 will be referred to as
m = 2a and m = 2b.

The mechanisms associated with each of the above modes can be deduced from their spatial distributions, similar
to the use of Mathieu functions for elliptical jets by Kinzie and McLaughlin [35]. For illustration, fig. 7 shows the
components of the first and second azimuthal modes (m = la, 1b and m = 2a, 2b respectively), together with a high AR
nozzle exit for orientation. The mode shapes and, by extension, their individual physical interpretations necessarily
depend on the choice of the azimuthal origin, ¢ = 0°, with respect to the major or minor axes. Choosing one of
these for ¢ = 0 greatly simplifies the analysis because of symmetry considerations, as shown below. Following Bridges
[31], ¢ = 0° is assigned to the minor axis plane of the nozzle exit (positive y-direction). Thus, mode la represents
fluctuations that are out of phase on either side of the minor axis (fig. 7a), and are associated with flapping motion in
the minor axis direction. Correspondingly, mode 1b (fig. 7b) captures flapping motion along the major axis direction.
Modes 2a and b are associated with more complex mechanisms. For elliptical jets, Kinzie and McLaughlin [35]
associate mode 2a (fig. 7c) to “pinched” elliptical fluctuations and mode 2b (fig. 7d) to off-axis fluctuations.



12

Pressure fluctuations(p’) Acoustic fluctuations (""’ﬁ/ax)
. 2D plane oo
Q1 - S — 00 i 0
> Wwippd ) % ' L0
O 1
S
0

~ ] | M=ol
%—:_1- 5 K @a a © 9 ] @ @
"?"?0’. ds \ S ONE e 002 'el'ls " L \b ! QO I -0.01

S} A R oA |° g \ - z Yalt Ig.m
| amepag R | e T

0
) m=2a | Noo2 — 24 | oo
N o[ e | (O e=nl
mo eVaacy % © j-0.02 DA S\ B ioo
| o o] I
= Rl S Sl e R B VAS g o X
00 2 4 6 8 10 0 2 4 6 8 10

FIG. 8: Contours of pressure perturbations (p/, left column) and acoustic fluctuations (%, right column) of the

circular jet on a 2D cross section along with their leading azimuthal Fourier modes

B. Rectangular modal dynamics

The well-known azimuthal modes of the circular jet [6, 14] are summarized for subsequent reference. The left
column of fig. 8 shows, starting from the top, instantaneous snapshots of p’ on a 2D slice of the circular jet and
the leading azimuthal Fourier modes, axisymmetric (m = 0), la, 1b, 2a, and 2b respectively. A coherent wave-like
structure related to the Kelvin-Helmholtz shear layer instability is apparent near the nozzle exit. Further downstream,
however, the jet breaks down into finer scale turbulence. Mode m = 0 exhibits more coherence and filters out the finer
scale turbulence downstream. The increased coherence illustrates the advantages afforded by the azimuthal mode
decomposition in general, and the m = 0 mode in particular for round jets; its use in the construction of two-point
wavepacket model parameters are discussed in Jaunet et al. [22]. In contrast, the finer scales in the raw pressure field,
which are not as acoustically efficient, are retained in the higher azimuthal modes of the jets. No clear qualitative
differences are evident between the higher azimuthal wavenumber pairs, m = la, m = 1b or m = 2a, 2b. The similar
spatial distributions and fluctuation amplitudes of each pair is consistent with the discussion of fig. 7 and are the
consequence of polar symmetry of circular jets, which is lacking in the rectangular jets examined below.

The right column of fig. 8 displays the corresponding results with the streamwise acoustic fluctuation variable (M}’4 ).

Even without azimuthal decomposition, % displays a more organized spatial distribution and greater coherence

compared to the raw pressure perturbation field; this readily highlights the advantage of this FT component over p’,
particularly in the region downstream of the potential core collapse. The m = 0 mode has the form of a spatially
localized wavepacket with a growth and decay envelope representing, in the aggregate, acoustic sources for downstream
shallow angle noise radiation. The dominant axial length-scale of this wavepacket is a few jet diameters larger than
the potential core length, beyond which the fluctuations diminish. Higher modes of the acoustic fluctuations, la, 1b,
2a and 2b, also display decay in the fluctuation magnitudes, evident from the decreasing saturation of the contours
in the figure. Furthermore, these higher modes also show successively sharper cutoff with streamwise distance from
the nozzle exit. Both, the decreasing fluctuation magnitude and shorter streamwise lengths of the higher modes, are
crucial in the acoustic source modeling of circular jets [19].
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FIG. 9: The streamwise acoustic fluctuations (%) of the AR =1 jet on the symmetry plane and its leading
azimuthal modes

Figure 9 shows % contours on the symmetry plane of the AR = 1 jet together with the three leading azimuthal
modes (since p’ fluctuations are less illustrative, they are not shown). As in the case of the mean flow, the AR =1
fluctuation data also show similarities with round jets, including the initial wave-like structure near the nozzle exit
followed by a breakdown into more chaotic finer scale structures further downstream. Likewise, the m = 0 shows more
coherence than the raw data, and a rapid fluctuation decay downstream of the potential core. The higher azimuthal
modes exhibit progressively more rapid streamwise decay. These similarities with the circular jet are not unexpected
given the rapid transformation of the square jet to an axisymmetric mean cross-section (fig. 3b).

