
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Third-order structure function in the logarithmic layer of
boundary-layer turbulence

Jin-Han Xie, Charitha de Silva, Rio Baidya, Xiang IA Yang, and Ruifeng Hu
Phys. Rev. Fluids 6, 074602 — Published  6 July 2021

DOI: 10.1103/PhysRevFluids.6.074602

https://dx.doi.org/10.1103/PhysRevFluids.6.074602


On the third-order structure function in the logarithmic layer of1

boundary-layer turbulence2

Jin-Han Xie1a, Charitha de Silva2, Rio Baidya3, Xiang IA Yang4b, and Ruifeng Hu5c
3

1Department of Mechanics and Engineering Science, College of4

Engineering and LTCS, Peking University, Beijing 100871, PR China5

2School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, 2052, Australia6

3Institution of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Neubiberg, 85579, Germany7

4Mechanical Engineering, Pennsylvania State University, State College, PA, 16802, USA8

5Center for Particle-Laden Turbulence, Key Laboratory of Mechanics on Disaster9

and Environment in Western China, Ministry of Education, and College of Civil10

Engineering and Mechanics, Lanzhou University, Lanzhou 730000, PR China11

Townsend’s attached eddy hypothesis (AEH) gives an accurate phenomenological description of12

the flow kinematics in the logarithmic layer, but it suffers from two major weaknesses. First, AEH13

does not predict the constants in its velocity scalings; and second, none of the predicted velocity14

scalings can be obtained from the Navier-Stokes (NS) equations under AEH’s assumptions. These15

two weaknesses separate AEH from more credible theories like Kolmogorov’s theory of homoge-16

neous isotropic turbulence, which, despite its phenomenological nature, has one velocity scaling,17

i.e.,
〈
∆u3

〉
= −(4/5)εr, that can be derived from the NS equation. Here,

〈
∆u3

〉
is the longitudinal18

third-order structure function, ε is the time-averaged dissipation rate, and r is the displacement19

between the two measured points. This work aims to address these two weaknesses by investigating20

the behavior of the third-order structure function in the logarithmic layer of boundary-layer turbu-21

lence. We invoke AEH and obtain
〈
∆u3

〉
= D3 ln(r/z) + B3, where ∆u is the streamwise velocity22

difference between two points that are displaced by a distance r in the streamwise direction, z is23

the wall-normal location of the two points, D3 is a universal constant, and B3 is a constant. We24

then evaluate the terms in the Kármán-Howarth-Monin (KHM) equation according to AEH and see25

if NS equations give rise to a non-trivial result that is consistent with AEH. Last, by resorting to26

asymptotic matching, we determine D3 = 2.0 (at sufficiently high Reynolds numbers).27

I. INTRODUCTION28

Boundary-layer turbulent flows are ubiquitous and essential for numerous engineering applications and29

natural phenomena. In the vicinity of a solid boundary, there is a layer where the production and dissipation30

of turbulence kinetic energy approximately balance [1–4]. This layer is known as the logarithmic layer and31

is the focal point of many modeling works [5, 6]. For example, in his early work, Townsend [2] hypothesized32

that the flow in the logarithmic layer could be modeled as a collection of wall-attached eddies. Townsend’s33

attached eddy hypothesis (AEH) provides an accurate phenomenological description of the flow kinematics34

in the logarithmic layer [7–11], and it gives accurate predictions of velocity scalings in the logarithmic layer35

[12–15]. However, AEH suffers from two major weaknesses. First, AEH does not predict the constants in36

velocity scalings. For example, AEH predicts the second-order structure function as the following expression,37

i.e.,
〈
∆u2

〉
= 2A1 ln(r/z) + B2, but the Townsend-Perry constant A1 is undetermined (let alone the flow-38

dependent constant B2). Here, ∆u is the streamwise velocity difference between two points in the logarithmic39

layer that are displaced by a distance r in the streamwise direction, z is the wall-normal location of the two40

points. Here and throughout the paper, velocity normalization by the friction velocity uτ is implied. The41

second weakness of AEH is that the predicted velocity scalings cannot be obtained from the Navier-Stokes42

(NS) equations. For example, the correctness of
〈
∆u2

〉
= 2A1 ln(r/z) + B2 relies solely on empirical data43

[16, 17].44
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Davidson et al. [18, 19] proposed to address the first weakness, i.e., the prediction of the constants in45

the velocity scalings, by giving up on AEH altogether. The authors pointed out that AEH is only one of46

the many possible rationalizations of the experimental data. They argued that rather than hypothesizing47

about the spatial organization of the eddies, it would be more fruitful to hypothesize about the energy48

density E of l-sized eddies in the logarithmic layer. The authors proceeded by hypothesizing E(l) ∼ u2τ/l49

for l in the logarithmic layer. By matching the hypothesized log-layer energy density to that in the inertial50

range, the authors were able to get
〈
∆u2

〉
= 2A1 ln(r/z) + B2 and, more importantly, a prediction of the51

Townsend-Perry constant A1 = 1.81 (the measured value is, however, A1 = 1.25). Although Davidson and52

company did not explicitly resort to AEH, the hypothesized energy density E(l) ∼ u2τ/l is consistent with53

