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Turbulent signals are intermittent with large instantaneous fluctuations. Such large fluctuations7

lead to small Kolmogorov scales that are hard to resolve in a numerical simulations [Yeung, Sreeni-8

vasan, & Pope, Phys. Rev. Fluids, 2018, 3, 064603]. The present work follows the above basic9

logic, but instead of dissipation events in isotropic turbulence, we study wall-shear stress events in10

plane channel flow. Wall-shear stress fluctuations are increasingly more intermittent as the Reynolds11

number increases. Hence, one has to employ higher grid resolutions as the Reynolds number in-12

creases in order to resolve a given percentage of wall-shear stress events. The objective of this13

work is to quantify effects of the grid resolutions on the rare and high intensity wall-shear stress14

events. We find that the standard grid resolution resolves about 99% of the wall-shear stress events15

at Reτ = 180. Slightly higher grid resolution has to be employed in order to resolve 99% of the16

wall-shear stress events at higher Reynolds numbers, and if the standard grid resolution is used for,17

e.g., a Reτ = 10000 channel flow, one resolves about 90% to 95% wall-shear stress events.18

I. INTRODUCTION19

Direct numerical simulation (DNS) gives solutions to the Navier Stokes equation as a function of space20

and time at a resolution that is usually not possible in a laboratory experiment and therefore is one of the21

most useful tools for turbulence research [1]. Since the early works of Moser & Moin [2], Kim et al. [3], and22

Spalart [4], DNS has been extensively used in the studies of wall-bounded flows, and the grid resolution in23

Ref [3], i.e., ∆x+ ≈ 12, ∆z+ ≈ 7, is considered to be the “standard” DNS grid resolution. (The standard24

wall-normal grid resolution is max[∆y+] ≈ 4.5 at the channel center line and min[∆y+] . 0.1 at the wall.)25

Here, x, y, and z are the streamwise, wall-normal, and spanwise directions, and the superscript + denotes26

normalization by the wall units.27

Generally speaking, no simulation is completely error-free [5]—even for DNS. In their seminal work, Kim28

et al. noted “(there is) not sufficient evidence that the computed (DNS) results are unaffected by the small-29

scale motions neglected in the computations”, calling for more thorough studies of the grid resolution. Oliver30

et al. [6] assessed the adequacy of the standard DNS grid resolution for channel flow at Reτ = 180. They31

concluded that the standard DNS grid resolution is adequate for low-order statistics like the mean flow, the32

Reynolds shear stresses, and the skin friction coefficient. However, Oliver et al. did not consider rare and33

high intensity wall-shear stress events, and their discussion was limited to one Reynolds number.34

Measuring and predicting wall-shear stress is essential to the study and modeling of wall-bounded flows35

[7, 8]. The friction velocity, which is determined by the wall-shear stress, appears in many velocity scalings36

including the logarithmic law of the wall and the scaling of other velocity statistics [9–15]. In the past few37

years, the fundamental phenomenology of the fluctuating wall-shear stress has received much attention, and38

DNS has played an important role in unraveling the underlying physics [16–23]. However, without carefully39

assessing the adequacy of the standard DNS grid resolution, it would be hard to know how much one could40

trust the conclusions in these studies. From an application standpoint, rare wall shear stress events are41

responsible for particle entrainment. Hence, accurate modeling of rare wall-shear stress events, or rather,42

accurate modeling of high-order wall-shear stress statistics, is essential to the numerical modeling of various43

applications with particle entrainment, e.g., sandstorms, snowdrift, pollen transport, etc. [24–30]44
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In this work, we assess the adequacy of the standard DNS grid resolution for rare and high intensity wall-45

shear stress events. Here, high intensity and rare wall shear stress events are wall shear stress events that46

are not sufficiently well-resolved by the standard DNS grid resolution. The study will answer the following47

three questions. First, what must be the grid resolution if we want to resolve the wall layer as well as Kim48

et al. [3], but at a higher Reynolds number? Second, if we use the same grid resolution as Kim et al. [3],49

how well is the wall layer resolved at a higher Reynolds number? Third, what wall-shear stress events are50

missed by the standard DNS grid resolution, but exist in reality? Before we proceed to further motivating51

the present work, it is worth pointing out that Refs [31, 32] addresses a different question. In Refs [31, 32],52

the question concerns with the number of grid points needed for a spatially-developing boundary layer given53

the grid resolution ∆x+ ≈ 12, ∆z+ ≈ 7, whereas the question here concerns with whether the resolution54

