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Abstract

Surfactants (amphiphilic surface active agents) are often used to control the dynamics of viscous

drops and bubbles in microfluidics applications. Surfactant sorption kinetics has been shown to

play a critical role in the deformation of drops in extensional and shear flows, yet to the best of our

knowledge these kinetics effects on a viscous drop in an electric field have not been accounted for. In

this paper we numerically investigate the effects of sorption kinetics on a surfactant-covered viscous

drop in an electric field. Over a range of electric conductivity and permittivity ratios between the

interior and exterior fluids, we focus on the dependence of deformation and flow on the transfer

parameter J , and Biot number Bi that characterize the extent of surfactant exchange between the

drop surface and the bulk. Our findings suggest solubility affects the electrohydrodynamics of a

viscous drop in distinct ways as we identify parameter regions where (1) surfactant solubility alters

both the drop deformation and circulation of fluid around a drop, and (2) surfactant solubility

affects mainly the flow and not the deformation.

∗ Corresponding author: Y.-N. Young (yyoung@njit.edu)
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I. INTRODUCTION

Electric field is widely utilized to deform a viscous drop in microfluidics and many

petroleum engineering applications. Electrohydrodynamics (EHD), generally referred to as

the motion of fluid induced by an electric field, is highly relevant to transport and manipula-

tion of small liquid drops in microfluidic devices. Over the past two decades, dielectrophore-

sis, electro-osmosis, and induced-charge electro-osmosis in EHD have deeply influenced the

field of microfluidics. Moreover, the integration of EHD into microfluidic-based platforms

has led to the development of technological platforms for manipulation of particles, colloids,

droplets, and biological molecules across different length scales [1–6]. EHD has been used in

a wide range of applications, such as spray atomization, fluid motion of bubble drop, elec-

trostatic spinning, and printing [1, 7–12]. In material and bioengineering, EHD was utilized

to manufacture nanostructured materials [13, 14] and manipulate charged macromolecules

[15].

For a leaky dielectric drop freely suspended in another leaky dielectric fluid, the bulk

charge neutralizes on a fast timescale while “free” charges accumulate on (and move along)

the drop surface. In this physical regime, the full electrokinetic transport model in a viscous

solvent can be described by a charge-diffusion model that can be further reduced to derive

the Taylor-Melcher (TM) leaky dielectric model [16]. In many physics and engineering

applications with moderately dissolvable electrolytes, the TM leaky dielectric model can

capture the deformation of a viscous drop in both dielectric medium [17, 18] and a conducting

medium [19, 20]. The TM model has been extended in recent years to include the effects

of charge relaxation [21], charge convection [22–25], and the investigation of non-spherical

drop shapes [26–29] and drop instabilities using direct numerical methods [30–36].

In the absence of surface-active agent (surfactant), the balance between the electric

stresses and the hydrodynamic stress on the drop surface gives rise to a drop shape and

a flow field that can be parametrized by the conductivity ratio and the permittivity ratio

[37]. Under a small electric field, a steady equilibrium drop shape exists due to the balance

between the electric and hydrodynamic stresses [34, 38, 39]. For a sufficiently large elec-

tric field, instabilities arise and the drop keeps deforming until it eventually breaks up into

smaller drops [40, 41].

Non-ionic surfactant has been extensively used for stability control in experiments on
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TABLE I. Summary of published modeling work on the electrohydrodynamics (EHD) of a

surfactant-laden viscous drop. SM denotes the small deformation (spherical harmonics) analy-

sis, and LD refers to the large deformation (spheroidal harmonics) analysis. The abbreviations

LS-RegM, BIM, and IIM stand for level-set regularized method, boundary integral method, and

immersed interface method, respectively. Inertia-driven flow (Navier-Stokes) is shortened using

N.-S.

Fluids Electric field Surfactants Method References

Stokes dc, uniform insoluble analytical (SD) [42]

N.-S. dc, uniform insoluble numerical (LS-RegM) [43]

Stokes dc, uniform insoluble (semi-) analytical (LD) [44, 45]

Stokes dc, uniform insoluble numerical (BIM) [46, 47]

Stokes dc, uniform insoluble analytical & numerical [48–50]

Stokes dc, nonuniform insoluble analytical & numerical [51]

Stokes dc, uniform soluble numerical (IIM) Present Work

electrodeformation of a viscous drop [42, 46, 52–54]. By reducing the surface tension and

inducing a significant Marangoni stress due to the surfactant transport on the interface,

surfactant could lead to drastically different EHD of a surfactant-laden viscous drop. Table

I summarizes the existing theoretical and numerical investigations in the literature. In most

of these studies [42–51, 55], surfactants are assumed to be insoluble and the surface tension

is described using either a linear relationship, or more realistically the Langmuir equation

of state

γ(Γ) = γ0 +RTΓ∞ ln

(
1− Γ

Γ∞

)
, (1)

where R and T denote the gas constant and absolute temperature, respectively. γ0 is the

surface tension of an otherwise clean drop, and Γ∞ is the maximum surface packing limit.

A spheroidal model has been developed to predict the large electro-deformation of a viscous

drop covered with insoluble surfactant [44]. Finite surfactant surface diffusivity has also

been incorporated in such spheroidal model [45] with excellent agreement with full numerical

simulations [47].

Studies have shown that sorption kinetics and interactions between surfactants molecules
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can be effectively used to alter the concentration of surfactants at the drop interface [56–59],

and have profound effects on the drop shape and dynamics [60–65]. Electric field can in

turn affect the rate of sorption kinetics [55]. These results naturally lead to the following

inquiries: What effects does adsorption and/or desorption have on EHD and how do they

affect the interplay between all the various stresses? To our knowledge these questions have

yet to be addressed in the literature.

In this work we aim to fill the gap by numerically solving the coupled equations for the

leaky-dielectric model and surfactant transport equations. While our method is general

enough to handle interaction between surfactants molecules, here we assume the relation

provided by the Langmuir equation of state Eq. 1 to focus on the effects of surfactants

solubility. In the present study, we investigate such dynamics in hopes of elucidating the

physics governing the EHD of drops in the presence of soluble surfactants.

The paper is organized as follows: In §II, we present the physical problem and formulate

the governing equations. In §III we investigate how solubility affects the stability of various

drop shapes by systematically exploring a range of electric parameters across the (σr, εr)

phase diagram. Then, in §IV, we investigate the effects of the transfer parameter J , a

measure of the strength of surfactant exchange between drop surface and bulk. In §V,

we end our study with a summary of how surfactants solubility affects deformation for

surfactant-covered drops in electric fields.