AEH: according to AEH, E(l) scales as u2τP (l) [2]; it then follows that E(l) ∼ u2τ/l because P (l) ∼ 1/l is54

the eddy population density.55

Addressing the second weakness requires the derivation of a known velocity scaling from the NS equation56

under the basic assumptions of AEH. This is non-trivial, and there is not too much literature on the topic.57

Marginally relevant studies are those that try to connect the basic assumptions of AEH to the NS equations.58

For example, Klewicki et al. [20, 21] analyzed numerical solutions to the NS equations and showed the59

presence of self-similar flow structures; Del Álamo and Jiménez [22], Sharma and McKeon [23], Moarref et60

al. [24], McKeon [25, 26], and Hwang and Eckhardt [27] showed that the (linearized/partly linearized) NS61

equations admit self-similar modes; Lozano-Duran and Bae [28] analyzed the length and velocity scales in62

the logarithmic layer and showed that they are consistent with AEH; Cheng et al. [29] identified attached63

eddies in low Reynolds number flows. The fact that one cannot obtain any AEH’s velocity scaling from64

the Navier-Stokes equations separates AEH from the more credible theories like Kolmogorov’s theory of65

small-scale turbulence. Despite its phenomenological nature, Kolmogorov’s theory of small-scale turbulence66

has a velocity scaling in the inertial range, i.e.,67

〈
∆u3

〉
= −4

5
εr, (1)

that can be derived from the three-dimensional NS equations under the assumption of high Reynolds number68

and flow isotropy [30–33]. Here, ε is the time-averaged dissipation rate, r is the two-point displacement, and69

the coefficient -4/5 is a direct result of the NS equations. In terms of coefficients in turbulence scalings, also70

relevant is the recent work by de Silva et al. [34]. The authors matched velocity scalings at small and large71

scales and determined the constants in the velocity scalings of 〈∆un〉 for r > z.72

This work aims to address the above-mentioned two weaknesses. We study the behavior of the third-order73

structure function. From a fundamental standpoint, the third-order structure is a useful statistical tool74

and have been used in the studies two-dimensional turbulence [35–37], turbulence with bidirectional energy75

transfer [38–40], and anisotropic sheared turbulence [41–43]. Hence, studying the third-order function would76

lead to better understandings of the boundary-layer turbulence. Also, because Eq. (1) is exact, matching77

to Eq. (1) will allow us to determine the constants in our expression of the third-order structure function78

in the logarithmic layer. The rest of the paper is organised as follows. We present the theory in section II79

followed by empirical evidence in section III. Concluding remarks are given in section IV.80

II. THEORY81

In this section, we investigate the behavior of the third-order structure function via AEH and the NS82

equations.83

A. Attached eddy hypothesis84

We derive the scaling of the third-order structure function from AEH. Per AEH, the flow in the logarithmic85

layer can be modeled as a collection of wall-attached eddies [2, 6], as sketched in figure 1 (a). The velocity86
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at a generic location in the flow field is modeled as a sum of the attached-eddy-induced velocity increments87

[13, 14, 44]88

u(z) =

Nz∑
i=1

ai, w(z) = bNz
, Nz =

∫ δ

z

P (z)dz, P (z) ∼ 1/z. (2)

Here, u(z) and w(z) are the instantaneous stream and wall-normal velocity fluctuations at a distance z89

from the wall in the logarithmic layer. ai and bi are the δ/2i-sized attached-eddy-induced streamwise and90

wall-normal velocity. Obviously, because both ai and bi are due to an eddy of size δ/2i, ai and bi are91

correlated. That is, 〈aiai〉 ∼ 〈bibi〉 ∼ 〈aibi〉 6= 0. Figure 1 (b) sketches how one can go about computing92

the attached eddy induced velocity. The streamwise velocity results from an additive process that adds up93

contributions from attached eddies whose heights are larger than z. The wall-normal velocity contains the94

contribution from the attached eddy of size z only. Nz is the number of wall-attached eddies that contribute95

to u(z). By definition, Nz equals the integration of the eddy population density P (z) from z, the height of96

the smallest wall-attached eddy that affects the velocity at the wall-normal height z, to δ, the height of the97

largest wall-attached eddy in the flow. Because the sizes of the wall-attached eddies scale as their distances98

from the wall, the eddy population density P (z) is proportional to 1/z.99

It follows from Eq. (2) that the third-order moments in the logarithmic layer is:100

〈
u3
〉

=

〈(
Nz∑
i=1

ai

)3〉
=

Nz∑
i=1

〈
a3i
〉
∼ Nz

〈
a3
〉
∼ ln(δ/z). (3)

Here, the cross terms 〈aiajak〉 = 0, for i 6= j 6= k, and
〈
aia

2
j

〉
= 0 for i 6= j because differently-sized101

eddies are not statistically correlated; ai’s are statistically similar and
〈
a3i
〉

