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Some carnivorous mammals (e.g., cats and dogs) lap water with their tongues to drink water at high fre-
quencies. Such a fast moving tongue creates a liquid column out of a bath which is bitten by the mouth for
drinking. Presumably, the animals bite just before the pinch-off time of the water column to maximize the water
intake. Otherwise, the water column falls back to the bath before being bitten. Such a pinch-off phenomenon
in the liquid column can be described as the acceleration-induced (i.e., unsteady) inertia balances with the cap-
illary force. The classical Rayleigh-Plateau instability explains the competition of the steady inertia with the
capillarity, but not with the unsteady inertia. In this study, we modify the Rayleigh-Plateau instability in the
presence of the fluid acceleration, and show that the most unstable wavenumber and growth rate increase with
acceleration. The pinch-off time is theoretically predicted as the -1/3 power of the Bond number (i.e, a ratio of
the acceleration-induced inertia to capillarity). Finally, measured pinch-off times from previous physical exper-
iments and dog & cat jaw-closing times are shown to be in good agreement with our theoretical pinch-off time.
Therefore, our study shows that animals presumably modulate their lapping and jaw-closing time to bite down
the water column before the pinch-off to maximize the water intake.

I. INTRODUCTION

Mammals are composed of 50–70% water in the body [1, 2]. The water content needs to be internally circulated, discharged
by urination [3], and externally supplied by drinking water [4–6]. Most mammals drink water using a suction mechanism.
For example, humans drink or suck water by lowering pressure in the mouth, which is possible by sealing its mouth from the
atmosphere. However, most carnivorous mammals cannot lower the pressure in the mouth for drinking due to the incomplete
cheek. Instead, these animals develop a lapping mechanism as the tongue moves in and out of the water. While the tongue is
pulled up, a water column is created due to the high inertia force and wettable tongue surface. As the water column is formed
between the tongue and the free surface, it becomes unstable to break into two or several pieces (i.e., pinch-off). Before the
pinch-off, animals need to bite down the portion of the column for drinking. By doing so, the animals can drink some amount
of water even though the remaining water column falls back to the bath. Presumably, animals regulate the lapping frequency
and biting time to maximize the water intake from a physics point of view. The pinch-off dynamics of a liquid column has been
observed not only when cats and dogs lap water [4, 5] but also when aquatic animals jump out of water [7, 8]. However, the
underlying fluid mechanics in the pinch-off dynamics with tongue-like motion has been understudied.

The Rayleigh-Plateau instability is one of the canonical examples in hydrodynamic stability [9, 10], which describes how
a liquid column breaks into a series of small droplets (e.g., a water stream from a faucet). The pinch-off dynamics has been
extensively studied in the cases of a liquid bridge [11, 12], a flowing jet [9, 13, 14] , and a water-exiting object [7, 8]. We
summarize the theoretical pinch-off time into three different cases. At extremely low speeds (i.e., quasi-static regimes), the
pinch-off time can be predicted when the length of the liquid column becomes its capillary length (i.e., (γ/ρg)1/2 where γ is
the surface tension, ρ is the fluid density, and g is the gravitational constant) [15]. The capillary length indicates the maximum
length of the liquid column under gravity, which is typically on the order of a few milimeters. Next, at a constant speed of the
column separation, the liquid column pinches off at the time of (V/L)(V/

√
gL)2/3 where V is the separation or jet speed and

L is the characteristic length (i.e., typically a column diameter) [16]. The term inside the 2/3 power is called “Froude number”
as a ratio of inertia to gravitational force. This shows that the pinch-off time is determined by the time when the steady inertia
balances with gravity. Lastly, when the liquid column is stretched or flowing with acceleration, the pinch-off time is predicted
as (L/a)−1/2 where a is the acceleration of a liquid column [5, 17–19]. To derive this theoretical pinch-off time, one of the main
assumptions is a constant wavenumber determined by the column size , which has not been confirmed yet. However, the -1/2
power does not provide a great fit for experiments, which needs to be revisited.