The higher AR nozzles (AR = 4 or AR = 8) however, do not transition to axisymmetric cross sections in the
domain of interest as discussed in the context of fig. 3. Figure 10 shows the corresponding % results on the major
and minor axis planes of AR =4 and AR = 8 jet in the left and right columns, respectively. The major (black) and
minor (magenta) axis liplines are also marked with dashed lines to provide a scale for reference. On the minor axis
planes of both jets (fig. 10 first row), the structures associated with the initial breakdown along the lipline are similar
to the circular and AR = 1 jets, but significantly closer to the centerline of the jet. However, on the major axis plane
(second row), the fluctuation pattern is different. Two sets of structures are evident marked A and B respectively.
The former sequence is closer to the centerline, with phase similar to the structures on the minor axis planes of the
respective jets; these are the signatures of the lipline structures of the minor axis shear layer that essentially protrude
on the symmetry plane. The outer structures, marked B, are those that evolve due to the major axis shear layers.
This higher complexity is a consequence of the disparity between the distances of the major and minor axis liplines
from the centerline of the jet, as the AR is increased. A similar effect in the context of an AR = 2 jet was discussed
by Chakrabarti et al. [56]. By an axial distance of 2 = 4D,, however, these separate wave-trains cannot be clearly
distinguished from each other.

The spatially localized wavepacket structure remains evident in the m = 0 modes. The shear layer structures
growing along the major axis lipline (designated B earlier) do not display a discernible signature on the axisymmetric
mode. Being further away from the axis, they subtend a relatively small azimuthal angle on the centerline and
thus have a small contribution to the azimuthal averaging operation used to obtain the m = 0 mode (equation 13).
Although qualitatively similar to the m = 0 mode in the circular and square jets, the decay with streamwise distance is
more rapid, and the lobes become more radially extended. The former effect is related to the decrease in the potential
core length with increasing AR, as discussed previously, while the latter effect is due to the effective averaging of the
shear layer around the azimuth and is evaluated quantitatively in a subsequent section.

Higher azimuthal modes exhibit significant differences from their circular and square counterparts. The two com-
ponents of m = 1, m = la and 1b respectively in fig. 10, are distinct from each other, and emphasize fluctuation
distributions from shear layers on the minor and major axis planes respectively. This is consistent with the directivity
inherent in the two coefficients as discussed in the context of fig. 7. The chosen ansatz (equation 12) thus retains the
dynamics of the two symmetry planes of the rectangular jet for m = 1. As a consequence, m = 1b (the sine coefficient)
is chaotic and dominated by finer spatial scales. In contrast, m = la (the cosine coefficient) has a more organized
structure, with greater fluctuation magnitudes, which reflect the dominance of flapping motions along the minor axis
plane. This is the primary instability mechanism of rectangular and elliptical jets as shown by theoretical [69] and
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FIG. 10: Contours of streamwise acoustic fluctuations (%> of the AR = 4 (left column) and AR = 8 (right
column) jets shown on the major and minor axis planes along with the leading azimuthal Fourier modes

experimental [27, 28] studies. The manifestations of these differences between the two coefficients of the first mode
on the near-acoustic field asymmetry are discussed in a subsequent section. The coeflicients of the second mode
m = 2a and 2b, however, exhibit more chaotic structures that do not resemble the fluctuation pattern on either of
the symmetry planes of the jets. This is consistent with the higher complexity of the m = 2 mode discussed in the
context of fig. 7.

C. 3D reconstruction of modes

Overall, both circular and rectangular jets display similar decreases in the fluctuation magnitudes of the higher
azimuthal modes. The greater influence of lower modes suggests that procedures developed for circular jets, that
consider only a few dominant Fourier modes, may also apply to high AR rectangular jets. This convergence of
instantaneous statistics in the azimuthal Fourier space, as well as the dynamics of the individual modes, is now
clarified by considering 3D reconstructions of the leading azimuthal modes. Qualitative considerations are presented
first, followed by more quantitative evaluations.

3D mode shapes are reconstructed using the 2D Fourier coefficients (p{'(r,z,t) and p}*(r,x,t)) and their corre-
sponding azimuthal variations (cosm¢ and sinme) according to equation 12. Figure 11 shows the instantaneous 3D

snapshots of the three leading rectangular jet azimuthal modes using iso-surfaces of the same value (%: +0.007)
and compares them to those of the circular jet. For the AR =1 jet, a steep drop in higher azimuthal mode content is
evidenced by the reduced spatial support of the iso-surfaces and the higher azimuthal modes become further restricted
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FIG. 11: Iso-surfaces (%: +0.007) showing the reconstructed 3D azimuthal mode shapes of an instantaneous
snapshot of the acoustic fluctuations in the nearfield of the various AR jets

to the near nozzle regions. These observations are quite similar to those by Cavalieri et al. [70] in the context of the
higher azimuthal modes of circular jets. This reiterates a crucial observation, since the streamwise non-compactness
of the acoustic source field is a necessary criterion for superdirective acoustic radiation from a jet [19, 21].

More interestingly, despite the persistent mean asymmetry of the higher AR jets, their higher azimuthal modes
(fig. 11) also show similar characteristics and indeed, an even steeper drop off in amplitudes. This observation is
associated with the relative simplicity of the acoustic fluctuations in the high AR rectangular jets (fig. 6 second row),
compared to the hydrodynamic content of the turbulent eddies (fig. 6 third row). While the former is spatially localized
with distributions that are relatively independent of the AR, the latter clearly highlights the greater spreading rate
and the more chaotic nature of the higher AR jets. The 3D mode shapes at higher AR also further highlight the
progressively diminishing streamwise extent of the azimuthal modes of the rectangular jets compared to the circular
jet as discussed previously in the context of the 2D Fourier coefficients. These results show promise regarding the
potential suitability of the cylindrical coordinate system, and by extension the Fourier basis in the azimuthal direction,
in describing the instantaneous dynamics of rectangular jets.