=
〈
a3
〉
. Single-point logarithmic102

scalings like the one in Eq. (3) have two-point counterparts. For example, the single-point logarithmic103

scaling in
〈
u2
〉
∼ ln(δ/z) has the two-point counterpart

〈
(u(x+ r)− u(x))2

〉
∼ ln(r/z) [34]. While the104 〈

(u(x+ r)− u(x))3
〉
∼ ln(r/z) does exist, its derivation will be slightly different from its second order105

counterpart.106

Given two points that are displaced by a distance r in the streamwise direction, we have107

u(x, z) =

Nz∑
i=1

ai, u(x+ r, z) =

Nz∑
i=1

a′i (4)

where ai’s are velocity increments that contribute to (x, z) and a′i’s are velocity increments that contribute108

to (x+ r, z). It follows from Eq. (4) that the velocity difference is109

u(x, z)− u(x+ r, z) =

Nz∑
i=1

(ai − a′i). (5)

A large-scale attached eddy (colored yellow in figure 1 a) contributes the same increment to both (x, z)110

and (x + r, z), and a small-scale attached eddy (colored red in figure 1 a) contributes to neither (x, z) nor111

(x+ r, z). Hence, u(x, z)− u(x+ r, z) contains contributions from intermediate-sized eddies only:112

u(x, z)− u(x+ r, z) =

Nz∑
i=Nr

(ai − a′i), Nr ∼ ln(δ/r). (6)

Squaring both sides of Eq. (6) and taking ensemble average, we have the logarithmic scaling of the second113

order structure function114 〈
[u(x, z)− u(x+ r, z)]2

〉
∼ (Nz −Nr)(

〈
a2i
〉

+
〈
a′2i
〉
− 2 〈aia′i〉)

∼ (Nz −Nr)(
〈
a2
〉
− 〈aa′〉) ∼ (Nz −Nr) ∼ ln(r/z) = D2 log(r/z) +B2,

(7)
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FIG. 1. (a) A schematic of the attached eddies. An attached eddy is represented as an inclined line. The two points

are at a distance z from the wall and are displaced by a distance r in the streamwise direction. (b) Computing the

induced velocity of an attached eddy at a location in the flow field. The induced velocity is modeled by adding up

the induced velocities from eddies 1, 2 and 1’, 2’. Here, eddy 1’ is the mirror of eddy 1, and eddy 2’ is the mirror

of eddy 2. w1,2 and w1′,2′ are the wall-normal velocities induced by eddies 1, 2 and 1’, 2’, and u1,2 and u1′,2′ are

the streamwise velocities induced by eddies 1, 2 and eddy 1’, 2’. For a large eddy, here eddy 1, w1 is approximately

balanced by its mirror w1′ , and the wall-normal velocity at z is determined by the local wall-attached eddy only, for

which w2 is much larger than w2′ .

where D2 and B2 are two constants. The two constants are usually thought to be independent of z, and D2115

is usually considered to be universal [17, 34, 45]. Here,
〈
aia
′
j

〉
= 0 for i 6= j, 〈aiaj〉 =

〈
a′ia
′
j

〉
= 0 for i 6= j116

because differently sized eddies are statistically uncorrelated; a and a′ are statistically similar to ai and a′i.117

We can get an estimate of the third-order structure function following the same steps. Raising both sides of118

Eq. (6) to the third power and taking ensemble average, we have119 〈
[u(x, z)− u(x+ r, z)]3

〉
∼ (Nz −Nr)

(〈
aia
′2
i

〉
−
〈
a′ia

2
i

〉)
∼ (Nz −Nr)

(〈
aa′2

〉
−
〈
a′a2

〉)
∼ Nz −Nr ∼ ln(r/z) = D3 ln(r/z) +B3.

(8)

Again, differently sized eddies are not statistically correlated. The two terms
〈
aa′2

〉
and

〈
a′a2

〉
do not120

cancel because correlation in one direction is different from that in another direction. (In fact, in isotropic121

turbulence, we have
〈
aa′2

〉
= −

〈
a′a2

〉
due to symmetry.) The exact value of the two terms depend on the122

exact topology of an attached eddy and therefore is left undetermined in the present framework. AEH itself123

gives only the scaling but not the constants D3 and B3. Following previous studies [34, 46], the constant124

D3 is expected to be universal, and the constant B3 is expected to be flow dependent. Following the same125

steps, one can also get a logarithmic scaling for the third-order structure function of the spanwise velocity126 〈
∆v3

〉
∼ ln(r/z), whose behavior will not be the focus of this work. The complex anisotropic nature of the127

flow cannot be fully captured by the streamwise velocity’s streamwise structure function. However, measuring128

velocity correlations for ry 6= 0 and rz 6= 0 is not as straight-forward as measuring velocity correlations for129

ry = rz = 0 in an experiment, the latter requires one-point hot-wire measurements whereas the former130

requires simultaneous measurements at two points for various two-point displacements. Considering a lack131

of validation data for more general statistics and given the purpose of this work, we would study
〈
∆u3(rx)

