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We present a formulation of the physics-informed neural network (PINN) method for learning
effective viscosity of the generalized Newtonian fluid from measurements of velocity and pressure
in time-dependent three dimensional flows and apply it to estimate viscosity models of two non-
Newtonian systems (polymer melts and suspensions of particles) in shear flow between two parallel
plates using only velocity measurements from numerical simulations. The PINN-inferred viscosity
models agree with empirical models for shear rates with large absolute values but deviate for shear
rates near zero where analytical models have an unphysical singularity. We show that once the
unknown physics is learned the PINN method can be used to solve the momentum conservation
equation governing flow of non-Newtonian fluids.

I. INTRODUCTION

In many applications data is scarce and indirect and
the governing physics is not fully known, which limits the
utility of standard machine learning (ML) and physics-
based methods. On one hand, the conservation laws do
not provide a closed system of equations. For example,
the momentum and mass conservation equations govern-
ing fluid flow and solid body deformation require a stress-
shear-rate relationship (we refer to such relationships as
unknown physics) to close the system of these equations.
On the other hand, experiments usually provide measure-
ments of state variables and not stresses. For example, in
non-Newtonian flow experiments one can easily measure
velocity, but not stress or viscosity. Other examples in-
clude non-linear heat and mass transport, where one usu-
ally measures temperature and concentrations and not
heat and mass fluxes or temperature-dependent thermal
conductivity and concentration-dependent diffusion coef-
ficient. This makes it impossible to use data-driven ML
methods to learn unknown physics (stresses and fluxes)
as functions or functionals of state variables. It is impor-
tant to note that standard parameter estimation meth-
ods cannot be used for learning unknown physics because
the function space is infinite-dimensional. It is this is-
sue that the physics-informed neural network (PINN)
method attempts to solve. PINN uses the known un-
derlying structure of physical laws governed by PDEs or
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ODEs to predict unknown functions or functionals from
indirect observations. In the past, the PINN method was
used to solve Navier-Stokes and Darcy equations [1, 2]
and learn parameter fields and constitutive relationships
in the models of flow in porous media [3, 4]. In this
work, we extend the PINN method for estimating the
non-Newtonian viscosity based solely on velocity data,
where the (unknown) effective viscosity is a symmetric
function of the shear rate. This makes the PINN method
applicable for studying a wide range of complex physical
processes with partially known physics.

II. PINN METHOD FOR NON-NEWTONIAN
FLOW MODELS

Consider flow of a non-Newtonian incompressible fluid
satisfying the momentum conservation equation:

ρ
∂v

∂t
+ ρv · ∇v = −∇P +∇ · τ +Fb, (x, t) ∈ Ω× (0, T ]

(1)
and the continuity equation

∇ · v = 0, (x, t) ∈ Ω× (0, T ] (2)

subject to the appropriate boundary conditions. Here,
x = [x, y, z]T is the coordinate vector, t is time, v(x, t) =
[u(x, t), v(x, t), w(x, t)]T is the fluid velocity vector (u, v,
and w are the x, y, and z components of v), P is pres-
sure, ρ is a known constant density, Fb is the prescribed
body force per unit volume, and τ is a shear stress ten-
sor. In the derivations below and numerical examples,
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we assume a generalized Newtonian approximation with
the stress tensor of the form

τ = µ(ε̇)ε̇, (3)

where ε̇ = (∇v +∇vT ) is the strain rate, ε̇ =
√

1
2 ε̇ : ε̇ is

the effective strain rate, and µ(ε̇) is the unknown strain-
rate-dependent viscosity. Later in this section, we dis-
cuss how to extend the proposed PINN method to non-
Newtonian fluids that are not purely viscous, i.e., cannot
be accurately approximated with the generalized Newto-
nian stress model (3).

