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Abstract

Solute transport in porous media is affected by several factors. The heterogeneous structure of

the permeability field is a key factor controlling the spreading and mixing behaviors of a solute

cloud. On the other hand, other factors such as the viscosity contrast between the dissolved solute

and the ambient fluid can also play an important role. Although both these mixing mechanisms

(field heterogeneity and viscosity contrast) had been acknowledged and studied, more investigations

are needed in order to better characterize the effect of the variation of both the degree of viscous

fingering and the level of disorder of the porous medium. This work aims to explore the impact

of field heterogeneity and viscosity contrast on the transport behavior of an inert solute in a

two-dimensional flow field. To achieve this, we performed high-resolution numerical simulations

based on the spectral method to solve coupled flow and transport equations for a given range

of viscosity contrast and log-permeability variance. We analyze the degree and rate of mixing,

contour length of the solute cloud, spatial statistics of the concentration field and arrival times at

a control plane to characterize spreading and mixing in the domain. Through the use of numerical

simulations, we provide a quantitative separation of the impacts of fingering and heterogeneity and

we parameterize the concentration probability distribution function. We find that the interplay

between viscous fingering, high-permeability channeling, and low-permeability stagnation at small

scales create important features in the spreading and mixing characteristics. In particular, our

results indicate that at early times viscosity contrast has a more significant impact on mixing than

permeability heterogeneity, and the effect of viscosity contrast on early and late arrival times at

a control plane is enhanced by increasing levels of permeability heterogeneity; on the other hand,

heterogeneity reduces the peak concentration at a control plane and causes larger solute cloud

spreading when the solute is more viscous than the ambient fluid compared to when the solute is

less viscous. Moreover, we find that the concentration cumulative distribution function of the solute

cloud can be described as a beta distribution for the range of viscosity contrast and permeability

heterogeneity considered.

INTRODUCTION

The fundamental mechanisms controlling transport phenomena in natural porous for-

mations are significantly affected by the spatially random fluctuations of the permeability
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field at different scales. The presence of heterogeneity in the permeability field leads to the

creation of fast flow channels that impact both the dispersive and mixing rate of the solute

cloud [1–8] as well as first passage times [9–11]. These heterogeneity features have been

investigated in applications such as management and remediation of groundwater contam-

ination [12, 13], artificial groundwater recharge [14], human health risk analysis [15, 16]

and CO2 storage [17, 18]. An often neglected but important aspect controlling transport is

the viscosity contrast between the solute and the ambient fluid. As reported in the liter-

ature [19], groundwater contaminants such as nonhalogenated semivolatile compounds and

jet fuel, are more viscous than water. On the other hand, contaminants such as halogenated

volatiles (amongst others) are less viscous than water. Moreover, the physical properties of

a solute, such as viscosity, can vary in space and time due to the dependence of the property

on the solute concentration and, therefore, mixing [20]. The contrast of viscosity between

two fluids leads to the well-known phenomenon of viscous fingering, when the less viscous

fluid displaces the more viscous fluid [21]. Viscous fingering is a type of hydrodynamic in-

stability known as the Saffman-Taylor instability that occurs in porous media or Hele-Shaw

cells under both miscible and immiscible flow conditions [22]. This phenomenon has re-

ceived renewed attention due to its role in applications such as enhanced oil recovery [20, 23],

geological CO2 storage [24], and chromatography separation [25].

The effect of viscous fingering on spreading and mixing of fluid slugs has been reported

through laboratory experiments and numerical simulations. Experiments have been con-

ducted using Hele-Shaw cells [26, 27], glass beads or sand packs [28–30], and naturally

consolidated rocks [31, 32]. Numerical simulations have been conducted using higher-order

finite difference methods [33, 34], particle tracking methods [35], spectral methods [36–39]

and compact finite difference-finite volume methods [20, 40–42]. The effect of low levels of

heterogeneity on spreading of slugs due to viscous fingering has also been studied [32, 40, 43–

50]. Nicolaides et al. [19] showed how the interplay between two sources of disorder (i.e.

viscosity contrast and physical heterogeneity of the porous medium) impacted macroscopic

features of the solute transport behavior, namely solute breakthrough and removal times

and mixing, in a flow field induced by injection and extraction wells.

Our work focuses on further understanding of the joint role of medium heterogeneity and

viscous fingering on solute transport under miscible flow conditions. The analysis carried

out in the present contribution differs from Nicolaides et al. [19] by considering additional
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mixing and statistical metrics such as the concentration statistical distribution. Different

than the work of Nicolaides et al. [19], we consider transport under uniform-in-the-mean

flow conditions. Our flow configuration mimics an ambient flow, while in Nicolaides et al.