〉
132

only.133134

In anticipation of the discussion in section II B, we discuss a few implications of AEH. First, the wall-135

normal velocity is solely determined by the local wall-attached eddy (see figure 1b and Ref [2] for a detailed136

discussion). Second, at a wall normal height z, the number of attached eddies that contribute to ∆ui is137

proportional to ln(r/z) (see figure 1a and Ref [47] for detailed discussion), and therefore any statistics that138

comprises of ∆ui is a function of r/z only. It follows that d(ui(x, z)− ui(x+ r, z + rz))/drz|rz=0 = 0 and139
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FIG. 2. (a) Auto-correlation of the wall-normal velocity in a Reτ = 5200 channel [16]. The subscript 1 and 2 denote

the two points. (b) Same as (a) but for
〈
w+

1 w
+
2 w

+
2

〉
+

〈
w+

1 w
+
1 w

+
2

〉
.

d(ui(x, y, z)− ui(x+ r, y + ry, z))/dry|ry=0 = 0 because slightly displacing either point in the wall-normal140

or the spanwise direction does not change the number of wall-attached eddies that contribute to the velocity141

difference ∆ui. In fact, following the discussion in Refs. [9, 47], if given a streamwise distance rx, the142

spanwise and the wall normal displacements make a difference only when ry > rxARy and rz > rxARz,143

where ARy and ARz are the aspect ratio of a wall-attached eddy. We note that the discussion here concerns144

the scales that are relevant to the logarithmic layer only. These derivatives, ∂/∂ry, ∂/∂rz, are 0 under the145

basic assumptions of AEH and for ry/z � 1 and rz/z � 1. These derivatives are not necessarily 0 at146

other scales [48]. In fact, the term ∂
〈
|∆u|2∆w

〉
/∂rz equals 2d 〈kw〉 /dz and is certainly non-zero (〈kw〉 only147

depend on z hence the total derivative). Here, by arguing that they are 0, we are arguing that the attached148

eddies, i.e., the large scales, do not contribute to these terms. In this particular case here, the term d 〈kw〉 /dz149

and the pressure-strain term are negligible as the dissipation and the production balance in the logarithmic150

layer [16]. Also, one can plot 〈kw〉’s and 〈wp/ρ〉’s spectra to confirm/repute the AEH’s conclusion, where k151

is the turbulent kinetic energy and p is the pressure fluctuation. Lee & Moser [49] reported these spectra in152

channel, and we see that both 〈kw〉 and 〈wp/ρ〉 are small and large scale contributions to these two terms153

are also small. Last, for some statistics that involves the wall-normal velocity, e.g., 〈w1w2〉, AEH only gives154

estimate for sufficiently large r/z. The behavior of 〈w1w2〉 for r/z ≈ 1 cannot be known unless one specifies155

the geometry of the attached eddies. Nevertheless, the behavior of 〈w1w2〉 for intermediate r/z (e.g., r/z = 2,156

3) should not depend on the exact geometry of the attached eddies and can be obtained from the Biot-Savart157

law [7, 50, 51]. To elaborate, as w(x, z) is solely determined by the attached eddy at (x, z), the correlation158

between w(x, z) and the velocity at any location in the flow field is solely determined by the eddy at (x, z).159

For sufficiently large r/z, AEH predicts 〈w(x, z)w(x+ r, z)〉 = 0. For intermediate r, the Biot-Savart law160

gives 〈w(x, z)w(x+ r, z)〉 ∼ 1/(r/z). A more detailed discussion of the application of the Biot-Savart law161

could be found in Ref [7]. The authors found that the intensity of an attached eddy decays as a function of162

∼ 1/r(r2+const). Taking the leading order term directly leads to 1/r. Figure 2 (a) shows 〈w(x, z)w(x+ r, z)〉163

as a function of r/z in a channel flow at the Reynolds number Reτ = 5200, and a −1 scaling is indeed found.164

Similarly, AEH predicts 〈w(x, z)u(x+ r, z)〉 = 0, 〈w(x, z)u(x, z)u(x+ r, z)〉 = 0 for sufficiently large r/z, but165

for intermediate r/z, 〈w(x, z)u(x+ r, z)〉 ∼ 〈w(x, z)w(x+ r, z)〉 ∼ 1/(r/z), 〈u(x, z)u(x+ r, z)w(x+ r, z)〉 ∼166

〈w(x, z)w(x+ r, z)w(x+ r, z)〉 ∼ 1/(r/z)—as correlations among these velocity fluctuations are due to the167

same attached eddy at (x, z). Figure 2 (b) shows 〈w(x, z)w(x+ r, z)w(x+ r, z)〉+〈w(x, z)w(x, z)w(x+ r, z)〉168

as a function of r/z, and, a −1 scaling is also found at r/z values that are relevant to the logarithmic range.169
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B. Navier-Stokes equations170

We evaluate the terms in the Kármán-Howarth-Monin (KHM) equation according to AEH and show that171

the remaining terms in the NS equations give rise to consistent results. Writing the transport equation for172

the second-order structure function in a fully developed plane channel and time averaging [52], we have173

∂
〈
|∆u|2∆ui

〉
∂ri

+ 2 〈∆u∆w〉 dU
dz

+
∂
〈
wc|∆u|2

〉
∂zc

=− 4 〈ε〉+ 2ν
∂2
〈
|∆u|2

〉
∂ri∂ri

− 2

ρ

∂ 〈∆p∆w〉
∂zc

+
ν

2

∂2
〈
|∆u|2

〉
∂z2c

.