As an additional qualitative assessment, the compact support in the chosen Fourier basis is evaluated by recon-
structing the flow using only a few leading modes. A partial reconstruction considering only the leading M azimuthal
modes is obtained from:

M
qr(x,r@,t) = Z q (x, r,t)cos(me) + qp* (x, r,t)sin(me) (15)

m=0

These partial reconstructions are compared with the instantaneous fluctuation snapshot of the AR = 8 rectangular
jet in fig. 12. The first row of fig. 12 shows the partial reconstructions of 85%‘ using progressively larger numbers
of azimuthal modes up to M = 5. The original 3D snapshot of acoustic fluctuations is repeated below each partial
reconstruction for comparison purposes in the second row. The reconstruction error is obtained as the difference

between the partial reconstruction and the LES snapshot:

EM(:L‘,T', (b,t) :q(.T,T‘, ¢7t) —LjM(!E/ﬂ (bat) (16)
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FIG. 12: A comparison of partial reconstructions using a few leading azimuthal modes to the original instantaneous
snapshot of the acoustic fluctuations in the AR = 8 rectangular jet. The reconstruction error for each of the partial
reconstructions is also shown

is plotted in the third row of fig. 12. The reconstruction error decreases rapidly with M, evident from the close
correspondence between the five mode reconstruction (§s) and the original snapshot. Similar results for the AR = 4
jet are shown in Chakrabarti et al. [37] Interestingly, with the consideration of additional modes, the streamwise
extent of the reconstruction error also reduces rapidly and the error is restricted to only the near nozzle regions for
reconstructions with four or five azimuthal modes.

D. RMS reconstruction accuracy

A quantitative assessment of the reconstruction is performed to compare the convergence rates of the azimuthal

’
Fourier series for different ARs, as well as to differentiate between the rates of convergence of p’ and ?—;‘ for a given
jet. A meaningful comparison is predicated on an appropriate error norm; here we choose the volume integrated mean
square error given as:

B fv %fOT evi(z, 7, ¢, t)2dtdV
fv T fo (z,7, ¢, t)2dtdV

(17)

The denominator is the RMS of the fluctuation field being analyzed; it normalizes the error to yield the fraction of
the total fluctuation energy of the field. The volume of integration is a cylinder containing all acoustically significant
regions within the jet. Thus, the streamwise and radial extents are x/D, = 25 and 3D,, respectively, which coincides
with the radial location of the FWH surface.

Figure 13 compares the reconstruction error norm as a function of number of modes used for reconstruction for the
AR = 4 and AR = 8 rectangular jets with the reference results for the circular jet. The error norm decreases with

number of modes as anticipated. In each case, the axisymmetric mode of %b—; exhibits a lower reconstruction error
than p’ and the error drops at a sharper rate, indicating a more rapid convergence in the azimuthal Fourier space. To

highlight this, the figures also include a plot of the 2 0 error, shifted to match the pressure fluctuation reconstructions
errors for m = 0 alone. Thus, the acoustic fluctuations, exhibit lower-rank behaviour in azimuthal Fourier space with
lower reconstruction errors compared to the pressure ﬁuctuations. This confirms that the advantage of employing the
acoustic fluctuations instead of the raw pressure fluctuation field in circular jets carries over to rectangular jets.
Second order statistics provide further insights into the behavior of the individual Fourier modes in establishing the
acoustic field. The modal energies (mean squared magnitudes) of the leading azimuthal Fourier modes are defined as:

- i
. [ iftm=0
%(Lﬂ_{%ﬁmlﬁm>0 .
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FIG. 13: Comparison of the rates of convergence for the circular jet (a), AR =4 (b), and AR = 8 (c¢) rectangular jets
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FIG. 14: Modal energies of the three leading azimuthal modes of the acoustic fluctuations in the non-axisymmetric
jets. The dashed line in the figure represents the lipline of the circular jet (y/D. = 0.5) for scale

For completeness, a derivation of the above expression is given in appendix A (equation AG). A similar definition for
the modal energies has been adopted by Faranosov et al. [71].
MWy

Figure 14 compares the spatial energy distribution of the leading azimuthal modes of =52 in the different jets.
The circular jet (fig. 14 first row) clearly exhibits the two major trends of decreasing modal energy and diminishing
spatial support with increasing mode numbers, which have facilitated reduced order modeling. Results for rectangular
jets (third and fourth rows) also confirm the progressively smaller energies of the higher azimuthal modes, at rates
that are generally commensurate with those for the circular jet. Thus, the property of rapid convergence of statistics
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FIG. 15: Streamwise variation of the radially integrated modal energies of five leading azimuthal modes for the
circular jet

with number of modes holds even for high AR rectangular jets which display features such as axis-switching. Two
trends of interest may be identified. First, modal energies exhibit a greater radial spread with increasing AR; this
is most evident from a comparison of the m = 0 energy distribution at the lipline (marked with a dashed line) of
the circular jet (y/D. = 0.5). This is consistent with the azimuthal averaging effect; the major axis shear layers are
geometrically further away from the axis, similar to the effect in fig. 10. The second trend concerns the decrease in
the streamwise extent of all azimuthal modes with increase in the AR, again most clearly evidenced by the marked
decrease in the streamwise extension of the m = 0 mode of the AR = 8 jet (see the first column of fig. 14). It
has been previously shown in the context of circular jets [11] that the streamwise extent of the acoustic sources is
correlated with the length of the potential core. This result holds for rectangular jets as well, since the decrease in
the streamwise length-scale of the acoustic sources [39] of the high AR jets is correlated with a progressive reduction
in their potential core lengths of the higher AR rectangular jets (fig. 4).

