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Nearly 150 years ago, Lord Kelvin proposed the isotropic helicoid, a particle with isotropic yet
chiral interactions with a fluid so that translation couples to rotation. A 3D-printed implementation
of his design is found experimentally to have no detectable translation-rotation coupling, although
the particle point-group symmetry allows this coupling. We explain these results by demonstrating
that in Stokes flow, the chiral coupling of such isotropic helicoids made out of non-chiral vanes is due
only to hydrodynamic interactions between these vanes. Therefore it is small. In summary, Kelvin’s
predicted isotropic helicoid exists, but only as a weak breaking of a symmetry of non-interacting
vanes in Stokes flow.
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I. INTRODUCTION

In his analysis of the forces and torques on a rigid body moving in an incompressible inviscid fluid [1], Lord Kelvin
commented on a particular shape, the isotropic helicoid, which experiences the same translational resistance in a
homogeneous fluid flow at any orientation, just like a sphere. But unlike a sphere, the particle experiences a torque as
it moves through the fluid. To maintain isotropy, this torque must be independent of the particle orientation relative
to the flow. This may seem surprising if one takes isotropy to mean continuous rotational symmetry which implies the
particle has mirror symmetry and so is non-chiral, which precludes helicity. However Kelvinsuggested how to make a
helical particle with discrete rotational symmetry and isotropic drag by placing 12 vanes around the great circles of
a sphere [1]. An implementation following his prescription is shown in Fig. 1(a).

Since Kelvin’s analysis of isotropic helicoids in the inviscid limit, textbooks by Happel & Brenner [2] and Kim &
Karrila [3] have discussed isotropic helicoids in viscous flows and have concluded that the coupling persists in the low
Reynolds number limit. Chiral interactions in turbulent fluids is an area of active research [4, 5]. Perturbation theory
and numerical simulations have been used to study isotropic helicoids with particle inertia whose translation-rotation
coupling causes them to preferentially sample helical regions in viscous flows that are chaotic [6] or turbulent [7].
Quantification of chirality is subtle [8, 9], and translation-rotation coupling of chiral objects is an important test
case for proposed measures of chirality [9, 10]. Coupling of translation of chiral particles to rotation and strain is a
promising method for hydrodynamic sorting of particles by chirality in viscous flows [11–14].

The elegant theoretical idea of a helical yet isotropic particle has been in the literature for nearly 150 years, cited
as an example illustrating the power of symmetry analysis – yet there is no published experimental verification of the
conjectured translation-rotation coupling of isotropic helicoids, not in the inviscid limit (Reynolds number Re→∞),
neither in the low-Re limit, nor at any Reynolds number in between. So we 3D-printed different isotropic helicoids
and measured their translation-rotation coupling while settling through a quiescent fluid. We tried to achieve as small
Re as possible, to avoid confounding effects due to flow separation at large Re, and because the small-Re limit is
easiest to analyze theoretically. Our experiments do not show evidence for translation-rotation coupling.

This is surprising, because our particles had the same discrete symmetries as Lord Kelvin’s isotropic helicoid.
Their point-group symmetry allows translation-rotation coupling, and therefore it is expected to be non-zero in
general, provided that there is no other symmetry that forbids this coupling. We explain the experimental null
result by showing that there is an additional symmetry that causes the translation-rotation coupling to vanish for
helicoids made of non-interacting vanes in the creeping-flow limit. This symmetry is weakly broken by hydrodynamic
interactions, which produce a very small coupling, too small measure in our experiments. Our results indicate that the
translation-rotation coupling of isotropic helicoids is quite small in general. It remains an open question to engineer
isotropic helicoids with maximal coupling.

The remainder of this paper is organized as follows. Section II briefly describes the background, Section III gives
details about our experiments that resulted in Fig. 1. The theoretical analysis is described in Section IV, and Section
V contains our conclusions.
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FIG. 1. (a) Model used to 3D-print the left-handed isotropic helicoid. (b) Anisotropic helicoid oriented with the equatorial
vanes reflected. (c) Experimental measurements of the particle orientation around its sedimentation axis as a function of time.
Isotropic helicoid (red � with best fit ω = dα/dt = −0.003 rad/s), anisotropic helicoid with initial orientation as in panel b
(blue ♦, ω = −0.258 rad/s), and with reflected vanes on a meridian (black ?, ω = 0.135 rad/s).
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II. BACKGROUND