(9)

Here, u = (u, v, w) is the instantaneous velocity fluctuation vector. v and w are the instantaneous spanwise174

and wall-normal velocity fluctuations. U is the mean streamwise velocity profile. x, y, and z are the175

streamwise, spanwise, and wall-normal directions. ∆ denotes the difference between two points that are176

displaced by r = (rx, ry, rz) direction, e.g., ∆u = u(x + r) − u(x) = u2 − u1 with the subscripts 1 and 2177

denote point 1 at x1 = x and point 2 at x2 = x + r. wc = (w1 + w2)/2, zc = (z1 + z2)/2, and we will later178

set zc = z1 = z2 = z as we consider horizontal displacement only. ε is the dissipation rate, ν is the kinematic179

viscosity. ri is the displacement between the two points in the three Cartesian directions. ρ ≡ 1 is the fluid180

density. p is the pressure.181

Before we examine the various terms in Eq. (9), we briefly review the literature on pressure fluctuations in182

the logarithmic layer. In an early paper [53], Jiménez and Hoyas examined channel flow DNS at Reτ = 2000183

and argued that pressure and spanwise velocity fluctuations have similar behaviors. In the past decade, higher184

Reynolds number data become available, and these data have led to new insights. In two recent works [54, 55],185

the authors examined data at higher Reynolds numbers and came to the conclusion that spanwise velocity186

fluctuations are large scale quantities and pressure fluctuations are small scale quantities. Specifically, at187

sufficiently high Reynolds numbers, velocity fluctuations in the logarithmic layer are dominated by the scales188

near the so-called “outer” peak (note that an outer peak exists in both the spanwise and the streamwise189

velocities’ premultiplied spectra), and pressure fluctuations are dominated by the scales near the inner peak.190

Hence, correlation between velocity and pressure should be small at sufficiently high Reynolds numbers.191

Now, we examine Eq. (9). For r/z < 1, the flow is approximately isotropic, and Eq. (9) reduces to the KHM192

equation (see section II C 1 for more details). For r/z and z values that are relevant to the logarithmic layer,193

the viscous terms are negligible, the pressure/velocity correlation is close to 0 because of the scale separation194

at high Reynolds numbers [54, 55], and the production balances the dissipation [1, 2]195

ε ≈ −〈uw〉 dU
dz

=
u3τ
κz
, (10)

where −〈uw〉 = u2τ in the constant-stress layer (logarithmic layer), U = 1/κ ln(z+) + B is assumed with196

B ≈ 5.0, and κ is the von Kármán constant. Hence, for r/z and z in the logarithmic layer, Eq. (9) becomes197

∂
〈
|∆u|2∆ui

〉
∂ri

+
∂
〈
wc|∆u|2

〉
∂z

= 2 〈u1w2 + w1u2〉
uτ
κz
. (11)

Per AEH,
〈
∆u2∆ui

〉
,
〈
wc∆u

2
〉
, and 〈u1w2 + w1u2〉 are only function of rh/z with rh =

√
r2x + r2y (see the198
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discussion in section II A). Defining r′x = rx/z, r
′
y = ry/z, r

′
z = rz, z

′ = z, and r′h =
√
r′2x + r′2y , we have199

∂

∂rx
=

∂

∂r′x

∂r′x
∂rx

+
∂

∂r′y�
�
�∂r′y

∂rx
+

∂

∂r′z�
��
∂r′z
∂rx

+
∂

∂z′�
��
∂z′

∂rx
=

1

z

∂

∂r′x

∂

∂z
=

∂

∂r′x

∂r′x
∂z

+
∂

∂r′y

∂r′y
∂z

+
∂

∂r′z�
��∂r
′
z

∂z
+

�
��∂

∂z′
∂z′

∂z
= −r

′
x

z

∂

∂r′x
−

�
��
r′y
z

∂

∂r′y

∂

∂r′h
=

∂

∂r′x

∂r′x
∂r′h

+
∂

∂r′y

∂r′y
∂r′h

+
∂

∂r′z�
�
�∂r′z

∂r′h
+

∂

∂z′�
�
�∂z
′

∂r′h

= cos(θ)
∂

∂r′x
+ ���sin(θ)

∂

∂r′y
=
r′x
r

∂

∂r′x
.