In this present study, we will investigate the pinch-off time of a liquid column with linear acceleration. The linear acceleration
was observed in most of animal lapping behaviors (see Fig. 1(d)) The acceleration-induced Rayleigh-Plateau instability is
rationalized using the governing equations for 1D or 2D liquid columns. By linearizing the governing equations with proper
boundary conditions, dispersion relations are obtained to find the most unstable mode. Then, the most unstable growth rate
and wavenumber are used to predict the pinch-off time without using the assumption of constant wavenumber that is previously
used. Finally, we compare our theoretical pinch-off time with previously reported experimental data (i.e., a sphere or a cylinder
moving out of a liquid bath, dog and cat lapping videos).
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FIG. 1. (a) Photos show the formation of a water column while the dog drinks (Image credit to Jake Jocha, Sean Gart, and Sunghwan Jung).
(b) Water columns are formed while the killer whale jumps out of water (Image credit to Sunghwan Jung). (c) Schematic of a liquid column
underneath an object exiting the liquid surface. (d) Averaged tongue velocity of two dogs (27 kg and 9 kg in [5]) and one cat (7 kg in [4]). Time
zero is when the tongue starts to move out of a liquid bath. A linear increase in the velocity of dog’s tongue indicates a constant acceleration
(2–4g) during the withdrawal phase, whereas a cat drinking exhibits non-uniform acceleration as the tongue accelerates in the beginning and
then decelerates in the end.

II. RESULTS

We present two different methods to solve for a dispersion relation and predict the pinch-off time when an object creates a
liquid column out of a bath with acceleration. Similar calibrations without acceleration can be found in fluid mechanics books
such as Chap 1.5 in [20]. Such a water-exit phenomenon with acceleration is similar to a water column in animal lapping and
jumping behaviors as shown in Fig. 1(a,b). Especially, the pinch-off phenomenon would play an important role in animal’s
lapping as a liquid column becomes unstable due to inertia and surface tension.

A. 2D Column

When an axisymmetric water column is formed above the free surface by a water-exiting object at a high speed (see Fig. 1(c)),
we presume (1) negligible viscous effect and (2) no azimuthal dependence. Then, the Euler equations in cylindrical coordinates
can be written as
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(
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+u
∂u
∂ r
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∂ z
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=−∂ p

∂ r
(1)
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= 0 , (3)

where ρ is the fluid density, u is the radial velocity of the fluid, w is the axial velocity, p is the pressure, and g is the gravitational
constant. We expand the variables as a base state and a perturbed state as

u = 0+δu(r,z, t), w = at +δw(r,z, t),

R = R0−δR(z, t), p = patm−ρgz− γ/R2
0 +δ p(r,z, t) , (4)
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where a is the acceleration of the object, R is the column radius, R0 is the initial column radius, patm is the atmospheric pressure,
and γ is the surface tension. The base state of the radial velocity is assumed to be zero, whereas the base state of the axial velocity
is to be “at” as the body is moving out of water at constant acceleration, a. Then, the linearized Euler equations become
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First, we take a z-derivative on Eq. (5) and a r-derivative on Eq. (6). Then, we subtract one equation from the other to get rid of
the δ p-dependence as (
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This linearized relation between δu and δw is used in Eq. (7) after taking a r-derivative. Then, the continuity equation becomes[
∂

∂ r

(
∂

∂ r
+

1
r

)
+

∂ 2

∂ z2

]
δu = 0 . (10)

This equation has solutions, the so-called modified Bessel functions of the first or second kind. To have a finite value at r = 0,
only the first kind is valid as

δu(r,z, t) =C I1(kr)exp(ikz− iωt) (11)

where C is an unknown constant, I1 is the modified Bessel function of the first kind, k is the wavenumber, and ω is the frequency.
The imaginary part of the frequency, Im[ω], is also called “growth rate”, which corresponds to the growth rate of variables over
time. The real part of ω corresponds to the oscillatory behavior in time [21, 22]. Similarly, the imaginary part of k affects the
magnitude of variables along z as a spatial growth rate.

To further solve these equations, two boundary conditions on the column surface (@ r = R) are used;
(1) The first one is the kinematic boundary condition on the radial velocity as u|r=R = Dr/Dt|r=R = ∂R/∂ t +w∂R/∂ z where

D/Dt is the material derivative. The first order of the kinematic boundary condition reduces to

δu|r=R =

(
∂

∂ t
+at

∂

∂ z

)
δR . (12)

(2) The second boundary condition is the Young-Laplace equation as p− patm = γ∇ · n̂ = γ(1/R1 + 1/R2) where γ is the
surface tension, and R1 & R2 are the radii of curvatures. The first curvature can be chosen to be the inverse of its own column
radius (1/R1 ≡ 1/R = 1/(R0−δR) = 1/R0 +δR/R2

0 +O(δR2)). Then, the second curvature can be chosen to be orthogonal to
the first one, which becomes 1/R2 ≡ (∂ 2R/∂ z2)/[1+ |∂R/∂ z|2]3/2. Under the small slope assumption (i.e., |∂R/∂ z| � 1), the
second curvature can be approximated as ∂ 2R/∂ z2. Finally, the first-order Young-Laplace equation becomes