A. Force and Torque in the low-Re limit

In the low Reynolds number limit, the hydrodynamic force f and torque τ on an arbitrarily shaped particle in a
uniform velocity gradient depend linearly on the slip velocity, the angular slip velocity, and upon the local strain rate
[2, 3]:

[
f
τ

]
= µ

[
A BT G
B C H

]u∞ − vΩ∞ − ω
S∞

 . (1)

Here µ is the dynamic viscosity of the fluid, v and ω are the velocity and the angular velocity of the particle, u∞ and
Ω∞ are the undisturbed fluid velocity and half the undisturbed fluid vorticity, and S∞ is the strain rate tensor, the
symmetric part of the matrix of velocity gradients of the undisturbed fluid. Moreover, A is the drag tensor, B is the
translation-rotation coupling tensor, C is the rotational drag tensor, and G and H are third-rank tensors that couple
force and torque to the strain rate. They produce effects such as Jeffery orbits [15, 16], rectification of rotations
of chiral dipoles [5], and separation of particles according to chirality [11–14]. Here we consider a particle settling
steadily in a quiescent fluid, so that u∞ = 0,Ω∞ = 0, and S∞ = 0. In the context of Eq. (1), the question is whether
or not Lord Kelvin’s particle has non-zero B.

B. Symmetries

Fig. 2 illustrates the point-group symmetries of different isotropic helicoids. Kelvin’s isotropic helicoid places
oblique vanes on the 12 edges of an octahedron and has chiral octahedral symmetry, point group O [Fig. 2(a)]. We
also fabricated an isotropic helicoid with six four-armed propellers on the faces of a cube (Section III and Appendix D).
This particle looks like Fig. 2(b), it also has chiral octahedral symmetry. Panels (c) and (d) illustrate isotropic helicoids
with chiral tetrahedral symmetry, point-group T. Either point group, O or T, constrains A and C to be proportional
to the unit matrix. Since the groups O and T contain rotations only, and no mirror symmetries [18, 19], the tensor B
is constrained in the same way as A and C. Therefore it must be proportional to the unit matrix. We conclude that
the point-group symmetry of these particles ensures isotropy and allows chiral coupling. More detailed calculations
arriving at the same conclusion are found in Refs. [2, 3]. For convenience, we give the details in Appendix A, for
an isotropic helicoid with chiral tetrahedral symmetry. We note that particles with full tetrahedral or octahedral
symmetry with reflections constrain the translation-rotation coupling to zero, B = 0.

a b
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FIG. 2. Illustration of the point-group symmetries of different isotropic helicoids. (a,b) Chiral octahedral symmetry O, four
C3 rotation axes, three C4 axes, and six C2 axes. (c,d) Chiral tetrahedral symmetry T, four C3 rotation axes, and three C2

axes (the cubes were drawn after Table 7.2 in Ref. [17]).
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III. EXPERIMENTS

We fabricated Lord Kelvin’s isotropic helicoid [Fig. 1(a)] using a Form 2 stereolithography 3D printer. For vanes,
we used spheroidal disks with diameter 8.7 mm and aspect ratio 0.2 projecting from the sphere as shown in Fig. 1(a).
As proposed by Lord Kelvin, the centers of the disks are equally spaced around the three great circles of a solid sphere
with 45◦ inclination angle in the direction to create a left-handed particle (using the convention in Ref. [6]) with chiral
octahedral symmetry [Fig. 2(a)]. The diameter of the sphere is d = 17.4 mm and the 3D printed particle has density
%p = 1.16 g/cm3. When dropped in silicon oil with kinematic viscosity ν = 5 cm2/s and density %f = 0.98 g/cm3 in
a tank of dimensions 21 cm wide, 10.5 cm thick and 30 cm tall, the particle settles at velocity vs = 4.74 cm/s. This
corresponds to Reynolds number Re = dvs/ν = 1.65.