(12)

Here, we have invoked ry = r′y = 0, ∂/∂rz = 0, ∂/∂ry = 0, and ∂/∂z′ = 0. Again, these derivatives are 0200

under the basic assumptions of AEH and for ry/z � 1 and rz/z � 1. The angle θ is such that r′ cos(θ) = r′x,201

r′ sin(θ) = r′y. It follows that Eq. (11) becomes202

∂
〈
|∆u|2∆u

〉
∂r′x

− r′x
∂
〈
|∆u|2wc

〉
∂r′x

= 2 〈u1w2 + w1u2〉
uτ
κ
. (13)

Observe that the z′ dependence is removed from Eq. (13). For sufficiently large r′, r′x, all the terms in Eq.203

(13) are 0 and the equation is trivial. For intermediate r′, r′x,204

〈u1w2 + w1u2〉 ∼
1

r′x
,

〈
|∆u|2wc

〉
∼ 1

r′x
, (14)

following the discussion in the previous subsection. Again, the question we hope to answer here is: what205

would these velocity correlations be under the basic assumption of AEH? While there are different theories206

in the existing literature that give rise to somewhat different scaling estimates [56, 57], and studying the207

effect of these scalings would be an interesting topic, here, we would focus on Townsend’s attached eddy208

hypothesis and refrain from invoking scaling estimates that are not consequences of AEH. Substituting Eq.209

(14) into Eq. (13), we have210

∂
〈
|∆u|2∆u

〉
∂r′x

∼ 1

r′x
, (15)

which in turn gives rise to211 〈
|∆u|2∆u

〉
∼ ln(r/z) + C, (16)

where C is a constant. Computing
〈
|∆u|2∆u

〉
requires simultaneous measurement of the streamwise, span-212

wise, and wall-normal velocity components, which is usually not trivial in a laboratory experiment. If213 〈
∆u3

〉
�
〈
∆v2∆u

〉
,
〈
∆w2∆u

〉
, Eq. (16) reduces to Eq. (8). We will discuss this issue in section III in214

greater detail.215

C. Asymptotic matching216

Next, we determine the two constants D3 and B3 in Eq. (8) via asymptotic matching. We show that our217

procedure connects the constants in small-scale velocity scalings and large-scale (logarithmic-layer) velocity218

scalings.219

1. Kolmogorov’s theory of small scale turbulence220

According to Kolmogorov [58], in three-dimensional homogeneous and isotropic turbulence, the viscous221

scale and the integral scale do not play an important role in the inertial sub-range, and the velocity structure222
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function is a function of r and ε only, that is223

〈∆un〉 = Cn(εr)n/3, (17)

where ∆u is the longitudinal velocity difference of two points with a distance r, n is an integer, and Cn is a224

universal constant. Specifically, the third-order structure function225

〈∆u3〉 = C3εr, C3 = −4/5, (18)

is a direct result of Eq. (9) [31]. It is worth noting that if r is only in the x direction, we have226

∂
〈
∆u3

〉
∂ry

=
d
〈
∆u3

〉
dr

∂r

∂ry
=
d
〈
∆u3

〉
dr

2ry
r

= 0,

∂
〈
∆u3

〉
∂rz

=
d
〈
∆u3

〉
dr

∂r

∂rz
=
d
〈
∆u3

〉
dr

2rz
r

= 0,

(19)

as well. Hence, ∂/∂ry = ∂/∂rz = 0 is not a consequence of AEH but a consequence of limiting the227

displacement in one of the three Cartesian directions. In addition to the third-order structure function, the228

second-order structure function is229

〈∆u2〉 = C2(εr)2/3, C2 ≈ 2.0. (20)

Sreenivasan [59] concluded from pipe, channel, grid turbulence, wake turbulence, mixing layer, and jet data230

that the Kolmogorov constant C2 = 4CK ≈ 2.0 is universal at high Taylor micro Reynolds numbers, i.e.,231

Reλ > 50, where CK ≈ 0.5 is the Kolmogorov constant in the −5/3 energy spectral law. The universality of232

Cn for n other than 2 and 3 has received much less attention. A naive estimation of Cn can be obtained by233

assuming Gaussianality for ∆u2:234

C2n = C2[(2n− 1)!!], (21)

where (2n− 1)!! = (2n− 1)(2n− 3) · · · 1. This, of course, is only a very rough approximation of the reality.235

2. Matching Townsend’s attached eddy hypothesis and Kolmogorov’s theory of small scale turbulence236

The small-scale velocity scalings hold in boundary-layer flows for r/z < 1 [34, 60–62], and these small-scale237

velocity scalings connect to Townsend’s scalings of energy-containing momentum-transferring scales without238

much of a transitional region. For example, the energy spectrum follows the −5/3 scaling for 1/z < k and239

the −1 scaling for k < 1/z [61, 62]. de Silva et al. [34] reported 〈∆u2〉 = C2(εr)2/3, i.e., small-scale velocity240

scaling, for r/z < 1 and the logarithmic scaling of the streamwise velocity variance, i.e., Townsend’s scaling,241

for r/z > 1, in a Reτ = 13, 000 boundary layer. To determine B3 and D3, we match AEH’s scalings and242

Kolmogorov’s velocity scalings.243

Define244

r′ = r/z. (22)