∆x+ ≈ 12, ∆z+ ≈ 7 is adequate.55

The basic logic of this paper generally follows that in Refs [33–37] by Yeung, Sreenivasan, and co-workers.56

Their basic idea is that large fluctuations in turbulent dissipation lead to small Kolmogorov length scales57

that require finer-than-standard grids to resolve. For example, a fluctuation in the turbulent dissipation that58

is ε = 10000 〈ε〉 leads to a local instantaneous Kolmogorov scale that is η = 0.1
(
ν3/ 〈ε〉

)1/4
. Here, ε is the59

instantaneous turbulent dissipation, ν is the kinematic viscosity, and 〈·〉 denotes time averaging. For a DNS60

whose grid resolution scales with η ≡
(
ν3/ 〈ε〉

)1/4
, these events are hard to resolve. The authors then argue61

that one must use grid resolutions that are increasingly smaller fractions of the Kolmogorov length scale as62

the Reynolds number increases in order to resolve a given percentage of the dissipation and enstrophy events63

in isotropic turbulence. The same is true for wall-shear stress fluctuations and DNS of wall-bounded flows.64

The wall-shear stress in channel flow is increasingly more intermittent as the Reynolds number increases65

[38] (as evidenced by the increase of wall-shear stress’s root-mean-square (rms) as a function of the friction66

Reynolds number [39, 40]). A large instantaneous fluctuation in the wall-shear stress leads to a small local67

viscous scale. Hence, one needs grid resolutions that are increasingly smaller multiples of the viscous unit68

as the friction Reynolds increases in order to resolve a given percentage, say, 99%, of the wall shear stress69

events in the flow.70

In this paper, mulitple DNSs are carried out with refined grids at two friction Reynolds numbers, i.e.,71

Reτ = 180 and Reτ = 400, until the resulting probability density function (PDF) of the wall-shear stress is72

grid converged. We keep our simulations running for an extended period of time to minimize the sampling73

error [6, 41]. These DNSs allow us to directly assess the adequacy of the standard DNS grid resolution at the74

two specific Reynolds numbers Reτ = 180 and 400. Then, we generalize our conclusions to high Reynolds75

numbers by resorting to known Reynolds number scalings. We show that the standard DNS grid resolution76

falls short for rare wall-shear stress events. Our conclusion will inevitably cast doubt on some previous77

studies that relied on DNSs for their study of high intensity and rare wall-shear stress events. However, the78

objective is not to challenge these authors but to bring a few new thoughts to the discussion.79

The rest of the paper is organized as follows. Details of the DNSs are presented in section II. We show80

the results in section III and discuss their implications. Finally, we summarize in section V following a short81

discussion in section IV.82

II. DNS DETAILS83

We conduct a series of incompressible turbulent channel flow DNSs. The flow is periodic in the streamwise84

(x) and the spanwise (z) directions. No-slip and no-penetration conditions are applied as boundary conditions85

in the wall-normal (y) direction. For spatial discretization, the code uses the Fourier pseudo-spectral methods86

in x and z directions and the Chebyshev pseudo-spectral method in y direction [3]. Time-advancement87

uses the third-order Runge-Kutta. All statistics denoted with “+” in this study are normalized by the88

combinations of the density, ρ, the kinematic viscosity, ν, and the mean velocity gradient at the wall,89

(∂〈u〉/∂y|w), where 〈·〉 denotes the ensemble average. The flow is driven by a constant pressure gradient90

dP/dx in the x direction.91

We consider flows at two Reynolds numbers, i.e., Reτ = 180 and 400, where Reτ is the friction Reynolds92
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TABLE I. DNS Details. The nomenclature of the cases follows the rule of “Resolution”+“Reynolds number”. C, R,

F, and FF denote “coarse”, “regular”, “fine”, and “finer”, respectively. LM180 is the Reτ = 180 channel flow case in

Ref [41]. The size of our computational domain is Lx×Ly ×Lz = 4πh× 2h× 2πh where h is the channel half width.

