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Abstract

Empirical formulae describing the Darcy-Weisbach friction factor remain indispensable for appli-

cations in sciences and engineering dealing with turbulent flows. Despite their practical significance,

these formulae have remained without theoretical interpretation for many decades. To close this

knowledge gap, much research has been devoted to the development of the so-called “spectral

link” introduced in the early 2000s. Such a theory is entirely based on elegant phenomenological

arguments that make no contact with equations describing turbulent wall flows. The spectral link

spawned alternative approaches, now labeled ‘co-spectral budget’ (or CSB) models, that describe

how turbulent eddies contribute to wall stresses. The CSB overcomes some of the shortcomings of

the phenomenological approach and is here employed to provide a thorough clarification of the link

between spectral properties of velocity fluctuations and the scaling of friction factors in turbulent

pipe flows in the hydraulically smooth and fully-rough regimes.

I. INTRODUCTION

The seminal work by Nikuradse [1] identified that the Darcy-Weisbach friction factor

f of a rough-walled pipe depends on the bulk Reynolds number Re = 2V R/ν and the

relative roughness of the wall d/R, where V is the time and cross-sectional averaged velocity

(hereafter referred to as bulk velocity), R is the pipe radius, ν is the fluid kinematic viscosity

and d is the size of the roughness elements (uniform sand grains in the experiments carried

out by Nikuradse). The f , as well known, is a measure of the shear stress that the flow

exerts on the pipe wall and according to the Darcy-Weisbach formula (see, e.g., [2]) is equal

to 8fd, where fd = τ0/(ρV
2), τ0 being the wall shear stress and ρ the fluid density.

The data gathered by Nikuradse allowed identifying the so-called hydrodynamically

smooth, transitionally- and fully-rough regimes, whose existence is commonly justified us-

ing a phenomenological argument, based on a competing mechanism between the roughness

size d and the viscous length scale ν/u∗, where u∗ =
√
τ0/ρ is the shear velocity. If the

roughness elements are immersed within the viscous sublayer, the flow functions as a hy-

draulically smooth regime and the friction factor fd depends on Re only. Conversely, if the

wall roughness is much larger than the viscous sublayer thickness, fd becomes independent
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of Re and depends on the relative roughness d/R only. Intermediate conditions, whereby

the viscous sublayer and the roughness have comparable size, pertain to the transitionally-

rough regime, in which fd depends on both Re and d/R. From a physical point of view, the

hydraulically smooth and the fully-rough flow conditions can be considered as two limiting

regimes, occurring for d/R→ 0 and Re→∞, respectively [3].

Experimental evidence suggests that when 3× 103 < Re < 105, the fd in the hydrauli-

cally smooth regime follows the so- called Blasius scaling, namely fd ∼ Re−1/4 [4], where

the ∼ symbol means “scales as”. For higher Reynolds numbers (Re > 105), experiments

suggest deviation from the Blasius scaling. For the fully-rough regime, the fd vary, in good

approximation, according to the so-called Strickler scaling, namely as fd ∼ (d/R)1/3 [5].

While there is a good body of empirical evidence in support of the proposed scaling

regimes for both limiting regimes, theoretical arguments remain lacking. A major advance

on this problem emerged in the past 20 years from the work by Gioia, Chakraborty and co-

workers (hereafter referred to as GC) [3, 6–10]. These authors developed a framework that

justifies the existence of both the Blasius and the Strickler scaling in fd on the basis of near-

wall momentum transport mechanisms driven by turbulent velocity fluctuations, following

the Kolmogorov scaling of energy spectra. In other words, a so-called “spectral link” was

established for the first time to connect the scaling of the friction factor with the (universal)

scaling of turbulence in the so-called inertial sub-range. This result created a stir in the

turbulence-research community. In fact, the arguments proposed by GC have been used in a

variety of studies to address problems related to turbulent friction in canopy and permeable

beds [11], momentum and scalar transport in atmospheric flows [12–16], turbulent friction

caused by non-Newtonian fluids [9, 10], local scour [17–21] and sediment transport [22] to

name just a few. Moreover, the allegedly-proven theoretical origin of the Blasius and Strickler

scaling has led to the development of further theoretical (and original) ideas about turbulent

flows. A notable example is an analogy between critical phenomena (typically studied and

observed within the remit of thermodynamics) and turbulence [3]. Goldenfeld [3] found out

that, assuming the Blasius and Strickler scaling exist as limiting regimes, the Nikuradse

data can collapse on one single curve exploiting the Widom arguments that were originally

developed to infer thermodynamic properties of ferromagnets near the critical temperature.