Figure 1(c) shows the orientation defined as the angle of the particle around the sedimentation axis as it settles
approximately 20 cm through the chamber. Here positive α is the rotation direction favored by a left-handed propeller
which is clockwise when viewed from above. The red squares show essentially no change in orientation for the isotropic
helicoid with a best fit angular velocity of ω = −0.003 rad/s. For comparison, we also printed the anisotropic helicoid
shown in Fig. 1(b) with the same dimensions but with the four vanes along one of the great circles reflected to
form a right-handed propeller. Separate experiments were performed with the particle oriented along the principal
axes of B. When the right-handed great circle is on the equator so that its normal points in the direction of gravity,
the particle rotation is shown in blue diamonds. When the right-handed great circle is on a meridian, particle
orientation is shown in black triangles. In both cases the sedimentation velocity is within 1% of that of the isotropic
helicoid. Interestingly, the right-handed rotation rate of the anisotropic helicoid is almost exactly twice the two
orthogonal left-handed rotation rates, so for randomly oriented particles the total particle helicity would be nearly
zero. Experimentally we find that the rotation rate of the isotropic helicoid is near zero, only 1.1% of the maximum
rotation rate of the anisotropic helicoid. The small measured vertical component of the isotropic helicoid rotation
rate is twice the random uncertainty in the measurement from video frames, but we observe similar small rotation
rates in the other components which are not allowed for homogeneous bodies at low Reynolds numbers and note that
density inhomogeneities in the 3D printing are a likely cause. We conclude it is a null detection with approximately
1% uncertainty.

We tried other versions of isotropic helicoids, but none of them exhibited translation-rotation coupling within
measurement error. Four helices extending along tetrahedral angles showed very little rotation but suffered from
fabrication imperfections. An isotropic helicoid of six model-airplane propellers in a cubic configuration (details
in Appendix D) was used in some exploratory experiments on rotation-translation coupling in the high Reynolds-
number regime. This particle also has chiral octahedral symmetry [Fig. 2(b)]. Its four-bladed propellers (Hobbyking
hy 10X8.25) formed a cube with sides 18 cm which when dropped in air over a distance of 5.5 m reached a Reynolds
number of more than 105, but no significant reproducible rotation was observed in several different drop orientations.
A single propeller dropped with the blades in the horizontal plane rotated at 46 rad/s after falling the the same
distance in 2.5 seconds. This high Reynolds case where Eq. (1) does not apply is more complicated since there can be
separation and symmetry breaking instabilities which can produce tumbling trajectories that couple translation and
rotation even for non-chiral particles [20]. Therefore we focus on the low Reynolds number limit in the remainder of
this paper.

IV. THEORY

Our experiments showed no measurable translation-rotation coupling, yet symmetry analysis allows this coupling,
as described in Section II. One might argue that the coupling constant could vanish for Lord Kelvin’s particle because
the vanes around the equator contribute strongly to the expected helical coupling, yet the remaining eight vanes create
a torque in the opposite sense, potentially cancelling the coupling. This opposite torque may be familiar to anyone
who has observed a propeller move through fluid perpendicular to its usual motion, rotating with helicity opposite to
the one usually considered [9].

This is unlikely, however, because of the general principle that says: if symmetry allows a coupling to be non-zero,
then this couplingdoes not vanish unless there is another, undetected symmetry that constrains the coupling to zero.
We now demonstrate that there is in fact such an additional symmetry for isotropic helicoids that consist of vanes
which do not interact hydrodynamically with each other. In the low-Re limit, hydrodynamic interactions break this
additional symmetry only weakly for the isotropic helicoids we considered. This explains why our particles have very
small translation-rotation couplings.
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A. Independent vanes

An isotropic helicoid made out of non-interacting, non-chiral vanes has zero translation-rotation coupling B. To
prove this, start with the translation theorem [2, 3] which allows us to relate the tensor B for a helicoid made out of
M non-interacting vanes to the resistance tensors of its vanes, A(v) and B(v):

B =

M∑
m=1

[
OmB(v)OT

m + rm ∧ (OmA(v)OT
m)
]
. (2)

Here Om is the rotation matrix that rotates from the eigenframe of the isotropic helicoid to that of vane m, rm is
the translation vector from the origin of the particle to the centre of the vane, and the matrix v ∧W has elements
εijkvjWk`, summation over repeated indices implied. Now a non-chiral vane has B(v) = 0 because of mirror symmetry,

and the translational resistance tensor is always symmetric [2], [A(v)]T = A(v). Using the antisymmetry of the vector
product in the second term on the right hand side of Equation (2) it follows that TrB = 0 [21]. Since B must be
proportional to the unit matrix for an isotropic helicoid, it follows that B is identically zero. A similar result for
the rotational coupling of filaments due to collisional momentum transfer is derived in Ref. [10]. A consequence is
that any helicoid made from non-interacting non-chiral vanes must have zero mean rotation when averaged over all
orientations as observed in the experiments.