The domain is larger than the minimal channel [42]. T is the averaging time (after the flow reaches a statistically

stationary state). Tf = Lx/ub is the flow-through time. Here, Lx is streamwise length of the computational domain,

and ub is the bulk velocity.

Reτ ∆x+ ∆z+ ∆y+ T/Tf

C180 180.2 24 13 0.25, 9.4 100

R180 180 12 6.3 0.062, 4.7 100

F180 180.2 5.9 3.1 0.062, 4.7 100

FF180 181.2 2.9 1.6 0.062, 4.7 100

LM180 182.1 4.5 3.1 0.074, 3.2 34.3

C400 399.1 26 14 0.14, 10 100

R400 399.5 12 6.5 0.027, 4.7 100

F400 401.3 5.8 3.3 0.027, 4.7 100

FF400 401.2 2.9 1.8 0.027, 4.7 100

number defined with uτ (=
√
ν(∂〈u〉/∂y)w). Four grid resolutions are considered with successively grid93

refinements from ∆x+ = 24, ∆z+ = 13 to ∆x+ = 2.9, ∆z+ = 1.6. The Reτ of each case varies less than94

about 0.6% as shown in Table I. Because of the use of a Chebyshev grid, i.e., yj = cos((j − 1)π/(Ny − 1)),95

keeping the standard grid resolution at the channel centerline, i.e., max[∆y+] ≈ 4.7, results in a wall-96

grid resolution min[∆y+] that halves as the Reynolds number doubles. We will show in section IV that97

further refining wall-normal grid does not affect the wall-shear stress statistics. The time step size is such98

that the Courant–Friedrichs–Lewy (CFL) number is about 0.8. We follow Ref [6] and average for about99

T = 100Lx/ub to minimize sampling errors. We may measure the sampling errors by examining the total100

stress, i.e., νdU/dy − 〈u′v′〉, of which the analytic solution, (1 − y/h)u2τ , is well-known. The deviation of101

computed total stress from the analytic solution is less than 0.006u2τ in all simulation cases. Table I shows102

the details of our DNSs. The R cases, i.e., R180 and R400, use the standard DNS grid resolution. We include103

the Reτ = 180 channel flow data in Ref [41] (denoted with “LM”) for comparison, where the grid resolution104

in the horizontal directions are ∆x+ = 4.5, ∆z+ = 3.1, and the distance between B-spline knots in the105

wall-normal direction gives min[∆y+] = 0.074 and max[∆y+] = 3.4 at the wall and the channel centerline,106

respectively. Throughout this paper, we use ′ to denote fluctuation, and σφ to denote the standard deviation107

of the quantity φ.108

III. RESULTS AND DISCUSSION109

A. Mean flow and streamwise variance110

Figure 1 shows the mean velocity U+ and the rms of the streamwise velocity fluctuation u+rms. For U+,111

the R, F, and FF results collapse, and LM180 agrees well with R180, F180, and FF180. For u+rms, the F112

and FF results collapse. The R cases predict a slightly smaller peak than the F and FF cases. The LM180113

results again agree well with F180 and FF180. For both the mean velocity and the streamwise velocity’s114

rms, the C results are visibly different from the R, F, and FF results. These results are consistent with Ref115

[6]: the standard DNS grid resolution is sufficient for low-order statistics like the mean flow, the Reynolds116

stresses, and the skin friction coefficient. In the next subsection, we will examine rare wall-shear stress.117

Considering that the coarse grid resolution is insufficient for even the low-order statistics like the mean flow,118

our discussion in the next subsection will focus on the R, F, and FF cases.119
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FIG. 1. (a, c) Mean velocity. (b, d) Streamwise velocity’s rms. (a, b) Results at Reτ = 180, (c, d) Results at

Reτ = 400.

