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The wetting and contact line dynamics of a leaky dielectric sessile droplet under an alternating
(AC) electrostatic field applied in the vertical direction is investigated. A thin precursor film based
reduced-order model using the weighted residual integral boundary layer technique is developed. The
limiting cases of perfectly conducting and perfect dielectric droplets are also considered. It is shown
that the droplet oscillates with a frequency twice that of the forcing potential due to the quadratic
dependence of the Maxwell stress on the applied AC electric field. These oscillations take place
about an equilibrium configuration, which can be achieved with a constant (DC) electric potential
equivalent to the root mean square potential of the applied AC field. It is also shown that the contact
line motion increases monotonically with the amplitude of the AC electric forcing. A significant
increase in oscillations leads to spiking and the interface ruptures at the top electrode. Depending
on the static contact angle, the droplet deformation can become non-monotonic as the applied
frequency of the AC electric field increases. This behavior is attributed to the competition between
the time scale of forcing and the time scale of the response as affected by the drops wettability.
The role of conductivity ratio, permittivity ratio and different waveforms of AC forcing are also
investigated.

I. INTRODUCTION

Microfluidic systems can be broadly classified into two types: the flow–based ‘continuous’ and the discrete droplet–
based ‘digital’ lab–on–chip devices [1]. While the former handles continuous throughput of the working fluids, the latter
is based on manipulating discrete fluid droplets. Due to the characteristic low length scales and the associated low
Reynolds numbers in microfluidic devices, achieving good mixing becomes difficult. Although continuous microfluidic
devices typically employ chaotic advection as a means to achieving good mixing [2], their realization inevitably
consumes large real estate on the chip. Digital microfluidics with droplet actuation, thus provide an alternative
means toward achieving ‘mixing on the spot [3]. In addition, spreading and actuation of sessile droplets find great
technological relevance in diverse applications ranging from medical diagnostics to microelectronics [4]. A detailed
review of the physics of wetting dynamics of a sessile droplet can be found in de Gennes [5], Teletzke et al. [6], Bonn
et al. [7] and Brutin [8].

There are several ways one can achieve droplet actuation on solid substrates, such as piezoelectrically-induced me-
chanical transduction [9] or thermocapillarity driven actuation by imposing temperature gradients along the substrate
or at the droplet interface [10, 11]. Electrowetting provides a convenient method to tune the wettability character-
istics of the substrate and thereby induce droplet actuation using an externally applied electric field [12]. There
are two electrode configurations typically employed in electrowetting induced actuation of droplets [13], namely the
open ‘needle-electrode’ and the closed ‘coplanar’ configurations. In the open needle-electrode configuration, a needle
immersed inside the droplet acts as one of the electrodes, while the substrate acts as the other electrode. On the other
hand, in the closed coplanar configuration, the droplet sits on an electrode, but does not come in direct contact with
the top electrode. In the needle-electrode configuration, the droplet is usually a good conductor, while the substrate
is a perfect dielectric. This configuration is therefore also known as EWOD (Electro-wetting on dielectric). A sessile
droplet in EWOD exhibits a large equilibrium contact angle due to a layer of coating. At low magnitudes of the
applied electric field, the static contact angle decreases with an increase in the electric field, following the well-known
Young-Lipmann equation. The contact angle, however, saturates at higher voltages, which is a phenomenon not well
understood and is an area of active research [14]. Application of periodic AC fields is particularly significant as it
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avoids electrophoresis, which is observed under constant DC forcing. Moreover, the contact-angle saturation observed
at high DC voltages is known to be delayed by employing an AC field [15]. Further, by solely tuning the frequency
of the AC field, one can manipulate the droplet response for fluids that exhibit characteristics that range from a
leaky dielectric to a perfect dielectric. A general mathematical formulation for the electrohydrodynamic description
of low-conducting fluids was given by Saville [16], and since then is known as the leaky dielectric theory. It is based on
the assumption that the typical time scale associated with charge relaxation is much smaller than the hydrodynamic
time scale. Therefore, the charges are confined to the interface separating the fluids and the charges in the fluid bulk
can be assumed to be zero. On the other hand, in the case of a perfect dielectric medium, the time scale associated
with the generation of free charges is much larger than the viscous time scale. Thus it can be assumed that there are
no free charges in the entire domain.

A sessile droplet has been shown to spread spontaneously under a DC electric field due to electrostatic reduction of
the interfacial energy between droplet and substrate [4]. The computed static deformed shapes under such fields have
been limited by either constant contact angles or by the assumption of pinned contact lines [17, 18]. Computational
studies on the tranisent dynamics of a sessile droplet under the application of DC field predict the contact line motion
as well as the effect of inertia leading to the formation of microjets from the droplet tip for high electrical fields
[19, 20]. Experimental studies by Bateni et al. [21] have demonstrated that sessile droplets of polar fluids exhibit an
increase in contact angle under steady electric fields, regardless of the field polarity. However, for non-polar sessile
droplets, such an influence of the electric field was not found.

Studies on oscillating sessile droplets have yielded interesting results with either the application of pure DC fields
or AC fields. In particular, Mugele et al. [3] showed experimentally that mixing in sessile droplets can be achieved by
self-induced oscillations caused by electrowetting. The oscillations were found to result from the droplet undergoing
attachment-detachment cycles with respect to a needle-like electrode immersed in it. They concluded that mixing
obtained in this process was non-chaotic as their experiments did not exhibit any logarithmic scaling of mixing
time with the Péclet number, a characteristic of chaotic mixing. However, in subsequent studies, they showed that
the droplet oscillations induced by an AC electric forcing can result in chaotic mixing instead of the attachment-
detachment cycles seen earlier [22]. It has been showed that AC electrowetting can be employed as a means to
induce stirring flows in sessile droplets for biochemical reaction enhancement and handling of cells [23]. Several
numerical investiagtions on AC electrowetting and contact line dynamics have shown agreement with experiments
and in some cases, demonstrated the importance of Joule heating at very high forcing frequencies [24, 25]. In recent
work, relevant to the current study, Sahu et al. [26] have shown that for leaky-dielectric fluids, the mean amplitude
of shape oscillations of a droplet subjected to an alternating electric field is the same as the steady-state deformation
under an equivalent root mean squared direct electric field.