We consider two cases: (1) no measurements of µ are
available and (2) Nµ measurements of µ are given for ε̇i

values of ε̇, {µ∗(ε̇i)}
Nµ
i=1. In both cases we assume that

there are Nv measurements of the velocity v, v∗(xvi , t
v
i )

at xvi -t
v
i space-time coordinates and NP measurements of

P , P ∗(xPi , t
P
i ) at xPi -tPi space-time coordinates. We ap-

proximate the viscosity µ(ε̇) and the velocity v(x, t) and
pressure P (x, t) with fully connected feed-forward deep
neural networks (DNNs). The velocity vector field is ap-
proximated as v(x, t) ≈ v̂(x, t; θ), where in general three-
dimensional case, the v̂ DNN has four dimensional input
layer with components (x, y, z, t), three-dimensional out-
put layer with components (û, ŵ, ẑ), and the parameters
(weights and biases) are denoted by θ. Details of DNNs
architectures can be found elsewhere (e.g., [3]). Here, we
just mention that each output of v̂ is a known function of
x and t and parameters θ. Using the differentiation chain
rule or the automatic differentiation (AD) [5] packages
available in most ML libraries, one can exactly compute
the time and spatial derivatives of û(x, t; θ), ŵ(x, t; θ) and
ŵ(x, t; θ) and functions of these derivatives, including the

strain rate ˆ̇ε(x, t; θ) = (∇v̂(x, t; θ) + ∇v̂(x, t; θ)T ) and

effective strain rate ˆ̇ε(x, t; θ) =
√

1
2
ˆ̇ε(x, t; θ) : ˆ̇ε(x, t; θ).

With this approximation of the shear rate at hand, we
can approximate effective viscosity with a DNN that is
function of ˆ̇ε as µ(ε̇(x, t)) ≈ µ̂(ˆ̇ε(x, t; θ); γ), where γ is
the assembly of weights and biases of the µ̂ DNN. The
µ̂ DNN has five-dimensional input layer (x, y, z, t, ˆ̇ε) and
one-dimensional output layer. The pressure field is ap-
proximated as P (x, t) = P̂ (x, t, β), where β is an as-

sembly of the parameters of the P̂ DNN, which has
four-dimensional input layer and one-dimensional output
layer. We train û, µ̂, and P̂ (i.e., evaluate θ, γ, and β)
jointly using Eqs. (1) and (2) and the appropriate bound-
ary conditions as constraints. This allows us to train µ̂
even without direct measurements of µ.

In the PINN method, the PDE constraints are imposed
in a soft form, i.e., by minimizing the residuals of Eqs.
(1) and (2). We remind that the DNN derivatives with
respect to x, t, and the parameters θ and γ can be com-
puted analytically. The derivatives with respect to x and
t are needed to compute the PDE residuals, while the
derivatives with respect to parameters are required to
estimate the parameters’ values in the process known as
backpropagation [6]. Here, we use AD to compute deriva-

tives.
Substituting û and µ̂ in the governing equations forms

the “auxiliary” DNNs:

f̂(x, t; θ, γ, β) = ρ
∂v̂

∂t
+ ρv̂ · ∇v̂ +∇P̂ −∇(µ̂(ˆ̇ε)ˆ̇ε) (4)

and

ĝ(x, t; θ) = ∇ · v̂. (5)

We train the DNNs simultaneously by minimizing the
loss function

L(θ, γ, β) =
ωv
Nv

Nv∑
i=1

[v̂(xvi , t
v
i ; θ)− v∗(xvi , t

v
i )]

2
(6)

+
ωP
NP

NP∑
i=1

[
P̂ (xPi , t

P
i ;β)− P ∗(xPi , tPi )

]2
+
ωµ
Nµ

Nµ∑
i=1

[
µ̂(ˆ̇εi; γ)− µ∗(ε̇i)

]2
+
ωf
Nf

Nf∑
i=1

[
f̂(xfi , t

f
i ; θ, γ, β)− Fb

]2
+
ωg
Ng

Ng∑
i=1

[ĝ(xgi , t
g
i ; θ)]

2

as

(θ, γ, β) = arg min
θ∗,γ∗,β∗

L(θ∗, γ∗, β∗) (7)

In L(θ, γ, β), the first three terms force v̂(xvi , t
v
i ; θ),

P̂ (x, t;β), and µ̂(ˆ̇ε; γ) to match the measurements of
these variables and the last two terms force the DNNs
to satisfy the governing equations. Dirichlet boundary
conditions for v and P are imposed by treating them
as the measurements of v and P on the corresponding
boundaries and including them in the first two terms in
L(θ, γ, β). Neumann boundary conditions are imposed
by penalizing the normal derivatives at the correspond-
ing boundaries in the loss function [3]. The weights
{ωi}i=v,P,µ,f,g reflect the fidelity level of the data and
physics models. For example, in general, u and P mea-
surements are more accurate than viscosity measure-
ments, so ωv ≥ ωµ and ωP ≥ ωµ. We note that Eq.
(3) is an approximation relying on the generalized New-
tonian model of the viscous stress, therefore, ωf ≤ ωu
and ωP . The relative values of ωi can also affect the con-
vergence rate of iterative solutions of the minimization
problem (7) [7].