II. THEORETICAL MODELING

We consider a viscous drop immersed in a leaky dielectric fluid in the presence of surfac-

tants and subject to an electric field, as shown in figure 1. Each fluid is characterized by the

fluid viscosity µ, dielectric permittivity ε, and conductivity σ with the superscript denoting

interior (-) or exterior (+) fluid. In this work we denote the contrasts of those properties by

µr = µ+/µ−, εr = ε−/ε+, and σr = σ+/σ−. Following [41], note the inverse convention for

the permittivity ratio. Moreover, in this work µ+ = µ−.
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FIG. 1. Sketch of the problem: A leaky dielectric viscous drop (Ω−) immersed in another dielectric

fluid (Ω+), with an external electric field ~E in the z direction. The bead-rod particles represent

surfactants at the interface or in the bulk. The double arrows denote adsorption-desorption kinetics

while the curved arrows represent the induced flow. The curved arrow across the vertical axis shows

the symmetry around the z-axis. The equator and pole are represented by the angle parameter

θ = 0 and θ = π/2, respectively.

A. Formulation

The fluids are governed by the incompressible Stokes equations, neglecting inertia

−∇p+ µ∇2u = 0, (2)

where p and u are the pressure and velocity field, respectively. The electric field E = −∇φ,

where φ is the electric potential that satisfies the Laplace equation both inside and outside

the drop in the extended leaky dielectric model,

∇2φ = 0. (3)
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The surfactant transport on the drop surface and in the exterior bulk fluid are described by

the following set of coupled equations

∂Γ

∂t
+∇s · (Γvs) + Γ(∇s · n)us · n = Ds∇2

sΓ + βCs (Γ∞ − Γ)− αΓ, (4)

∂C

∂t
+ u · ∇C = D∇2C, (5)

where n is the normal vector, us is the surface velocity on the drop and vs = (I−nn)us is

the velocity tangential component along the drop (I is the identity tensor). Γ and C are the

surfactant concentration on the drop surface and in the bulk outside the drop, respectively;

Cs is the concentration of surfactant in the fluid immediately adjacent to the drop surface;

α and β are the kinetic constants for desorption and adsorption, respectively; Ds and D are

the diffusion constant on the drop surface and in the bulk correspondingly.

At the drop interface, boundary conditions are imposed for the electric potential φ, the

flow field u, and the bulk surfactant concentration C. First, the electric potential is contin-

uous and the total current is conserved,

JφK = 0, Jσ∇φ · nK︸ ︷︷ ︸
Ohmic current

=
dq̃

dt︸︷︷︸
Charge relaxation

+ ∇s · (q̃us)︸ ︷︷ ︸
Charge convection

, (6)

where q̃ = −Jε∇φ · nK represents the surface charge density, and J·K denotes the jump

between outside and inside quantities. The effects of charge relaxation on the transient

behavior of drop [21], and of convection on equilibrium deformation [22, 25, 66], have been

investigated analytically and numerically in the context of drops electrohydrodynamics. In

the present study, we neglect these effects to more easily isolate the surfactant effects. This

reduces Eq. 6 to:

JφK = 0, Jσ∇φ · nK = 0. (7)

Second, the electric and fluid problems are coupled through the stress balance

J−p+ µ
(
∇uT +∇u

)
K︸ ︷︷ ︸

Hydrodynamic stress

·n + Jε
(
EE − 1

2
(E ·E)I

)
K︸ ︷︷ ︸

Electric stress

·n = γ(∇s · n)n︸ ︷︷ ︸
Surface tension

− ∇sγ︸︷︷︸
Marangoni stress

. (8)

Surfactants act to lower the surface tension, which now depends on the concentration of

surfactants through the equation of state Eq. 1. As a result, the non-uniform surfactant

distribution induced by the flow in and around the drop yields a surface tension gradient

(the Marangoni stress).
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Finally, to close the system we need a third boundary condition that describes the flux

of surfactants between the surface of the drop and the bulk. The interfacial condition for

the surfactant concentration,

Dn · ∇C = βCs (Γ∞ − Γ)− αΓ, (9)

where n · ∇C = ∂C/∂n denotes the normal derivative of C: Positive values denote

adsorption-dominated surfactant kinetics, whereas negative values denote desorption-dominated

surfactant kinetics. We henceforth concentrate on axisymmetric solutions only.

B. Nondimensionalization

We use the drop size r0 to scale length, capillary pressure γ0/r0 to scale pressure, equilib-

rium surfactant concentration Γeq to scale Γ, initial surfactant concentration C0 to scale the

bulk surfactant concentration, and electrically driven flow Ud = ε+E2
0r0/µ to scale velocity,

in which E0 denotes the intensity of the external electric field. Note that in the presence of

soluble surfactant, Γeq denotes the equilibrium with the bulk surfactant C0 [67], whereas for

the insoluble case Γeq is the initial uniform surfactant concentration.

There are nine independent dimensionless physical parameters that characterize this sys-

tem: (1) the electric capillary number CaE ≡ µUd/γeq = ε+E2
0r0/γeq (ratio of electric

pressure to capillary pressure), (2) permittivity ratio εr = ε−/ε+, (3) conductivity ra-

tio σr = σ+/σ−, (4) the elasticity constant E = RTΓ∞/γ0 in the Langmuir equation of

state, (5) the surfactant coverage χ = Γeq/Γ∞, (6) the surface surfactant Péclet number

Pes = r0Ud/Ds, (7) the bulk surfactant Péclet number Pe = r0Ud/D, (8) the transfer pa-

rameter J = C0D/ΓeqUd and (9) the Biot number Bi = ατEHD (ratio of EHD characteristic

time scale τEHD = r0/Ud to desorption time scale).

The elasticity number E measures the sensitivity of the surface tension to the surface

surfactant concentration, whereas in the presence of surfactant exchange between the bulk

and the drop interface, the surfactant coverage is related to the adsorption constant k =

βC0/α in Eq. 10 [56, 57]

χ =
k

k + 1
. (10)

Note that for the insoluble case, the surfactant coverage χ = Γeq/Γ∞ results from scaling

the surfactant concentration in Eq. 1. The bulk and surface Péclet numbers denote the
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relative strength of convective transport versus diffusive transport. These two numbers also

represent the ratio of two time scales: Pe = τD/τEHD, where τD = r20/D is the surfactant

diffusion time scale. The parameter J gives a measure of transfer of surfactant between

its bulk and adsorbed forms relative to advection on the interface. It is important to note

the ratio Bi/J distinguishes two types of transport regime [68, 69]: diffusion-controlled

transport (Bi/J > 1), and sorption-controlled transport (Bi/J � 1). Moreover the bulk

Péclet number and the transfer parameter are related by J = 1/hadPe, where had is the

adsorption depth that measures the extent of surface dilution due to surfactant adsorption.

In terms of the above dimensionless parameters, the clean drop cases correspond to E = 0

or χ = 0 (Eq. 15). The case of insoluble surfactants corresponds to Bi = 0 (Eq. 16c). The

non-diffusive case corresponds to Pe,Pes � 1.