B. Hydrodynamic interactions

However, the vanes in a helicoid have hydrodynamic interactions between them. We now show that these interactions
produce non-zero chiral coupling as allowed by symmetry, but that the coupling is quite small because the contribution
from independent vanes vanishes. To obtain the leading-order hydrodynamic corrections we determine how a given
vane n is affected by the disturbance flow created by the other vanes, assuming that the latter are independent. This
corresponds to the first-order terms obtained in a systematic expansion in b/r where b is the vane size, and r is the
separation between two neighbouring vanes [3].

Consider an isotropic helicoid made out of M non-chiral vanes. Each vane m has zero translation-rotation coupling,

B(v)
m = 0, and its drag tensor in the frame of the helicoid is denoted by A(v)

m = OmA(v)OT
m, where Om is the appropriate

rotation matrix, as defined above. When a single vane moves in a fluid at rest at position xv with velocity vv, it
produces the disturbance flow

u′v(x) =
1

8πµ
J(x− xv)fv + O

( 1

|x− xv|2
)

(3)

at position x, with fv = A(v)vv. Here (1/8πµ)J is the Green-tensor of the Stokes equation, Equation (4) in Appendix
B, and we follow the standard convention, denoting the disturbance flow with a prime.

Now each vane moves in the disturbance flow produced by the other vanes. To lowest order in the reflection method,
we approximate the force that vane m exerts upon the fluid by

fv,m = A(v)
m

(
I− 1

8πµ

M∑
m′ 6=m

J(xm − xm′)A(v)
m′

)
vv , (4)

where I is the identity tensor, A(v)
m ≡ OmA(v)OT

m, and xm is the position of vane m. Eq. (1) shows that the drag

tensor of vane m in the presence of the other vanes is given by A(v)
m + δA(v)

m with

δA(v)
m = − 1

8πµ

M∑
m′ 6=m

A(v)
m J(xm − xm′)A(v)

m′ . (5)

At leading order in |xm − xm′ |−1, the drag and translation-rotation coupling tensors of the isotropic helicoid read

A =
M∑

m=1

A(v)
m + δA(v)

m and B =

M∑
m=1

rm ∧ (A(v)
m + δA(v)

m ) . (6)

The drag tensor A must be symmetric. Eq. 6 is consistent with this requirement because
∑M

m=1 δA
(v)
m is symmetric

even though the individual δA(v)
m need not be symmetric. As a consequence we find that TrB = Tr(

∑M
m=1 rm∧δA

(v)
m ) 6=
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FIG. 3. Theory. (a) Schematic of an isotropic helicoid made out of 24 spheres (radius a) arranged into twelve dumbbells. Each
dumbbell (distance b = 5a between centres of spheres) represents a vane of the particle shown in Fig. 1(a). The dumbbells are
assumed to be rigidly connected to each other. Three dashed great circles (radius c) are guides to the eye. (b) Trace TrB of
the translation-rotation coupling matrix for the isotropic helicoid from panel a, as a function of particle size c/a. Numerical
result (solid line), Eqs. (5) and (6) (dashed line).

0 in general. In other words, hydrodynamic interactions between the vanes cause non-zero translation-rotation coupling
for an isotropic helicoid.

One might expect that the trace of B tends to zero as the size of the particle tends to infinity (keeping the
vanes unchanged), because hydrodynamic interactions in the low-Re limit are negligible between distant objects.
However this argument fails for the translation-rotation coupling. It is true that hydrodynamic interactions decay as

|δA(v)
m | ∼ |rm|−1, because J decays in this way. But this decay is cancelled by the magnitude of rm in the vector

product in Eq. (6), so that TrB tends to a constant as |rm| → ∞. This means that hydrodynamic interactions
between the vanes of an isotropic helicoid are not negligible, even if the vanes are very far apart from each other.
An explicit calculation for an example is given in Appendix C. We mention that at non-zero Re, the Stokes solution
breaks down at large distances, resulting in additional corrections to TrB.

C. Numerical simulations

To test the theory, Eqs. (5) and (6), we computed higher-order hydrodynamic corrections using the method of
Durlofsky et al. [22], a variation of the method of reflections [3]. We considered an isotropic helicoid made out of 24
spheres of radius a linked by massless rigid rods [Fig. 3(a)], with the same point-group symmetry as the particle in
Fig. 1(a). Each vane is modelled as a dumbbell (length b = 5a) consisting of two spheres. Each dumbbell is tangential
to the surface of an imaginary sphere of radius c (the radius of the isotropic helicoid), and inclined at 45◦, just like
the vanes in Fig. 1(a). Details of the method are described in Appendix B.