A suitable measure for a direct quantitative comparison of modal energies may be obtained as follows. Since the
radial distributions of modal energies vary with AR, comparing the energy magnitudes along a specific streamwise
line (as is common in circular jets) is not illuminating. This is evident from the fig. 14, where the dashed lines in the
figures mark the radial distance corresponding to the lipline of the circular jet (r = 0.5D,). In contrast to the circular
jet, where most of the energy for all azimuthal modes is concentrated around the » = 0.5D line, higher AR jets exhibit
a significantly greater spatial spread with only a fraction of the energy being contained along the r = 0.5D, line. An
integrated measure of energy magnitude, ¢:M% with radial distance at each axial station is thus employed:

M5 (g / (x,r)rdr (19)

where ¢ is the flow variable of interest (=2 w“ or p'). The radial domain of integration is again chosen from the axis to
r = 3D,, which is the location of the FWH surface and is sufficiently distant from the turbulent core for all modal
energies to have decreased by two orders of magnitude.

Figure 15 shows the integrated energies of the leading azimuthal modes of (a) together with corresponding results
for p’ (b) of the circular jet for reference. Near the nozzle exit, the separation of the energies between the azimuthal
modes is quite small for pressure, but not so for the acoustic component, whose m = 0 content is already much larger
than the others. Further downstream, the content of all modes increases; however, the increase is largest for the lower
modes. This reiterates the low-rank nature of fluctuation statistics in the azimuthal Fourier space and, therefore, a
rapid convergence in the three leading azimuthal modes. Figure 15 quantifies some of the previously noted features and

distinctions between pressure and acoustic fluctuations. While all azimuthal modes of % exhibit clear growth and
subsequent decay with streamwise distance, the integrated modal energies of p’ continue to increase for much longer
streamwise distances. This growth and decay envelope of acoustic fluctuations reveals a characteristic streamwise
acoustic source length-scale, which is a critical component of jet acoustic emissions, as discussed in Unnikrishnan et al.
[39]. Further, acoustic fluctuations exhibit a more rapid convergence in the azimuthal Fourier space as manifested by
the larger differences in modal energies with increasing mode numbers, most evident around x/D. = 5. Azimuthal
modes of p’ do not show as pronounced a drop-off in energy.
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The convergence properties of % are inherent in the defining Poisson equation 7, whose solution may be distin-
guished into homogeneous and particular components. The homogeneous solution component is relatively small, since
it depends on relatively distant far field boundary conditions, where ¢4 = 0. The particular solution component is
dependent on the nature of the source term, which connects pressure fluctuations, dp’/dt, to the acoustic potential,
¥4, and may be analyzed in Fourier space. To illustrate in two-dimensions (z — 6) for simplicity, equation 7 may be
written in cylindrical coordinates as:

1Pa  PYa 1O

—_ - r 20
r2 002 Ox? 2 Ot (20)
or, in wavenumber-frequency space,
2
m ~ W~
(T2 + ki)w = -3V (21)

where 12 A(kyr, kzym,w) is the Fourier transform of 1 4. 12?4 is thus directly dependent on 1/7\’ by a wavenumber-dependent
scaling factor.

~

-~ w p/
ba=—5——
(=)

In the quiescent farfield, where the speed of sound is constant, this relationship is greatly simplified [72]. While
the connection is not as straightforward in the nearfield, a key observation is that as the radial distance decreases,
the sensitivity of this relationship to azimuthal wavenumbers increases. Near the centerline of the jet, the higher
azimuthal modes have very low weights as the quantity m?/r? in denominator becomes large. In this region, therefore,
the acoustic fluctuations filter out the higher azimuthal modes that may dominate the fully turbulent dynamics, i.e.,
including non-acoustic components. Moving radially outward from the jet, the higher azimuthal modes are dissipated
faster owing to the physics of acoustic propagation. The combined result of these two effects manifests in the superior
convergence of the acoustic fluctuations in the azimuthal Fourier spectrum when compared to the pressure fluctuations.

(22)

The integrated modal energies of % and p’ for the rectangular jets are compared in fig. 16. The same trends as
observed for the circular jets persist; in particular, the energy content decreases for higher mode numbers. As such,
acoustic fluctuations of even high AR rectangular jets have appreciably low rank representation in the azimuthal
Fourier basis. This result further verifies the observation that despite the non-axisymmetric nature of the rectangu-
lar nozzle plume, significant simplifications of the rectangular jet may be achieved by considering only the leading
azimuthal Fourier modes, especially if % is employed instead of p’ as discussed previously in the context of fig. 13.
Additionally, with increasing AR, (i) the m = 0 mode becomes relatively more energetic compared to m = 1 and
(i) for all azimuthal mode numbers, the streamwise location corresponding to the peak value of the RMS shifts
progressively upstream and the post-peak reduction becomes steeper, especially when compared to the circular jet,
consistent with the decrease in potential core length with AR.