[19], the flow is controlled by injection and extraction wells. The presence of wells in the

flow field impact the solute’s mixing behavior and its concentration statistics [see 51]. We

are particularly interested in quantifying the relative importance of the two factors in the

overall transport behavior. We achieve this goal in two ways. First, we provide a theoretical

analysis on how the sources of disorder, namely viscosity contrast and medium heterogene-

ity, affect the solute transport process. Second, through the use of high-resolution numerical

simulations, we examine the effects of both medium heterogeneity and viscosity contrast

on the temporal evolution of statistical descriptors of transport (i.e. concentration mean,

variance and probability density function) and solute cloud’s contour length. These metrics

provide important information about the solute mixing state [52], and therefore its eventual

chemical reactivity [6, 53], and assist site managers to estimate the risks associated with

contamination [54]. For example, the effectiveness of groundwater remediation techniques

may be related to the contact surface area between two fluids, which is increased by solute

spreading [55, 56]. We also show how the early breakthrough, associated with the leading

edge of the solute cloud, is impacted by permeability heterogeneity and viscous fingering.

Different from previous works, we introduce two novel metrics that provide a quantita-

tive separation of the impacts of fingering and heterogeneity. These two metrics allow to

characterize and clarify the interplay between heterogeneity and viscosity contrast on the

macroscopic transport behavior. Finally, a relation between the solute cloud’s concentration

cumulative distribution function (CDF) and the beta distribution is reported.

THEORETICAL BACKGROUND

Governing equations

In this work, we consider a two-dimensional (2D) porous medium where x = (x1, x2) is the

Cartesian coordinate system. The physical domain has dimensions L1×L2 = {(x1, x2)|x1 ∈

L1 andx2 ∈ L2}. The permeability of the porous medium, denoted by k(x), is assumed

to be locally isotropic and spatially heterogeneous. Furthermore, we assume a constant
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porosity φ. The spatially heterogeneous structure of the log-permeability f(x) ≡ ln[k(x)]

is considered to be multi-Gaussian and modelled through a Random Space Function (RSF)

[57]. The RSF model for f is characterized by its mean 〈f〉, variance σ2
f , and a correlation

length λ. The angled brackets 〈·〉 represent the average operator. In this study, we adopt

an isotropic Gaussian log-permeability covariance model:

Cf (r) = σ2
fe
−r2/λ2 (1)

with r = |x′′ − x′| denoting the lag-distance.

Our study neglects the effects of density variations. This assumption is reasonable when

dealing with 2D planar flow fields and for solutes characterized by density values similar to

the surrounding fluid. Regarding the latter, the densities of certain contaminants are similar

to water. Examples consist of m-Cresol, Chlorobenzene and Benzene (with densities equal

to 1.03 g/ml, 1.11 g/ml and 0.88 g/ml respectively).

For our work, we designate dimensional variables with the hat symbol (̂·). The governing

equation for the flow field is thus given by

ct
∂p̂(x̂, t̂)

∂t̂
+∇x̂ · q̂(x̂, t̂) = 0, (2)

where q̂ is the specific discharge, p̂ denotes the pore fluid pressure and ct represents com-

pressibility. Assuming incompressible flow (ct ≈ 0) in the absence of both sinks/sources and

temporally variable boundary conditions, Eq. 2 becomes

∇x̂ · q̂(x̂, t̂) = 0. (3)

The heterogeneous permeability field is mapped on the specific discharge through Darcy’s

law:

q̂(x̂, t̂) = − k̂(x̂)

µ̂(Ĉ(x̂, t̂))
∇x̂p̂(x̂, t̂), (4)

where µ̂ is the ambient fluid mixture’s viscosity, which depends on the concentration Ĉ of

the injected solute, and p̂ denotes the pore fluid pressure. In this work we consider that the

fluid carrying the solute has a viscosity different than the viscosity of the ambient fluid and

we assume an exponential viscosity model [58]:

µ̂(Ĉ(x̂, t̂)) = µ0e
−R Ĉ(x̂,t̂)

Co (5)
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and R is the log-viscosity ratio, R = ln[µ0/µ1], Co is the inlet concentration of the solute,

µ0 is the viscosity of the pure fluid in the absence of a solute, and µ1 is the viscosity of the

solute. We consider permeameter-like boundary conditions, i.e. prescribed pressures at the

inlet (x1 = 0) and outlet (x1 = L1) of the flow domain and zero-flux at the layer boundaries

x2 = 0 and x2 = L2. Under these conditions, the spatially heterogeneous flow field is driven

by uniform-in-the-mean pressure gradient.

An inert solute is instantaneously injected through an areal source zone with dimensions

`1 and `2 (with `1 � `2) into the divergence-free Darcy flow. The spatiotemporal distribution

of the solute concentration is provided by the advection-dispersion equation:

φ
∂Ĉ(x̂, t̂)

∂t̂
+ q̂(x̂, t̂) · ∇x̂Ĉ(x̂, t̂) = φD∇2

x̂Ĉ(x̂, t̂), (6)

where D corresponds to the local-scale dispersion coefficient (assumed to be constant) and

is modelled through Scheidegger’s theory [59]. The boundary conditions for the transport

problem are periodic on the left and right boundaries, as well as the top and bottom of the

domain. The initial condition for the concentration distribution, as reported in Figure 1, is

a zero concentration in the whole domain with the exception of the source area, where the

concentration is set to be equal to unit value, with a small numerical perturbation on the

edges to allow the formation of viscous fingers.