Fig. 3(b) shows our numerical results for the magnitude of the translation-rotation coupling as a function of particle
size, c. Our numerical results are shown as a solid line, the first-order theory [Eqs. (5) and (6)] as a dashed line. We
see that the numerical results approach the theory [Eqs. (5) and (6)] at large values of c. This is expected, because
the contribution of the first reflection must dominate when the vanes are far apart. The convergence is very slow
however, the difference between numerical results and lowest-order theory scales as c−1 (not shown).

To compare with the experiments, we computed the steady-state angular velocity for the isotropic helicoid in
Fig. 3(a). To this end one starts from the expression for the total force F and torque T on a settling particle in a
quiescent fluid in the low-Re limit: [

F
T

]
= −µ

[
A BT

B C

] [
v
ω

]
+ (mp −mf)

[
g
0

]
. (7)

The first term represents the hydrodynamic force and torque in the low-Re limit including hydrodynamic interactions,
and the second term is due to gravity, with gravitational acceleration g with particle mass mp, and fluid mass mf . To
obtain the steady-state angular velocity we must set F and T to zero. The resistance tensor can be inverted using
standard formulae [23] for the inversion of block matrices:

ω = −C−1Bv with settling velocity v = (mp −mf)µ
−1(A− BTC−1B)−1g . (8)

We also evaluated the angular velocity of an anisotropic helicoid similar to Fig. 3(a), but with the equatorial dumbbells
flipped, as in the experiment. Numerical evaluation of Eq. (8) for these two particles using the method described in
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Appendix B indicates that the ratio of the angular velocities, isotropic to anisotropic, is non-zero but very small. It
is of the order of 10−3, just below the experimental accuracy.

Numerical evaluation of Eq. (8) also indicates that the magnitude of the translation-rotation coupling and the
resulting sense of rotation of the isotropic helicoid depend sensitively on the precise nature of the hydrodynamic
interactions. A helicoid with a 25th sphere in the centre of the particle, for example, has the opposite sense ofrotation
than the particle shown inFig. 3(a).

Suppose we average the angular velocity of the isotropic helicoid over initial orientations. Our numerical results
show that the average angular velocity is not quite zero, because of hydrodynamic interactions. From Eq. (8) we find
〈ωg/vg〉 = −TrC−1B ∝ TrB to leading order, where vg = v · ĝ, ωg = ω · ĝ, and ĝ = g/g. Eq. (6) shows that TrB
is non-zero, so that in general 〈ωg/vg〉 6= 0. Our numerical calculations show that similarly 〈ωg〉 6= 0. It could be of
interest to explore whether there is an effect analogous to hydrodynamic interactions for the chiral filaments rotating
due to momentum transfer from particle collisions [10]. A given segment could shield other filament segments from
collisions, or give rise to multiple collisions.

V. CONCLUSIONS

In conclusion, we measured the dynamics of an isotropic helicoid suggested by Lord Kelvin 150 years ago as it
settles in a viscous fluid. Although symmetry analysis indicates that the particle should start to rotate as it settles,
we did not detect any translation-rotation coupling in our experiments. This raises the question whether Lord Kelvin’s
original argument is flawed. Analytic calculation of the rotation-translation coupling tensor for non-interacting, non-
chiral vanes shows that the coupling is exactly zero. But taking into account hydrodynamic interactions between
vanes reveals non-zero translation-rotation coupling. This coupling is quite weak in general, because it is due to
hydrodynamic interactions between the vanes of the isotropic helicoid. The predicted coupling is too weak to be
detected in our current generation of experiments.

The possibility of chiral coupling without anisotropy provides an intriguing way to deviate from simple spherical
systems, independent from, and in some ways simpler than the much studied case of spheroids. Our discovery of the
small size of the chiral coupling helps explain why 150 years after Kelvin first introduced the concept, there are no
published measurements of isotropic helicoids. Designing helicoids with optimal chiral coupling provides a challenging
focus for future work since it requires designing to control hydrodynamic interaction.