It is clear from the above that there have been several studies on electrohydrodynamics of a sessile droplet under
the influence of a DC electric field, with far less attention being given to the case of AC electric fields, a subject of
considerable practical and scientific interest. In the current work, an inertial lubrication model based on the weighted
residual integral boundary layer (WRIBL) method [27] is developed to study the behaviour of a sessile droplet under a
time-periodic electrostatic forcing. We consider a closed coplanar configuration of the sessile droplet. The droplet and
the ambient hydrodynamically passive medium are taken to be leaky dielectric [16]. Following the work of Gomba and
Homsy [10], we use a 1D description of the sessile droplet based on thin precursor film model to capture the droplet
dynamics. It was shown by them that a sessile droplet subject to thermocapillary forces is described well using such
a model. The droplet contact line as well as its interfacial dynamics are investigated over various parameter regimes.
The two limiting cases, namely, the perfectly conducting droplet and the perfect dielectric droplet have also been
investigated and the dynamics is compared with that of the leaky-dielectric drop.

We investigate the shape dynamics of a sessile leaky dielectric drop in the presence of an alternating electric field.
The presence of AC field results in an enhanced contact line motion and droplet shape deformation under favorable
forcing frequencies. Its implications have applications in obtaining optimal mixing conditions in droplet microfluidics.
In the current work, we show that the contact line oscillates in the presence of an AC field with a frequency twice
that of the forcing potential due to the quadratic dependence of the Maxwell stress on the applied electric field. The
study on the influence of varying frequency of the applied AC electric field reveals that the amplitude of the response
oscillations is almost constant at low frequencies, which increases in the intermediate range of frequencies, followed by
a steep decrease with further increase in frequency of the AC field. At high frequencies, as the time scale associated
with electric potential change is much smaller than the capillary time scale of the droplet, the contact line remains
almost static as if the droplet is under the influence of an equivalent DC field in the root mean square (RMS) sense.
We also investigate different waveforms of the applied AC electric field on the dynamics of the sessile droplet and find
that a square waveform effectively acts like a static DC electric field.

The paper is organised as follows. In Section II, the problem is formulated and the WRIBL model governing the
electrowetting dynamics of a sessile droplet is derived. The results of interface evolution and the underlying physics
are discussed in Section III with concluding remarks given in Section IV.
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ρ1 = 1000 kg/m3 ε0 = 8.854× 10−12 F/m
µ1 = 0.9× 10−3 kg/ms ε1 = 81, ε2 = 1
H = 10−4 m σ1 = 5.5× 10−6 S/m, σ2 = 10−13 S/m
γ = 7.2× 10−2 N/m g = 9.8 m/s2

TABLE I. Physical parameters used in the numerical simulations, unless otherwise mentioned explicitly. The properties are
for water-air system.

II. MATHEMATICAL MODEL
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FIG. 1. (a) Schematic of a sessile droplet subjected to a periodic electrostatic forcing. The droplet is hydrodynamically
active, while the ambient fluid is assumed to be hydrodynamically passive. (b) Different time-dependent waveforms of electric
forcing (Ψ(t)) are considered in this study, namely, sinusoidal (black solid line), triangular (red dashed line) and square (blue
dash-dotted line).

The electrohydrodynamics of a sessile droplet (fluid 1) placed on an electrically conducting substrate under the
influence of an AC electric field is studied, as shown in the schematic diagram (Fig. 1(a)). A Cartesian co-ordinate
system with the origin at the bottom electrode along the droplet center-line is used, as depicted in the Fig. 1(a).
This choice of co-ordinate system is employed based on its success in predicting the underlying physics of sessile
droplet dynamics in several earlier studies; see for instance, the work on thermocapillary actuation of droplets [10].
While we lose out on accurate quantitative predictions, this simplified geometry helps us to glean ninsi Three types
of AC electric field waveforms are considered as shown in Fig. 1(b). Following earlier works [10], a thin precursor
film has been introduced on the horizontal substrate. The presence of the precursor film ensures that any singularity
associated with the triple contact line dynamics and Maxwell stress does not arise. The fluids are assumed to be
Newtonian and leaky dielectric. However, in order to contrast the droplet dynamics obtained for the leaky dielectric
medium, the limiting cases of the perfectly conducting and the perfect dielectric droplets are also considered. The
density, dynamic viscosity, electrical permittivity and conductivity of fluids 1 and 2 are (ρ1, µ1, ε1, σ1) and (ρ2, µ2, ε2,
σ2), respectively. The ambient fluid 2 is assumed to be hydrodynamically passive. The surface tension acting at the
interface between fluids 1 and 2 is denoted by γ. A Cartesian coordinate system (x, z) is used, where x and z represent
the horizontal and vertical directions, respectively. The horizontal and vertical components of the velocity vector (~v)
are denoted by u and w, respectively. The bottom wall (at z = 0) is held at an electric potential, Φ1(0) = Φ0ψ(t),
where ψ(t) represents the functional dependence of electrostatic field with time, t, and Φ0 denotes the amplitude of
the applied electric field. As an example, the electric field with a sinusoidal waveform, Φ1(t) = Φ0 sin(ωt) implies
an AC electrostatic forcing with amplitude Φ0 and angular frequency ω. The top wall (at z = Hw) is grounded,
i.e., Φ2(Hw) = 0. Hw is the distance between the electrodes. All parameters used in computations, unless specified
otherwise, are listed in Table I. The charge relaxation time that characterises the electrical effects are typically much
larger than the magnetic time scale for most fluids encountered. Hence, the electrostatic assumption [16] is used in
the present study as we take properties of such pairs of fluids for our computations. The thin film approximation is
used to obtain a reduced-order model to study the dynamics of a sessile droplet under the action of a time-dependent
electric field.
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A. Governing equations

The droplet (fluid 1) is hydrodynamically active and satisfies the continuity and the Navier-Stokes equations, which
are given by

∇ · ~v1 = 0, (1a)

ρ1

(
∂~v1

∂t
+ ~v1 · ∇~v1

)
= ∇ ·T1 +∇ ·M1 − ρ1g~iz. (1b)

Here, T1 = −p1I + µ1(∇~v1 + ∇~vT1 ), wherein I is the identity tensor and ~iz is the unit vector along positive z
direction. The Maxwell stress tensor, M1, arises due to the presence of an electric field and is given by M1 =

ε0ε1

[
~E1
~E1 − 1/2( ~E1 · ~E1)I

]
. Here, ε0 is the permittivity of free space, ε1 is the permittivity of fluid 1 and ~E1 is the

electric field in fluid 1. Both fluids are assumed to have no space charge in the domain and hence the electric field,
~Ei = −∇Φi satisfies Gauss’s law, given by

∇2Φi = 0 subject to Φ1(0) = Φ0ψ(t) and Φ2(Hw) = 0. (1c)

The above governing equation for the electric potential implies that the Maxwell stress contribution vanishes in Eq.
(1b).