We obtain the following dimensionless equations

−∇p+ Ca∇2u = 0, (11)

∇2φ = 0, (12)

∂Γ

∂t
+∇s · (Γvs) + (∇s · n)us · nΓ =

1

Pes
∇2

sΓ + Jn · ∇C, (13)

∂C

∂t
+ v · ∇C =

1

Pe
∇2C, (14)

γ = 1 + E ln(1− χΓ) (15)

where Ca = [1+E ln(1−χ)]CaE. On the drop surface, the dimensionless boundary conditions

are given by

JφK = 0, Jσ∇φ · nK = 0, (16a)

J−p+ Ca
(
∇uT +∇u

)
K · n + JCaE

(
EE − 1

2
(E ·E)I

)
K · n = γ(∇s · n)n−∇sγ, (16b)

Jn · ∇C = Bi [Cs (1 + k − kΓ)− Γ] . (16c)

In Eq.11 and Eq. 16b the capillary number Ca = µUd/γ0 is the ratio of electric stress to

tension in the absence of surfactant.

The right-hand side of the stress balance Eq. 16b shows that two surfactant-related

mechanisms govern the deformation of drops. The first mechanism is driven by the capillary

pressure, and acts in the normal direction. It is further broken down into two phenomena:

tip-stretching and surface dilution [70]. In tip-stretching, a decrease in surface tension γ < 1
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at the pole due to surfactant yields larger drop deformation compared with the surfactant-

free case. The area-average surface tension γavg gives a global measure of the dilution effect:

compared with the clean case, smaller deformations are attained for γavg > 1. The second

mechanism is driven by the Marangoni stress, which acts to suppress [70, 71] or even reverse

[71] surface convective fluxes. The Marangoni stress acts in the tangential directions, and

consists of two principal components: the derivative of surface tension as a function of

surfactant concentration (∂γ/∂Γ) and the surfactant concentration gradient (∂Γ/∂θ), where

θ is the angle parameter.

These nontrivial and highly nonlinear mechanisms pose challenges in studying the EHD

of a surfactant-laden viscous drop. Analytical solutions of the transport equation are only

possible in very restricted limits [72], and often numerical simulations are necessary. Several

computational methods have been developed to simulate surfactants effects on droplets [73–

76]. In the context of EHD, we refer the readers to the results in [43, 46, 77].

In this work we implement a numerical code based on the immersed interface method

(IIM) integrating numerical tools developed by our group [35, 78, 79]. A description of the

numerical setup is provided in appendix A, together with numerical validation in appendix

B and convergence study in appendix C.

Moreover we fix the elasticity constant E = 0.2 and conduct simulations with various

combinations of parameters to investigate the effects of surfactant solubility on the drop

electrohydrodynamics. Our simulations show that deformation and flow patterns appear

to be invariant with increasing surfactant solubility when the surfactant coverage χ < 0.8.

We therefore focus our analysis on elevated surfactant coverage with χ = 0.9. This sur-

factant coverage is in the relevant range in many experimental setups [42, 67, 80], and the

corresponding (dimensionless) surface tension γeq = 1 + E ln(1 − χ) = 0.54 and adsorption

number k = χ/(1−χ) = 9. The Péclet numbers Pe = PeS = 100 in §III. It is then increased

to Pe = PeS = 500 for the prolate shapes in § IV. The transfer parameter J = 10−2 for the

oblate cases, and J = 2×10−3 for the prolate cases. These values of the bulk Péclet number

and transfer parameter yield an adsorption depth had = 1, which is physically relevant for

a millimeter size drop with Γ∞ = 2.5× 10−6 m2/mol and bulk surfactant concentration ten

times the critical micelle concentration (CMC) [67]. The limit J � 1 corresponds to the

diffusion-controlled surfactant transport that is relevant in many practical applications [69].

At T = 0, the drop is spherical, and the surfactant concentrations C = 1 and Γ = 1 are
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imposed uniformly in the bulk and on the drop surface, respectively.

FIG. 2. (a): Phase diagram for the insoluble case (Biot number Bi = 0) with surfactant coverage

χ = Γeq/Γ∞ = 0.9 and PeS = 100. (b-d): prolate drops with three types of circulation. (e,f):

oblate drops with two types of circulation. (g): Drop deformation versus time. One drop with

(σr, εr) = (0.1, 10) reaches a steady equilibrium (solid line), while the drop with (σr, εr) = (10, 0.03)

continues to elongate (dashed line) past T = 10. In each panel, the vector fields are plotted on a

relative scale.

III. GENERAL SURFACTANT EFFECTS ON A VISCOUS DROP UNDER AN

ELECTRIC FIELD

The shape of a clean viscous drop under an electric field can be either prolate, oblate or

spherical with either a clockwise or counterclockwise circulation. The circulation is counter-

clockwise when ε+/σ+ > ε−/σ−, and clockwise otherwise [81]. The dashed line in figure 2a

represents Taylor’s discriminating function and delimits between prolate and oblate shapes.

The circulation pattern, counterclockwise (equator-to-pole) or clockwise (pole-to-equator),

are determined according to the flow inside the first quadrant of a axisymmetric drop in our

numerical setup (figure 14b; also see [41] and references therein). A steady equilibrium drop

shape exists as long as the electric capillary number CaE is below the critical value. Beyond

this value the viscous drop continues to elongate and eventually breaks up with complicated

flow patterns inside the drop [41].
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A. Insoluble surfactant: Bi = 0

When covered with insoluble surfactants (negligible adsorption-desorption kinetics), we

find that insoluble surfactants may give rise to multiple toroidal vortices in a spheroidal

drop, which is not observed for a clean drop [41]. This is summarized in figure 2, which

shows that due to an insoluble surfactant a prolate drop can have a clockwise circulation

[panel (b)], multiple toroidal vortices in a quadrant [panel (c)] and a counter-clockwise

circulation [panel (d)]. Panel (f) shows that the flow inside an oblate drop can also have

multiple toroidal vortices in a quadrant. In addition to changing the flow pattern, we also

find that surfactants can reduce the critical capillary number to below CaE = 0.3 as shown

in panel G, where a drop with multiple toroidal vortices continues to elongate past T = 10

at CaE = 0.3. Consequently the deformation number, defined as D = L−B
L+B

(L is the length

of the major axis and B is the length of the minor axis of the ellipsoid), continues to increase

(dashed curve) in this case.