VI. AZIMUTHAL HOMOGENEITY CONSIDERATIONS

The fluctuations in an azimuthal Fourier basis retain the rapid convergence property even for rectangular jets,
implying that despite their higher complexity, the cylindrical coordinates are well suited to represent their acoustic
dynamics. However, as noted earlier in the context of the mean flow description, rectangular jets exhibit several
differences from circular jets, including axis-switching and non-axisymmetric farfield radiation. Given the relatively
negligible contribution of the higher azimuthal Fourier modes in all of the jets, these differences between the dynamics
of high AR rectangular and circular jets can only be associated with key differences in the dynamics of the leading
azimuthal modes. Indeed, a major point of distinction between circular and rectangular jets is that the former
exhibit azimuthal statistical homogeneity that greatly simplifies their modeling [14, 15, 19]. This section examines
the advantages afforded by the azimuthal homogeneity property in the context of the chosen Fourier decomposition
ansatz, and evaluates its applicability to rectangular jets.

The implication of azimuthal homogeneity in the context of Eq. 12 may be examined in the simpler notation that
suppresses explicit z and r dependence:

4(6:) = ao(t) + 3 am(t) cosme + by (1) sinmg (23)

m=1
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FIG. 16: Streamwise variation of the radially integrated RMS (iRMS) of the five leading azimuthal modes of the
acoustic (row 1) and pressure fluctuations (row 2) for the AR =1 (a,d), AR =4 (b,e), AR = 8 (c,f) jets

Homogeneity in the ¢ direction requires that the two point cross-correlation function depend only on the angular
separation, A¢ = ¢1 — P2, and not on ¢ itself [14]:

Q(d)h t)‘](¢2ﬂ t) = g(¢1 - ¢2) (24)

Here, (.) refers to an averaging operation in time. A direct consequence of this, as shown in Appendix A, is that the
individual Fourier modes obey the following constraints:

az, = b2, (25)
Umln = bmby = amb, = (26)

These may be interpreted by considering the sense of direction associated with the azimuthal modes, based on
the locations of the extrema of the sine and cosine functions, as discussed in the context of fig. 7. The first con-
straint (equation 25), therefore, reflects the polar symmetry property of circular jets; specifically, both cosine and sine
coefficients (a,, and b,, respectively) have identical statistics due to azimuthal statistical invariance.

The second constraint (equation 26) reflects the property that in the homogeneous and periodic direction, the Fourier
modes diagonalize the cross correlation matrix and are the spatial POD modes [15]. As a result, the decomposition
equation 23 has correspondence to the space-time variable separation achieved by POD, where the sine and cosine
functions represent the spatial POD modes and are mutually orthogonal in space by construct. By extension, the
Fourier coefficients (a,, and b,,), correspond to the temporal POD modes and must be mutually orthogonal in time,
as indicated by the above noted constraint.

These properties have simplified circular jet noise modeling efforts. For instance, POD analyses of the individual
azimuthal modes (instead of the full 3D dataset) are routinely used to develop reduced-order models [6, 20]. The
calculation of OASPL levels using azimuthal modes is also simplified because the mutual incoherence of the indi-
vidual azimuthal modes dictated by the statistical homogeneity (equation 26) permits fluctuation RMS value to be
represented as the sum of squares of the RMS values of the individual azimuthal Fourier modes [15, 19]. Thus, by
considering only the three leading modes for a circular jet, the energy of the overall fluctuation field is given as (see



21
appendix A):

ol +0 a3 +b
2 2

(¢,t) = ag + (27)
The azimuthal invariance of the fluctuation RMS value, as evidenced by the absence of the azimuthal angle ¢ on the
RHS of the above expression, implies that even if infinitely many azimuthal modes are considered, the overall RMS
of the fluctuations retain their axisymmetric form for a circular jet [15].

These considerations do not hold when two point correlations depend on the azimuthal angle; for example, in the
case of a rectangular jet, the correlation between points on the y (¢ = 0°) and z (¢ = 90°) axes (fig. 5a) respectively,
display different correlations with each other than those along ¢ = 45° and ¢ = 135°. This aspect manifests in the
near and farfield asymmetry of the rectangular jet dynamics, regardless of the rapid convergence in the azimuthal
Fourier basis shown previously. A generalized expression for the fluctuation RMS, applicable for azimuthally non-
homogeneous data, may be written as a function of the individual modal contributions as follows (derivation in
appendix (equation A5)):

212 2. 12
pean ai +bi a3 +b3
(¢7 ) 0 2 + 2

202 2.2
+a12 1cos2¢—&—a2 2 cos 4o

+ 2apaq cos @ + 2agby sin ¢ + 2agas cos 2¢ + 2agbs sin 2¢
+ 2a1by sin ¢ cos ¢ + 2a1as cos ¢ cos 2¢ 4 2a1ba cos ¢ sin 2¢
+ 2b1ag sin ¢ cos 2¢ + 2b1bs cos ¢ sin 2¢ + 2a9bs cos 2¢ sin 2¢

The complications associated with lack of homogeneity require consideration of additional terms to account for the

inequality of sine and cosine coeflicients (%) as well as modal interactions (@,,a, ), that must be modeled.
The generalized RMS expression (equation A5) aids in identifying physical mechanisms related to azimuthal inho-

mogeneities and asymmetry. For example, the term a%;bf is related to the dominance of flapping motions along the
major or minor axes planes. This is linked to the directivity given by cos2¢ and is visualized in fig. 7c. Thus, the
dominance of flapping motions along one axis results in the increase of the RMS in that direction and a reduction on
the other axis.