A further refinement of this work was developed by Mehrafarin and Pourtolami [7], who

argued that intermittency corrections to the Kolmogorov energy spectrum could further
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improve the imperfect data collapse obtained by Goldenfeld [3].

Despite its appeal, elegance and simplicity, though, the spectral link theory proposed by

GC is entirely phenomenological. Moreover, a number of later studies (published by Katul

and co-workers and hereafter referred to as KCW) for simplicity, identified various issues in

the GC analysis, the most critical concerning the adopted range of eddy-scales contribut-

ing to near-wall turbulent momentum transport and the adopted scaling for the near-wall

dissipation rate of turbulent kinetic energy (TKE) [23–25]. Therefore, KCW proposed a

different approach derived from the analysis of a co-spectral budget equation [24–26], which

overcomes the aforementioned issues and opens new avenues for the study of the spectral

link (see Bonetti et al. [23] for an in-depth discussion on the comparison between the GC

and co-spectral budget approach). Such avenues have been only partially explored by KCW,

mainly in two papers, namely Bonetti et al. [23] and Katul and Manes [24]. These works, in

fact, focus mostly on finding a link between spectral properties of turbulence and the shape

of mean velocity profiles in wall flows. This analysis requires the numerical integration of

the co-spectral budget equation over the wall-normal direction. While the friction factor

is surely linked to the shape of mean velocity profiles, in these two works it is difficult to

identify a clean spectral link, as this is hidden behind a thick curtain of calculations (this

aspect is clarified in the following section).

The present paper intends to explore the full potential of the CSB equation to reveal

and clarify the spectral link, while maintaining analytical tractability. The aim is to do so

within the context of the hydraulically smooth and fully-rough flow conditions. With the

results from the proposed approach, we also intend to contribute to the ongoing discussion on

whether (or to what extent) the Blasius- and Strickler- scaling, which allegedly characterize

friction factors in the aforementioned limiting regimes, are founded on turbulence theories

or must be considered merely as a concise summary of experiments.

The paper is organized as follows: Section II reviews the co-spectral budget (CSB) model

as per steady and turbulent pipe flows; building upon the analysis presented in section II, the

spectral link in hydrodynamically smooth and fully-rough conditions is explored in sections

III and IV, respectively. Section V and Section VI are devoted to discussion and conclusions,

respectively.
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II. CO-SPECTRAL BUDGET MODEL

The case of a steady turbulent flow within a uniform rough-walled pipe is considered for

illustration. The momentum balance equation at any wall normal distance z can be written

as:

d(τt(z) + τv(z))

dz
=

dps
dx

(1)

where τv is the viscous shear stress component, τt = −ρu′w′ is the turbulent shear stress

component, overbar indicates averaging over coordinates of statistical homogeneity (here

assumed to be time-averaging), u′ and w′ are the longitudinal and wall-normal velocity

components, respectively; ps is the modified pressure [27].

The turbulent momentum flux in Eq. 1 can be expressed as:

ρu′w′(z) = −ρ
∫ ∞
0

Fuw(k)dk, (2)

where Fuw(k) is referred to as the “co-spectrum” and is defined as the real part of the Fourier

transform of the cross-correlation function between u′ and w′; k is the wavenumber reflecting

the inverse of eddy sizes. The related CSB was given by [24, 25]

∂Fuw(k)

∂t
+ 2νk2Fuw(k) = G(k), (3)

where t is time and

G(k) = Puw(k) + Tuw(k) + Π(k). (4)

In Eq. 4 the term Puw(k) = Γ(z)Eww(k) represents the covariance production term,

Γ being the mean velocity gradient externally imposed on the co-spectrum, Eww(k) the

turbulent energy spectrum of the vertical velocity, Tuw(k) the co-spectral flux-transfer term

(that differs from its turbulent kinetic energy transfer counterpart) and Π(k) the velocity-

pressure interaction term, which acts as to decorrelate u′ and w′ [27]. To maintain analytical

tractability, it is necessary to introduce simplifying assumptions. As discussed by Katul et al.