δ p = γ

(
1

R2
0
+

∂ 2

∂ z2

)
δR . (13)

Employing the above two boundary conditions and taking a derivative of (∂/∂ t +at∂/∂ z) on Eq. (5), one gets
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∂
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1

R2
0
+
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Then, with the normal mode assumption (δu|r=R =CI1(kR)exp(ikz− iωt)), the dispersion relation is obtained as

(ω−atk)2 = iak− γ

ρR3
0
(kR0)(1− (kR0)

2)
I1(kR0)

I0(kR0)
. (15)
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FIG. 2. (a) Dispersion relation of the classical Rayleigh-Plateau instability with γ = 0.072 N/m, ρ = 1000 kg/m3, and R0 = 10−2 m. The
growth rate is maximized at (kR0)

∗ = 0.708 regardless of fluid properties. (b) Dispersion relation of the modified Rayleigh-Plateau instability
with acceleration. Here, both the growth rate and non-dimensional wavenumber of the most unstable mode increase with acceleration.

From the above equation, we can find the most unstable mode with the highest growth rate, k(ω = max(ω)). The higher
growth rate means that the corresponding wave number develops rapidly, thereby appearing in experiments in the first place.
Subsequently, the pinch-off happens at that wave number. Here, the first term in Eq. (15), iak, on the right-hand side is due to
the fact that “at” in front of ∂/∂ z on the left-hand side of Eq. (14). When you take the material derivative twice in Eq. (14),
this term appears [see (∂/∂ t + at∂/∂ z)2 = ∂ 2/∂ t2 + a∂/∂ z+ 2at∂ 2/∂ z∂ t +(at)2∂ 2/∂ z2]. The modified Bessel functions on
the last term can be approximated as Iα(z) ∼ (Γ(α + 1))−1(z/2)α . With this approximation (i.e., I1(kR0)/I0(kR0) ∼ kR0/2),
the above dispersion relation is further simplified to an equation, which is the same as in Eq. (24) for a 1D column in the next
section.

B. 1D column

We can simplify the Navier Stokes equations of a liquid column into 1D equations of the vertical velocity, w(t,z), and the
column radius, R(t,z) only. This equation has been widely used in previous studies [18, 23–25]. The governing equations are
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∂R
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2
∂w
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, (17)

where ρ is the fluid density, p is the pressure, g is a gravitational constant, and R is the column radius. To linearize the
above equation, we decompose the axial velocity, radius, and column pressure into a zeroth-order base state and a first-order
perturbation as

w = at +δw(z, t), R = R0−δR(z, t), p = p0 +δ p(z, t) . (18)

Similar to the pressure calculation in II A, the first-order pressure term from the Young-Laplace equation becomes

δ p = γ

(
1
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0
+
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δR . (19)

Then, the first order of the governing equations becomes
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By taking a z-derivative on Eq. (20), one gets

ρ
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Then, it is plugged into Eq. (21) as (
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∂ 4
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)
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It is worth noting that the square of the material derivative on the left-hand side should be performed carefully as mentioned in
II A. Assuming the normal mode δR =C exp(ikz− iωt) and multiplying R4

0, one gets the dispersion relation as

(ω−atk)2 = iak− γ

2ρR3
0

[
(kR0)

2− (kR0)
4] . (24)

In the limit of small acceleration as a→ 0, we recover the dispersion relation for the classical Rayleigh-Plateau instability.

C. Pinch-off time

In this section, let us consider the dispersion relation of the 1D column instead of the 2D column. The main reason is that we
can obtain a simple analytical solution of the pinch-off time without Bessel functions. Also, we need one more simplification
to calculate the pinch-off time; the convective frequency, ω−atk, on the left-hand side of the dispersion relation represents the
growth rate of a mode in the convected or moving frame while the fluid is stretched [25, 26]. To obtain the theoretical pinch-off
time from the growth rate and the wavenumber, we do not have to consider the convective frequency as it is. Instead, we will
use ω in lieu of ω−atk for convenience from now. Hence, the dispersion relation of Eq. (24) can be rewritten as

ω
2 = i

a
R0

kR0−
γ

2ρR3
0

[
(kR0)

2− (kR0)
4] . (25)

On the right-hand side, the first term is the effect of acceleration and the second term shows the classical Rayleigh-Plateau
instability. The classical Rayleigh-Plateau instability predicts that the most unstable mode is constant as (kR0)

∗ ' 0.708 (see
Fig. 2(a)). However, when we consider the effect of acceleration (i.e., the first term), numerical computation shows that the most
unstable mode increases with acceleration (see Fig. 2(b)).