The interface speed (U), the unit normal vector (~n) and the unit tangent vector (~t) are given by

U =
∂h
∂t[

1 +
(
∂h
∂x

)2]1/2 , ~n =
−∂h∂x îx + îz[

1 +
(
∂h
∂x

)2]1/2 , and ~t =
îx + ∂h

∂x îz[
1 +

(
∂h
∂x

)2]1/2 , (2)

respectively.

At the material fluid interface, (~v1 · ~n − U) must be equal to zero. The electric potentials are required to be
continuous at the interface and together with Gauss’s law yield the following conditions:

Φi(h) = Φ2(h) and ε0ε1∇Φ1 · ~n− ε0ε2∇Φ2 · ~n = Q (3)

Here, Q denotes the interfacial charge density. Further, the tangential and normal stress balances at the interface are
given by [16]:

~n ·T1 · ~t = Q~E · ~t (4a)

~n · (T1 + M1) · ~n− ~n ·M2 · ~n = −γ∇s · ~n+
2s

h∗

(
h3
∗
h3
− h2

∗
h2

)
. (4b)

The right-hand side of the tangential stress denotes the additional shear stress resulting due to the presence of surface
charge. Here, Q is the free charge density at the interface. Further, the electrostatic contribution in the normal stress
balance arises due to a jump in the normal component of the Maxwell stress between the two fluids at the interface.
The last term in Eq. (4b) is the conjoining-disjoining potential, with s = γ (1− cos θ) being the wetting parameter
that determines the equilibrium static contact angle (θ) of the droplet [10]. The film height, h∗, corresponds to the
thickness that minimises the conjoining-disjoining potential.

The equation governing interfacial charge dynamics is obtained from charge conservation on a differential surface
of the fluid interface [16]. Incorporating corrections to the surface charge density due to the motion of interface as
given by Johns [28], we obtain:(

∂Q

∂t
+∇s · (Q~v1s) +Q (∇s · ~n) (~v1 · ~n)

)
= σ1

~E1 · ~n− σ2
~E2 · ~n. (5)

In the above, the surface velocity, ~v1s = ~v1−(~v1 · ~n)~n and the surface gradient operator, ∇s = ∇−(~n · ∇)~n. The left-
hand side is the Lagrangian rate of change of surface charge density, while the right-hand side represents the electric
current density from the fluid bulk into interface. Here, σi denotes the electrical conductivity of fluid i (= 1, 2).

Next, we derive the thin film model based on the separation of length scales.



5

B. Thin film modelling

The following scaling based on the thin film approximation is used to non-dimensionalise the governing equations:

x = Λ x̃, z = H z̃, u = U ũ, w = (δU)w̃, t = (Λ/U) t̃,

p = (µ1U/H) p̃, Φi = Φ0 Φ̃i, Q = (ε0ε2Φ0/H)Q̃. (6)

The length scales in the horizontal and vertical directions are Λ and H, respectively, such that δ = H/Λ� 1. Here, H,
is the equilibrium droplet height in the absence of electric field, Λ is the typical horizontal extent of the thin precursor
film and β = Hw/H is the non-dimensional height of the top electrode, taken to be equal to 3 for all simulations. A
further restriction on the position of the top electrode is imposed such that Hw � Λ, and the thin film approximation
holds in the passive fluid 2 as well. The thin film model is expected to be strictly valid only when there is a disparity
of length scales, such as for the cases of highly wetting sessile droplets. However, it has been shown that the thin
film models capture the interface dynamics for sessile droplets and sessile wedges with large contact angles as well
[29, 30]. A heuristic estimate of the validity of the model is taken to be sessile droplets with contact angles up to 30◦.
We also calculated the interfacial gradient and verified that the thin film model is valid up to a contact angle of 30◦.
The velocity component in the horizontal and vertical directions are scaled with a characteristic velocity scale, U and
δU , respectively. The characteristic velocity scale, U , is chosen by requiring the Capillary number to be O(δ2), i.e.,
U = δ2γ/µ. This corresponds to the large surface tension limit, as obeyed by water or liquid metal conductors. The
tildes designate dimensionless quantities. It is to be noted that the WRIBL methodology differs significantly from the
conventional method of regular perturbation expansion. The problem is solved sequentially at each O(δ) in a regular
perturbation method. However, in the WRIBL methodology, governing equations are simply truncated to a desired
O(δ) accuracy. These may therefore contain terms belonging to different O(δ). The field variables are then expanded
in terms of appropriate basis functions and setting the weighted residues to vanish yields a mathematically consistent
and converged set of evolution equations [31]. It is a well-established averaging technique for truncated gorverning
equations based on the separation of length scales. In the current work, a WRIBL model consistent to O(δ) is derived
for electrowetting of a sessile droplet. The dimensionless governing equations (retaining all the terms up to O(δ) and
dropping the higher-order terms) are given by:

∂u1

∂x
+
∂w1

∂z
= 0, (7a)

δRe

(
∂u1

∂t
+ u1

∂u1

∂x
+ w1

∂u1

∂z

)
= −δ ∂p1

∂x
+
∂2u1

∂z2
, (7b)

−δ ∂p1

∂z
− δG = 0, (7c)

where G ≡ ρ1gH
2/µ1U(= ρ1gH

2/δ2γ) and Re ≡ ρ1 UH/µ1(= δ2ρ1 γH/µ
2
1). In Eqs. (7a)-(7c), Re and G are taken

to be O(1). No-slip and no-penetration conditions are used at the surface of the electrodes, which are given by
u1(0) = w1(0) = 0. In the above and hereafter, the tilde notations have been dropped for the non-dimensional
variables.