Figure 2(a) is the phase diagram of a surfactant-laden viscous drop with χ = 0.9 and Bi =

0 (no adsorption-desorption kinetics). For each point we simulate the electrohydrodynamics

up to T = 10 for several values of the electric capillary number up to CaE = 0.3. A blue

circle denotes that a steady equilibrium is reached before T = 10 and the critical capillary

number is larger than 0.3. A red star denotes that a steady spheroidal drop shape is not

stable and the critical capillary number is less than 0.3. The dashed curve in figure 2(a)

separates an oblate drop (above the curve) from a prolate drop (below the curve). The

shaded regions delimit the various circulation patterns: clockwise (c), counter-clockwise

(cc), multiple toroidal vortices (s). Our numerical findings show that these circulation

patterns are qualitatively similar for the range of electric capillary numbers we investigated

(CaE ≤ 0.3).

The stability of spheroidal drop shape summarized in figure 2(a) is consistent with predic-

tion from our previous semi-analytical model [45], which shows that equilibrium shapes exist

below Taylor’s discriminating function (prolate) with σr ≤ 1: In these cases, the capillary

pressure is greater than the normal component of the Maxwell stress (or electric pressure).

The stability of a spheroidal drop is lost and equilibrium shapes cease to exist for drops

below Taylor’s discriminating function with σr > 1, where the electric pressure is greater

compared to the capillary pressure.
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FIG. 3. (a) Surfactant distribution for the three prolate drops in figure 2(b,c&d). (b) Surfactant

distribution for the two oblate drops in figure 2(e&f). The values θ = 0 and θ = π/2 denote the

equator and pole, respectively.

Figure 3(a) shows the equilibrium surfactant distribution for the three prolate drops

in figure 2, and (b) is the corresponding surfactant distribution for the two oblate drops

in figure 2. We observe that regardless of the different flow patterns inside a drop, the

surfactant concentration Γ is always maximum at the pole at θ = π/2 for a prolate drop,

while for an oblate drop Γ reaches maximum at the equator at θ = 0. This is because at

large Péclet number (low surfactant diffusivity) the dynamic surfactant redistribution from

the initial homogeneous coverage is dominated by the surface dilation/contraction as the

drop deforms. When the drop shape reaches an equilibrium, the surfactants also quickly

approach a distribution that is close to the equilibrium distribution [70]: For a prolate

(oblate) drop, the interface’s contraction took place at the pole (equator) and hence the

maximum surfactant at θ = π/2 (θ = 0).

For the prolate drops in figure 3(a), figure 4 shows the corresponding tangential veloc-

ity ut = vs · t [panel (a)], Marangoni stress γs = −EχΓs/(1 − χΓ) [panel (b)], normal

Maxwell stress [panel (c)], and tangential Maxwell stress [panel (d)]. For the oblate drops

in figure 3(b), figure 5 shows the corresponding tangential velocity ut [panel (a)], Marangoni

stress γs [panel (b)], normal Maxwell stress [panel (c)], and tangential Maxwell stress [panel

(d)].

Combining the simulation results (such as those summarized in figures 3, 4 and 5) for all

the cases in figure 2, we can draw the following conclusion: (1) The spatial distribution of

the normal Maxwell stress correlates to the drop shape: Normal Maxwell stress is the largest
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FIG. 4. For the three prolate drops in figure 2: (a) tangential velocity ut, (b) Marangoni stress γs

(the spatial derivative of surface tension γ), (c) normal Maxwell stress, and (d) tangential Maxwell

stress. The values θ = 0 and θ = π/2 denote the equator and pole, respectively.

FIG. 5. For the two oblate drops in figure 2: (a) tangential velocity ut, (b) Marangoni stress γs

(the spatial derivative of surface tension γ), (c) normal Maxwell stress, and (d) tangential Maxwell

stress. The values θ = 0 and θ = π/2 denote the equator and pole, respectively.

at the pole for a prolate drop, while for an oblate drop the normal Maxwell stress reaches

maximum at the equator. (2) Similar to a clean drop, the flow magnitude in a clockwise

circulation is larger than in a counter-clockwise circulation. The tangential Maxwell stress

on a prolate drop with a clockwise circulation is nearly zero as in figure 4(c). This implies

that, for a prolate drop with a clockwise circulation, the dominant balance in traction is

between the viscous stress and the Marangoni stress. (3) For a prolate drop with a counter-

clockwise circulation, the viscous stress is small and dominant balance in the traction is

between the Maxwell stress and the Marangoni stress.
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B. Soluble surfactant: Bi = 10 and J = 10−2

In this section we investigate the effects of surfactant exchange on drop dynamics. To

quantify these effects, we consider cases discussed in the previous section to clearly highlight

how increasing the Biot number affects the dynamics. To draw direct comparison with the

phase diagram in figure 2 for the insoluble cases, we summarize the results for the soluble

cases in figure 6: Filled circles denote parameters where a steady spheroidal drop is found

at equilibrium up to Ca = 0.3, while the stars are for parameters where the drop does not

reach a steady spheroidal equilibrium for Ca = 0.3.

FIG. 6. Phase diagram for the soluble case (Biot number Bi = 10) with surfactant coverage

χ = Γeq/Γ∞ = 0.9, PeS = 100, and J = 10−2. (a): The green-shaded region is for adsorption-

dominance, and the gray-shaded region is for desorption-dominance. In the unshaded region, the

relative change in the total amount of surface surfactant is small. (b): The clockwise (c), counter-

clockwise (cc) and multiple toroidal vortices (s) circulation for a spheroidal equilibrium shape. (c):

The red-shaded region denotes region in which solubility destabilizes the drop, and the blue-shaded

region represents region in which solubility stabilizes the drop. The circle size denotes the relative

change between a clean drop and a surfactant-covered drop.

Comparing between the insoluble results in figures 2 and the soluble results in figures 6

we find that surfactant solubility changes the steady equilibrium of a spheroidal drop: For

parameters below the dashed curve in figure 2(a) and figure 6, we observe that surfactant

solubility destabilizes the spheroidal drop for σr < 1, while stabilizes the spheroidal drop for

σr > 1.

In figure 6(a) the green region represents parameters where the surfactant solubility leads

to a net adsorption as the total amount of surfactant on the drop increases. The gray region
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is for desorption-dominance, where the total amount of surfactant on the drop interfaces

decreases. The sorption kinetics is minimal in the unshaded region in σr > 3, εr > 3, where

the relative change in total surfactant concentration is less than 10−3. Figure 6(b) shows

the corresponding distribution of circulation patterns in the presence of soluble surfactants:

The red region is for counter-clockwise (cc) circulation (equator to pole), the green region

is for clockwise circulation (pole to equator), and the gray region is for multiple toroidal

vortices inside the first quadrant of the drop.

Focusing on the parameters where the surfactant solubility alters the stability of a

spheroidal drop, we find that in the adsorption-dominant region the stability is lost when

the surfactant solubility decreases the average surface tension, as shown in the red region

in figure 6(c). On the other hand, in the desorption-dominant region, the stability of a

spheroidal drop is retained when the surfactant desorption leads to sufficient increase in

average surface tension, as shown in the blue region in figure 6(c).