The appendix reports the governing equations, i.e. Eqs. (3)-(6), in dimensionless form,

see Eqs. (A-2)-(A-5). As indicated in the appendix, the ·̂ symbol is removed to denote all

dimensionless variables (see dimensionless groups, Eq. A-1 in the appendix). The appendix

also shows that the dimensionless advection-dispersion equation is expressed in terms of the

Péclet number. The Péclet number is given by Pe ≡ Uλ/D. Due to the dependence of q on

the concentration field C, Eq. (A-5) is non-linear and needs to be solved numerically.

Mixing descriptors

The degree and rate of mixing can be quantified in the terms of the concentration variance

(σ2
c ). The temporal evolution of σ2

c under periodic boundary conditions (or in absence of

any net injection or extraction of the fluids) is governed by an ordinary differential equation

that relates σ2
c to the mean scalar dissipation rate εc [20, 60],

dσ2
c (t)

dt
= −2εc(t). (7)

6



FIG. 1: Initial distribution of the concentration field in the flow domain. The solute is

instantaneously injected along a rectangular source zone in a spatially heterogeneous

porous medium.

The mean scalar dissipation rate is defined in terms of concentration gradients as

εc(t) ≡
〈|∇C(x, t)|2〉

Pe
, (8)

where 〈·〉 denotes the spatial averaging operator.

ANALYSIS ON THE SOURCES OF DISORDER IN THE FLOW FIELD

Viscosity contrast and heterogeneity effects on vorticity

The viscosity contrast R and spatial heterogeneity in the k field induce fluctuations in

the flow field, which give rise to fingering and channeling patterns on the solute interface.

These fluctuations can be quantified in terms of the vorticity ω = ∇ × q of the flow field.

Using Eq. 4 and µ = e−RC , we obtain [61]

ω(x, t) = R∇C(x, t)× q(x, t) +
1

k(x)
∇k(x)× q(x, t) = ωR(x, t) + ωk(x, t), (9)

which clearly shows how the two sources of disorder –viscosity contrast and heterogeneity–

act on the flow field to generate two types of vorticity, ωR and ωk, defined as ωR =

R∇C(x, t) × q(x, t) and ωk = 1
k(x)
∇k(x) × q(x, t). In a 2D field, only the out-of-plane

component of the vorticity vector is non-zero, i.e. ω = [0, 0, ω]. Then Eq. 9 can be written

in terms of the stream function ψ, which is defined as ∂ψ/∂x1 = −qx2 and ∂ψ/∂x2 = qx1 to

obtain

ω(x, t) = −R∇C(x, t) ·∇ψ(x, t)−∇ ln[k(x)] ·∇ψ(x, t) = [ϑR(x, t) + ϑk(x)] ·∇ψ(x, t), (10)
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where we split the vorticity generation mechanisms into its two parts, ϑR and ϑk. The

stream function and vorticity are also related to each other as ∇2ψ = −ω.

Let us analyze the two sources individually.

• The magnitude of

ϑR(x, t) = −R∇C(x, t) (11)

increases with non-zero R and ∇C, the latter being a dynamic quantity. The interface

between the initial solute cloud and the ambient fluid provides the initial ∇C, which is

amplified by R to generate the vorticity near the interface that creates viscous fingers

and further growth of the concentration gradients. This shows how the fingering

process can grow like an instability. The concentration gradient initially sparks the

creation of a finger, and the tip of the finger in turn “pushes” to travel faster than the

ambient fluid, thus leading to the existence of a concentration gradient on the front

of the interface between scalar and fluid; as the finger moves and progresses, such

gradient moves along with it in the domain, causing local growth of the concentration

gradient. Such local growth can be seen in more detail in Figure 2.

• The magnitude of

ϑk(x) = −∇f(x) (12)

(with f = ln k) is not, on the other hand, a dynamic quantity and is constant in time

for a given permeability field.