[25], it is convenient to locate the whole analysis (i.e., momentum balance and co-spectral

budget) at a distance z where the viscous component of the shear stress τv can be neglected

in Eq. 1. This hypothesis is key for the correct application of the co-spectral budget
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approach because the turbulent momentum flux can be considered, in good approximation,

as an estimate of the wall shear stress, or equivalently, τt = −ρu′w′ ≈ ρu2∗ = τ0. As

reported below, this is true in the fully-rough regime, where Re→∞, and under specific and

afterward discussed hypotheses in the smooth regime (see section IV). Assuming negligible

viscous effects allows also neglecting the second term in the left hand side of Eq. 3 relative

to the pressure-de-correlation term. A good candidate elevation z for the proposed analysis

is the top edge of the buffer layer [28]. Here, as pointed out by [25, 26], the transfer term

Tuw(k), which does not alter the outcome of the co-spectral approach [23], can be neglected

and, upon further assuming steady conditions, the co-spectral budget equation reduces to

an interplay between production and de-correlation at z as:

ΓEww(k) + Π(k) = 0. (5)

If the Rotta model [29] is invoked for Π(k) and upon neglecting the wall-blockage effect

[24] by selecting z at the top of the buffer layer, then

Π(k) = −CR
Fuw(k)

τr(k)
− CIPuw(k), (6)

where τr(k) = ε−1/3 min(k−2/3, K
−2/3
a ) is a wavenumber-dependent relaxation time scale

[26, 30], CR ≈ 1.8 is the known Rotta constant, CI = 3/5 is a constant associated with

the isotropization of the production term correcting the original Rotta model [27], and Ka

is the wavenumber scaling as the inverse of the characteristic inner length scale of flow,

namely the roughness size and the viscous length scale, for the fully-rough and hydraulically

smooth regime, respectively. As previously discussed [31], the relaxation time scale may be

interpreted as the mean duration of an eddy of wavenumber k to be dissipated with a constant

local dissipation rate of TKE, ε. Bonetti et al. [23] provide an in-depth discussion about

the relaxation time scale. In particular, they have verified that it is more than reasonable

to assume that τr(k) varies only with k and ε as ε−1/3k−2/3. From this consideration alone,

it can be shown that

Fuw(k) =
1

Aπ
Γε−1/3Eww(k)k−2/3, (7)

where Aπ = CR/(1− CI) ≈ 4.5. Combining Eqs. 2 and 7 leads to:
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|Γ| ε−1/3 = Aπ
−u′w′
Ik

= Aπ
τ0/ρ

Ik
, (8)

where:

Ik =

∫ ∞
0

k−2/3Eww(k)dk. (9)

To evaluate Ik (Eq. 9), it is now necessary to make assumptions about the shape of the

spectrum Eww(k) (instead of the TKE spectrum as proposed of GC). Towards this end, the

approach used by Bonetti et al. [23] and Katul and Manes [24] is followed. The Eww, at

the top edge of the buffer layer, is approximated as shown in Fig. 1. Starting from low

wavenumbers, for k < Kc, Eww displays a power law (Eww = kp), where p is an exponent

dependent on the geometry of the flow domain [27], and Kc is a crossover wavenumber linked

to large scale eddies and, in pipe flows, presumably scaling as Kc ∼ 1/R. Moving towards

higher wavenumbers, atKc < k < Ka, the spectrum typically displays a plateau (presumably

attributed to wall effects resulting in ’energy splashing’ across scales), with Ka scaling as

the inverse of the characteristic inner length scale of flow, namely the roughness size and

the viscous length scale, for the fully-rough and hydraulically smooth regime, respectively.