(a) (b) (c)

(d) (f)(e)

<latexit sha1_base64="/zbj/1mbivskIHhLeO6uEIuB6OY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegBz1GMA9IltA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2BIZyJmnDMstpO9EURMRpKxrdTP3WE9WGKflgxwkNBQwkixkB66Rm9xaEgF654lf9GfAyCXJSQTnqvfJXt69IKqi0hIMxncBPbJiBtoxwOil1U0MTICMY0I6jEgQ1YTa7doJPnNLHsdKupMUz9fdEBsKYsYhcpwA7NIveVPzP66Q2vgozJpPUUknmi+KUY6vw9HXcZ5oSy8eOANHM3YrJEDQQ6wIquRCCxZeXSfOsGlxU/fvzSu06j6OIjtAxOkUBukQ1dIfqqIEIekTP6BW9ecp78d69j3lrwctnDtEfeJ8/Vz2O+Q==</latexit> �

<latexit sha1_base64="WcA6zrsUe1y3XhcPX8XYND1LCfM=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnBxEByhLnNXrJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTlDVoIhLditAwwRVrWG4Fa6WaoYwEe4iGN1P/4YlpwxN1b0cpCyX2FY85ReukVqePUmLXdMsVv+rPQJZJkJMK5Kh3y1+dXkIzyZSlAo1pB35qwzFqy6lgk1InMyxFOsQ+azuqUDITjmf3TsiJU3okTrQrZclM/T0xRmnMSEauU6IdmEVvKv7ntTMbX4VjrtLMMkXni+JMEJuQ6fOkxzWjVowcQaq5u5XQAWqk1kVUciEEiy8vk+ZZNbio+nfnldp1HkcRjuAYTiGAS6jBLdShARQEPMMrvHmP3ov37n3MWwtePnMIf+B9/gAVno//</latexit> �
s

<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓

<latexit sha1_base64="Qiz3ivlrWy9TPD9EKq/JfzwGWtg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7SP/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq7v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH238jeQ=</latexit> u
t

<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓
<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓

<latexit sha1_base64="/zbj/1mbivskIHhLeO6uEIuB6OY=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegBz1GMA9IltA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqWa0AZRXOl2BIZyJmnDMstpO9EURMRpKxrdTP3WE9WGKflgxwkNBQwkixkB66Rm9xaEgF654lf9GfAyCXJSQTnqvfJXt69IKqi0hIMxncBPbJiBtoxwOil1U0MTICMY0I6jEgQ1YTa7doJPnNLHsdKupMUz9fdEBsKYsYhcpwA7NIveVPzP66Q2vgozJpPUUknmi+KUY6vw9HXcZ5oSy8eOANHM3YrJEDQQ6wIquRCCxZeXSfOsGlxU/fvzSu06j6OIjtAxOkUBukQ1dIfqqIEIekTP6BW9ecp78d69j3lrwctnDtEfeJ8/Vz2O+Q==</latexit> �

<latexit sha1_base64="WcA6zrsUe1y3XhcPX8XYND1LCfM=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0TJoYxnBxEByhLnNXrJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTlDVoIhLditAwwRVrWG4Fa6WaoYwEe4iGN1P/4YlpwxN1b0cpCyX2FY85ReukVqePUmLXdMsVv+rPQJZJkJMK5Kh3y1+dXkIzyZSlAo1pB35qwzFqy6lgk1InMyxFOsQ+azuqUDITjmf3TsiJU3okTrQrZclM/T0xRmnMSEauU6IdmEVvKv7ntTMbX4VjrtLMMkXni+JMEJuQ6fOkxzWjVowcQaq5u5XQAWqk1kVUciEEiy8vk+ZZNbio+nfnldp1HkcRjuAYTiGAS6jBLdShARQEPMMrvHmP3ov37n3MWwtePnMIf+B9/gAVno//</latexit> �
s

<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓

<latexit sha1_base64="Qiz3ivlrWy9TPD9EKq/JfzwGWtg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7SP/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq7v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH238jeQ=</latexit> u
t

<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓
<latexit sha1_base64="fumyG8WbCQIm97m1rGRV+sj6e68=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVvz7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApUmPLA==</latexit>

✓
0 0.5 1 1.5

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.5 1 1.5
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Bi=0 (stable), r=0.3, r=0.03
Bi=10 (unstable)

0 0.5 1 1.5
-0.05

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
Bi=0 (unstable), r=3, r=1
Bi=10 (stable)

FIG. 7. Insoluble (solid line) versus soluble (dashed line) surfactants for a prolate drop (top row,

CaE = 0.3) and for an oblate drop (bottom row, CaE = 0.25) on the (a,d) Surfactant distribution,

(b,e) Tangential velocity ut = vs · t, and (c,f) Marangoni stress γs (the spatial derivative of surface

tension γ). The Péclet number Pe = 100 and J = 10−2, and the values θ = 0 and θ = π/2 denote

the equator and pole, respectively.
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Next we consider how surfactant sorption/desorption kinetics affects the drop dynamics

at various combination of (σr, εr): First we choose (σr, εr) = (0.3, 0.03) as a representative

case where a prolate drop can reach a steady equilibrium when Bi = 0 (solid line in figure 7),

and becomes unstable with Bi = 10 (dashed line). Figure 7 illustrates the effect of solubility

on surface distribution of surfactant (panels a&d), the tangential velocity ut (panels b&d),

and Marangoni stress γs (panels c&f). Adsorption onto the drop surface homogenizes the

surfactant distribution (figure 7(a)), leading to smaller Marangoni stress (figure 7(c)) and

stronger tangential flow (figure 7(b)). The Maxwell stress also sees an increase due to

solubility, albeit small in comparison to the change in Marangoni stress. As surfactant

exchange takes place, the capillary pressure is lowered and is overtaken by the electric

pressure leading to a loss in stability.

For an oblate drop, we choose (σr, εr) = (3, 1) as a representative case, where surfactant

solubility stabilizes an oblate drop by piling up the drop surface with surfactant from the

bulk. At this set of (σr, εr), an oblate drop lacks an equilibrium spheroidal shape in the

presence of insoluble surfactants (figure 2(a)). Increasing surfactant solubility suppresses

the Marangoni stress almost entirely (figure 7(f)). The diminished Marangoni stress yields

a clockwise circulation (figure 7(e)), identical to that observed for a clean spheroidal oblate

drop. Put together, these results suggest solubility reestablishes the balance between viscous

and Maxwell tractions leading to a steady spheroidal oblate drop.