These differences between the two sources of disorder, namely R and σ2
f , give rise to dif-

ferent flow structures depending on whether viscosity contrast or heterogeneity dominates

the flow (see Figure 3). When fingering dominates heterogeneity (sufficiently large R com-

pared to σ2
f ), vorticity ωR is high immediately behind the sharp interface of a finger tip,

which grows and becomes “rounder” as time increases until the tip splits into two nascent

fingers [21, 62, 63]. Roundness and tip-splitting of fingers is absent at R = 0 regardless

of how high σ2
f is. Instead, fingers at high σ2

f gradually thins towards the tip and the tip

fades away in analogy with the Taylor dispersion [64] effect (Figure 3). In viscous fingering-

dominated flow, Taylor dispersion at the tip is suppressed due to the vorticity from ϑR. This

suppression happens because the solute cloud that is creating the finger has the tendency

to travel fast, pushing against the front and keeping it sharp.
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C(x, t) ln[εlc(x, t)]

FIG. 2: Concentration field C(x, t) (left column) and logarithm of the local scalar

dissipation rate εlc = |∇C(x,t)|2
Pe

(right column) at four subsequent time steps (from top to

bottom) for a viscosity contrast R = 1 in a homogeneous permeability field. Note how the

concentration gradient progresses in the orange square, moving from the bottom left

quadrant to occupy the whole bottom half in the first two time snapshots. As another

finger enters the region defined by the orange square, the concentration gradient locally

increases also in the upper half of the considered square.
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R = 3.5, σ2
f = 0

R = 0, σ2
f = 3

FIG. 3: Difference in the finger tip structures between fingering-dominated (top row) and

heterogeneity-dominated (bottom row) flows. The left column shows the concentration

fields in the two cases within a zoom-in view window. The right column shows the

concentration contours (black lines) superposed on the streamlines (red lines).

Fingering-dominated flows produce rounder and better delineated tips than

heterogeneity-dominated flows. Fingering also produces tip-splitting that is absent at

R = 0.

In this study, we consider both R > 0 and R < 0 displacements. Fingering occurs at

the leading edge of the solute cloud in case of former and at the trailing edge in case of

latter. For R < 0, the fingers are developed in the trailing edge of the plume, opposite to

the direction of mean flow because their tips lie at the rear front of the less viscous fluid.

The sign of R affects the viscosity contrast-induced vorticity, ωR = −R∇C · ∇ψ, in three

important ways. The first effect is obvious because R appears explicitly in the expression

of ωR. The second effect is through the ∇C vector. Note that ωR is nonzero only near the

interface because ∇C is zero away from the interface. The direction of ∇C vector changes

along the entire interface and in particular along the interface of a single finger, which can

be split into three regions: the curved tip, curved rear, and straight wall regions of the

finger, as shown in Figure 4. At the tip, ∇C and q vectors are opposite to each other for

R > 0, whereas they point in the same direction for R < 0. The third effect is through the

magnitude of q. The transverse velocity qx2 is highest near the tip and lowest along the wall
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FIG. 4: Single finger regions: straight wall, curved rear and curved tip.

qx1(x, t) qx2(x, t)

FIG. 5: Longitudinal and transversal velocity fields (qx1(x, t) and qx2(x, t) respectively) for

a solute cloud with viscosity contrast R = 1 (top row) and R = −1 (bottom row) in a

homogeneous field. The black lines represent the contour of the solute cloud at a threshold

concentration value C = 0.1.

region [65]. Moreover, qx1 and qx2 magnitudes are higher at the tip of a R > 0 finger than

that of a R < 0 finger, as visible from Figure 5.
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Fingering mechanisms at R 6= 0

To understand the effect of fingering on the transport metrics of the solute cloud, we

need to refer to the physical mechanisms of tip-splitting, channeling, shielding, and merging

of fingers that have been observed in viscous fingering simulations and experiments, see

e.g. [21, 23, 36, 41, 62]. As mentioned above, tip-splitting refers to the splitting of the tip

of a finger into two smaller, nascent fingers. The nascent fingers compete with each other

as well as with other fingers in their vicinity by virtue of the global nature of the pressure

field. This manifests as shielding of a smaller finger by a larger, faster-moving finger and

merging of the smaller finger into the larger finger. The shielded finger experiences a stunted

growth and either merges with the larger finger or fades away through diffusion. At high

R, multiple merging and shielding events can lead to emergence of a single finger as a

dominant feature of the flow. This is called channeling, which is often undesirable in mixing

applications because it leads to a reduction in transverse mixing of the two fluids compared

to the scenario where multiple fingers grow on the interface. However, note that channeling

also implies a faster breakthrough at pumping wells which may be desirable during some

contaminant removal operations. These fingering mechanisms are nonlinear and arise due

to two-way coupling between flow and transport processes. They remain active throughout

the displacement period, albeit with different strengths. For example, tip-splitting is more

pronounced at early times whereas channeling emerges at later times. Also, the effect of two

mechanisms can negate each other, e.g. tip-splitting can negate merging in terms of their

net effect on the interface length.