For k > Ka, Eww follows the Kolmogorov spectrum, namely, Eww = EKol = C0ε
2/3ks

(with s ≈ −5/3), where C0 = (24/55)C ′k is the universal Kolmogorov constant for the

vertical velocity component and C ′k = 1.5 [27, 32]. In the inertial subrange where Eww(k) =

EKol(k), the co-spectrum reduces to Fuw(k) = (C0/Aπ)Γε1/3k−7/3. Thus, the CSB model

recovers the accepted co-spectral shape and the correct similarity constant (C0/Aπ) = 0.15

[30, 33]. Inclusion of the flux transfer term Tuw(k) in the CSB necessarily yields deviations

from a Fuw(k) ∼ k−7/3 scaling, which may be used as an indirect justification to ignoring

Tuw(k) altogether noting that
∫∞
0
Tuw(k)dk = 0 and including Tuw(k)must lead to deviations

from the −7/3 co-spectral scaling. Analogous to Bonetti et al. [23], the viscous correction

to the inertial subrange (k > Ka), usually modeled by an exponential cutoff [27, 34], is

herein neglected, so that the inertial range holds up to k → ∞. We highlight that this

approximation is not strictly needed to maintain analytical tractability. However, retaining

this correction has very minor effects on the final results presented herein and, hence, it was

neglected for clarity.

The chosen shape of the spectrum Eww is, to some extent, arbitrary. However, in depth
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FIG. 1. Scheme of the idealized dimensionless vertical velocity spectrum Eww/EKol(Ka).

discussion and justifications for the proposed spectral model can be found in Bonetti et al.

[23] and are only briefly summarized here. In particular, Bonetti et al. [23] noted that mean

velocity profiles (and hence, implicitly, friction factors) obtained from the integration of the

CSB equation were essentially insensitive to the exact value of the exponent p and the extent

of the plateau in Eww(k).

A more conceptual criticism stems from the fact that the chosen spectral model for Eww(k)

includes a well developed inertial range, which is unlikely to exist at the top of the buffer

layer Zhao and Smits [35]. It is straightforward to demonstrate that the results presented

herein are rather independent of this strong hypothesis (see Section V). However, before

addressing this issue, an elaboration on the proposed spectral link is offered.

Eq. 9 transforms in:

Ik =
EKol(Ka)

Kp
c

∫ Kc

0

kpk−2/3 dk+

+EKol(Ka)

∫ Ka

Kc

k−2/3 dk+

+

∫ ∞
Ka

k−2/3EKol(k) dk.

(10)

From Eqs. 8 and 10, the friction factor fd can be estimated as:
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fd =
τ0
ρV 2

=

[
Coε

2/3Ks
a

Kp
c

∫ Kc

0

kp−2/3 dk+

+ Coε
2/3Ks

a

∫ Ka

Kc

k−2/3 dk+

+ Coε
2/3

∫ ∞
Ka

k−2/3ks dk

]
|Γ|ε−1/3

AπV 2
.

(11)

This equation is further featured in the next two sections to assess the spectral link and

the scaling of fd for the hydraulically smooth and fully-rough regimes. Towards this end, it

is necessary to link ε and Γ, which are local properties of the mean flow and turbulence at the

height where the CSB model is formulated, to bulk flow and geometry variables such as V ,

R and d. As already introduced in Bonetti et al. [23] (and further discussed in the next two

sections in much more detail), it is in this transformation linking local-to-global variables

that one of the major criticisms of the earlier work by GC, who also adopted it [6, 36, 37]. To

avoid the ad hoc nature of this transformation, integrating Eq. 11 (twice) across the entire

flow domain and across all wavenumbers is necessary to enable the determination of how

different spectral shapes affect the mean velocity profile and, for the fully-rough case only,

the scaling of fd. As already introduced in Section I, this type of analysis does not allow for

the finding of an explicit spectral link. For this reason, the local-to-global transformation is

adopted here despite its shortcoming. However, its potential (and pitfalls) to clarify the link

between friction factors and velocity spectra at limiting regime conditions is now explored.