Equation 28 is generalized and does not take into account the specifics of the problem. Some simplification is afforded
by exploiting horizontal and vertical symmetry of rectangular jets about the minor and major axes respectively. The
directivity of their radiation can then only assume azimuthal harmonics of the form 2n¢. To elucidate this point, the
coupling between the axisymmetric and first azimuthal mode is reflected in the term 2agay cos ¢, whose associated
directivity, given by cos ¢, is shown graphically in fig. 7a. This yields an increase in acoustic intensity on one side of
the minor axis plane of the jet along with a reduction on the other, violating the underlying symmetry of the problem.
Further, among the even harmonics, the sine function (sin2n¢) results in a spatial variation that is antisymmetric
about the major and minor axis planes of symmetry. Thus, by exploiting the symmetry of the rectangular jet problem,
all terms resulting in directivities given by odd harmonics in ¢ as well as those containing even harmonics of the sine
function may be removed from the expression. This simplification is a direct result of the choice of the particular ansatz
for the Fourier decomposition used in this study (equation 12). Thus, the simplified expression for the fluctuation
RMS is given by:

212 2 12
7 a7y + bl as + b2
(¢7 ) O 2 + 2

22 2Z_2
+ it 5 L cos2¢ + a 2 cos 4¢ + 2agag cos 2¢

(29)

The terms related to azimuthal inhomogeneity are evaluated for the three non-axisymmetric jets in fig. 17. The
modal energy of the leading m = 0 mode is also shown (first row) to highlight the importance of inhomogeneous
processes relative to the dominant acoustic sources. Clearly, one of the most important contributors to the asymmetry
are the differences between the sine and cosine coefficients of the first azimuthal mode (modes la and 1b). The

preferential flapping in the minor axis direction noted in the context of fig. 10 manifests in larger values for a?

compared to b?. Indeed, in rectangular jets, the cosine and sine coefficients (a; and by respectively) represent distinct
physical processes on the major and minor axis planes. The preferential growth of instabilities and flapping motions
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FIG. 17: Contours showing the leading m = 0 azimuthal mode and spatial distributions of the dominant terms
associated with azimuthal inhomogeneity and acoustic radiation asymmetry for all simulated rectangular jets

along the minor axis plane has been shown to be a dominant dynamic feature of higher AR rectangular jets, and
hypothesized as a cause of asymmetries in the farfield acoustic radiation of jets [62]. In addition to the above, the
AR = 8 jet also exhibits a coupling between the axisymmetric and second azimuthal mode (@gaz) although it is much
weaker than the flapping mechanism.

Other important features evident in fig. 17 may be summarized as follows. The preferential flapping motions
manifested in the disparity between the sine and cosine coefficients of m = 1 (a2 — b?) occurs over a larger spatial
spread for the AR = 4 jet compared to the AR = 8 jet. This is similar to the reduction in the streamwise length-scale
of the higher AR jets due to a reduction in the potential core length. However, in both these rectangular jets, the
relative magnitudes and spatial spread of the flapping motions are much smaller compared to the m = 0 azimuthal
mode (apap). Furthermore, the square jet, shows a very small difference between the two coefficients of the first mode.
This is due to the added symmetry of the problem i.e., in addition to symmetry about the major and minor axes,
the square (AR = 1) jet is also symmetric along its diagonals (four fold mirror symmetry). Thus, any departure from
axisymmetry for the square jet must be of the form cos 4n¢. Preferential flapping along either of the planes bisecting
the sides in a square jet would result in an unacceptable asymmetry given by cos 2¢. Interestingly, several terms that
are not identically zero in square jets are found to be negligible, for example, a2 — b2, which would result in a fourth
harmonic in the azimuthal direction. This is consistent with the axisymmetric farfield acoustic radiation obtained for
the case of the square jet.

VII. REDUCED NEARFIELD MODEL

The above findings may be used to inform a reduced order model for the non-axisymmetric nearfield of rectangular
jets; for completeness the corresponding results for circular jets are also presented. Figure 18 displays the polar plot
distribution of azimuthal acoustic fluctuation RMS on the FWH surface for the circular (a) and the AR = 8 (b)
rectangular jets at the streamwise location of z/D, = 5, which corresponds to the peak acoustic radiation (in the
downstream shallow angle direction). As anticipated, the circular jet exhibits no variation in acoustic intensity with
respect to the azimuthal angle. In this case, due to the azimuthal homogeneity, the overall RMS obtained from
the LES can be faithfully reproduced by directly adding the modal energies of the individual azimuthal modes per
equation 27. The cumulative sum of the modal energies of the four leading azimuthal modes is shown using dashed
black lines. The m = 0 energy, shown by the dotted line, closest to the center of the plot accounts for 78% of the
observed acoustic intensity. The sum of the two leading modes, namely m = 0 and m = 1, constitutes 94% of the
total acoustic intensity and is quite close to overall RMS observed from the LES. Adding higher azimuthal modes
progressively recovers the LES results; for example, the sum of the first 3 azimuthal modes i.e. ¥m = 2) yields 97%
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FIG. 18: Azimuthal distributions of the acoustic intensity on the FWH surface at the streamwise location of the
maximal jet noise shown using polar plots for the circular and AR = 8 rectangular jets. Reconstructions of the
acoustic intensity using the cumulative sum (equation 27) of the m leading modal energies (indicated by the Y m
value) are shown for both jets

of the observed acoustic intensity. However, higher modal contributions diminish in consistency with the above noted
rapid convergence of fluctuation statistics.