For non-Newtonian fluids that are not purely viscous,
Eq. (3) can be generalized as [8, 9]

τ = τE − 1

3
tr(τE)I, (8)

where I is the unit tensor and τE is the so-called extra
stress defined as

τE = AI +Bε̇+ Cε̇2. (9)
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Here, A, B, and C are functions of the three scalar invari-
ants of ε̇: = tr(ε̇), IIe = 1

2 [tr(ε̇2)−I2e ], and IIIe = det ε̇.
The PINN method can be extended to the stress model
(8), by approximating A, B, and C with DNNs that are
functions of Ie, IIe, and IIIe. For viscoelastic fluids, τE

is given by integral equations or differential equations
[10]. The extension of the PINN method for such flu-
ids is less straight forward and is outside of the scope of
this paper. A starting point in such analysis could be
a recent work on learning viscoelastic constitutive rela-
tionships with physics-constraint DNNs in finite-element
models of material deformation [11].

In the following, we apply the PINN method to learn
µ in a shear flow between two parallel plates satisfying
the steady-state momentum conservation equation:

d

dy

[
µ(uy(y))

du(y)

dy

]
= −C for y ∈ Ω = (0, H), (10)

where the velocity vector is given by u = (u(y), 0, 0)T ,
uy ≡ du/dy is the shear rate, H is the channel width,
and C is a force per unit volume. Eq (10) assumes that
the viscous stress has the form µ(uy)uy(y), where µ(uy)
is the unknown shear-rate-dependent viscosity and that
flow is laminar. The fluid velocity u is subject to the
no-slip boundary conditions (BCs):

u(0) = 0, u(H) = 0. (11)

In this example, the loss function takes the form

L(θ, γ) =
ω1

Nu

Nu∑
i=1

[û(yi; θ)− u∗(yi)]2 (12)

+
ω2

2

[
û(y = 0; θ)2 + û(y = H; θ)2

]
+
ω3

Nf

Nf∑
i=1

[
f̂(yi; θ, γ) + C

]2
+
ω4

Nµ

Nµ∑
i=1

[
µ̂(uyi; γ)− µ∗(uyi)

]2
,

where

f̂(y; θ, γ) =
d

dy

[
µ̂(ûy(y; θ); γ)

dû(y; θ)

dy

]
. (13)

To solve this minimization problem we set the initial
values of θ and γ using the Xavier’s normal initialization
scheme [12]. Next, we run the Adam optimizer [13] for
a set number of steps. Finally, we run the quasi-Newton
L-BFGS-B optimizer [14] until the desired convergence
and tolerance are achieved. We find that for the con-
sidered here problems, this combination of the optimiz-
ers increases the convergence rate and reduces the com-
putational cost as compared to using either optimizer
alone. We use DNNs with two hidden layers with sixty
nodes each and a learning rate of 0.001 for the Adam
optimizer unless otherwise noted. The error ‖eû‖2 =

‖û(y; θ)−u∗(y)‖2/‖u∗(y)‖2 estimates the accuracy of the
DNN approximations of u relative to the u measurements
and the error ‖f‖∞ = max1≤i≤Nu |f(yi; θ, γ) + C| is a
measure of how well the DNN approximations of u and
µ satisfy Eq. (10).

We refer to the PINN method that is used to evaluate
the unknown viscosity function given the measurements
u (or u and µ) as the inverse PINN. Once µ̂ is trained, the
PINN method can also be used to solve the momentum
conservation equation without observations of u (and/or
µ) if the shear rate does not exceed the maximum shear
rate in the experiment used to train µ̂. To train û as an
approximate solution of Eq. (10) we use the loss function
Eq. (12) with ω1 = ω4 = 0 and ω2 = ω3 = 1. We refer to
this application of PINNs as the forward PINN method.
More details about DNN approximation and training in
the PINN framework can be found in [1, 3].