III. THE SCALING OF THE FRICTION FACTOR IN THE FULLY-ROUGH

REGIME

Taking into account the fact that, in the fully-rough regime, Kc ∼ 1/R and Ka ∼ 1/d

[23], Eq. 11 becomes:

fd ≈

[
Rp

ds

∫ 1/R

0

kp−2/3 dk+

+ d−s
∫ 1/d

1/R

k−2/3 dk +

∫ ∞
1/d

k−2/3ksdk

]
|Γ|Coε1/3

AπV 2
.

(12)

As proposed by Bonetti et al. [23] (and also, although in a different context, by Coscarella

et al. [19]), the local-to-global transformation can be carried out as follows. The mean
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velocity gradient can be transformed as Γ(z) = du(z)/dz = α1V/d and the local TKE

dissipation rate ε can be taken as α3
2V

3/R, where α1 and α2 are ad hoc scaling functions,

depending in general, as reported by Bonetti et al. [23] and below, on d/R and Re, that are

not proportionality constants as implicitly assumed in GC.

In particular, in fully-rough conditions, when Re → ∞, α1 and α2 depend only on d/R

[19, 23]. Upon implementation of the local-to-global transformation and after some algebraic

steps, the friction factor reads as:

fd =

[
− 3p

p+ 1/3

d−1−s

R2/3

+
3s

s+ 1/3

d−4/3−s

R1/3

]
C0α1α2

Aπ
.

(13)

Taking into account that s = −5/3, Eq. 13 can be further reworked to obtain:

fd =

[
− 3p

p+ 1/3

(
d

R

)2/3

+
15

4

(
d

R

)1/3
]
C0α1α2

Aπ
, (14)

where p is an unknown coefficient of the order of unity and, owing to the fully-rough hy-

pothesis, α1 and α2 depend on d/R only [24].

Eqs. 13 and 14 display interesting features. The power-law exponent p of the spectrum

characterizing the low wavenumber range appears only in the first term on the right-hand

side of the equation, which for small values of d/R, becomes negligible with respect to the

second term, displaying the Strickler scaling, i.e., (d/R)1/3. Therefore, Eq. 14 suggests that

the Strickler scaling is retrieved for low relative roughness values and when the product

α1α2 does not depend on d/R. This condition will be further explored using the Nikuradse

experimental data [1]. Towards this end, α1α2 can be computed as follows:

α1α2 =
Aπ
C0

fd

−8
3

(
d
R

)2/3
+ 15

4

(
d
R

)1/3 . (15)

As an example, Bonetti et al. [23] considered a p = 8/3 (i.e., analogously to the von

Kármán spectrum, in which p = 17/6 [34]). Then, considering, for example, the empirical

formula proposed by Nikuradse for the assessment of the friction factor in rough pipes [1]:

fd =
1[

1.74 + 2 log
(
d
R

)−1]2 , (16)
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FIG. 2. α1α2 as a function of d/R in the fully-rough turbulent flow case.

α1α2 can be calculated as a function of d/R, as shown in Fig. 2.

From Fig. 2 it is possible to see that the trend of α1α2 is approximately constant for

values of d/R less than 0.02, since variations are contained within 5% of the mean value of

α1α2 computed over this range. On the contrary, for higher values of the relative roughness

d/R, α1α2 varies by about 25% within the range of data explored by Nikuradse and as used

in Fig. 2. Deviations of the friction factor from the Strickler scaling for high values of d/R

have been repeatedly reported (see, e.g. [38], but it seems these results have been overlooked

by the theoretical physics community) and it is interesting to see that the proposed model,

although simplistic, captures this aspect, which is ascribed to a combined effect of the shape

of the vertical spectrum in the low wavenumber range (i.e., in the range k < Ka) as well as

the product of the scaling functions α1 and α2, which links global to local variables.