In the thin film limit, Eq. (1c) governing the potential for each phase reduces to ∂2Φi

∂z2 = 0, which is subject to the
following boundary conditions:

Φ1(0) = ψ(t), Φ2(β) = 0, Φ1(h) = Φ2(h), and ε
∂Φ1

∂z
(h)− ∂Φ2

∂z
(h) = Q, (8)

where the electric permittivity ratio, ε = ε1/ε2; for the system considered here, ε = 81. This parameter does not
appear in the perfect conductor model. Using Eq. (8), we solve for the potential in each phase as

Φ1 = ψ(t)− z
[
ψ(t)−Q(β − h)

h+ ε(β − h)

]
and Φ2 = (β − z)

[
εψ(t) +Qh)

h+ ε(β − h)

]
. (9)

The tangential and normal stress balances at the interface (z = h) gives:

∂u1

∂z
= −δEMT and p1 =

E

2

[
ε

(
∂Φ1

∂z

)2

−
(
∂Φ2

∂z

)2
]
− ∂2h

∂x2
− S

(
h3
∗
h3
− h2

∗
h2

)
, (10)
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whereMT = Q
(
∂Φ1

∂x + ∂Φ1

∂z
∂h
∂x

)
is the tangential component of the Maxwell stress at the interface, E ≡ ε0ε2Φ2

0/µ1UH
(

=

ε0ε2Φ2
0/δ

2γH
)

is the dimensionless electric potential and S ≡ 2s/µ1Uh∗
(
= 2s/δ2γh∗

)
is the dimensionless wetting

parameter. Increasing the value of S signifies an increase in the static contact angle and thus decrease in the wet-
tability of the droplet. The parameter h∗ corresponds to the film thickness that minimizes the conjoining-disjoining
potential and the precursor film assumes a height bounded between h∗ and 1.5h∗ [10]. In addition, E is taken to be
O(1). Note that the Ca is set equal to δ2 and therefore does not appear in the normal stress balance.

Integrating the continuity equation and using the kinematic condition, we obtain ∂h
∂t = − ∂q

∂x , where the flow rate,

q =
∫ h

0
u1 dz. Integrating the vertical component of momentum balance and eliminating pressure using Eqs. (7b),

(7c) and (10), we obtain

δRe

(
∂u1

∂t
+ u1

∂u1

∂x
+ w1

∂u1

∂z

)
= −δEMN + δ

∂3h

∂x3
+ δS

∂

∂x

(
h3
∗
h3
− h2

∗
h2

)
− δG∂h

∂x
+
∂2u1

∂z2
, (11)

where MN = 1
2
∂
∂x

[
ε
(
∂Φ1

∂z

)2 − (∂Φ2

∂z

)2]
is the normal component of the Maxwell stress at the interface. We now

use the weighted residual technique [27] to derive the set of the reduced-order evolution equations that govern the
interface position, h(x, t), flow rate, q(x, t), and the surface charge density, Q(x, t). We first decompose the horizontal
velocity component as follows:

u1(x, z, t) = û1(x, z, t)︸ ︷︷ ︸
O(1)

+ ũ1(x, z, t)︸ ︷︷ ︸
O(δ)

, w1 = −
∫ z

0

∂u1

∂x
dz. (12)

Here, û1 is an O(1) contribution to the velocity, while ũ1 denotes the O(δ) correction. The vertical component of
velocity, w1 (Eq. (12)) is then obtained by integrating the continuity equation. The leading-order velocity, û1, is
chosen to be locally parabolic at each horizontal position. This assumption is justified for moderate Reynolds numbers.
Thus, û1 can be determined using the following equations:

∂2û1

∂z2
= Ku, û1|0 = 0,

∂û1

∂z

∣∣∣∣
h

= 0,

∫ h

0

û1 dz = q. (13)

Here, Ku is introduced so that the leading order velocity profile is locally parabolic, and is obtained in terms of the
flowrate, q using the integral constraint in eq. (13). Next, we substitute for velocity as given by eqs. (12) in (11)
and neglect all terms of O(δũ1) = O(δ2) or smaller. The only term that contains the O(δ) contribution, ũ1, is due to
viscous diffusion. This term is eliminated by taking the weighted integral of Eq. (11) with a suitable weight function.
We use the Galerkin method, wherein the weight function has the same functional form as the leading order velocity,
as it is the most efficient choice of weight function [27]. Thus, the weight function, F can be defined as:

∂2F

∂z2
= 1, F |0 = 0, and

∂F

∂z

∣∣∣∣
h

= 0. (14)

Using the weighted residual strategy and integrating by parts, the diffusion term gives
∫ h

0
F ∂2u1

∂z2 dz = q +
(
F ∂u

∂z

)
|h.

The WRIBL equation obtained from Eq. (11) is then given by∫ h

0

δReF

(
∂û1

∂t
+û1

∂û1

∂x
+ ŵ

∂û1

∂z

)
dz = q − δEMTF |h+[

δ
∂3h

∂x3
− δEMN − δG∂h

∂x
+ S

∂

∂x

(
h3
∗
h3
− h2

∗
h2

)]∫ h

0

Fdz.

(15a)

Similarly, the interfacial charge equation (5) reduces to

δ

(
∂Q

∂t
+ û1

∂Q

∂x
+Q

∂h

∂x

∂û

∂z
−Q∂ŵ

∂z

)
= Ψc

(
∂Φ2

∂z
− σ∂Φ1

∂z

)
z=h

(15b)

where, σ = σ1

σ2
and Ψc ≡ σ2H

ε0ε2U

(
= σ2µ1H

ε0ε2δ2γ

)
. Eqs. (15a) and (15b) represent the thin film WRIBL model consistent

upto O(δ). Substituting for velocity and F obtained from equations (13) and (14), we obtain the evolution equations
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in terms of h, q and Q alone. Now that the reduced order model is derived, we re-normalise the system by setting
δ = 1 as done by [32]. This gives the final set of evolution equations as:

∂h

∂t
+
∂q

∂x
= 0, (16a)

Re

(
∂q

∂t
+

17q

7h

∂q

∂x
− 9q2

7h2

∂h

∂x

)
= − 5q

2h2
− 5

4
EMT +

5h

6

[
∂3h

∂x3
−EMN −G∂h

∂x
+ S

∂

∂x

(
h3
∗
h3
− h2

∗
h2

)]
, (16b)