To understand the impact of the sign of R on the solute transport behavior, we can

analyze how tip-splitting and channeling mechanisms manifest themselves at the leading

and trailing edges of the cloud. From Eq. 10, ωR is larger at larger specific discharges qx1

and qx2 . Therefore, we expect tip-splitting to be more pronounced at R > 0 than at R < 0

because the velocities qx1 and qx2 at the tip are higher at R > 0 than at R < 0. Channeling

is almost exclusively reserved for R > 0 flows because the tip velocity (with respect to the

mean flow velocity) is smaller in R < 0 than in R > 0.
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NUMERICAL MODEL AND IMPLEMENTATION

We use a second-order accurate finite volume method to solve Eq. 3 for cell-centered

pressures. We linearize the equation by using the two-point flux approximation [66] of the

Darcy flux in Eq. 4, which expresses the face-centered flux in terms of cell-centered pressures

of the two neighboring cells and the face transmissibility computed from the harmonic mean

of the cell permeabilities, viscosities, and dimensions. To solve the transport problem (Eq. 6),

we use a spectral method to discretize the spatial derivatives of cell-centered concentrations

and a third-order explicit Runge-Kutta scheme to integrate time; see Refs. [20, 41] for

details. Higher-order accuracy of the spectral method allows us to resolve sharp gradients

in the concentration field that arise from viscous fingering. The pressure field is relatively

smooth because of the assumption of miscibility of the two fluids and, therefore, a second-

order finite volume method provides sufficient numerical accuracy for the flow problem.

We use a 2D Cartesian grid with a uniform mesh size. Each grid block has dimensions

∆ × ∆ (see Table I). The number of cells is Nx × Ny = 1440 × 264 such that the ratio

∆/λ = 0.084, in order to capture the effects of the spatially heterogeneous permeability

field on the spatiotemporal dynamics of the solute cloud, e.g. [67–69]. The simulations were

performed on high-performance computing nodes. Details about the input parameters for

the numerical model are reported in Table I.

RESULTS

All computational results are reported in dimensionless form. Both longitudinal and

transverse directions are normalized by λ, time is normalized by the advective time scale

τu = λ/U and the concentration is normalized by the inlet concentration Co.

In Figure 6 we report the results of the simulations performed for a k-field characterized

by σ2
f = 0.5 at different times for the three selected values of viscosity contrast R = -1,

0 and 1. Qualitative analysis of Figure 6 illustrates that the mixing behaviour is different

for different R values, for example the absence of viscosity contrast (R = 0) reduces the

degree of mixing of the cloud. The exact quantification of this behaviour is reported in the

following sections. It is also clear that in the case of a positive R, the solute cloud travels

faster, while the opposite happens for negative values of R. This holds true also for the
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FIG. 6: Two-dimensional representation of the concentration distribution with k-field

characterized with σ2
f = 0.5 for three different values of viscosity ratio R at three different

simulation times.
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TABLE I: Input parameters used in the simulations

Parameter Symbol Value Calculated as

Correlation length in the x and y-direction λ 5 m -

Domain length in the x1-direction L1 600 m 120λ

Domain length in the x2-direction L2 110 m 22λ

Mesh size in the x1- and x2-directions ∆ 0.42 m λ/12

Distance of source from top and bottom boundary stb 15 m 3λ

Distance of source from left boundary sl 50 m 10λ

Length of source in the x1-direction `1 15 m 3λ

Length of source in the x2-direction `2 80 m 16λ

Longitudinal distance of control plane from left boundary Lcp 250 m 50λ

Mean longitudinal flow velocity U 1 m/d -

Local dispersivity α 0.042 m2 0.1∆

Local scale dispersion coefficient D 0.042 m2/d αU

Péclet number Pe 120 Uλ/D

Concentration at the source zone Co 1 mg/l -

Threshold concentration for solute cloud delineation Ct 10−3 mg/l -

fields with σ2
f = 0 and σ2

f = 0.25 (not shown in Figure 6). We can thus expect earlier first

arrival times for cases where R > 0 with respect to transport in the absence of viscosity

contrast. Figure 6 also shows that clouds with R < 0 will be characterized by late arrival

times. This becomes clear in Figure 7, which illustrates the impact of the mobility ratio R

on the concentration breakthrough curve (BTC) at the control plane for different levels of

heterogeneity. Note that Figure 7 reports the averaged normalized concentration over the

control plane (i.e. transverse direction) located at x1 = Lcp, namely:

〈C(Lcp, x2, t)〉⊥ =
1

L2

∫ L2

0

C(Lcp, x2, t)dx2. (13)

The case for a homogeneous porous media is illustrated in Figure 7.a. As the level of

heterogeneity increases, the maximum concentration decreases and macro-scale spreading is

augmented leading to more tailing effects (compare Figures 7.a, 7.b and 7.c). The effects of

the mobility ratio are also clearly depicted in Figure 7. For R = 1, the presence of fingering
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FIG. 7: Breakthrough curves (BTCs) at a control plane located at x1 = Lcp for the three

different levels of heterogeneity of the permeability field: (a) homogeneous, (b)

heterogeneous with σ2
f = 0.25 and (c) heterogeneous with σ2

f = 0.5.

is pronounced in the leading edge of the solute cloud which leads to earlier breakthrough at

the control plane as opposed to the case of R = −1. The asymmetry of the concentration

signal at the control plane is amplified when R is different than zero. On one hand, the

effects of heterogeneity tend to diminish the impact of the mobility ratio on the maximum

concentration (compare Figure 7.b with 7.c, results for R = −1 and R = 1). On the other

hand, Figure 7 clearly illustrates that the mobility ratio impacts the spreading of the solute

cloud independent of the log-permeability variance. In all cases, the macro-spreading effects

[1] (the plume spreading induced by fluctuations in the sources of disorder) are larger for

R < 0.