The above analysis suggests that the presence of the product α1α2 in Eq. 14, which

depends also on d/R, prevents finding a clear spectral link, i.e. a well-defined relation be-

tween the spectral exponent s = −5/3 and the 1/3 exponent in the Strickler formulation

(i.e., fd ∼ (d/R)1/3). However, theoretical considerations presented herein (as well as exper-

imental data) suggest that the Strickler scaling might be valid not only within the remit of

the limiting condition identified by the fully-rough regime (i.e., Re→∞), but also for flow

conditions involving large inner-outer length-scale separation, namely small values of d/R.

IV. THE SCALING OF THE FRICTION FACTOR IN THE SMOOTH REGIME

In the hydraulically smooth regime, the roughness size d is submerged within a viscous

sublayer and no longer contribute to flow resistance, meaning that the viscous length scale
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ν/u∗ becomes the dominant one in the inner region. The analysis here proceeds analogously

to the fully-rough case, but with the difference that the crossover wavenumber Ka can be

expressed as Ka ∼ 1/(ν/u∗), where ν/u∗ can be written as η/η+, η being the Kolmogorov

length scale and η+ the Kolmogorov length scale normalized with the viscous length scale.

Consistent with the choice of carrying out the whole analysis at the top edge of the buffer

layer [28], we set Ka as 1/(50ν/u∗). The 50ν/u∗ in smooth flows is often considered as a

good estimator of the wall normal distance where the mean velocity profile starts becoming

independent of the viscous shear [27]; at this normal distance, η+ can be taken equal to 2.71

[39]. In addition, the selection of z just above the buffer region of the mean velocity profiles

justifies the choice of neglecting the wall-blockage effects in Eq. 6. In fact, the so-called

“missing” curvature in the mean velocity profile owing to unconsidered wall-blockage can be

significant in the buffer layer [26], i.e., when 5ν/u∗ < z < 30ν/u∗ [27]. With this choice of

Ka, Eq. 11 transforms as:

fd =

[
− 3p

p+ 1/3

(
η+

50

)s
η−1−sR−2/3+

+
3s

s+ 1/3

(
η+

50

)s+1/3

η−4/3−sR−1/3

]
C0α1α2η

+

50Aπ
,

(17)

which provides the relation between the friction factor and spectral exponents, consistent

with the chosen spectral model. Before further commenting on Eq. 17, it is important

to define its limits of validity. As specified in section II, a key requirement for the whole

analysis is that the wall-normal elevation where the co-spectrum and momentum balance

are analyzed (i.e., for the case of smooth-wall flows, z = 50ν/u∗) must be close enough to

the wall so that the turbulent shear stress τt computed at this location can be considered

in good approximation equal to τ0 = ρu2∗. An acceptable hypothesis could be to consider a

mismatch not greater than 5%, which means that:

τ(50ν/u∗)

τ0
≥ 0.95, (18)

or, given the linear dependence of the total shear stress on the radial direction:

Ru∗
ν

= R+ ≥ 1000. (19)
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Now, since in smooth-wall pipe-flows u∗ can be up to two order of magnitude smaller

than the bulk velocity V , a conservative approach would be to consider Eq. 17 valid for

Re = 2RV/ν ≥ 50000.

Taking s = −5/3 [27], Eq. 17 becomes:

fd =

[
− 3p

p+ 1/3

(
50

η+

)5/3 ( η
R

)2/3
+

+
15

4

(
50

η+

)4/3 ( η
R

)1/3] C0α1α2η
+

50Aπ
,

(20)

where:

η

R
=

(
ν3

ε

)1/4
1

R
=

(
ν3R

α3
2V

3

)1/4
1

R
=

=
1

α
3/4
2

ν3/4

V 3/4R3/4
=
(α2

2
Re
)−3/4

,

(21)

and:

fd =

[
− 3p

p+ 1/3

(
50

η+

)5/3 (α2

2
Re
)−1/2

+

+
15

4

(
50

η+

)4/3 (α2

2
Re
)−1/4] C0α1α2η

+

50Aπ
.