B. Wall-shear stress120

Figures 2 (a, b) show the PDFs of the streamwise and the spanwise wall-shear stresses in R180, F180,121

and FF180. Similar to many other turbulent flow quantities, it is more likely to find τx and τz near their122

means. (〈τ+x 〉 ≡ 1 by definition.) These frequent events are not significantly affected by the grid resolution,123

at least for the three grid resolutions investigated here. In fact, R180, F180, and FF180 predict very similar124

probability densities near τ+x = 1 and τ+z = 0. The difference between a regular grid, i.e., R180, and a fine125

grid, i.e., F180 or FF180, arises only at large τx and τz values. This is consistent with Ref [18, 35, 36], where126

differences between a coarse grid and a fine grid are found only for rare events, i.e., high dissipation events127

in Refs. [35, 36] and backflow events in Ref. [18]. For the two quantities in figure 2 (a, b), the R grid leads128

to higher probability at large τ values than the two fine grids. This is also consistent with Refs [35, 36],129

where the dissipation rate in an isotropic turbulence DNS is found to be more intermittent on a coarse grid130

(∆/η = 2.22) than on a fine grid (∆/η = 0.55) at both Reλ = 390 and 650, where Reλ is the Taylor micro131

scale based Reynolds number.132

The results in figure 2 allow us to answer the following question: what percentage of the wall-shear stress133

events is resolved in R180? To determine that percentage, we draw a horizontal line in figure 2 (a, b) such that134

the R180 result agrees with the FF180 result above that line. Integrating the probability density function135

above that horizontal line gives the percentage of the resolved events in R180. In figures 2 (a, b), we draw136

three lines above which FF180’s probability density function integrates to 0.9, 0.99, and 0.999, respectively137

(i.e., keeping one significant digit for the percentage of the unresolved events). According to figure 2 (a, b),138

R180 captures between 99% to 99.9% wall-shear stress events. We will be conservative and say that R180139

captures 99% of the wall-shear stress events. Now, whether capturing 99% of the wall-shear stress events is140

sufficient or not depends on the quantity of interest and the desired level of accuracy. Because rare and high141

intensity events play a more important role in determining higher-order statistics, the level of accuracy we142

can expect for higher-order statistics like
〈
τ4
〉

will be lower than lower-order statistics like 〈τ〉. For example,143
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FIG. 2. PDFs of (a) the streamwise wall shear stress and (b) the spanwise wall shear stress in R180, F180, FF180,

and LM180. The vertical lines are at τ+x = 1 and τ+z = 0. The horizontal lines are at constant PDF values above

which FF180’s probability density function integrates to 0.9, 0.99, and 0.999, respectively. (c, d) Reτ = 400 results.
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FIG. 3. Normalized premultiplied PDF. R180 Results. Red lines: τ+z × PDF. Blue lines: τ+4
z × PDF. Solid lines:

wall-shear stress events that are resolved in R180. Dashed lines: wall-shear stress events that are not (well) resolved

in R180. The premultiplied PDF is symmetric/antisymmetric with respect to τ+z = 0 and we show only the results

for τ+z > 0.

let us compute 〈τz〉, a low-order statistics, and
〈
τ4z
〉
, a high order statistics, in R180. Figure 3 shows the144

premultiplied PDFs τ+z × PDF and τ+4
z × PDF in R180. The integration of the two premultiplied PDFs145

gives 〈τ+z 〉 and
〈
τ+4
z

〉
. Following the discussion above, the events |τ+z | < 0.65 are well-resolved but the events146

|τ+z | > 0.65 are not. The resolved events are responsible for about 90% of the integration
∫∞
τ+
z =0

PDF τ+z dτ
+
z147

and 30% of the integration
∫∞
τ+
z =0

PDF τ+4
z dτ+z , leading to a much lower level of accuracy for

〈
τ+4
z

〉
. The148

above exercise can be repeated for the Reτ = 400 results in figure 2 (c, d), and we will arrive at similar149

conclusions.150151

Next, we discuss what to expect at higher Reynolds numbers. First, we need to find a scaling that152
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FIG. 4. Scaled PDFs of (a) the streamwise wall shear stress and (b) the spanwise wall shear stress in FF180, FF400,

and the channel flow DNSs at Reτ = 1000, 2000, and 5200 [41]. Details of the LM cases can be found in Ref [41].