∂Q

∂t
+

∂

∂x

(
3q

2h
Q

)
= Ψc

(
∂Φ2

∂z
− σ∂Φ1

∂z

)
z=h

, (16c)

Eq. (16) constitutes the reduced-order WRIBL model. In order to obtain eq. (16b) from eq. (15a), all terms

were normalized to make the coefficient of Re∂q∂t unity. The terms on the left-hand side of eq. (16b) are due to the
inertial effects and are precisely the same as obtained in earlier works involving inertial WRIBL models [33, 34]. The
right-hand side contains terms associated with the transverse viscous diffusion, the charge-driven interfacial shear
stress, the capillarity, gravity, the disjoining pressure and the normal component of the Maxwell stress. In eq. (16c),
it should be noted that the right hand side is a function of only x and t, and independent of z. From eq. (1c), we get

∂Φ1

∂z
= −

[
ψ(t)−Q(β − h)

h+ ε(β − h)

]
and

∂Φ2

∂z
= −

[
εψ(t) +Qh)

h+ ε(β − h)

]
. (17)

It is instructive to first examine Eq. (16) for sinusoidal forcing (ψ(t) = sin(ωt)) under various limiting conditions.
We initially examine the limit when both fluids are perfect dielectrics, i.e., they have negligible electrical conductivities.
This limit corresponds to setting Ψc → 0, with σ being finite in Eq. (16c). Further, as shown by [35], it is required
to set the interfacial charge, Q, also to zero. Eq. (16c) is then redundant and Eq. (16b) with Q→ 0, reduces to

Re

(
∂q

∂t
+

17q

7h

∂q

∂x
− 9q2

7h2

∂h

∂x

)
= − 5q

2h2
+

5h

6

[
∂3h

∂x3
−G∂h

∂x
+ S

∂

∂x

(
h3
∗
h3
− h2

∗
h2

)
+
Eε(ε− 1)2

2

h[1− cos(2ωt)]

(ε(β − h) + h)3

∂h

∂x

]
.

(18)

Here, ω is the non-dimensional angular frequency and is related to the non-dimensional frequency, f , via the relation
2πf = ω. Eq. (18) reveals that when ε = 1, the electrostatic term vanishes. Therefore, ε 6= 1 is a necessary condition
for electrowetting of a pair of perfect dielectrics.

Another limit of interest is that of a perfect conducting droplet surrounded by a perfect dielectric ambient medium
i.e., σ → ∞. The equation governing interfacial charge, Eq. (16c), then simplifies to ∂Φ1

∂z (h) = 0. This implies that
the term within the square brackets in the definition of Φ1 in Eq. (9) equates to zero. Thus, the potential in fluid
1 becomes independent of z and is given by Φ1 = cos(ωt), with the interfacial charge given by Q = sin(ωt)/(β − h).
Substituting Q from Eq. (9), we obtain Φ2 = (β − z)/(β − h) sin(ωt). Eq. (16b) then simplifies to:

Re

(
∂q

∂t
+

17q

7h

∂q

∂x
− 9q2

7h2

∂h

∂x

)
= − 5q

2h2
+

5h

6

(
∂3h

∂x3
−G∂h

∂x
+ S

∂

∂x

(
h3
∗
h3
− h2

∗
h2

)
+
E

2

[1− cos(2ωt)]

(β − h)3

∂h

∂x

)
.

(19)

The numerical study is carried out as follows. We first determine the droplet equilibrium shape, heq(x), in the
absence of any electrostatic forcing. This is obtained by a transient simulation of the WRIBL model (16) with
E = Q = 0 until a steady static droplet configuration is reached. The initial conditions (hin(x), qin(x)) used to obtain
the equilibrium shape are kept the same for all cases as follows:

qin(x) = 0, hin(x) =

{
(1− x2) + h∗, if |x| ≤ 1

h∗, if |x| > 1.
(20)

The above initial condition ensures that the droplet volume remains constant for all equilibrium shapes obtained for
different choice of parameter values such as the wetting parameter, S. The computational domain is taken to be
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FIG. 2. The temporal variations of the dimensionless droplet height, hc, subject to (a) DC electric forcing using different
number of grid points with E = 19.6/

√
2 (time is scaled with 0.01s) and (b) AC electric forcing using different number of grid

points with E = 19.6 and f = 6.25× 10−4. The rest of the dimensionless parameters are S = 26.8, G = 10−3 and Re = 36.

spatially periodic to mimic the physical context of droplets arrays in digital microfluidics. These conditions are given
as:

q(0) = q(L), h(0) = h(L),
∂nh

∂xn
(0) =

∂nh

∂xn
(L), n = 1, 2. (21)

We use the Fourier spectral collocation technique to obtain the numerical solutions [36]. It ensures high-order spatial
resolution and the periodic spatial boundary conditions are automatically satisfied. The time integration is performed
using the adaptive time-stepping NDSolve subroutine in Mathematica R© v.12.0.

Once the equilibrium droplet configuration is obtained as described above, the effect of electrostatic forcing is then
investigated by solving equation (16) using the following initial conditions:

h(x, 0) = heq(x), q(x, 0) = 0 and Q(x, 0) = 0 (22)

where heq(x) denotes the equilibrium shape of the drop obtained earlier in the absence of an electric field. Periodic
spatial boundary conditions are imposed using the Fourier spectral collocation technique.

In Fig. 2(a), we present the temporal variations of the dimensionless droplet height, hc, subject to a DC forcing

with E = 19.6/
√

2 and S = 26.8 using three different grid cut-off frequencies of N=150, 200 and 250. A similar result
is shown for the case of AC forcing with E = 19.6, f = 6.25 × 10−4, Re = 36, G = 10−3 and S = 26.8. Comparing
the results obtained using N = 200 and 250 reveals that the maximum relative error between them is of the order
of 0.1% for DC forcing and 0.2% for AC forcing. In view of this, we have used N = 200 to generate the rest of the
results presented in this study.