To evaluate the coupled effect of viscosity contrast and heterogeneity on early arrival

times, we define the variable η as

η =
te|R 6=0

te|R=0

, (14)

where te is the time at which the normalized concentration reaches a value of C = 0.05.

The trend of η for varying σ2
f is reported in Figure 8, where the blue curve represents the

cases with negative viscosity contrast while the light blue the positive one. From Figure 8

is possible to notice that fingers in the front of the cloud travel faster with increasing levels

of heterogeneity. The opposite occurs when fingers are developed in the tailing edge of the

plume (i.e. the cloud slows down with respect to the case with R = 0). This means that the

hydraulic connectivity (i.e. early arrival times) of the leading edge of the plume is enhanced

for R > 0 whereas it is diminished for R ≤ 0. These results show that neglecting viscosity
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contrast in transport models can have an impact on the estimation of early arrival times

which are critical in risk analysis and contaminant site management, e.g. [12, 70].

FIG. 8: Effect of the viscosity ratio R on η for increasing levels of heterogeneity of the

permeability field. Results computed at x1 = Lcp, where the value of Lcp is reported in

Table I.

Next, we evaluate the spatial mean of the concentration (normalized by Co) at all time

steps (Figure 9). The spatial mean is calculated in the region of the domain occupied by

the solute cloud, defined as the volume V (t) where the concentration is higher than the

threshold value reported in Table I, C(x, t) > Ct. The dimensionless mean concentration

〈C〉 is thus calculated as:

〈C〉 =
1

V (t)

∫
V (t)

C(x, t)dV. (15)

As shown in Figure 9.a, for a homogeneous porous media the temporal evolution of the

mean concentration is the same for both R = 1 and R = −1. Furthermore, the mean

concentrations for R 6= 0 cases are lower than the one obtained in the absence of viscous

fingering (R = 0). When R 6= 0, the presence of fingering contributes to an increase of

the surface area of the solute cloud with the surrounding ambient fluid, also called interface

stretching. It also contributes to a higher concentration gradient along the interface. These

two effects combined contribute to an enhancement of the diffusive mass flux across the
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FIG. 9: Mean plume concentration for the three different levels of heterogeneity of the

permeability field: (a) homogeneous, (b) heterogeneous with σ2
f = 0.25 and (c)

heterogeneous with σ2
f = 0.5. In the insets the detail of late times plotted in a log-log

scale, with the values of the parameter b.

interface, which in turn leads to a more diluted cloud. Furthermore, more vigorous tip-

splitting in case of R = 1 increases the length of the fluid-fluid interface compared to

R = −1, which explains the larger dilution or smaller mean concentration observed at

R = 1. This explains also why, if we consider a scaling relation for the decay of the mean

concentration 〈C〉 ∼ tb at large times, the values of b are always slightly higher in modulus

for R < 0 than for R > 0. In fact, in the latter case the enhanced mixing at earlier times
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results into smaller magnitudes of the gradients at intermediate times which retards mixing

at later times. Both cases however present a decay faster than the case of R = 0. The effects

of the mobility ratio are reduced when the level of heterogeneity increases (compare Figures

9.a, 9.b and 9.c).

FIG. 10: Concentration variance of the solute cloud for the three different levels of

heterogeneity of the permeability field: (a) homogeneous, (b) heterogeneous with σ2
f = 0.25

and (c) heterogeneous with σ2
f = 0.5.

Figure 10 depicts the temporal dynamics of the concentration variance (normalized by
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C2
o ) within the solute cloud of volume V (t), calculated as:

σ2
c (t) =

1

V (t)

∫
V (t)

(C(x, t)− 〈C(t)〉)2 dV. (16)

As observed in Figure 10, the presence of fingering causes a sudden increase of the con-

centration variance followed by fast decay when compared to the R = 0 case, regardless of

the level of heterogeneity. Similar to the mean concentration behavior observed in Figure

9, more vigorous tip-splitting in case of R > 0 leads to an increase of the surface area of

the solute body with the surrounding fluid which contributes to the dilution of the cloud

and therefore, lower variance (compare curves for R = −1 and R = 1 in Figures 10.b-c).

It is interesting to note the difference in the impact of R between the heterogeneous and

homogeneous cases. In fact, for the heterogeneous cases, the curves for R = −1 and R = 1

become more distinct with respect to the homogeneous one.

FIG. 11: Cumulative density function of the plume concentration in the k-field with

σ2
f = 0.5 at three different simulation times for three different values of viscosity ratio R:

(a) R = −1, (b) R = 0 and (c) R = 1.