Figure 18b shows the azimuthal variation of the nearfield acoustic intensity of the AR = 8 jet to highlight its
nearfield asymmetry. A schematic of the nozzle exit is also shown for orientation. A peak in the acoustic intensity is
distinctly visible on the minor axis plane which was shown previously (section III) to be the direction of the maximum
acoustic intensity of the AR = 8 jet. The difference between the minimum and maximum acoustic intensity (shown
in the figure using green and orange dashed lines) is about 15% of the average RMS around the azimuth. Bridges
[31], Kantola [62] also observed the minor axis plane of high AR rectangular jets to be louder. Figure 18c shows
reconstructions of the nearfield acoustic intensity of the rectangular jet following a procedure similar that used for
the circular jet in fig. 18a, i.e, using equation 27. This approach fails to capture the nearfield asymmetry of the
rectangular jet and results in under and overpredictions along the major and minor axis directions, respectively.

Thus, the terms associated with non-homogeneity, discussed in section VI, are crucial to the reconstruction of
the higher aspect ratio rectangular jets. This is shown in fig. 19 for all the non-axisymmetric jets. The nearfield
asymmetry of AR = 8 (fig. 19c¢.) is recovered by adding only two additional terms associated with inhomogeneity in

equation 29: 0.5(a? — b?) cos 2¢ and @paz, incorporating preferential flapping and the coupling of the axisymmetric
and second azimuthal modes, respectively. This corrected reconstruction shown using the magenta hatched line
successfully reproduces the asymmetry in the nearfield acoustic intensity. A similar situation is also visible for the
AR = 4 jet (fig. 19Db).

Interestingly, in line with its overall similarity to the circular jet, the square jet exhibits an azimuthally uniform
nearfield acoustic intensity (fig. 19a). As a result, a nearfield acoustic reconstruction assuming azimuthal homogene-
ity (following equation 27) gives a close approximation of the measured acoustic field. Adding the terms related
to the inhomogeneity has a negligible effect on the reconstruction. This is consistent with the relatively negligible
magnitudes of the inhomogeneity terms in the square jet (as shown in fig. 17).

The nearfield RMS acoustic intensity for AR = 4 and AR = 8 jets display preferential flapping along the minor
axis direction (0.5(a? — b?) cos 2¢); this is the dominant mechanism related to the nearfield asymmetry as evidenced
by fig. 17. The differences between the AR = 4 and AR = 8 jets may be highlighted by examining the flapping
term in both as a fraction of the axisymmetric modal energy. Figure 20 shows the importance of the primary term
representing flapping for both the AR = 4 and AR = 8 jets along a ray following the direction of maximum acoustic
radiation (0 = 150° from the upstream). The flapping effect term is dominant relatively close to the jet and is
commensurate with the axisymmetric modal energy. Further out along the shallow angle direction, clear differences
emerge between the two jets. While the relative importance of the flapping term decays rapidly for the AR = 4 jet,
it remains a dominant term for the AR = 8 jet accounting for approximately 10% of the axisymmetric modal energy.
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FIG. 20: Comparison of the relative importance of preferential flapping motions in rectangular jets along the
direction of peak acoustic radiation

VIII. CONCLUSIONS

The advantages of azimuthal Fourier decomposition, whose benefits are well established for circular jet analysis,
are evaluated for rectangular jets using Large Eddy Simulations and by projecting the fluctuations on a cylindrical
coordinate system. A related goal is to examine the effectiveness of such a decomposition for nearfield acoustic
reconstruction with a reduced order model. The three AR chosen, AR =1, AR = 4, and AR = 8 incorporate several
flow phenomena pertinent to rectangular jets, including rapid transition to axisymmetric cross section (AR = 1),
axis-switching (AR = 4), and azimuthal non-uniformity in farfield acoustic radiation (AR = 8). They also contain
other important features such as potential core length reduction and jet spreading rate increase with AR.

The utility of azimuthal Fourier decomposition is examined by replacing the commonly used complex exponential
ansatz with separate coeflicients for sine and cosine modes; this provides a more convenient representation of features
that do not display axisymmetric behavior. Fluctuations from all AR jets show rapid declines in higher azimuthal
mode content; as such, the convergence observed in circular jet data remains valid for rectangular jets. Even for the
AR = 8 jet, the use of the three leading azimuthal wavenumbers yields relatively small error in the instantaneous
fluctuation field as well as volume integrated measures. Consistent with circular jet modeling, the acoustic field from
a fluid-thermodynamic decomposition exhibits lower rank behavior than pressure.

The primary differences in plume evolution between rectangular and circular jets are evident in the first azimuthal
mode, whose sine and cosine coefficients contain the qualitatively distinct processes on the major and minor axis planes
of the rectangular jets. Further, a comparison of the spatial variation of the RMS acoustic fluctuation magnitudes
of the individual azimuthal modes indicates that the streamwise extent reduces with increase in the AR, consistent
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with a similar trend in the length of the potential core found in the corresponding mean flow fields.

Finally, the loss of azimuthal homogeneity in rectangular jets and the non-axisymmetric RMS fluctuations is an-
alyzed with a generalized expression for second order statistics in terms of the azimuthal modal energies. This
expression highlights, as a special case, the appreciable simplification afforded by an azimuthal homogeneity, as in
circular jets. For rectangular jets, significant simplifications are also shown to be possible by incorporating their two-
fold mirror symmetry. By analysing individual terms, preferential flapping along the minor axis direction is confirmed
as the dominant effect in loss of axisymmetry in rectangular jets. Rectangular jet modeling is, thus, greatly aided
by the rapid convergence of the fluctuation statistics in azimuthal Fourier space, as well as features of the general
expression for acoustic reconstruction as a function of the individual modal energies. These findings should facilitate
more advanced acoustic models for rectangular jets that leverage many of the mature techniques developed for circular
jets.
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Appendix A: Constraints on Fourier Modes Due to Homogeneity