III. RESULTS AND DISCUSSION

We investigate the dynamics of the sessile droplet by varying the strength and the frequency of the AC electric
field applied in the vertical direction under different limits of the leaky dielectric model with an objective to obtain
a comprehensive understanding of the underlying physics. We first investigate the dynamics of a perfect conducting
sessile droplet in a perfect dielectric ambient fluid (σ →∞). In this case, the potential everywhere within the droplet
is the same as that of the bottom electrode and the dynamics of surface charge and the resulting stress at the interface
is negligible. In the other limit, when the conductivity of both the droplet and the ambient fluid is very low, the
model represents a perfect dielectric pair. In this case, the free charge at the interface remains identically zero. In
addition to these limiting situations, we explore the parametric space for the general leaky dielectric fluid to ascertain
the role of various parameters on the droplet electrowetting. We consider the effect of a sinusoidal AC electric field
on the above three pairs and then the effect of other time-periodic waveforms of electrostatic forcing on the sessile
droplet.
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A. Limit of a perfect conducting sessile droplet

We begin the presentation of our results by investigating the effect of the strength of an AC electric field, E, on a
perfectly conducting sessile droplet in a perfect dielectric ambient medium. The reduced-order model corresponding
to this limit consists of equations (16a) and (19). Fig. 3 depicts the variation of the dimensionless centerline height of
the droplet (hc) with dimensionless time (t) for different values of the electrical field strength, namely E = 19.6, 61,
100 and 275, with a sinusoidal frequency, f = 6.25× 10−4. The value of the dimensionless wetting parameter of the
droplet, S is taken to be 26.8. It can be seen that in the presence of an AC field, hc evolves to a periodic oscillatory
state where the amplitude of the oscillation exhibit a monotonic increase with the electrical field strength (see the
results for E ≤ 100). This trend continues until a critical field strength is reached beyond which the interface spikes
upward to hit the top electrode (see the variation of hc versus t at E = 275). This is analogous to the formation of a
microjet in the case of a pendent droplet beyond a critical electric field strength, as reported by [20]. It can be seen
that the droplet oscillates twice per each time-period of electrostatic forcing. This is due to the quadratic dependence
of the Maxwell stress on the electric field. As expected, the droplet deformation was found (not shown) to increase
with increase in Reynolds number due to the associated decrease in viscous effects.
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FIG. 3. The temporal variation of the dimensionless droplet height, hc, for different values of the electric potential, E, with
f = 6.25 × 10−4. The rest of the dimensionless parameters are S = 26.8, G = 10−3 and Re = 36. The droplet is a perfect
conductor and ambient fluid is a perfect dielectric.

We now investigate the effect of the frequency of the electric field on the dynamics of droplet deformation. In Figs.
4(a) and (b), we have plotted the variations of the dimensionless droplet height (hc) versus dimensionless time (t)
for an applied electric field of strength, E = 19.6 with frequency varying in the ranges f = 1.25 × 10−4 − 5 × 10−4

and f = 6.25 × 10−4 − 2.5 × 10−3, respectively. The red dotted line in both panels represents the variation of hc
with t obtained under an equivalent DC field in the root mean square (RMS) sense, i.e., EDC = E/

√
2. In the DC

case, it can be seen that the droplet deforms and stabilises to a steady configuration early. However, in the case of
AC fields, the droplet is found to oscillate about the steady-state deformation of the equivalent DC field. Figures
4(a) and (b) reveal that the amplitude of the droplet oscillations increases and then decreases as the frequency of the
applied electric field is increased. This behaviour is further exemplified in Fig. 4(c), which depicts the amplitude of
droplet deformation, Dh, against the frequency of the applied electric field. Note that Dh is defined as the difference
between the maximum and minimum values of hc at the steady-amplitude periodic state, normalized by the steady
RMS DC value of hc. It can be observed in Fig. 4(c) that, for the parameter values considered, the amplitude of
oscillations is almost constant up to f = 2.5 × 10−4, which then increases in the intermediate range of frequencies
(1.25 × 10−4 − 9.5 × 10−4), followed by a steep decrease with further increase in the frequency of the AC field. At
very high forcing frequencies, the amplitude of the droplet oscillations saturates to zero. This is because at these high
forcing frequencies, the time scale associated with the potential change is much smaller than the capillary time scale of
the droplet. This makes the contact line remain almost static as if the droplet is under the influence of an equivalent
DC field in the root mean square sense. The amplitude of contact line oscillation exhibits a similar behaviour as
that of the amplitude of droplet oscillation, Dh. This is evident from Fig. 4(d) which depicts the amplitude of right
contact line oscillation, DcR, under AC forcing as a function of the forcing frequency, f . Here, DcR is defined as
the difference between the maximum and minimum values of the right contact line position at the steady-amplitude
periodic state. It should be noted that the system is symmetric about the droplet centreline and an identical result is
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therefore obtained for the left contact line position. This shows that there exists an optimum forcing frequency that
exhibits maximum oscillations of the droplet shape as well as the contact line motion. We next investigate whether
this optimum condition exists for droplets of varying static contact angle, i.e., for different values of the wetting
parameter, S.
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FIG. 4. (a,b) The temporal variation of the dimensionless droplet height hc for different values of electrical field frequency:
(a) the low-frequency range and (b) the high-frequency range. The variation of hc for the equivalent DC electric field (time is
scaled using 0.01 s) is shown by the red dotted line in panels (a) and (b). The variation of (c) the droplet deformation, Dh,
and (d) the right contact line motion, DcR, with frequency. Here, a perfectly conducting sessile droplet in a perfect dielectric
ambient medium is considered with E = 19.6. The rest of the dimensionless parameters are S = 26.8, G = 10−3 and Re = 36.

The role of droplet wettability on droplet dynamics is investigated by considering three different values of the
wetting parameter (S), viz., S = 26.8, S = 14.6 and S = 6.8. These values correspond to an equilibrium contact angle
of 30, 22 and 15. A lower value of S corresponds to a more wetting droplet. The volume of the droplet for all values
of S is kept the same. In Fig. 5(a), we have plotted droplet deformation, i.e., the amplitude of droplet oscillation,
Dh, as a function of the forcing frequency for the three different values of S. Similarly, the effect of the wettability
on the contact line motion, DcR, is plotted in Fig. 5(b). A key observation can be made from Fig. 5. The less
wetting droplets initially deform easily as the frequency increases due their ease in response, but at some frequency,
termed the favorable frequency, a maximum in deformation is achieved. This is attributed to a competition between
the characteristic time of the forcing frequency and the characteristic time of the response arising from wettability.
To make this evident, we replot, in Fig. 5(c), the data presented in Fig. 5(a) by rescaling the abscissa as f/S, which
is the ratio of the two characteristic times. In this graph, we see that the maximum deformation appears roughly at
the same f/S for different values of S, reaffirming our reasoning.
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FIG. 5. The variations of (a) the deformation of the droplet, Dh and (b) the right contact line motion, DcR, with frequency f
for different values of the wetting parameter, S. (c) Panel (a) is replotted with the parameter, f/S, to depict the competition
between forcing and wetting time scales in the problem. Here, a perfectly conducting sessile droplet in a perfect dielectric
ambient medium is considered with E = 19.6. The rest of the dimensionless parameters are G = 10−3 and Re = 36.