Our results are in keeping with a general rule pertaining to symmetry arguments, seen also in quantum mechanics
[24]: If a symmetry allows a matrix element to be non-zero, then it does not vanish unless constrained by some
other symmetry. Cases where weak symmetry breaking creates almost zero matrix elements provided deep insights in
quantum physics, and we suggest that future work to quantify and optimize isotropic helicoids may also be fruitful.

An important future question is how fluid inertia affects the translation-rotation coupling. Our theory in the low-Re
limit explains the experimental findings at small Re. In principle it is possible to include Re-corrections in the theory,
but we see no reason why they should change the qualitative conclusions. On the other hand it is interesting to
determine whether small-Re corrections decrease or increase the coupling. Our experiments at large Re did not show
any evidence for a coupling, but they are far out of the regime of validity of a small-Re expansion.
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Appendix A: Tetrahedral symmetry

We want to deduce the translation-rotation coupling matrix B for a tetrahedral isotropic helicoid [Fig. 2(c)] from
its point-group symmetries. The point-group symmetries of a tetrahedron are summarised in many textbooks, see
for example Refs. [18, 19]. The procedure is described in Refs. [2, 3, 26]. One assumes that the particle is at rest,
v = 0 and ω = 0. Now one determines how the hydrodynamic force and torque transform under an orthogonal
transformatio fn R corresponding to one of the symmetry operations. If the orientation of the particle relative to
the flow remains invariant, the hydrodynamic force becomes simply Rf . Since the torque is multiplied by −1 under
a reflection, it transforms as det[R]Rτ , provided that the orientation of the particle relative to the flow remains
unchanged. Inserting this into Eq. (1), and using the orthogonality of R one finds that the resistance tensors must
satisfy the constraints

A = RART , B = det[R]RBRT , and C = RCRT . (A1)

A standard way [25] of parametrizing the corners of the tetrahedral particle shown in Fig. 2(c) is in terms of the
median vectors c1 = [1, 1, 1], c2 = [−1,−1, 1], c3 = [−1, 1,−1], and c4 = [1,−1,−1] in the Cartesian basis x̂, ŷ, and
ẑ. The particle has chiral tetrahedral point-group symmetry [18, 19]. The symmetry group has 12 elements. Apart
from the identity, the group elements are:

i. The π-rotations around the three bimedians 1
2 [c1+c4−(c2+c3)], 12 [c1+c3−(c2+c4)], and 1

2 [c1+c2−(c3+c4)]
(proportional to the three Cartesian coordinate axes).

ii. Four clockwise rotations around cj by 2
3π.
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iii. Four counter-clockwise rotations around cj (by − 2
3π).

Since the particle in Fig. 2(c) does not have any mirror symmetries, det[R] = 1 for all symmetry operations in
Equation (A1), so that the symmetries constrain A, B and C in the same way. Therefore the translation-rotation
coupling B is constrained to be a multiple of the unit matrix. In general this coupling is expected to be non-zero, as
concluded in Refs. [2, 3].

To determine the forms of A, B, and C by an explicit calculation, consider first how the π-rotations (i) around
the Cartesian coordinate axes constrain the elements of the resistance tensors C and B. The corresponding rotation
matrices are

R1 =

1 0 0
0 −1 0
0 0 −1

 , R2 =

−1 0 0
0 1 0
0 0 −1

 , and R3 =

−1 0 0
0 −1 0
0 0 1

 . (A2)

Inserting these into Equation (A1) we find that the tensors must be diagonal in the body-fixed basis:

A =

A11 0 0
0 A22 0
0 0 A33

 , C =

C11 0 0
0 C22 0
0 0 C33

 , and B =

B11 0 0
0 B22 0
0 0 B33

 . (A3)

Now consider how the symmetries (ii) constrain the tensors. The four rotation matrices (angle 2
3π) are

Rc1 =

0 0 1
1 0 0
0 1 0

 , Rc2 =

0 0 −1
1 0 0
0 −1 0

 , Rc3 =

 0 0 1
−1 0 0
0 −1 0

 , and Rc4 =

 0 0 −1
−1 0 0
0 1 0

 . (A4)

Inserting these into Equation (A1) and using that the tensors A, B and C are diagonal [Equation (A3)], we find that
any of the symmetries Rcj

gives that A11 = A22 = A33 ≡ A, B11 = B22 = B33 ≡ B, and C11 = C22 = C33 ≡ C.
Applying the remaining symmetries does not constrain the elements further.