(22)

The first term on the right-hand side of Eq. 22 scales as Re−1/2 and is the one containing

the exponent p associated with the low-wavenumbers range of Eww (large-scale eddies). For

high Re (as required by Eq. 19), this term is much smaller than the other term on the right

hand side of the same equation, which scales as η−4/3−sR−1/3 or Re−1/4. This implies that,

when the Reynolds number is high, the friction factor scaling is not significantly influenced

by the low wavenumber range of spectra. In Eq. 22 the Blasius scaling is retrieved if the

product α1α2 does not depend on Re. As per the fully-rough case, the scaling of α1α2 cannot

be deduced from first principles and, hence, its dependence on Re must be assessed with

the aid of experimental data. Towards this end and by taking p = 8/3 for illustration, α1α2

can be computed as:
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2 as a function of Re in the smooth turbulent flow case.

α1α2 =
50Aπ
η+C0

fd

−8

3

(
50

η+

) 5
3 (

α2

2
Re
)− 1

2 +
15

4

(
50

η+

) 4
3 (

α2

2
Re
)− 1

4
(23)

and, neglecting the term scaling as Re−1/2, Eq. 23 becomes:

α1α
3/4
2 =

50Aπ
η+C0

fd

15

4

(
50

η+

)4/3 (
Re
2

)−1/4 . (24)

The dependence of α1α
3/4
2 on Re is now explored using the original data by Nikuradse

and the Princeton group as interpolated by Yang and Joseph [40] in Eq. 6 (not reported

here for the sake of brevity) of their paper.

Fig. 3 shows that α1α
3/4
2 is approximately constant for values of Re less than 105, where,

however, according to Eq. 19, the approach proposed herein cannot be applied with confi-

dence. On the contrary, at high Reynolds numbers, α1α
3/4
2 varies by about 50% within the

range of data explored experimentally by Nikuradse and the Princeton group. Deviations of

the friction factors from the Blasius scaling for high values of Re have already been reported

[1, 4, 40] and, according to the CSB model here, they can be ascribed mostly to the product

of the scaling functions α1 and α2, which link global to local variables.

As a final check on whether the super-pipe experiments did maintain a smooth wall flow

state at such high Reynolds number, it was verified by us that the internal micro-roughness

of the super-pipe (reported as r = 1.5274× 10−7m) remained much smaller than the viscous

sublayer thickness (5ν/u∗) for all Re except the three highest Re values (about 3×107). At

such high Re values, r/(5ν/u∗) ≤ 0.5 in all cases. Hence, the viscous sublayer thickness
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exceeded the micro-roughness of the walls to a leading approximation for the super-pipe

experiments.

V. DISCUSSION

As already mentioned in Section II, at a first glance the model spectrum used to represent

Eww(k) might seem contradictory to common expectations in the buffer layer. We indeed

assumed Eww(k) having an inertial range following the Kolmogorov scaling. It is known that

this is not the case in the buffer layer and we seek to resolve this apparent contradiction

and discuss the associated implications here.

Towards this end, the extreme case of an inertial layer that collapses to one point only

at k = Ka is presented followed by a classical exponential decay for k > Ka. Considering

the smooth regime, and starting from Eqs. 8 and 10, the friction factor fd can be estimated

as follows:

fd =

[
Ks
a

Kp
c

∫ Kc

0

kp−2/3 dk +Ks
a

∫ Ka

Kc

k−2/3 dk+

+Ks
a

∫ ∞
Ka

k−2/3 exp(−βkη) dk

]
C0|Γ|ε1/3

AπV 2
,

(25)

where exp(−βkη) is the well-known exponential decay and β is a dimensionless constant

equal to 2.1 [27]. Setting x = kη, the last integral of the previous equation becomes

η−1/3
∫∞
η+/50

x−2/3 exp(−βx) dx. After some algebraic steps and numerically solving the inte-

gral, we obtain:

fd =

{
− 3p

p+ 1/3

(
50

η+

)5/3 (α2

2
Re
)−1/2

+

+

[
3 + 0.99

(
50

η+

)1/3
](

50

η+

)4/3 (α2

2
Re
)−1/4} C0α1α2η

+

50Aπ
.