To highlight some properties associated with azimuthal homogeneity we consider a spatio-temporal function f(¢,t),
with ¢ being periodic over 27. f(¢,t) may be written as a Fourier series:

F(@.t) = ao(t) + > am(t) cos(me) + by (t) sin(me) (A1)

Rapid convergence of the instantaneous statistics in the Fourier basis allows simplification by truncation of the series
beyond the dominant leading terms. If only the axisymmetric (m = 0) and first azimuthal (m = 1) modes are
considered, we have:

f(o,t) = ao(t) + a1(t) cos(¢) + by (t) sin(¢) (A2)
Azimuthal homogeneity imposes constraints on the Fourier coefficients a,, and b,, and may be written as:
F(@1,0) f(¢2,1) = g(¢1 — ¢2) (A3)

Here, (.) refers to an averaging operation in time. Substituting the truncated Fourier series (equation A2) in the
expression for the cross-correlation leads to:

F(61,0)f (92, 1) = ag + aF cos (¢1) cos (¢2) + b3 sin (¢1) sin (¢2)
+agar(cos g1 + cos d2) + aoby (sin @1 + sin ¢2) + a1 b1 (sin ¢y cos ¢o + sin ¢ cos ¢1)

The resulting expression is arranged such that terms involving the product of similar Fourier modes appear on the

first line and are referred to as self-terms (S). The terms on the second line represent interactions between Fourier

modes and are, thus, referred to as cross terms. The self terms may be further simplified by adding and subtracting
= ™

two terms, namely % sin (¢1) sin (¢2) and % cos (¢1) cos (¢2) to read:

S = a?+a?cos (1) cos (¢2) +Esin (¢1) sin (¢2) =

212 212
at + UTa ;— b cos (1) cos (¢2) + sin (¢1) sin (¢2)] 4 5 b [cos (1) cos (¢p2) — sin (¢1) sin (¢2)

which may be simplified to:

@+ el
S:a8+%cos(¢1—¢2)+ 12 L cos (¢1 + ¢2)
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On substituting the above form of the self-terms in the expression for the cross-correlation matrix, the following
expression is obtained:

2412
TG0 (62.1) = af + L cos (61— 62)
37
+— 5 L cos (¢1 + ¢2) + Goar(cos ¢1 + cos ¢2)

+a0b1 (sin ¢1 + sin ¢2) + a1 b1 (Sil’l ¢1 COS ¢2 + sin ¢2 COS ¢1)

The right hand side of the above expression is a function of angular separation (¢; — ¢2) alone, all terms on the second
and third line are zero for all values of ¢; and ¢5. This leads to two important classes of constraints on the individual
Fourier coefficients (ag, a1 and by):

®

2 =152, - The sine and cosine coefficients of a given wavenumber have equal RMS

® G0, = bbb, = amb, = 0 - The individual azimuthal Fourier coefficients are mutually uncorrelated
Under these conditions, the cross-correlation function is given by:
212

TG, 056 1) = @+ "L cos (61— 62)

and thus also satisfies the condition for circumferential isotropy, in that it is independent of the sign of the angular
displacement [14]. Thus f(¢1,t)f(d2,t) = g(¢1 — ¢2) = g(d2 — ¢1).

The constraints imposed on individual Fourier coefficients due to the statistical homogeneity also significantly
simplifies the reconstruction of the RMS fluctuations using Fourier modes. In general, the RMS of f(¢,t) in terms of
the three leading Fourier coefficients is given by:

F2(,t) = aT%—f—a?cos%ﬁ +Esin2¢+a7§cos22¢+%sin22¢)
+ 2Gpar cos ¢ + 2apby sin ¢ + 2apaz cos 2¢ + 2agbs sin 2¢

+ a1by sin ¢ cos ¢ + a1az cos ¢ cos 2¢ + a1 by cos ¢ sin 2¢

+ biaso sin ¢ cos 2¢ + by by cos ¢ sin 2¢ + asbs cos 2¢ sin 2¢

(A4)

The terms on the RHS of the above relation can again be split into self terms consisting of contributions from the
sine and cosine coefficients of the same azimuthal mode number (first two lines) and cross terms representing modal
interactions. Using trigonometric identities, the self terms in the above expression can be rearranged to:

2012 212
— +b as; +b
2o 1) — a2 ai 1 2 2
f(¢7) CL0+ 2 2
2o 252
il 1cos2¢+a22 2 cos 4o

+
(A5)
+ 2agay cos ¢ + 2apby sin ¢ + 2agas cos 2¢ + 2agbs sin 2¢

+ 2a1 b1 sin ¢ cos ¢ + 2a1az cos ¢ cos 2¢ + 2a1 by cos ¢ sin 2¢

+ 2b1ao sin ¢ cos 2¢ + 2b1 by cos ¢ sin 2¢ + 2a9bs cos 2¢ sin 2¢
This form facilitates an understanding of the physical mechanisms that contribute to an asymmetry, that is, a
dependence on ¢. All the terms in this expression, apart from those on the first line, represent physical processes that

are a direct result of the inhomogeneity of the statistics in the azimuthal direction.
The constraints due to homogeneity derived previously simplify the expression for the RMS to:

P4l 24

P00 —ag+ DA 2
2 2

Thus, the RMS of the function is given as the summation of the contributions of the individual azimuthal modes in

the homogeneous direction, and is independent of the angular position ¢. This crucial result implies that azimuthal
invariance of the RMS holds no matter how many individual azimuthal modes are retained.
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