The local maxima (i.e., the most unstable mode) occurs when

0 =
∂ω2

∂ (kR0)
= i

a
R0
− γ

ρR3
0

[
(kR0)−2(kR0)

3] (26)

→ i
a

R0

ρR3
0

γ
= (kR0)−2(kR0)

3 . (27)

This cubic equation for kR0 produces three solutions for the most unstable non-dimensional wavenumber, (kR0)
∗. Two out of

three solutions are complex conjugate pairs. When we evaluate the absolute value of the imaginary part of the three solutions,
these two conjugate solutions are identical. Therefore, Fig. 3(a) shows only two lines: one solution in the red line and two
conjugate pairs in the blue line. In the limit of large kR0→ ∞, the first term on the right-hand side of Eq. (27) can be negligible
compared to the second term. Therefore, we can find the most unstable wavenumber (kR0)

∗ as

(kR0)
∗ = (−i)1/3

(
ρR3

0
2γ

a
R0

)1/3

=
i
2

Bo1/3 , (28)

where the Bond number is defined as Bo = ρa(2R0)
2/γ . It is worth noting that the typical Bond number is defined with a

gravitational constant, g, instead of a. However, we redefine the Bond number with the object’s acceleration, a, to characterize
the effect of acceleration against capillarity. The above relation shows that the most unstable nondimensional wavenumber
(kR0)

∗ scales as the 1/3 power of the Bond number or the 1/3 power of the acceleration. This 1/3 power of acceleration is
confirmed in the limit of high acceleration as shown in Fig. 3(a).
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FIG. 3. Fluid properties are γ = 0.072 N/m, ρ = 1000 kg/m3, and R0 = 10−2 m. (a) Imaginary part of the most unstable non-dimensional
wavenumbers (Im[(kR0)

∗]) scales as the 1/3 power of acceleration: Im[(kR0)
∗] ∝ a1/3. Three solutions are obtained from Eq. (27); One red

line and two blue lines. (b) The most unstable growth rate (Im[ω∗]) scales as the 2/3 power of acceleration: Im[(ω)∗] ∝ a2/3.

Finally, the most unstable growth rate, ω∗, can be obtained by plugging kR0 = (kR0)
∗ = (i/2)Bo1/3 in Eq. (25) as

ω
∗2 =− a
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Bo1/3

2
+

γ

2ρR3
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[
Bo2/3

4
+
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16
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γ
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0
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=

[
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4
a
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+

γ
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0

(
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0
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ρaR2

0
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. (29)

In the limit of high Bond numbers (i.e., Bo� 1), the most unstable growth rate scales as

ω
∗2 ∼ a4/3 → Im[ω∗]∼ a2/3 . (30)

This 2/3 power of acceleration is confirmed in Fig. 3(b).
To calculate the theoretical pinch-off time, we consider both the most unstable wavenumber and growth rate. The imaginary

components of both wavenumber and frequency will contribute to changing the magnitude of variables. In some literature, the
imaginary part of the wavenumber is called as a spatial growth rate and the imaginary part of the frequency as a temporal growth
rate [26, 27]. Likewise, both imaginary parts will describe spatial and temporal growth rates in the column radius or other
variables. For the column radius, R = R0−C exp(ikz− iωt) = R0−C exp(−Im[(k)∗z] + Im[ω∗]t)exp(iRe[(k)∗z]− iRe[ω∗]t).
At a characteristic distance z = 2R0, the characteristic timescale is proportional to Im[2(kR0)

∗]/Im[ω∗]. Then, we assume the
theoretical pinch-off time as

tpinch−off '
Im[2(kR0)

∗]

Im[ω∗]
=

(
16

3 3√2

)1/2(
ρR5

0
γ

)1/6

a−1/3 . (31)

The nondimensional pinch-off time is given as

t̃pinch−off =
2√
3

Bo−1/3 . (32)

Here, the pinch-off time is normalized by the capillary time defined as
√

ρ(2R0)3/γ . As a remark, our theoretical pinch-off
time is different from the previous prediction (t̃pinch−off =

√
8π/9Bo−1/2) in [18].