III. VALIDATION OF THE INVERSE AND
FORWARD PINN METHODS

We first validate the ability of the inverse PINN
method to learn the unknown shear-dependent viscosity
using velocity data generated with the Ostwald-de Waele
power-law effective viscosity model [15], µpl (uy(y)) =

K |uy(y)|n−1, where K is the power-law consistency co-
efficient and n is the power-law index. This model in
combination with Eqs. (10) and (11) allows for an ana-
lytical solution for u(y) and du(y)/dy [16].

We generate two data sets by selecting Nu = 501 uni-
formly distributed measurements of u from the analyti-
cal solution for u using both n = 0.898 (shear-thinning
fluid) and n = 1.2 (shear-thickening fluid) with C = 0.75,
H = 25, and K = 40.788. For both values of n we train
the û(y; θ) and µ̂(ûy(y; θ); γ) DNNs by minimizing the
loss function Eq. (12) with ω1 = ω2 = ω3 = 1 and
ω4 = 0. We note that the minimization problem is not
convex and its solution (θ, γ) can depend on the initial
values of θ and γ. To demonstrate how different initial
values for the weights affect the PINN solution, we solve
the minimization problem with 100 different initializa-
tions of θ and γ and then average the resulting DNNs
û(y; θ) and µ̂(ûy(y; θ); γ) to obtain the solutions for u(y)
and µ(uy), respectively. For n = 0.898 the average solu-
tions are compared with the analytical solutions in Figs.
1a and 1b. The average DNN û(y) solution agrees well
with the analytical u(y) solution with the maximum er-
ror of 0.1% at y = H/2. The average DNN µ̂(ûy) so-
lution agrees with the analytical model for large shear
rates (|uy| > 0.02) within 1.44%. For small shear rates,
the DNN solution deviates from the analytical solution
and for zero shear rate has a finite value while the an-
alytical solution has a nonphysical singularity. Fig. 1b
also shows that the maximum standard deviation in the
learned µ(uy) is at uy = 0 and is two orders of magni-
tude smaller than the mean value of µ at uy = 0, indi-
cating that the uncertainty of the PINN method due to
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FIG. 1. Inverse and forward PINN solutions for the synthetic
data generated from the analytical solution for a power-law
fluid with n = 0.898. (a) The average velocity profile from 100
runs for the PINN results, and one run for the PINN forward
model. (b) The average du

dy
of the 100 runs versus the average

µ. The width of the gray area corresponds to four standard
deviation of µ. (c) Average error in satisfying the ODE.

DNN initialization is relatively small. Fig. 1c depicts

the residual f̂(y; θ, γ) +C of Eq. (10) as a function of y.
The small values of the residual ( ‖f‖∞ = 7.45 × 10−5

and 5.061×10−4 for n = 0.898 and 1.2, respectively)
and ‖eû‖2 (‖eû‖2 = 2.345 × 10−4 and 2.135×10−4 for
n = 0.898 and 1.2, respectively) show that the DNNs û
and µ̂ both approximate the data and satisfy Eq. (10)
for shear-thinning and shear-thickening fluids.

Next, we validate the ability of the forward PINN
method to solve Eq. (10). We fix the weights of the DNN
µ̂ obtained from the inverse PINN with n = 0.898 and
train the û(y, θ) DNN by minimizing the loss function
Eq. (12) with ω1 = ω4 = 0, ω2 = ω3 = 1. Fig. 1a shows
that the trained û(y, θ) closely agrees with the analytical
solution for the power-law fluid with n = 0.898 with the
maximum error of 0.36%. Fig. 1c shows the maximum
residual corresponding to this DNN is two orders of mag-
nitude smaller than C, indicating that û approximately
satisfies Eq. (10).

IV. MONODISPERSE POLYMER MELTS

We consider a synthetic Dissipative Particle Dynamic
(DPD) fluid consisting of chains of N equal-size beads
connected by springs to model polymer melts. Two-
dimensional DPD simulations of such fluids between two
parallel plates with chains made of N = 2, 5, and 25
beads are presented in [17]. In [17], the DPD results
were used to compute µDPD(du(y)/dy) using the Irving-

Kirkwood relationship [18].