B. Limit of a perfect dielectric drop

We now discuss the results corresponding to the limit of a perfect dielectric droplet surrounded by a perfect dielectric
ambient medium. The reduced-order model corresponding to this limit consists of equations (16a) and (18). The
results are qualitatively similar to those observed in the case of the perfectly conducting droplet as discussed in section
III A. In Fig. 6, the temporal variations of hc are plotted for different values of the electrical field strengths. Similar
to Fig. 3, the amplitude of droplet oscillations exhibits a monotonic increase with the increase in the electrical field
strength until the interface spikes upward for very high voltages. As in the earlier case, the interface oscillates at a
frequency twice that of the forcing frequency.

The effect of the electrical field frequency on the droplet dynamics is depicted in Fig. 7(a) for lower frequencies
and in Fig. 7(b) for higher frequencies. It is again clear that increasing the forcing frequency initially increases
and then decreases the amplitude of the droplet oscillations. For the parameter values considered, this transition
occurs at f ∼ 1 × 10−3 as shown in Fig. 7(c). A similar trend is also observed in the contact line oscillation (Fig
7(d)). Therefore, like the perfectly conducting droplet case, here too there exists an optimum forcing frequency that
generates maximum oscillations in the sessile droplet.
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FIG. 6. The variations of the dimensionless droplet height, hc with dimensionless time for different values of the electric
potential, E, with f = 6.25 × 10−4, ε = 81. Both the droplet and ambient fluid are perfect dielectric. The rest of the
dimensionless parameters are S = 26.8, G = 10−3 and Re = 36.
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FIG. 7. (a,b) The temporal variations of the dimensionless droplet height, hc, for different values of electrical field frequency:
(a) the low-frequency range and (b) the high-frequency range. The hc for the equivalent DC electric field is shown by the red
dotted line in panels (a) and (b). The variation of (c) the droplet deformation, Dh, and (d) the right contact line motion,
DcR, with f . Here, a perfect dielectric sessile droplet with S = 26.8 in a perfect dielectric ambient medium is considered with
E = 19.6. The rest of the dimensionless parameters are G = 10−3 and Re = 36.
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In Figs. 8(a) and (b), we present the variations of the droplet deformation, Dh, and the right contact line motion,
DcR, with the permittivity ratio (ε) for a perfect dielectric droplet. The parameter values considered are E = 19.6,
f = 6.25×10−4 and S = 26.8. It can be seen that the amplitude of droplet oscillation as well as contact line oscillation
increase with an increase in the value of permittivity ratio, ε. This is because the normal component of the Maxwell
stress in the perfect dielectric system is proportional to the disparity in the permittivity between the two phases.
For large values of ε, the amplitude of oscillations of the droplet is seen to saturate and the dynamics of the perfect
dielectric model approaches that of the perfect conductor model. This explains why the system in Fig. 7 (ε = 81)
gives quantitatively similar results as that of the perfect conductor model obtained in Fig. 4. Though not shown, our
calculations showed a similar effect of S as in the previous case.
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FIG. 8. The variations of (a) the droplet deformation, Dh, and (b) the right contact line motion, DcR, with the permittivity
ratio (ε) for a perfect dielectric droplet. The rest of the parameters are E = 19.6, f = 6.25 × 10−4, G = 10−3, Re = 36 and
S = 26.8.

C. Leaky dielectric drop

Following our discussion of the extreme cases of perfect conductor–perfect dielectric pair, as well as a pair of
dielectrics, we now proceed to a discussion of the general leaky dielectric drop, which is the main part of the study.
It was shown by [37] that a planar interface between a pair of leaky dielectric fluids undergoes markedly different
dynamics depending on the electrical properties of the fluids in the ε − σ parameter space. In our model, we have
taken the ambient fluid to be hydrodynamically passive, which typically restricts the electrical properties to the
region given by (σ > 1, ε > 1). Several sets of (ε, σ) are chosen as shown by the markers in Fig. 9 for our numerical
simulations. The point (ε, σ) = (1, 1) implies that both the droplet and the ambient fluid have identical electrical
properties. In this case, no electrostatic stresses are experienced by the interface and the droplet retains its initial
equilibrium shape. Along the σ = ε line, the interfacial charge remains zero and therefore charge-induced interfacial
shear stress is absent. The droplet actuation is then solely due to the normal component of the Maxwell stress at
the interface that arises due to a jump in electrical permittivity across the interface. As observed in earlier works
on stability of planar interfaces [34, 37], the interfacial charge changes its sign across the σ = ε line. Therefore the
interfacial charge oscillation undergoes a complete 180◦ phase shift as we move across this line. This is exemplified
in Fig. 10, wherein the maximum value of the interfacial charge, Qmax as a function of time is plotted for five sets of
parameters, namely (ε, σ) = (1,4), (3,4), (4, 4), (5,4) and (6,4), which lie on either side of the σ = ε line. The time
snapshots of the droplet shape, as well as the corresponding interface charge profile for the case of (ε, σ) = (9.45,4)
are depicted in Figs. 11(a) and (b), respectively. It can be seen that there is a localized concentration of interfacial
charge near the triple contact line. This surface accumulation of the charge at the triple contact line typically hinders
its motion as compared to what is observed for a perfectly conducting droplet, as discussed in section III A. Another
important observation is that though the interface shape oscillates at a frequency twice that of the forcing frequency,
the interfacial charge oscillates at precisely the same frequency as the forcing frequency. This harmonicity of surface
charge with the applied AC field was also noted by Oh et al. [15].
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FIG. 9. Different regions in the electrical conductivity ratio (σ) and permittivity ratio (ε) space as shown by [37] for a planar
interface between a pair of leaky dielectric fluids. The markers denote the parameter values used for nonlinear calculations.
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The droplet and the ambient medium is leaky dielectric. The rest of the parameters are E = 4.9, f = 2.5 × 10−4, G = 10−3,
Re = 36 and S = 26.8.
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FIG. 11. (a) Time sequence of the profile of the droplet, h and (b) the interfacial charge, Q of a leaky dielectric droplet under
a sinusoidal electrical field. The rest of the parameters are ε = 9.45, σ = 4, E = 4.9, f = 2.5× 10−4, G = 10−3, Re = 36 and
S = 26.8. The image is not to scale and aspect ratio is chosen for visual clarity.