If the faces of the tetrahedron are non-chiral (they do not have propellers), the particle has a higher symmetry,
including in addition 12 mirror symmetries. The corresponding symmetry group is the tetrahedral group. Consider
for instance a reflection in the plane spanned by c3 and c4. Take ê to be the unit vector ê = c3 ∧ c4/|c3 ∧ c4|, so that

ê = 1√
2

1
1
0

 . (A5)

Then the reflection matrix is given by Rê = I− 2 êêT,

Rê =

 0 −1 0
−1 0 0
0 0 1

 . (A6)

Inserting this matrix into Equation (A1) and using that B and C are diagonal [Equation (A3)], we find that B33 = 0,
but C33 is not constrained. The other reflection matrices correspond to other ways of distributing −1 and 1 in distinct
rows and columns, different from Equations (A2) and (A4). These other mirror symmetries constrain B = 0, whereas
C is not constrained further, apart from that it must be proportional to the identity. In summary, without propellers
we have (in the body-fixed basis)

A =

A 0 0
0 A 0
0 0 A

 , C =

C 0 0
0 C 0
0 0 C

 , and B = 0 . (A7)

Appendix B: Method for calculating hydrodynamic interactions

In our numerical simulations, we take into account hydrodynamic interactions using the method of Durlofsky et al.
[22]. They developed it to determine the evolution of an assembly of free spheres interacting with each other through
hydrodynamic interactions. In this appendix we briefly summarise their method. We do not include lubrication
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effects. Consider a single sphere of radius as, at position xs, moving with velocity vs in an ambient flow u∞. The
disturbance flow produced by this sphere can be determined using the method of singularities, by superimposing a
set of singularities built from the Green tensor of the Stokes equations and its spatial derivatives.

Durlofsky et al. approximate the disturbance flow produced by a sphere using a stokeslet, a rotlet, and a stresslet,
plus correction terms that take into account the finite size of the sphere. This means that the solution is approximate,
but it is accurate enough for our purposes. The disturbance flow due to sphere s reads:

u′s(x) =
1

8πµ

[(
1 + as

6 ∇
2
)
Jfs + Rτs +

(
1 + as

10∇
2
)
K : Ss

]
, (B1)

where

[J]ij =
δij
r

+
rirj
r3

, [R]ij =
1

2
εijk

rk
r3
, [K]ijk =

1

2
(∂k[J]ij + ∂j [J]ik) , and ri = [x− xs]i . (B2)

Further, fs, τs and Ss are the force, torque, and the stresslet exerted by sphere s upon the fluid. At this stage they
are unknown. We mention that ∇2[R]ij evaluates to zero, given the expression for the components of R in Eq. (B2).

Now consider the disturbance flow u′s at the centre xs of sphere s that is produced by all other spheres (except
sphere s). This disturbance is obtained by summing Eq. (B1) over s′ 6= s:

u′s =
1

8πµ

N∑
s′ 6=s

[(
1 + as′

6 ∇
2
)
J(xs − xs′)fs′ + R(xs − xs′)τs′ +

(
1 + as′

10 ∇
2
)
K(xs − xs′) : Ss′

]
. (B3)

Now force, torque, and stresslet acting upon a sphere moving in a flow can be calculated using the reciprocal theorem
[27]. Expanding the disturbance velocity u′s around the centre of sphere s in order to evaluate the integrals in the
reciprocal theorem yields the so-called Faxèn formulae:

vs − u∞ =
fs

6πµas
+
(

1 +
as
6
∇2
)
u′s , (B4a)

ωs −Ω∞ =
τs

8πµa3s
+

1

2
∇ ∧ u′s , (B4b)

−S∞ = − Ss
20
3 πµa

3
s

+
1

2

(
1 +

as
10
∇2
) [
∇⊗ u′s + (∇⊗ u′s)T

]
, (B4c)

where S∞ is the symmetric part of the velocity gradient of u∞, Ω∞ = (1/2)∇ ∧ u∞, and vs and ωs are translation
and angular velocity of sphere s. Eqs. (B4), for s = 1 . . . N constitute a set of linear equations that can be solved
for fs, τs, and Ss. Durlofsky et al. [22] explain that the error of the solution scales as O