As we will show later in this section, the rare events, i.e., the tails of the wall-shear stress PDFs, are not accurately

predicted at higher Reynolds number if one uses the standard DNS grid resolution, and therefore the tails of the wall-

shear stress PDFs for LM1000, LM2000, and LM5200 are not shown here. The plotted part of the PDFs integrates

to 0.9. The two insets are un-scaled PDFs of the streamwise and the spanwise wall-shear stresses for FF180 and

FF400. The two horizontal lines are at a constant σ+
τ ×PDF location above which the PDF integrates to 0.99.

collapses the PDFs of τx and τz at all Reynolds numbers. According to the previous studies, the scaling153

log (PDF) /
〈
τ ′+2

〉
(τ ′+/

〈
τ ′+2

〉
) collapse the tails of the PDFs [43] (that is, the tails of the PDFs collapse154

if one plots log (PDF) /
〈
τ ′+2

〉
as a function of τ ′+/

〈
τ ′+2

〉
), and the scaling PDF×σ+

τ (τ ′+/σ+
τ ) collapse155

the central parts of the PDFs [44]. Here, we need a Reynolds number scaling for the part of the PDF that156

we can trust, which is the central part of the PDF. Hence, we follow Ref [44] and plot PDF × σ+
τ as a157

function of τ+/σ+
τ . Figure 4 shows the results. We have also included the results at Reτ = 1000, 2000, and158

5200 for comparison purposes. We see from figure 4 that the central parts of the scaled PDFs do collapse.159

The 99% line intersects with the scaled streamwise wall-shear stress PDF at (τ+x − 1)/σ+
τx = −1.9 and 3.2160

and the scaled spanwise wall shear stress PDF at τ+z /σ
+
τz = −3.3 and 3.3. These are the limiting events161

for resolving 99% of the wall-shear stress events. In other words, to resolve 99% of the wall-shear stress162

events, the grid resolution must accommodate the limiting events (τ+x − 1)/σ+
τx = 3.2 and τ+z /σ

+
τz = 3.3.163

Here, the Reynolds number information is incorporated in σ+
τx and σ+

τz . In the absence of other length and164

velocity scales, the resolution needed to resolve a particular wall-shear event τ must be a function of ν165

and τ , i.e., ∆ = f(ν, τ). It follows from the Buckingham π theorem that ∆ must be ∆x+ ∼ 1/
√
τ+ and166

∆z+ ∼ 1/
√
τ+, i.e., ∆x+

√
τ+ = Constant and ∆z+

√
τ+ = Constant. In other words, in order to resolve167

99% wall-shear stress events, the grid resolution ∆x+ and ∆z+ must be such that ∆x+
√

3.2σ+
τx + 1 = Cx168

and ∆z+
√

3.3σ+
τz = Cz, where Cx and Cz are two constants. In the above discussion, the fluid density ρ ≡ 1169

is omitted. We determine the two constants Cx and Cz by plugging in the σ+
τx and σ+

τz data at Reτ = 180 and170

the standard grid resolution (recall that the standard grid resolution resolves 99% wall-shear stress events)171

and arrive at the following grid resolution requirement172

∆x+99% ≈
18√

3.2σ+
τx + 1

, ∆z+99% ≈
5.7√
3.3σ+

τz

, (1)173

for resolving 99% wall-shear stress events. The number 99% is because R180 resolves 99% of the wall stress174

events. As both σ+
τx and σ+

τz are increasing functions of the Reynolds number [39, 40], ∆x+ and ∆z+ in Eq.175