The cumulative distribution function (CDF) of the concentration field is plotted at dif-

ferent times for σ2
f = 0.5 and R = -1, 0 and 1 in Figure 11. As shown in Figure 11, the

probability that the concentration is below a certain value (i.e. C = 0.25) is higher for

R = 1 (Figure 11.c) when compared to the case of R = −1 (Figure 11.a). The tip-splitting

mechanism, which is stronger for positive values of R, is the key reason for the increase in

the likelihood of observing lower concentrations. As shown in the literature [71], the con-

cavity of the CDF can be used as a measure of the dilution state of the solute body. Based

on the evidence published in previous papers in the turbulence, atmospheric and hydrologic
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communities [54, 72–74], the concentration CDF can be approximated by a beta distribution

for transport in spatially variable flow fields. Here we examine if the beta distribution can

approximate the concentration distribution in the presence of viscous fingering. The beta

CDF is given by:

PC(c;x, t) =
Γ[ao + bo]

Γ[ao(x, t)]Γ[bo(x, t)]

∫ c

0

χao(x,t)−1(1− χ)bo(x,t)−1dχ, with

Γ[z] =

∫ ∞
0

ζz−1e−ζdζ ; ao(x, t) =
〈C(x, t)〉
β(x, t)

; bo(x, t) =
1− 〈C(x, t)〉

β(x, t)

β(x, t) =
σ2
c (x, t)

〈C(x, t)〉(1− 〈C(x, t)〉)− σ2
c (x, t)

, (17)

where Γ[z] is the Gamma function.

Figure 11 depicts an excellent agreement between the empirical CDF (obtained from the

raw numerical data) and the beta CDF model (Eq. 17) parameterized by the mean and

variance of C, namely 〈C〉 and σ2
c . From an application point of view, both quantities, i.e.

concentration mean and variance, can be estimated from monitoring wells in a contaminated

site [54]. The results reported in Figure 11 show that the beta-CDF model can be employed

to capture the full probabilistic distribution of the solute cloud in the presence of viscous

fingering for the range of heterogeneity and mobility ratio explored in this work, i.e. σ2
f < 1

and −1 ≤ R ≤ 1. This result can be used to predict the probability that the solute

concentration will exceed a threshold value which is of importance in risk analysis and

aquifer remediation [54, 71].

The temporal evolution of the mean scalar dissipation rate (Eq. 8) is presented in Figure

12 for the homogeneous and heterogeneous flows. As illustrated in Figure 12, the presence of

viscous fingering leads to a sharp increase in the scalar dissipation rate followed by a decay.

The differences between the curves for R = -1, 0 and 1 are attenuated in the heterogeneous

scenarios (compare Figure 12.a with Figures 12.b-c). In all cases, the peak of the scalar

dissipation rate is higher for R = 1.

Figure 13 illustrates the solute cloud’s contour length evolution in time. The contour

length is computed based on the normalized concentration C∗ = 0.05 isoline. As shown

in Figure 13, the effect of the medium’s disorder contributes to an increase of the cloud’s

contour length. For the heterogeneous cases, i.e. σ2
f = 0.25 and 0.5, the contour length is

larger for R = 1 than the ones computed for R = −1.
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FIG. 12: Mean scalar dissipation rate εc for the three different levels of heterogeneity of

the permeability field: (a) homogeneous, (b) heterogeneous with σ2
f = 0.25 and (c)

heterogeneous with σ2
f = 0.5.

FIG. 13: Evolution of the length of C = 0.05 contour for the three different levels of

heterogeneity of the permeability field: (a) homogeneous, (b) heterogeneous with σ2
f = 0.25

and (c) heterogeneous with σ2
f = 0.5.

Next, we quantify the relative contribution of the medium’s disorder level and the viscosity

contrast on solute mixing. In order to do so, the effects of heterogeneity and viscosity contrast

have been here quantified by normalizing the mean scalar dissipation rate εc (Figure 12) to

the cases where those effects are not present. The heterogeneity-induced dissipation is

represented by the parameter ξ thus calculated as:

ξ(t) =
εc(t|R, σf )− εc(t|R, σf = 0)

εc(t|R, σf = 0)
, (18)

while the finger-induced dissipation is quantified by ϕ as:

ϕ(t) =
εc(t|R, σf )− εc(t|R = 0, σf )

εc(t|R = 0, σf )
. (19)
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FIG. 14: Trends in time of the mean scalar dissipation rate εc normalized with respect to

(a) the effect of viscosity contrast, defined by the metric ϕ (Eq. 19) and to (b) the effect of

heterogeneity, defined by the metric ξ (Eq. 18).

The temporal evolution of ξ and ϕ is reported in Figure 14 for the cases where both hetero-

geneity and viscosity contrast are present. It is clear that at early times, the effects induced

by the viscosity contrast are more pronounced on the dissipation rate as opposed to the ones

induced by the physical heterogeneity, as the values of ϕ in Figure 14.a are higher than the

values of ξ in Figure 14.b. From Figure 14.a, we notice that for the same level of heterogene-

ity, a positive viscosity contrast has a greater impact on εc compared to a negative R case.