(
(a
` )6
)
, where ` is minimal

distance between two spheres. This method is quite general. It can be applied to any assembly of free spheres. In
our problem the spheres are assumed to be parts of a rigid composite particle. This simply means that all spheres are
constrained to move with translation velocity vs = v + ω ∧ rs, and angular velocity ωs = ω, where v and ω are the
centre-of-mass and angular velocity of the composite particle, and rs parameterizes the location of sphere s w.r.t. the
centre of mass of the composite particle. To compute the elements of the force f we impose ω = 0, and v = [1, 0, 0],
v = [0, 1, 0], v = [0, 0, 1]. To compute the torque τ we impose v = 0 and ω = [1, 0, 0], ω = [0, 1, 0], ω = [0, 0, 1].
The elements of the coupling tensor are then obtained from Eq. (1). In this way we computed the numerical results
shown in Fig. 3.

Appendix C: Symmetry breaking due to hydrodynamic interactions

To illustrate the effect of hydrodynamic interactions, consider a concrete example, a propeller made out of two

identical axisymmetric vanes. In the body-fixed basis (n̂, t̂, b̂), the drag tensor of a non-chiral vane reads

[A(v)]ij = µ [(A1 + A2)ninj + A1(δij − ninj)] , (C1)

where the constants A1 and A2 parametrise the tensor. The centres of the vanes are located at r1 = cx̂ and r2 = −cx̂
in the lab frame, and they are oriented in such a way that their symmetry axes are orthogonal to x̂. We set t̂1 = x̂
and t̂2 = −x̂, and we rotate each vane around its own vector t̂ by an angle φ, with rotation matrices

O1 =

 0 1 0
cosφ 0 sinφ
sinφ 0 − cosφ

 and O2 =

 0 −1 0
− cosφ 0 − sinφ
sinφ 0 − cosφ

 . (C2)
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FIG. 4. Numerical result for trace of B(p) of a two-armed propeller made out of two dumbbells, as a function of the half-distance
between the dumbbells, c, normalized by b (a equals unity), solid line. Dashed-line shows the theoretical large-c limit, Eq. (C5).

Furthermore from Eq. (B2)

1

8πµ
J(r2 − r1) =

1

8πµ
J(r1 − r2) =

1

8πµ

1

2c

2 0 0
0 1 0
0 0 1

 . (C3)

Using Eq. (6) we find for the trace of the translation-rotation coupling tensor

TrB(p) = − 1

8πµ
Tr
(
cx̂ ∧O1A(v)OT

1 JO2A(v)OT
2 − cx̂ ∧O2A(v)OT

2 JO1A(v)OT
1

)
. (C4)

Since the factors of c in this expression cancel out, the trace of B(p) is independent of c at leading order. This means
that the translation-rotation coupling tensor must tend to a constant in the limit of c→∞:

lim
c→∞

TrB(p) =
(A2)2 sin 4φ

16π
+ O

(
1

c

)
. (C5)

In order to check this result, we computed the translation-rotation coupling tensor for a propeller made out of two
dumbbells using the method described in Appendix B. The spheres have radius a, and the distance b between
the spheres that make up the dumbbells is taken to be 5a. For this configuration, we find the numerical result
A1 = 32.7024a and A2 = −3.4085a for a single dumbbell. Fig. 4 shows numerical results for TrB(p) as a function of
c for φ = π/3. We see that the numerical results (solid line) approach the theoretical expecation, Eq. (C5), which
evaluates to TrB(p) = −0.2002a2 for φ = π/3. We add the caveat that the above considerations apply to the Stokes
limit. If the Reynolds number is non-zero, the Stokes approximation would fail at large distances, requiring a more
elaboration calculation [28].

Appendix D: Exploratory Experiments at larger Reynolds Number

The four-bladed propeller used in the higher Reynolds-number experiments is shown in Figure 5(a). It is made
by Hobbyking and is an hy10x8.25, which indicates 10 inch diameter and 8.25 inch pitch. Six of these propellers on
the faces of a cube make an isotropic helicoid with chiral octahedral symmetry as shown in Figure 5(b). Exploratory
experiments dropping this helicoid in air over 5.5 m reached a Reynolds number of more than 105, but showed no
reproducible translation-rotation coupling suggesting that the observed suppression of translation-rotation coupling
for isotropic helicoids extends to high Reynolds numbers. Further experiments under steady controlled conditions are
needed in the high Reynolds number regime.
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FIG. 5. Higher-Re experiments. (a) single four-bladed propeller. (b) the cubic isotropic helicoid constructed from six of the
propellers shown in panel (a).