For the remainder of our study, we investigate the effects of the transfer parameter J

using values of the permittivity and conductivity ratios corresponding to existing data in

the literature [38, 41, 43, 46, 51]. Comparison between figure 2(a) and figure 6(b) shows that

the effects of solubility are much more pronounced for prolate drops. Thus in the following

section we focus on the following three aspects of the solubility effects on a prolate drop:

loss of stability, variability in the flow structure, and larger deformation with increasing

surfactant exchange.
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FIG. 8. (a) Deformation of a prolate drop with (σr, εr) = (0.1, 5) as a function of dimensionless

time T . The electric capillary number CaE = 0.25. The Biot numbers Bi = 0 (insoluble case) and

Bi = 1. The inset shows the drop shapes at various times. (b-d) Circulation for the prolate drop

with Bi = 0 at times T = 0.125, T = 0.625, and T = 4, respectively. (e-g) Circulation for the

prolate drop with Bi = 1 and J = 2×10−3 at times T = 0.125, T = 0.625, and T = 4, respectively.

The Péclet number Pe = PeS = 500.

IV. EFFECTS OF SURFACTANT PHYSICO-CHEMISTRY ON A PROLATE

DROP

A. Increasing Biot number destabilizes a prolate drop

Here we show that enhancing the surfactant solubility (by increasing Biot number) desta-

bilizes a spheroidal prolate drop with σr < 1. We use the combination (σr, εr) = (0.1, 5),

where a surfactant-free viscous prolate drop has a counterclockwise circulation under an

electric field. For a clean drop the steady equilibrium exists at all values of CaE [41]. For a

drop covered with insoluble surfactants (Bi = 0) and Péclet number PeS = 500, we find that

an equilibrium drop shape exists for CaE ≤ 0.3 (figure 2(a)): At T = 0.125 the drop first

elongates along the electric field direction with a tangential flow on the interface that moves

the surfactant from equator to pole (figure 8(b)). As the surfactant accumulates and builds

up the Marangoni stress, a circulation from pole to equator develops around T ∼ 0.6 (figure

8(c)) and the drop reaches an equilibrium prolate shape with a clockwise circulation after

T ∼ 4 (figure 8(d)). This circulation at equilibrium is opposite to that of a clean prolate ‘A’

drop with a much weaker flow strength.
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FIG. 9. Surfactant distribution (a), tangential velocity ut = vs · t (b), and Marangoni stress γs

(the spatial derivative of surface tension γ) (c) for the prolate drop in figure 8 at T = 19. The

solid lines are for Bi = 0 (the insoluble surfactant case). The dashed and dash-dotted lines are for

Bi = 1 with J = 2× 10−3 and J = 10, respectively. The Péclet number Pe = PeS = 500, and the

values θ = 0 and θ = π/2 denote the equator and pole, respectively.

As we increase Bi (in the diffusion-controlled regime), we find that the steady spheroidal

shape no longer exists and the drop keeps deforming until the end of simulations (up to

T = 20), as illustrated by the dashed (J = 2×10−3) and dash-dotted (J = 10) lines in figure

8(a). For comparison, figure 8(e-g) shows the circulation with Bi = 1 and J = 2 × 10−3

at times T = 0.125, 0.625, 4. Figure 9(c) shows that the Marangoni stress is reduced in

magnitude because the surfactant on the drop surface is homogenized (figure 9(a)) by the

adsorbed surfactants. Figure 9(b) shows the corresponding tangential velocity on the drop

interface.

For insoluble surfactants [solid curves in figure 9(a&c)], the surfactant has the most

spatial inhomogeneity that corresponds to a large Marangoni stress. With soluble surfactant

in the diffusion-controlled regime (Bi/J > 1, dashed curves) the surfactant sorption kinetics

greatly reduces the Marangoni stress, giving rise to larger drop deformation. In the sorption-

controlled regime (Bi/J = 0.1 < 1, dash-dotted curves) the surfactant concentration Γ is

nearly homogeneous and the Marangoni stress is quite small, corresponding to the largest

and fastest deformation in figure 8. Moreover, with surfactants accumulating on the drop

surface in equilibrium with the bulk, the capillary pressure is reduced below the electric

pressure, leading to the loss of stability of a spheroidal prolate drop.

18



B. Effects of Biot number on flow around a prolate drop

Here we investigate the effects of solubility on the flow field. Specifically we focus on

the combination (σr, εr) = (1/3, 1) with CaE = 0.3, where equilibrium prolate drop is found

for both insoluble (figure 2) and soluble surfactants (figure 6). In the diffusion-controlled
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FIG. 10. A prolate drop with (σr, εr) = (1/3, 1) and CaE = 0.3. (a,d) Surfactant distribution,

(b,e) tangential velocity ut = vs · t, and (c,f) Marangoni stress γs (the spatial derivative of surface

tension γ) as a function of θ. Solid lines are for Bi = 0 (the insoluble surfactant case), dashed lines

are for Bi = 10−2, and dash-dotted lines are for Bi = 10. The transfer parameter J = 2 × 10−3

(a-c), and J = 10 (d-f). The Péclet number Pe = PeS = 500, and the values θ = 0 and θ = π/2

denote the equator and pole, respectively.

regime, simulations show that the equilibrium drop deformation is minimally influenced by

surfactant solubility for CaE ∈ [0, 0.3] because sorption kinetics induce little change in the

total amount of surfactant (figure 12(a)). Consequently the average surface tension does not

vary much with Bi, leading to little change in drop deformation with increased surfactant

solubility.

The flow pattern, on the other hand, is highly dependent on the surfactant distribution

and kinetics. Without surfactant a clean equilibrium prolate drop with (σr, εr) = (1/3, 1)

has a counter-clockwise flow under an electric field. For Bi = 0 the transport of an insoluble
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surfactant and the corresponding Marangoni stress gives rise to an interior flow dominated

by a clockwise circulation with a small toroidal flow around the pole as shown in figure

11(a). The corresponding tangential velocity is shown in figure 10(b). As the Biot number

is increased to Bi = 10−2 the toroidal flow near the pole expands as shown in figure 11(b),

with the corresponding tangential velocity in figure 10(b).

When we further increase the Biot number (Bi = 10), the flow transitions to a counter-

clockwise circulation with a small toroidal vorticity around the equator (figure 11(c)).

The surfactant is more uniformly distributed (dash-dotted curve in figure 10(a) and the

Marangoni stress is of the smallest magnitude in figure 10(c). This is because adsorption

dominates in the surfactant kinetics, leading to a nearly uniform surfactant distribution on

the drop surface and therefore smaller overall Marangoni stress at equilibrium. Results in
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FIG. 11. Flow field for a prolate drop with (σr, εr) = (1/3, 1) and CaE = 0.3, corresponding to

velocities in figures 10(b&e). (a) Bi = 0; (b) Bi = 10−2 and J = 2 × 10−3; (c) Bi = 10 and

J = 2× 10−3; (d) Bi = 0; (e) Bi = 10−2 and J = 10; (f) Bi = 10 and J = 10. The Péclet number

Pe = PeS = 500.