We use the velocity data from [17] and the inverse
PINN method with ω1 = ω2 = ω3 = 1 and ω4 = 0 in
Eq. (12) to estimate µ(uy). To match [17] , C = 0.75
and H = 25. The relative velocity error and the max-
imum residual error are ‖eû‖2 = 2.6 × 10−4, 1.9×10−4,
and 4.4×10−4 and ‖f‖∞ = 1.5 × 10−4, 1.8×10−4, and
1.2×10−4 for N=2, 5, and 25, respectively. For all con-
sidered N , the relative error in u is less than 0.1% and
the maximum residual error is three orders of magnitude
smaller than the driving force C, indicating that the DNN
û accurately approximates data and the DNNs û and µ̂
satisfy the governing equations. Figs. 2a and 2b compare
the velocity profiles and viscosities estimated from the
DPD simulation, µDPD and from the PINN method for
N = 2. The DNN velocity profile û(y; θ) closely matches
the DPD velocity profile uDPD(y) with the maximum
error of 5.52%. The agreement between µ̂(uy; θ, γ) and
µDPD(uy) is less accurate with the maximum error of
3%. To test whether uDPD(y) and µDPD(uy) satisfy Eq.
(10), we train the û(y; θ) and µ̂(uy; θ, γ) DNNs condi-
tioned on both uDPD and µDPD measurements. Figs.
2a and 2b show that conditioning of the DNNs on the
DPD measurements of uDPD and the estimates of µDPD
produces DNNs that match well both uDPD and µDPD
data (within 3.30% error for û.) However, conditioning
on the µDPD estimates also results in the residual errors
that are two orders of magnitude larger than the residual
errors in the case where no µDPD estimates are used to
train the DNNs, as shown in Fig. 2c.

Next, we use the PINN method to evaluate the vis-
cosity of the polymer melt with 25-bead chains. As for
the melt with N = 2, we first train the û and µ̂ DNNs
using only uDPD(y) measurements. Fig. 3 shows that
the û DNN agrees well with the uDPD(y) measurements
(the maximum error is less than 5.43%) and the result-
ing residual point errors are nearly zero (more than four
orders of magnitude smaller than C). We also see that
µ̂ significantly deviates from the µDPD(uy) values esti-
mated from the DPD simulations near a shear rate of
zero (more than 80%). Then, we train the û and µ̂
DNNs using both uDPD(y) and µDPD(y) data. Fig. 3
demonstrates that the resulting DNNs fit the uDPD(y)
and µDPD(uy) data well (within 7.18% for û), but the
corresponding residual is very large (on the order of C),
demonstrating that these data cannot accurately be de-
scribed by Eq. (10). We obtain similar results for the
polymer melt with N = 5.

Finally, we demonstrate that once µ̂(uy; θ, γ) is trained
the forward PINN method can be used to solve Eq. (10)
subject to the BC (11). We use the weights γ in the
µ̂(uy; θ, γ) DNN obtained above from the inverse PINN
and train the forward solution, ûf (y; θ), DNN by min-
imizing the loss function Eq. (12) with ω1 = ω4 = 0
and ω2 = ω3 = 1 for C = 0.75. For N = 2, Fig. 2a
shows that the ûf (y; θ) DNN matches the experimental
data well with a maximum error of 5.53%. In addition,
Fig. 2c demonstrates that the residual of the govern-
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FIG. 2. Inverse and forward PINN model results for polymer
chains of length N = 2. (a) Resulting velocity profiles. (b)
Resulting viscosity profile. (c) Error in satisfying the ODE.
Simulation data is from [17].
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FIG. 3. Inverse PINN results for polymer chains of length
N = 25. (a) Resulting velocity profiles. (b) Resulting viscos-
ity profile. (c) Error in satisfying the ODE. Simulation data
is from [17].

ing equation is two orders of magnitude smaller than C
confirming that ûf (y; θ) approximately solves Eq. (10)
subject to Eq. (11).