Equations (18) and (8) give245

〈∆u3〉 = C ′3r
′,

〈∆u3〉 = B3 +D3 ln (r′) ,
(23)

where C ′3 = C3εz/u
3
τ . Again, the dissipation rate ε balances the production and ε ≈ −〈uw〉(dU/dz) =

u3τ/(κz) [1, 2]. Taylor expanding the two expressions in Eq. (23) at r0 where Eq. (18) and Eq. (8) match,

we have

〈∆u+3〉 = C ′3r0 + C ′3dr
′, (24a)

〈∆u+3〉 = B3 +D3 ln (r0) +D3
dr′

r0
+ h.o.t., (24b)
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where h.o.t. denotes higher order terms. Matching the leading order term in the two expressions in Eq.246

(24), we have247

C ′3 =
1

r0
D3. (25)

Because Eq. (18) and Eq. (8) match at r/z = 1, i.e., r0 = 1, Eq. (25) leads to248

D3 = C ′3 =
1

κ
C3. (26)

Taking κ = 0.4 we obtain that D3 = C ′3 = −2, which we later justify using experimental and numerical data.249

Up to this point, we have obtained an estimate of
〈
∆u3

〉
for r and z that are relevant to the logarithmic250

layer without explicitly referring to empirical evidence.251

Although it is not the focus of this work, the above procedure may well be used to get the constants in252

the second order structure function, i.e., D2 and B2 in253 〈
∆u2

〉
= D2 ln(r/z) +B2. (27)

Again, define254

r′ = (r/z)2/3. (28)

It follows from Eq. (20) and Eq. (27) that

〈∆u+2〉 = C ′2r
′, (29a)

〈∆u+2〉 = B2 +
3

2
D2 ln (r′) , (29b)

where C ′2 = C2(εz)2/3/u2τ . Taylor expanding at r0 and matching the leading order term in the two expressions255

in Eq. (29), we have256

C ′2 =
3

2r0
D2. (30)

Again, r0 = 1, and Eq. (30) gives257

D2 =
2

3

(εz)2/3

u2τ
C2 =

2

3
κ−2/3C2. (31)

In the above expression, taking the von Kármán constant as κ = 0.4 and the Kolmogorov constant as C2 = 2,258

we obtain that D2 ≈ 2.5. Because D2 equals two times the Townsend-Perry constant, the above estimate259

leads to an estimate of the Townsend-Perry constant A2 = 1.25, which is consistent with experimental and260

numerical evidence [45].261

Following roughly the same steps, we can also get262

D2n =
2

3
κ−2/3C

1/n
2n . (32)

If one invokes Eq. (21), Eq. (32) gives263

D2n = D2[(2n− 1)!!]1/n, (33)

i.e., the estimates in Ref [46]. This shows that the Gaussianality of velocity statistics in the logarithmic264

layer, or the non-Gaussianality of the velocity statistics in the logarithmic layer for that matter, is a direct265

consequence of the Gaussianality of the velocity statistics in the inertial range.266
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TABLE I. Details of the dataset. Here ∆y+ for experiments refers to the hot wire filtration.

Figure Facility Reference Technique ≈ Reτ ≈ ∆x+ ≈ ∆y+ ≈ ∆z+

Figure 3(a) Melbourne [65] Hotwire 13,000 — 20 —

Figure 3(c) Melbourne [68] PIV 19,000 15 30 15

Figure 3(b) — [16] DNS 5,200 12.7 6.4 0.5 ∼ 10.3

Figure 3(d) SLTEST [67] Hotwire 3× 106 — 15 —

III. EMPIRICAL EVIDENCE267

Empirical evidence for many of the velocity statistics has already been reported. For example, de Silva et268

al. [34] presented empirical evidence for the velocity scalings in Eq. (20) and Eq. (27) in boundary-layer269

flows as well as the transition from Eq. (20) to Eq. (27) at r/z = 1. Here, we present empirical evidence for270

the logarithmic scaling of the third-order structure function, i.e., Eq. (8).271

To this end, four databases are used to cover several decades of Reynolds number and two canonical272

boundary layer flow geometries with the key parameters summarised in table I. We note databases that have273

friction Reynolds numbers that exceed Reτ & 5000 or higher are chosen in the present analysis such that274

the flow can be considered to be at high Reynolds numbers [63], where there is sufficient scale separation to275

decouple the viscous and energetic scales [64], and over a decade of logarithmic velocity variation in z+.276

Two datasets are acquired from the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT)277

at the University of Melbourne. The wind tunnel has a test section of 27 m, which provides a high Reynolds278

number at low flow speeds with a large viscous scale that leads to less acute spatial resolution issues.279

The hotwire database from this facility is acquired using a 2.5µm diameter Wollasten wires operated by280

an in-house constant-temperature anemometer (MUCTA) with sufficient spatial resolution to resolve the281

turbulence intensity accurately within the log-region [65]. The second database from the same facility is282

obtained using two-dimensional two-component Particle Image Velocimetry (PIV) measurements. These283

measurements utilise a multi-camera arrangement to capture both a large field-of-view (FOV) in the order284

of δ and a highly magnified FOV. For the present analysis we utilise the high magnification view which285

has sufficient spatial resolution to resolve spatial scales of the order of η. Moreover, the PIV measurements286

provide direct spatial information hence we do not need to invoke Taylor’s Frozen Hypothesis to compute287

structure functions which is necessary for all the hotwire datasets.288

A direct numerical data is also utilised from a channel flow geometry with a friction Reynolds number289