20



figure 10 also show qualitative similarity in the effects of Bi between J = 2×10−3 (diffusion-

controlled, figures 10(a-c)) and J = 10 (sorption-controlled, figures 10(d-f)).

Figure 11 compares the flow pattern between various values of Bi and J . The surface of

the drop is color-coded to indicate adsorption (blue) and desorption (red). The grayscale

colorbar indicates the change in bulk surfactants. For this prolate drop, adsorption dom-

inates the kinetics and we expect the total surface surfactants to increase. This leads to

a region depleted of bulk surfactant C ≈ 0.7. For J = 2 × 10−2 our simulations show

that adsorption takes place around the pole (figure 11(b)), and higher Biot number yields a

wider surfactant-depleted region (figure 11(c)). Whereas increasing the transfer parameter

to J = 10 does not change the qualitative features of the flow, the enhanced surfactant

kinetics homogenizes the bulk surfactant. The toroidal flow is still observed at intermediate

Biot numbers (figure 11(e)) however, it is now concentrated midway between the pole and

equator.
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FIG. 12. Change in total amount A of surface surfactants for the prolate drop in §IV B with

(σr, εr) = (1/3, 1) and CaE = 0.3. The Biot number Bi = 1 and the Péclet number Pe = PeS = 500.

C. Effects of transfer parameter on total surface surfactant concentration and

transient deformation dynamics

In this section we investigate how the total amount of surfactant on the drop surface

depends on the transfer parameter J and Biot number Bi. We define A as the difference in
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total amount of surfactant on the drop surface between time T and initial time 0:

A ≡ 1

A0

(AT − A0) ≡
1∫

Γ(0) ds

(∫
Γ(T ) ds−

∫
Γ(0) ds

)
. (17)

Using this definition, A > 0 denotes adsorption, and A < 0 represents desorption. At T = 0,

the surfactant concentrations are uniformly applied in the respective domains, and A = 0.

Figure 12 shows A as a function of Biot number, for the prolate drop in §IV B with an

initially uniform surfactant distribution in the bulk. For J = 2× 10−3 (solid curve), we see

that A exhibits a non-monotonic behavior with a critical Biot number Bicr ≈ 0.3, where the

adsorbed surfactant concentration is maximized. Similarly for J = 10 (dashed curve) the

difference in total surfactant reaches a maximum at a similar Biot number and then reaches

a plateau.
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FIG. 13. Deformation as a function of dimensionless time T for (a) a prolate drop with (σr, εr) =

(0.97, 0.75), and (b) the oblate drop with (σr, εr) = (4/3, 2). CaE = 0.25 for both cases. The solid

and dotted lines are for low (J = 10−3), and high (J = 10) transfer parameter with Bi = 10−1,

respectively. The dashed and dash-dotted lines represent higher Biot number (Bi = 10) with

J = 10−3 and J = 10, respectively.

We also observe that the transient dynamics of drop deformation depends on J . For a

prolate drop with (σr, εr) = (0.97, 0.75) and a given value of Bi, figure 13(a) shows that

the drop deformation number D displays an overshoot en route to the equilibrium for small

J (the diffusion-controlled regime). Such overshoot in the drop deformation is found for

weakly diffusive insoluble surfactant [45]. However, as shown in figure 13 (see inset for

close-up of the transient overshoot), the transient overshoot dynamics is suppressed at large
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J (the sorption-controlled regime). In this limit, the dynamics becomes closer to the uniform

surface tension case [69] where the deformation monotonically reaches its equilibrium value.

These observations also hold for oblate drops, as figure 13(b) illustrates for (σr, εr) = (4/3, 2).

V. CONCLUSION

Experimental studies [55, 82–84] show that the transport of surface active agents (surfac-

tants) is nonlinearly coupled with drop shape, adsorption/desorption kinetics, and hydro-

dynamic flow. Consequently analytical investigation on electrohydrodynamics of a viscous

drop with surfactant sorption kinetics is challenging, and the numerical method in this study

provides a tool to quantitatively investigate surfactant exchange between the bulk and the

drop surface, and their effects on deformation. We show that surfactant solubility combines

with the electric properties of the fluids in non-trivial ways to produce a wide range of

electrohydrodynamics.

First we find that solubility affects the stability of a spheroidal drop by changing the

balance between the capillary and electric pressures. Specifically we find that the surfactant

solubility makes a prolate spheroidal drop lose instability if the total amount of surfactant

increases (for σr < 1), while the prolate drop retains its stability when the total amount of

surfactant increases (for σr > 1). Moreover, we show that solubility drastically changes the

equilibrium flow: it suppresses multiple toroidal vortices that dominate in the absence of

surfactant solubility. The resulting flow patterns resemble that observed for surfactant-free

drops.

Second, we investigate the effects of the transfer parameter J . We find that increasing

the transfer parameter J in the diffusion-controlled regime (Bi/J > 1) pushes the drop hy-

drodynamics towards that of a clean drop by homogenizing the surfactant concentration on

the drop surface. Under the same conditions, the average surface tension is also increased.

As a result, deformation is suppressed for a given CaE as in the diffusion-controlled regime

for a surfactant-laden bubble [69]. Similarly increasing the surfactant solubility Bi ≥ 10

homogenizes the surfactant distribution even more and the Marangoni stress is almost com-

pletely suppressed. Under these conditions the drop behaves as a clean drop with a much

lower average surface tension, and transient overshoots in the deformation dynamics are no

longer observed. We tested this hypothesis, and our numerical results show deformations
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for the clean drop at γeq = 0.54 and surfactant-covered drop at large Bi and J are identical.

Further increase of J at a fixed Bi pushes the system into the sorption-controlled regime

(Bi/J < 1). In this regime the total amount of surfactant on the drop interface increases

little and the average surface tension is not affected much by surfactant sorption kinetics.

However, the spatial variation in surface surfactants is sufficient to induce different flow

patterns for the range of electric capillary number we used in the simulations.