(1) are decreasing functions of the Reynolds numbers. This is consistent with Refs [35, 36]: one must use176

resolutions that increasingly smaller fractions of the viscous length scale as the Reynolds number increases177

in order to resolve a given percentage of the dissipation events.178

To get numerical numbers from Eq. (1), we need scaling estimates for σ+
τx and σ+

τz as a function of the179

Reynolds number. The exact dependence of σ+
τx and σ+

τz on the friction Reynolds number Reτ is not yet180

well established. For example, Yang et al. [38] argue for181

σ+2
τ = a log(Reτ ) + b, (2)
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Schlatter et al. [40] argue for182

σ+
τ = a′ log(Reτ ) + b′, (3)

and Chen and Sreenivasan [45] argue for183

σ+2
τx = a′′

(
0.25− b′′Re−1/4τ

)
. (4)

The above three scalings all predict an increasing στx as a function of the Reynolds number, and despite184

their differences, the three scalings in Eqs. (2), (3), and (4) give very similar predictions at moderately high185

Reynolds numbers, i.e., for Reτ < O(105). In addition to the above three scalings that predict an increasing186

στx as a function of the Reynolds number, Gubian et al. [46] examined their experimental data and arrived187

at a somewhat surprising conclusion: στx stays a constant beyond Reτ ≈ 600. Closely scrutinizing Gubian188

et al.’s experimental methodology, Örlü and Schlatter [47] later found that the spanwise grooves (spanwise189

rectangular cavities) that Gubian et al cut on their surfaces to place their hot wires had a big impact on190

the near-wall flow’s dynamics, thereby explaining the somewhat surprising conclusion in Ref. [46]. In this191

work, we will adopt the more conventional view and rely on the the scalings in Eqs. (2), (3), and (4) that192

predict an increasing στx as a function of the Reynolds number. As these three scalings give similar results193

for DNS’s Reynolds number range, we can practically use any one of the three scalings when estimating σ+
τx194

and σ+
τz . The catch of course is that all these scalings have two undetermined constants that must be fitted195

to data. Here, we rely on our FF180 and FF400 results to fit for a, b, a′, and b′ (to give a rough idea of the196

impacts of using different scalings for σ+
τ ). Substituting Eqs. (2) and (3) in Eq. (1), we have figure 5. We197

see that the two σ+
τ scalings lead to practically the same result. According to figure 5, one only needs to very198

slightly refine the grid at high Reynolds numbers to resolve as well as Kim et al.’s Reτ = 180 channel [3]. For199

example, to resolve 99% of the wall-shear stress events at Reτ = 5200, one needs ∆x+ = 11 and ∆z+ = 5.5,200

which is slightly finer than the resolution used in Ref [3]. That being said, the present practice has been201

to use coarser grid at higher Reynolds numbers: Lee & Moser [41] used ∆x+ = 12.7 for their Reτ = 5200202

channel, Lozano-Duran & Jiminez used ∆x+ = 12.8 for their Reτ = 4200 channel, and Yamamoto & Tsuji203

[48] used ∆x+ = 14.8 for their Reτ = 8000 channel (and they use a finite difference code). This is somewhat204

disconcerting, as we may have been trading off accuracy for higher Reynolds numbers.205206

The result in figure 5 answers the question: what grid resolution is needed if one wants to resolve the207

wall layer as well as Kim et al. [3]. Next, we answer the question: how well resolved will the wall layer208

be at high Reynolds numbers if we use the same grid resolution as Kim et al. [3]? In the above few209

paragraphs, we come to the conclusion that the standard DNS grid resolution is adequate for the events210

τ+x = 1 + 3.2 σ+
τx

∣∣
Reτ=180

= 2.18, τ+z = 3.3 σ+
τz

∣∣
Reτ=180

= 0.66. If one uses the standard DNS grid resolution211
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assuming σ+2
τ ∼ log(Reτ ). Dashed lines: assuming σ+

τ ∼ log(Reτ ).

at a different Reynolds number, that standard DNS grid resolution should still resolve the events τ+x = 2.18,212