At parity of R, the fingering effect on mixing is attenuated by higher levels of heterogeneity,

which is as expected. At later times, on the other hand, heterogeneity (Figure 14.b) becomes

the main contributor to dissipation, though its importance is relatively marginal compared

to the viscosity contribution to mixing at early times. The behaviour of ξ at parity of R does

not seem to be greatly affected by an increase in σ2
f , but this may be due to the fact that

the considered levels of heterogeneity do not differ much. However, heterogeneity seems to

enhance mixing at later times especially for R < 0; this can be explained considering that

mixing happens faster for R > 0, so at later times the process is almost over, while for

R < 0, heterogeneity has sufficient time to kick in and have a more significant impact. This

suggests that, for the simulations considered here, the time scale of fingering-induced mixing

mechanism is shorter than that of the heterogeneity-induced mixing mechanism. The two

time scales can further be related to the length scales of diffusion (Pe) and permeability
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correlation length (λ). The prescribed initial condition on the concentration field, i.e. the

sharpness of the interface at t = 0, also affects the separation of two time scales in this

plot [44].

SUMMARY

In this paper we investigate the impact of two sources of disorder, namely viscous fingering

and permeability heterogeneity, on the temporal evolution of key statistical descriptors of

transport. Our numerical simulations indicate that at early times the viscosity contrast is

the dominant source of disorder, and its impact on the arrival times at a control plane is

enhanced by heterogeneity, while permeability heterogeneity decreases the values of peak

concentration at a control plane and increases solute cloud spreading. In particular, we

highlight the following points:

1. Heterogeneity reduces the peak concentration observed at the control plane and, while

it does not affect the impact of the viscosity ratio, it produces asymmetry in the BTCs

and a larger cloud spreading for R < 0.

2. A positive viscosity contrast enhances the connectivity of leading edge of the solute

cloud which leads to earlier breakthrough, while a negative viscosity contrast delays

the arrival of the solute to the control plane; this opposite impact of viscosity on

connectivity increases with increasing levels of heterogeneity.

3. At late times, the mean concentration decay is described by a relation of the type

〈C〉 ∼ tb, where the effect of the mobility ratio on the value of b is reduced for higher

level of heterogeneity.

4. The concentration CDF, whose concavity can be used as a proxy for dilution [71], can

be perfectly described as a beta distribution (parameterized solely by the concentration

spatial mean and variance) in the presence of viscous fingering for the range of σ2
f and

R considered in the present study. This result can be used for predictions in risk

analysis, and to the authors’ knowledge has never been shown before for flow in the

presence of viscosity contrast.
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5. The mean scalar dissipation rate for R 6= 0 presents a sharp increase at early times,

with higher peaks for R > 0 because of the more intense tip-splitting.

6. Longer cloud contours (and thus mixing interfaces) are caused by higher heterogeneity

levels and viscosity contrast, with R > 0 having a bigger impact on the contour than

R < 0.

7. At early times the effect of viscosity contrast on mixing is more significant than the

effect of heterogeneity, despite being attenuated for increasing values of σ2
f . At later

times, the impact of heterogeneity becomes the main contributor to mixing, especially

for R < 0.

The results shown in this study illustrate the importance of viscous fingering and hetero-

geneity in controlling the temporal evolution of the statistical descriptors of the solute cloud.

The conclusions reported in our work are limited to the range of values explored for σ2
f and

R. Future research should investigate the effects of higher level of heterogeneity on mixing in

the presence of viscous fingering as well as their relative contributions in three-dimensional

flows.

Appendix: Dimensionless equations

We define the following dimensionless groups:

x =
x̂

λ
; u =

û

U
; t =

t̂

τu
; C =

Ĉ

Co
; µ =

µ̂

µ0

; p =
p̂

pc
; k =

k̂

kc
(A-1)

where the (̂·) symbol denotes a dimensional variable. Here λ represents the characteristic

length scale (i.e. log-permeability correlation scale), U denotes the characteristic (mean lon-

gitudinal) velocity and τu = λ/U corresponds to the characteristic advective time scale. The

inlet concentration is Co. Furthermore, we set the ambient fluid viscosity µ0 as a character-

istic viscosity and a unitary value for the characteristic permeability kc = 1m2. Finally, the

characteristic pressure is defined as pc = µ0Uλ/kc. Substituting the dimensionless groups

(A-1) into Eqs. (3)-(6), we obtain:

q = −k
µ
∇xp (A-2)

µ = e−RC (A-3)

∇x · q = 0, (A-4)
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and

∂C

∂t
+

q

φ
· ∇xC =

1

Pe
∇2

xC, (A-5)

where the Péclet number is given by Pe ≡ Uλ/D and φ is the porosity of the porous medium.
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