Our results suggest that the critical CaE for an equilibrium drop shape also depends

on surfactant solubility. We are now investigating the correlation between the critical CaE

and other parameters (such as the surfactant coverage χ and Bi), and how the various flow

patterns develop at a stronger electric field strength.
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Appendix A: Numerical Implementation

We solve the governing equations in the axisymmetric cylindrical coordinates (r, z) (figure

14b), considering only the r ≥ 0 half-plane. Once the solution is obtained, it is extended to

the left half-plane by symmetry.
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FIG. 14. (a) The numerical algorithm for the second-order immersed interface method code: At tn

the drop shape x, flow field u, and interface velocity, U are computed using the electrohydrody-

namic solver in [35, 78]. The information is then used as input to the surfactant transport solver

[79], in order to determine the bulk (φ) and interface surfactant profile (Γ). Given Γ, we deter-

mine the change in surface tension γ, as well as the updated drop shape, flow field, and interface

velocity at time tn+1. This process is repeated either until a steady-state is reached, or up to the

onset of drop break-up. Flow circulation and direction are represented by the blue arrows. (b)

Computational domain on the (r, z)-plane. On the walls BC 1, 2, 3, and 4 denote the boundary

conditions (see text)

Figure 14a illustrates the algorithm. The droplet shape and position x, flow field u and

interface velocity U are computed using the IIM solver in [35, 78]. The boundary conditions

in the computational domain Ω = [0, L]× [−L,L] in figure 14b are given as follows: for the

electric potential, φ+ = ∓E0L/2 at z = ±L (the bottom BC3 and top BC4 of the compu-

tational domain), while a Neumann boundary condition ∂φ/∂r = 0 is imposed on the sides

(r = 0, L) of the computational domain. For the Stokes equations, the pressure and veloc-

ity ∂p/∂r = 0, ∂w/∂r = 0, u = 0 at r = 0 (BC1), while Dirichlet boundary conditions are

imposed on the other three sides (BC2-BC4) [35]. For the bulk surfactant concentration C,

Neumann (BC1) and no flux (zero Neumann) (BC2-BC4) boundary conditions are imposed
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[79]. Note that the soluble surfactant only exists outside of the drop.

For more detailed implementation steps and numerical methods, the reader is referred

to [35] for the electrohydrodynamic solver. The three-dimensional axisymmetric soluble

surfactant solver is a straightforward extension of the two-dimensional scheme in [79]. The

main difference is in the treatment of the correction term for the curvature at the irregular

grid nodes.

Appendix B: Validation
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FIG. 15. Comparison between published simulation results for the clean drop case (a&c) in [41]

and the surfactant-covered drop cases (b&d) in [43, 47]. The solid lines represent simulations

from boundary integral for the clean case, and from level-set for the surfactant-covered drop case.

The black triangles represent simulations from boundary integral, while the green circles represent

simulations using the proposed immersed interface (IIM) implementation. For the clean drop

cases: (a) σr = 0.1, εr = 0.1; (c) σr = 0.5, εr = 20. For the surfactant-covered drop cases we set

E = 0.2, χ = 0.3, Pes = 10, Bi = 0: (b) σr = 0.3, εr = 1; (d) σr = 1, εr = 2. Volume and total

surfactant are conserved to within 5% in all cases.
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We validate our numerical codes by comparing against results in the literature where

the equilibrium deformation number Deq is reported as a function of the electric capillary

number CaE, for both a clean drop and and a drop laden with insoluble surfactant. L and

B are the drop size along the major and minor axes, respectively. At moderate CaE, the

equilibrium drop shape under a DC electric field could be either prolate or oblate. For an

oblate drop, the circulation is always from the pole to the equator, while the flow inside a

prolate drop can be either from the equator to the pole (prolate ‘A’) or from the pole to the

equator (prolate ‘B’). In our simulations the computational domain size is [0, 5] × [−5, 5].

The step size h = 5/N where N = 256, and the time step ∆t = h/10.

Figure 15 shows comparisons for a clean drop (a&c) and for a surfactant-covered drop

(b&d). We test our implementation against the boundary integral (BI) results from figures

5, and 19 in [41]. Figure 15a shows the equilibrium deformation number Deq as a function of

the capillary number CaE for a prolate drop with σr = 0.1, εr = 0.1, while the oblate drop

is shown in figure 15c with σr = 0.5, εr = 20. These comparisons show good agreement

with the present immersed interface method (IIM) results.

For the surfactant-covered drop, we consider the work in [43, 47] to validate the prolate

and the oblate shapes. For these simulations, the electric parameters are set to σr = 0.3, εr =

1 for the prolate drop (case A in [43]), and σr = 1, εr = 2 for the oblate drop (case C in [43]).

The elasticity constant E = 0.2 and the surfactant coverage χ = 0.3. Other surfactant-

related parameters are as follows: the surface and bulk Peclet numbers PeS = Pe = 10,

respectively, and the Biot number Bi = 0 (the insoluble surfactant limit). Figures 15b and

15d show excellent agreement between all three numerical methods: boundary integral (BI),

immersed interface method (IIM), and regularized level-set method (RLSM).

Appendix C: Mesh refinement study

We perform a grid analysis (or mesh refinement) study. We consider a computational

domain Ω = [0, 5]× [−5, 5], to compute the L∞ error and determine the ratio

Rate =
||AN − A2N ||∞
||A2N − A4N ||∞

, (C1)

where N is the grid size. The number of Lagrangian markers for the interface M = N/2. We

run simulations to a final time T = 0.5 with time step ∆t = 10−3. The electric parameters
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are CaE = 0.1, εr = 1, σr = 0.3, corresponding to the prolate ‘A’ drop shape (case A in

[43]). The surfactant parameters are E = 0.2, Pe = 10, Pes = 10, χ = 0.3, and the solubility

parameter Bi = 0.01. Tables II-IV show the results of the analysis.

TABLE II. Numerical convergence for the flow field variables u = (u, v) and the pressure p.

N ||uN − u2N ||∞ rate ||wN − w2N ||∞ rate ||pN − p2N ||∞ rate

32 1.769× 10−1 − 1.777× 10−1 − 7.303 −

64 2.724× 10−2 2.7 1.086× 10−1 0.711 5.408× 10−2 7.08

128 2.436× 10−2 0.161 4.21× 10−2 1.37 1.402× 10−2 1.95

256 2.498× 10−3 3.29 9.36× 10−3 2.17 2.025× 10−3 2.79

TABLE III. Numerical convergence for the component of interface markers X = (X,Y ), the surface

surfactant concentration Γ, the surface tension γ and surface tension gradient dγ.

M ||XM −X2M ||∞ rate ||ΓM − Γ2M ||∞ rate

16 4.384× 10−2 − 1.053× 10−1 −

32 2.29× 10−3 4.29 9.954× 10−3 3.4

64 4.992× 10−4 2.17 1.72× 10−3 2.53

128 1.07× 10−4 2.2 5.522× 10−4 1.64

M ||γM − γ2M ||∞ rate || dγM − dγ2M ||∞ rate

16 9.213× 10−3 − 2.27× 10−3 −

32 8.493× 10−4 3.44 1.223× 10−3 0.892

64 1.477× 10−4 2.52 2.897× 10−4 2.08

128 4.744× 10−5 1.64 4.765× 10−5 2.6
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TABLE IV. Numerical convergence for the staggered variables: the electric potential (φ) and the

bulk surfactant concentration (C).

N ||φN − φ2N ||∞ rate ||CN − C2N ||∞ rate

32 1.556 − 2.016 −

64 4.179× 10−1 1.9 1.691 0.254

128 6.779× 10−2 2.62 1.451 0.221

256 1.035× 10−2 2.71 6.025× 10−1 1.27
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