Next, the effect of permittivity ratio, ε is investigated by considering the response of the interface as we move
toward the right along the square markers (σ = 4 line) in Fig. 9. The effect of permittivity ratio on the droplet
deformation, Dh, is plotted in Fig. 12(a). It can be seen that the amplitude of droplet shape oscillation decreases,
reaches a minimum and then increases with an increase in the value of permittivity ratio, ε. We see that the minimum
occurs exactly at (ε, σ) = (4, 4). This can be explained based on the fact that the interface is actuated by a combined
effect of the tangential and the normal component of the Maxwell stress. As we approach the σ = ε line, the role of
the tangential stress is diminished, while away from the curve the increase in magnitude of the tangential stress leads
to an increase in the actuation.
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FIG. 12. (a) Effect of permittivity ratio, ε, on the deformation of the droplet, Dh (σ = 4) and (b) effect of conductivity ratio,
σ, on the deformation of the droplet, Dh (ε = 1) for E = 4.9, f = 2.5× 10−4, G = 10−3, Re = 36 and S = 26.8. The droplet
and the ambient medium is leaky dielectric.

The effect of conductivity ratio (σ) is investigated by considering the response of the interface as we move upward
along the circle markers (ε = 1 line) in Fig. 9. The effect of conductivity ratio on the droplet deformation, Dh, is
plotted in Fig. 12(b). It can be seen that with an increase in droplet conductivity, the droplet deformation initially
increases, reaches a maximum and then decreases. This is explained as follows. For the case considered, i.e., ε = 1,
the Maxwell stress is dominated by its tangential component of Maxwell stress. As σ increases (departs from ε = 1 in
this case), the surface charge density increases resulting in a higher tangential Maxwell stress and an increased droplet
deformation. As the conductivity ratio further increases, the system approaches a perfect conductor configuration,
with uniform electric potential within the droplet. As discussed in section II B, for a perfect conductor configuration,
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FIG. 13. Comparison of the droplet height oscillations, hc obtained using a AC electric forcing (E = 19.6) with (a) f = 2.5×10−4

and (b) f = 8.3 with different waveforms. The droplet is perfect conductor. The sinusoidal waveform: black solid line, the
triangular waveform: dashed black line, the square waveform: red dash-dotted line and the E = 19.6 DC forcing: black solid
line with circle symbols. The rest of the parameters are G = 10−3, Re = 36 and S = 26.8.

droplet deformation is possible only when a disparity exists in the permittivities of the fluid pair, i.e. ε 6= 1. Since
ε = 1, the droplet deformation, Dh approaches zero as the system approaches the perfect conductor configuration.

Finally, in Figs. 13(a) and (b), we investigate the effect of other waveforms of AC electric forcing on the deformation
dynamics of droplet for E = 19.6 and S = 26.8 with f = 2.5× 10−4 and f = 10.4× 10−4, respectively. We consider
the square, the triangular and the sinusoidal waveforms of AC electric forcing and compare the temporal variation
of the droplet height, hc, obtained using these waveforms with that obtained in the case of DC electric field of equal
strength. As a basis for comparison, these different waveforms were considered with equal amplitude. It should
be noted here that in the case of a square waveform, the positive and the negative cycles of the electrical forcing
are identical due to the quadratic dependence of the normal stress on the applied electric field. This is true for
both the frequencies considered. The square wave, therefore, evokes the same response as the DC forcing. At a low
frequency of f = 2.5 × 10−4 (cf. Fig. 13(a)), the droplet height under sinusoidal and triangular AC electric forcing
attains the same peak value as that attained under the DC forcing. At a higher frequency of f = 10.375 × 10−4,
the droplet height under sinusoidal forcing overshoots that obtained under the DC forcing. This is primarily due to
inertial effects becoming dominant at higher forcing frequencies. Therefore, unlike creeping towards the steady DC
height observed at low electric forcing frequencies, at higher electric frequencies, the droplet height overshoots due
to the inertial oscillations. However, it is interesting to note that the amplitude of oscillations is underpredicted by
a triangular waveform. Further investigation is needed to understand the behaviour of droplet deformation under
different waveforms.

IV. SUMMARY

The electrowetting and contact line dynamics of a sessile droplet in a closed coplanar configuration under time-
dependent electrostatic field is investigated using a thin precursor film based reduced-order model. The fluids are
assumed to be Newtonian and leaky dielectric. The limiting cases of perfectly conducting and perfect dielectric
droplets have also been investigated. The dynamics observed in the case of an AC electric field is compared with an
equivalent DC electric field in the root mean square sense. It is found that the contact line oscillates in the presence
of an AC field with a frequency twice that of the forcing electric potential due to the quadratic dependence of the
Maxwell stress on the applied field. The oscillation takes place about an equilibrium configuration corresponding to
that of an equivalent RMS DC potential. It is found that the contact line response is monotonic with the applied
strength of the electric field. An increase in the amplitude of the electric field increases the amplitude of contact line
oscillations. A significant increase in the amplitude leads to spike formation and the interface ruptures at the top
electrode. The contact line response can, however, become non-monotonic with applied frequency, depending on the
droplet wettability. This is a consequence of the competition between the time scale of forcing and the time scale
of response as influenced by the wettability of the droplet. The parameter space of permittivity ratio–conductivity
ratio is comprehensively investigated to bring out the non-trivial role played by each of them, via their contributions
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to the normal and tangential components of the Maxwell stress. Different waveforms of AC forcing have also been
investigated and it is shown that a square waveform acts effectively like a static DC field.
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