V. DENSE SUSPENSIONS OF SPHERICAL
PARTICLES

In this section, we employ the inverse PINN method
to learn the shear-rate-dependent viscosity of densely
packed spherical particles suspended in a Newtonian
fluid using the velocity measurements presented in [19].
The considered data are obtained from the numerical
simulations of suspension flows in a channel using the
force coupling method (FCM) [19–21]. In the consid-
ered suspensions, the average particle volume fraction
φa = 4

3πa
3N/V ranges from 0.2 to 0.4, where a is the

particle radius, N is the number of particles, and V is
the volume of the domain. In the FCM simulations, the
particle radius was set to a = 1, the channel length to
Lx = 80, the height to H = 40, and the width to Lz = 30.
The channel walls were located at y = 0 and 40, constant
Dirichlet BCs for pressure were prescribed at the x = 0
and 80 boundaries with the pressure drop over the length
of the channel ∆P/Lx = 0.029, and periodic conditions
were used in the z direction. At the continuum level, the
considered suspension behaves as a non-Newtonian fluid
and can be described by Eq. (10) with C = ∆P/Lx.

The velocity profiles for the suspension flows with
φa = 0.2 and 0.4 are shown in Figs. 4a and d, respec-
tively, and the local volume fractions φ(y) are depicted in
Fig. 6a. A key feature of suspensions is irreversible shear-
induced migration of particles to areas of low shear rate
[22]. Particles in a suspension subjected to a Poiseuille
flow will migrate to the channel centerline, increasing the
volume fraction at the centerline. For high average vol-
ume fractions φa, the volume fraction at the centerline
reaches the maximum close-packing φc, as shown in Fig.
6a. This migration also impacts the viscosity, resulting
in a flattened parabola shape of the velocity profile that
is observed in Figs. 4a and d.

As in the analysis of polymer melts above, we use the
inverse PINN to find the viscosity µ(uy(y)) by approx-
imating u and µ with û(y; θ) and µ̂(ûy(y; θ); γ) DNNs
trained by minimizing the loss function (12) with ω1 =
ω2 = ω3 = 1 and ω4 = 0. We use Nu = 401 measure-
ments of the velocity profile u(y) from the FCM simu-
lations. Because the velocity profiles from the simula-
tions (see Fig. 4a and d) deviate from the flattened-
parabola shape near the walls due to particle layer-
ing, a phenomenon that cannot be described by Eq.
(10), we train the PINN with velocity data in the range
y ∈ [0.25y/h, 1.75y/h], but still impose the zero Dirichlet
BCs for u at y = 0, H.

Figs. 4a and 4d compare the velocity profiles of the sus-
pension flow observed in the numerical simulations and
approximated with the û(y; θ) DNN for φa = 0.2 and
0.4, respectively. The µ̂(ûy(y; θ); γ) DNN and the viscos-
ity estimated from the numerical experiments are plotted
in Figs. 4b and 4e. The viscosity µ(uy) for the FCM sim-
ulations is found by computing uy(y) and φ(y) from the
simulation data, assuming that µ(uy) = ηs(φ(uy))ηf and
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FIG. 4. Inverse PINN results for suspensions with average
volume fraction φa = 0.2 (a-c) and 0.4 (d-f). Panels (c) and
(f) show the residuals of Eq (10) for the two φa values after the
PINN-estimated velocity and viscosity are substituted into
it. The inverse PINN model is trained with three hidden
layers with one hundred nodes each. In the direct suspension
simulations, µ(uy) is estimated using the Eilers model and
u(y) and φ(y) measurements.

using the Eilers formula [23, 24]

ηs(φ) =

1 +
5φ

4
(

1− φ
φc

)
2

. (14)

Here, ηf is the fluid viscosity (which was set to unity in
the FCM simulations) and φc is the maximum volume
fraction of a suspension (φc = 0.62 in the FCM simu-
lations.) We observe that the PINN method is able to
accurately learn the velocity profile with the maximum
error of 1.27% for φa = 0.2 and 4.73% for φa = 0.4 and
captures the increase in viscosity at the channel center-
line. Figs. 4c and 4f demonstrate that the residuals are
three orders smaller than C = 0.0288, indicating that the
û(y; θ) and µ̂(ûy(y; θ); γ) DNNs satisfy Eq. (10).