D. Comparison with experiments

In this section, we will validate our theoretical pinch-off time with physical experiments and biological measurements. Two
data sets are from physical experiments performed using ethanol or water by pulling up either a cylinder [5] or a sphere [18].
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FIG. 4. (a) Dimensionless pinch-off time (t̃pinch−off) versus the acceleration-based Bond number (Bo = ρa(2R0)
2/γ). A black line is from

our present theory, t̃pinch−off = 2/
√

3Bo−1/3, whereas a purple line indicates the previous theory, t̃pinch−off =
√

8π/9Bo−1/2. It shows
that our new theoretical pinch-off time works quite well with both physical experiments and dog & cat lapping. (b) Jaw-closing timescale
normalized by our predicted pinch-off time versus animal weight. As shown here, most animals close their jaws before the pinch-off time
(tjaw−closing < tpinch−off).

Biological data are from animal lapping behaviors; one cat [4] and 19 dogs [5].
Figure 4(a) shows the nondimensional pinch-off time vs. the Bond number. This nondimensional pinch-off time is measured

as the experimental pinch-off time divided by the capillary time. Blue circle and square symbols indicate experimental [5, 18]
and numerical [18] studies, respectively. Light blue symbols are from experiments with water and dark blue ones are from
experiments with ethanol. For dogs and a cat, there are two different pinch-off timescales measured; jaw-closing time and
lapping time. The jaw-closing time is defined as a time difference between when the tongue exits from the water surface and
when the animal closes its jaw. The lapping time is measured as a half of the inverse of the lapping frequency. These two types
of time were measured from recorded videos of dog or cat lapping’s. In the previous study [5], dogs lap fresh water; however,
we have not measured the fluid properties on site, but assume that fresh water has ρ = 1000 kg/m3 and γ = 0.072 N/m. In the
study of cats [4], a cat laps milk mixed with tuna juice a little. We also have not measured the fluid properties either, but assume
that milk has ρ = 1030 kg/m3 and γ = 0.052 N/m based on reported milk properties [28, 29]. Additionally, we do not have
many cat data due to the lack of video footage from other angles to measure both the tongue radius and kinematics. In Fig. 4(a),
light purple symbols are the jaw-closing time, while dark purple symbols are the lapping time. Higher variations at high Bond
numbers (Bo ' 102− 103) cannot tell which power exponent works better. However, our new theory of the -1/3 power (black
line) works quite well with experimental data over a wide range of Bo, compared to the previous theory of the -1/2 power (red
line). For biological data, they follow the -1/3 power of the Bond number quite well. However, the cat data deviate a bit from
the trend. We will explain the possible error for the cat in the next paragraph.

Figure 4(b) shows the jaw-closing time normalized by the theoretical pinch-off time versus animal weight. The theoretical
pinch-off time in Eq. (31) is calculated based on the acceleration and radius of the tongue measured in dog and cat experiments.
We find that most normalized jaw-closing times (tjaw−closing/tpinch−off) are less than 1, which indicates that animals close their
jaws just before the column pinch-off. However, there are two data points above 1: one is the 9-kg dog and the other is the 7-kg
cat. There is no special feature on the 9-kg dog, but this dog exhibits a wide range of jaw-closing times (see the large error bar
in the plot). For the cat, the jaw-closing time is also larger than the theoretical pinch-off time. There are two complications in
cat drinking. As reported in the previous study [4], the cat’s tongue accelerates first and then decelerates a bit near the end of the
lapping period. Hence, the acceleration of cat drinking is not constant over time, which is quite different from dog drinking with
constant acceleration. Our theory based on the constant acceleration might not be able to explain the cat lapping. In addition,
we did not have video footage from multiple cameras to accurately measure the tongue kinematics and radius in contact with a
liquid bath. As future work, more data in cat drinking are needed to statistically confirm the outliner of our prediction.

III. CONCLUSION

In this present study, we showed how the theoretical pinch-off time changes with the acceleration of an object exiting a liquid
bath. We performed the stability analysis of both 1D and 2D Euler equations for the liquid column, and ended up with a similar
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dispersion relation. Then, the pinch-off time was determined by the most unstable wavenumber and growth rate without a
constant wavenumber assumption. The theoretical pinch-off time follows the -1/3 power of the Bond number, which is in good
agreement with the experimental data. Moreover, this result possibly predicts the lapping frequency of dogs and cats, which
indicates that animals modulate their lapping and jaw-closing times to catch the water column before the pinch-off to maximize
the water intake. This study of the pinch-off time with accelerating objects can be useful to understand and characterize the
pinch-off process in industrial processes like inkjet printers, coating processes [30], and more.
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