Reτ = 5200 [16]. For this database, the computation domain is 8π × 2 × 3π in the streamwise (x), wall-290

normal (y), and spanwise (z) directions, respectively. The half channel height is unity (=1). The dataset291

was generated and maintained by the University of Texas at Austin, and the raw field data can be accessed292

through the Johns Hopkins Turbulence Database [66].293

The final dataset is captured using hot-wire anemometry at the Surface Layer Turbulence and Environ-294

mental Test facility (SLTEST) located in the Utah salt flats [67]. The measurements involved a vertical295

array of 2.5 µm diameter platinum-coated tungsten wires mounted from z = (0.005 − 2) m, which are pre-296

dominantly located in the logarithmic region of the flow. The database is valuable for this analysis as it297

provides a significantly higher friction Reynolds number of O(106).298

Figure 3 (a) shows
〈
∆u3

〉
as a function of r/z in the Reτ = 13000 boundary layer at z+ ≈ 400, 700,299

1000. Figure 3 (b) shows
〈
∆u3

〉
in the Reτ = 5200 channel at z+ ≈ 400, 600, 800. Figure 3 (c, d)300

shows the PIV data and the SLTEST data. We note, the PIV data is limited in terms of its r range and301

the SLTEST atmospheric boundary layer data is somewhat affected by its statistical convergence (Getting302

statistically converged data at the neutral condition in the atmosphere is challenging), and is also affected303

by the uncertainty in estimating the friction velocity (see [34]). Nevertheless, comparing the PIV data in304

(c) and the hotwire data in (a), we see that the Taylor’s hypothesis does not seem to have an impact on the305

statistics. Comparing the SLTEST data in (d) and the PIV data in (c), we see that the logarithmic scaling306

of the third-order structure function is persistent at high Reynolds numbers. In the following, we focus on307
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FIG. 3. Third-order longitudinal structure functions in (a) a turbulent boundary layer at Reτ ≈ 13000 at z+ = 400,

700, 1000, (b) a turbulent channel at Reτ ≈ 5200 at z+ = 400, 600, 800, (c) a turbulent boundary layer at Reτ ≈ 19000

at z+ = 300, 800, 1200 and (d) the atmospheric boundary layer at Reτ ≈ 3× 106 at z+ ≈ 6100, 11100, 15400. The

blue solid lines correspond to C3 = 4/5. The red solid lines correspond to D3 = 2.0. The von Kármán constant κ is

set to 0.40 here.

the results in (a, b), where we have statistically converged data at several heights and across a (relatively)308

large r range. The data follows Eq. (18) for r/z < 1 and exhibit a logarithmic behavior as indicated in309

Eq. (8) between 1 < r/z . 10. The high Reynolds number of the boundary layer in (a) pushes the data310

towards the prediction with C3 = −4/5 and D3 = −2.0, but there is still a notable difference between the311

prediction of the KHM equation and the data, suggesting local anisotropy at even the Reynolds number of312

Reτ = 13000. Last, figure 4 compares
〈
|∆u|2∆u

〉
and

〈
∆u3

〉
in a channel. For r/z ∼ O(1), the streamwise313

component does dominate and
〈
|∆u|2∆u

〉
≈
〈
∆u3

〉
.314

IV. CONCLUSIONS315

AEH suffers from two weaknesses. First, AEH does not predict the constants in log-layer velocity scalings;316

and second, AEH’s predictions cannot be obtained from the NS equations. These two weaknesses separate317

AEH from more credible theories like Kolmogorov’s theory of small-scale turbulence. This work attempts318

to address the above two weaknesses by investigating the behavior of the third-order structure function in319

the logarithmic layer. First, we show that both AEH and the NS equations lead to a logarithmic scaling of320

the third-order structure function:
〈
∆u3

〉
= D3 ln(r/z) + B3. Second, we determine the constant D3 via321

asymptotic matching. Specifically, the matching procedure relates the universal constants in boundary-layer322
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FIG. 4. −
〈
∆u3

〉
and −

〈
|∆u|2∆u

〉
at z/δ = 0.11 in a Reτ = 5200 channel.

velocity scalings to the constants in Kolmogorov’s phenomenology of small-scale turbulence, and it gives323

D3 = −2. In addition to D3, we show that our matching procedure gives an estimate to the Townsend-Perry324

constant, i.e., A1 = 1.25, which is very close to the existing measurements.325

Last, we note that even at the Reynolds number Reτ = 13000, the third-order structure function deviates326

from the exact relation
〈
∆u3

〉
= −4/5εr = −4/5

(
u3τ/κ

)
(r/z) for small r, suggesting either an imbalance327

between the production and the dissipation or flow anisotropy at small scales, both of which are usually328

considered to be finite Reynolds number effects. Hence, for this problem and a number of other problems in329

the recent literature [69, 70], there is still a need for high-quality high Reynolds number flow data.330
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