(26)

This latter equation is equal to Eq. 22, except for the coefficient of the term (50/η+)4/3 ·

(α2Re/2)−1/4. This confirms that a well developed inertial range in Eww is not required to

recover the results presented so far. The only requirement is that Ka (i.e., wavenumbers

scaling linearly with the elevation, which can be therefore associated with “attached eddies”)

follows the −5/3 scaling, which is a hypothesis in line with GC works [37]. There is no

conceptual reason preventing that similar conclusions can be drawn for hydraulically rough
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surfaces. However, this cannot be demonstrated with the proposed CSB approach, as the

last integral of Eq. 25 depends on η, Re, and d/R and, hence, cannot be analytically

integrated.

In further support of the robustness of the chosen spectrum shape, it can be shown that∫∞
0
Eww(k) dk reduces to:

σw
u∗

=
1

u∗

[∫ ∞
0

Eww(k) dk

]0.5
= · · · = C0.5

0

(
d

R

−p
p+ 1

+
5

2

)0.5

(27)

in the fully-rough regime and:

σw
u∗

=
1

u∗

[∫ ∞
0

Eww(k) dk

]0.5
= · · · = C0.5

0

[
50

η+

(α2

2
Re
)−3/4 −p

p+ 1
+

5

2

]0.5
(28)

in the hydraulically smooth regime, σw being the root mean square of the vertical velocity

fluctuations.

In the limit of d/R and Re−3/4 << 1 (i.e., in the fully-rough and smooth regimes, respec-

tively), the ratio σw/u∗ ≈
√
C0(5/2) ≈ 1.28 is independent of p, d/R or Re. This finding is

consistent with numerous laboratory and field experiments [27].

VI. CONCLUSIONS

The present paper investigates the link between the scaling of the vertical velocity spectra

and the well-known Blasius and Strickler scaling of fd in hydraulically smooth and fully-

rough pipe flows, respectively. Such a link was initially established and investigated almost

20 years ago by GC using phenomenological arguments describing turbulent momentum

transfer in proximity of the wall. Here, building upon the work by KCW, the existence of

this link is refined through the integration of the CSB equation.

To maintain analytical tractability, the CSB equation must be complemented by relations

linking the local variables ε and Γ to global quantities such as V and R. In doing so, it was

necessary to introduce the functions α1 and α2, whose scaling behavior cannot be explicitly

derived from first principles. The CSB equation also required an externally supplied shape

of Eww, which was idealized in Fig. 1.

Integration of the CSB equation for the fully-rough and hydraulically smooth regime

leads to Eqs. 14 and 22, respectively. These equations provide the sought link between

spectral properties of turbulence and friction factor, indicating that, for the fully-rough and
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hydraulically smooth regimes, the characteristics of the spectra at low wavenumbers (i.e.,

for k < Ka) are negligible, provided that d/R is small and Re→∞, respectively.

If eddies at scale Ka follow the Kolmogorov scaling with s = −5/3 (see Section V), the

Blasius and the Strickler scaling are recovered in Eqs. 14 and 22 provided that the product

α1α2 is constant. Since the dependence of this product to either Re or d/R cannot be

explored from first principles, we conclude that a link between the Kolmogorov and the

Blasius/Strickler scaling cannot be theoretical. Caution must be exercised when using such

a link (as established in previous studies) to investigate aspects related to wall turbulence

and turbulent friction.

However, comparison between Eq. 15 and experimental data (Fig. 2) indicates that, for

the fully-rough regime, α1α2 is approximately constant for d/R < 0.02. For the hydraulically

smooth case, α1α2 is constant only for Re < 105 (Fig. 3), where, however, the proposed

theoretical approach cannot be applied with confidence (see Eq. 24). Hence, it can be

concluded that the existence of the Strickler scaling and its link with spectral properties

of turbulence is supported by combining experimental evidence and theoretical arguments.

The same cannot be claimed with certainty for the Blasius scaling that, instead, seems to

have only empirical support.
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