τ+z = 0.66. Hence, drawing a horizontal line that goes through τ+x = 2.18, i.e., τ+x /σ
+
τx = 2.18/σ+

τx , in figure213

4 (a), and τ+z = 0.66, i.e., τ+z /σ
+
τz = 0.66/σ+

τz , in figure 4 (b), and integrating the PDF above the two lines214

should give the percentage of the resolved wall-shear stress events. Again, the Reynolds number information215

is embedded in σ+
τx and σ+

τz . That result is shown in figure 6. According to figure 6, if σ+2
τ ∼ log(Reτ ), the216

standard DNS grid resolution resolves about 97% of the spanwise wall-shear stress events at Reτ = 1000217

and about 93% of the spanwise wall-shear stress events at Reτ = 5000 . The numbers are not very different218

if σ+
τ ∼ log(Reτ ). In all, it is safe to say that the standard grid resolution resolves about 90% to 99% of the219

wall-shear stress events at Reτ = 5000.220221

We end this discussion by quoting Kim et al. [3] “(using the standard DNS grid resolution) although the222

disagreement between the computed and measured values does not seem to be serious, ..., it is important223

to resolve the differences if the use of the computer-generated databases or experimental data in studying224

turbulence structures and in developing improved turbulence models is to be continued.” Again, the objective225

of the discussion here is to bring new thoughts to the topic.226

C. Small-scale structures227

In this subsection, we answer the last question: what wall-shear stress events are missed by the standard228

DNS grid resolution that exist in reality? In recent experimental work, Sankar et al. [50] measured the flow229

in the viscous sublayer. The authors found spanwise meandering motions of fluid parcels at the scale of a230

few plus units and associated these meandering motions to large spanwise wall-shear stress |τz|. The scales231

of these meandering motions are subgrid for the standard DNS grid resolution, i.e., about 2-3 wall-units232

in the spanwise direction across a length of 20 wall units in the streamwise direction. Here, we examine233

if these meandering motions and high spanwise wall-shear stress events are resolved by the standard DNS234

grid resolution. Figure 7 shows the conditional averaged spanwise wall-shear stress based on τ+z > 1.5 at235

x = z = 0, and we show results for R180, FF180, R400, and FF400. A τ+z > 1.5 event is a rare event. The236

probability of encountering such an event is less than 0.1% in FF180 and FF400. From figure 7 (a), we see237

that R180’s resolution is obviously insufficient for the τ+z > 1.5 events: the contour lines are symmetric with238

respect to z = 0 in R180 but asymmetric in FF180. Comparing figures 7 (a, b), the difference between the239

standard DNS grid and the fine grid becomes more notable as the Reynolds number increases, particularly240

the “streamlines”. In all, it is safe to say that the standard DNS grid resolution is insufficient for resolving241

rare spanwise wall-shear stress events. In this subsection, we have focused on one specific type of wall-242

shear stress event that we know is not resolved by the standard DNS grid resolution. A more thorough243

comparison between the R and the FF cases is left to future investigation—when more detailed experimental244
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FIG. 7. (a) Conditional averaged the wall-shear stress based on τ+z > 1.5 at x+ = z+ = 0. The color contour shows

the results for FF180. The line contour shows the results for R180. The four black solid lines are streamlines for the

vector field (τx, τz) in FF180. The four dashed solid lines are the results for R180. The solid lines and the dashed

lines start at the same x and z locations. (b) Same as (a) but for the results at Reτ = 400.

measurements of the flow in the viscous sublayer become available.245

IV. FURTHER DISCUSSION246

When studying rare events in a turbulent flow, one can achieve grid convergence only in a relative sense.247

In figure 2, cutting off at PDF> 10−4, we achieve grid convergence for τx and τz at the resolution ∆x+ = 5.9248

and ∆z+ = 3.1. If we were to limit PDF> 10−1, we would have achieved grid convergence at the standard249

resolution ∆x+ = 12 and ∆z+ = 6.3. Likewise, if we require grid convergence for, e.g., PDF> 10−7, i.e., for250

very rare events, grid convergence can be achieved only at finer resolutions.251

In section II, we discuss the effects of horizontal grid resolutions but not the wall-normal grid resolution.252