Finally, we employ the inverse PINN method to eval-
uate ηs as a function of φ that is compared with the
Eilers, Krieger [25], and Boyer et al [26] models in Fig.
6b. In the PINN method, we compute ηs(φ) using the
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FIG. 5. a) Final suspension local volume fraction profiles
φ(y) in steady-state. b) Suspension viscosities learned from
the PINN model as a function of the local volume fraction.
Results are compared with the Eilers [23, 24], Krieger [25],
and Boyer et al [26] models fitted to the data. Filled symbols
represent points that occur in the range 0h ≤ y ≤ 0.85h, and
empty symbols are in the range 0.85h ≤ y ≤ h, to denote
the deviations that occur from the theoretical values in the
middle of the channel.

µ̂(ûy(y; θ); γ) and û(y; θ) DNN models of viscosity and
velocity and φ(y) observed in the FCM simulations. The
considered empirical models predict similar µ values for
φ < 0.35 away from the channel centerline. The empiri-
cal models assume that µ(φ) is independent of φa. Fig.
6b shows that the PINN-predicted µ̂(φ) functions agree
with the empirical models for small φ for all considered
φa. For large φ, the PINN-estimated µ̂(φ) relationships
depend on φa and deviate from all considered empirical
models.

VI. DISCUSSION AND CONCLUSIONS

We formulated the physics-informed neural network
(PINN) method for learning effective viscosity of the gen-
eralized Newtonian fluid from measurements of velocity
and pressure in time-dependent three dimensional flows
and used it to estimate viscosity models of two non-
Newtonian systems (polymer melts and suspensions of
particles) in shear flow between two parallel plates using
only velocity measurements from numerical simulations.
We observed the deviation of the PINN-estimated vis-
cosity from viscosity given by the power-law model or
directly estimated from numerical experiments for rela-
tively small values of |uy|. We note that for the con-
sidered shear flows, the problem of estimating µ(uy) is
ill-posed. For the shear flow described by Eq. (10), it
follows that uyµ = −C(y − H/2) and, at y = H/2, one
has 0 · µ = 0. For small but non-zero |uy| evaluation of
viscosity using this relationship as

µ = −C
(y − H

2 )

uy
(15)

is subject to numerical instabilities, i.e., small changes in
the estimates of uy from data (e.g., due to the measure-
ment noise) can produce large changes in µ values. To
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a) b)

FIG. 6. Viscosity of (left) the polymer melt with N = 2
and (right) suspension with φ = 0.2 obtained from the PINN
method, direct numerical simulations (denoted as “Simula-
tion”), and Eq (15) (denoted as “µ Eqn.”).

demonstrate this point, in Figure 6a we compare the vis-
cosities of the polymer melt with N = 2 computed with
the PINN method, found in [17] from DPD simulations,
and estimated from Eq. (15) where the derivatives uy
were computed from the measurements of u as a func-
tion of y using a fourth order centered finite difference
scheme. The velocity data from DPD polymer melt sim-
ulations has relatively little noise and, for |du/dy| > 0.4,
Eq. (15) predicts µ values that are in a close agreement
with the PINN-estimate of µ. For |uy| < 0.4, Eq. (15)
produces very noisy estimates of µ(uy) that explodes at
|uy| = 0. Noise in data makes the estimation of µ for
small uy even more difficult. For example, for the sus-
pension with φa = 0.2 (that has more noise in the velocity
data than the polymer melts data), the µ estimates from

Eq. (15) are very noisy even for relatively large values
of |du/dy| and explode as |du/dy| → 0, as can be seen in
Figure 6b. Smoothing of the velocity data and/or fitting
local polynomials to data would reduce the noise, but not
completely eliminate it.

The PINN method regularizes this inverse problem by
(1) using a global DNN approximation of µ and u, and
(2) requiring µ and u to satisfy Eq. (10) at Nf points
that could be significantly larger than the number of ve-
locity measurements. Because of this, the PINN-estimate
of µ is a monotonic function of |uy| even when the u mea-
surements are noisy (as is the case with the considered
suspension data.)

Finally, we note that a successful application of the
PINN method to three-dimensional flow problems de-
pends on the availability of data. As experimental
and numerical techniques get more advanced, more data
containing three-dimensional measurements of velocity
and/or pressure fields become available. For example,
large-scale high-fidelity numerical simulations of com-
plex fluids provide full information about the three-
dimensional velocity and pressure fields. Modern ve-
locimetry methods, including particle image velocimetry,
can provide three-dimensional velocity measurements in
flow experiments.
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