Our code uses a Chebyshev grid in the wall-normal direction. As a result, keeping the standard grid resolution253

at the channel centerline, i.e., max[∆y+] ≈ 4.7 results in a min[∆y+] that halves as the Reynolds number254

doubles. The underlying hypothesis of our discussion in section II is that the standard Chebyshev grid is255

sufficient. Here, we present empirical evidence. Table II shows the details of two additional DNSs: Fy180256

and Fy400. Fy180 is F180 but doubling the wall-normal grid number, and Fy400 is F400 but doubling257

the wall-normal grid. Because of the use of a Chebyshev grid, doubling the number of wall-normal grid258

quadruples the grid resolution at the wall. Figures 8 (a, b) compare the PDFs of the streamwise and the259

spanwise wall-shear stresses in F180 and Fy180, and figures 8 (c, d) compare the results in F400 and Fy400.260

We see that there is barely any difference between the F cases and the Fy cases.261
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TABLE II. DNS details of the F and the Fy cases.

Reτ ∆x+ ∆z+ ∆y+ T/Tf

F180 180 5.9 3.1 4.7, 0.062 100

Fy180 180 5.9 3.1 2.4, 0.015 100

F400 400 5.8 3.3 4.7, 0.027 100

Fy400 400 5.8 3.3 2.3, 0.0068 100
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FIG. 8. PDFs of (a) the streamwise wall-shear stress and (b) the spanwise wall-shear stress.

V. CONCLUDING REMARKS262

In this work, we conduct channel flow DNSs at two Reynolds numbers, i.e., Reτ = 180 and Reτ = 400,263

and four grid resolutions, i.e., ∆x+ =24, 12, 5.9, 2.9, and ∆z+ =13, 6.3, 3.1, 1.6. We show that the standard264

DNS grid resolution does not capture rare and high intensity wall-shear stress events. Specifically, this work265

answers the following three questions. First, what grid resolution one needs to use to resolve the wall layer266

as well as Kim et al.’s Reτ = 180 DNS [3] but at a higher Reynolds number? Second, how well is the wall267

layer resolved if one uses the same grid resolution as Kim et al. [3] but at a higher Reynolds number? Third,268

what wall-shear stress events are not captured by a standard DNS grid but exist in reality? The answers to269

the above three questions are given in figures 5, 6, and 7. Specifically, we show first that one needs to refine270

the grid in order to resolve the wall-layer as well as in Ref [3] at a high Reynolds number, second that the271

wall layer becomes less and less well resolved if one uses the same grid resolution as in Ref [3] for flows at272

higher and higher Reynolds numbers, and third that the standard DNS grid does not resolve large spanwise273

wall shear stress events. It is worth noting that by saying “a wall-shear stress event is not well-resolved” we274

are not saying “a wall-shear stress event does not have the right amount of energy”. The two are not the275

same. For example, one can digitally filter a Gaussian signal such that it has the same energy spectrum as a276

turbulent signal, but that filtered signal does not resolve any turbulence. When we say “a wall-shear stress277

event is not well-resolved”, we mean that the wall-shear stress event in a simulation is not the same as what278

it would be in the real world. That being said, wall-shear stress is an intermittent quantity and therefore is279
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intrinsically hard to resolve.280

We conclude our discussion with following remarks. First, our discussion concerns solely with channel281

flow, but because wall-shear stress in boundary layer flow behaves similarly, conclusions in this paper should282

still be valid for DNS of boundary layer flow. Second, discretization methods are likely to have a big impact283

on the results [51]: obviously, lower-order methods will require higher grid resolution than higher-order284

methods. The conclusions in this work apply to Fourier-Chebyshev spectral codes only. The grid resolution285

requirement will be much more stringent than the ones suggested in this work if, e.g., a second-order finite286

difference method is used.287
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