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This work extends the input-output approach to the study of wall-bounded shear flows manip-
ulated using actuators common in experimental flow control studies. In particular, we adapt this
powerful analytical framework to investigate the flow response to specified geometric actuation
patterns/intensities (e.g., different plasma actuators) that can be applied over a range of different
temporal input signals. For example, the commonly studied steady-state (time-averaged) flow re-
sponse corresponds to a superposition of step responses in our modeling framework. The approach
takes advantage of the linearity of the transfer function representation to construct the actuated
flow field as a weighted superposition of the flow responses to point sources of varying intensity
comprising the actuation model. We first validate the proposed method through comparisons with
numerical and experimental studies of the time-averaged behavior of a transitional boundary layer
actuated using a dielectric-barrier discharge (DBD) plasma actuator operating in constricted dis-
charge mode. The method is shown to reproduce the streamwise velocity field and the vortical
structures observed downstream of the tested plasma actuator configurations. We then demon-
strate that the method provides even better agreement in the steady-state response of the boundary
layer subject to actuation from arrays of symmetric plasma actuators arranged in both spanwise
and serpentine geometries. These results indicate the utility of this extension to the widely used
input-output framework in analyzing the effects of certain actuation modalities that have shown
promise in flow manipulation strategies for drag reduction. An important benefit of this analytical
method is the low computational cost associated with its use in extensive parametric studies that
would be cost-prohibitive using experiments or high-fidelity simulations.

I. INTRODUCTION

Flow modification through a range of control actions, such as surface blowing and suction [1], the introduction
of transverse wall oscillations [2], vortex generators [3], and constrictive discharge plasma actuation [4] have shown
success in producing desired changes to the flow characteristics. However, many of these approaches are known to
produce the desired behaviors over only limited parameter ranges. For example, blowing and suction induced traveling
waves reduce drag over a limited range of wave speeds and amplitudes, and a single propagation direction [1, 5]. A
vortex-generator array is effective in mitigating transition for a limited range of spanwise spacings between array
elements [3]. Similarly, the frequency, duty cycle, and other input signal properties have been shown to play a role
in the efficacy of these and other types of actuators used in flow modification [6]. Understanding the potential of
different flow control strategies requires a full characterization of the parameter range and input signals that produce
the desired response. However, obtaining such knowledge through experimental or numerical studies can become
cost-prohibitive when the range of conditions that need to be tested is large. More efficient use of these approaches
can be achieved by first employing analysis techniques that enable a qualitative understanding of the effect of different
actuation signals on the flow fields [7].

Input-output analysis based tools have shown great promise in providing the required understanding. They have
been widely used to provide insight into the flow characteristics arising from structured external forcing, e.g., stochastic
forcings [8, 9], impulsive forcings [10, 11] and harmonic forcings [12]. In particular, the externally forced linearised
Navier-Stokes (LNS) system, have shown success in examining the important dynamic processes, structural features
and energy pathways of transitional [e.g., 8–11] and turbulent [e.g., 13, 14] wall-bounded shear flows.

In flow control applications, input-output based analysis has been used to derive control laws [15, 16] that were
successfully applied in laminar boundary layers in experiments and used for preliminary assessment of actuation
strategies [17, 18]. These methods have also been adapted to analyze the effect of flow manipulation through stream-
wise traveling waves generated by surface blowing and suction [5], as well as to design transverse wall oscillations that
suppress turbulence in a channel flow [2]. Optimal riblet shapes for drag reduction in turbulent channel flow have
also been obtained through resolvent analysis [19]. These and a host of other works demonstrate the promise of an
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input-output based approach in identifying promising flow manipulation strategies. However, periodic actuation such
as transverse wall oscillations and surface blowing/suction can pose implementation challenges [20].

On the other hand, plasma actuators are easier to implement and becoming increasingly common in experimental
flow control studies [21]. Plasma actuators come in a vast number of geometry configurations and can be operated
under pulsed excitation with adjustable duty-cycle and frequency [22–24]. A number of these actuation strategies
have shown promise in separation control [25], attenuation of TollmienSchlichting waves [26], turbulent drag reduction
[27], and control of shock-waves [28]. The operation of plasma actuators relies on discharge between the electrodes
of the actuator, which leads to a localized input that is typically modeled as a body force distribution in physical
space [24, 29, 30]. The need to capture a geometric distribution of forcing in physical space complicates direct
application of the input-output paradigm, which typically relies on transforming the problem to streamwise and
spanwise wave number space and obtaining the solution to problems in terms of a superposition of the effects at
each streamwise and spanwise wavenumber pair. This work provides a means to adapt the framework to address this
limitation.

The main contribution of this work is a method to extend the input-output modeling paradigm to compute the flow
response to specific localized actuator geometries with input signals that can be represented through a parameterized
family of pulse-width modulated excitations. This input signal can be adapted to model a variety of input signals,
including steps, impulses, periodic and short pulses. Previous works have demonstrated that important knowledge of
the flow response is possible through models that capture the local effect of an actuator on the flow field [15, 16, 31].
We adopt this idea and develop a model the effect of particular actuator geometries on the flow field as a geometric
arrangement of point source inputs of varying density and input directions. The output associated with the pulse
modulated signal can then be computed analytically for each point source. We then exploit the linearity of the input-
output technique to construct the flow response as a superposition of the weighted point source response functions.
We validate the method on the special case of step input signals, which provide a model for continuous actuation
signals. This input class provides an important first test case as the associated flow response corresponds to the
time-averaged flow field due to constant actuation, which is extensively reported in the literature.

We test our model against the results from both numerical and experimental studies in three different classes of
plasma actuators that are used to reduce transient growth in a Blasius boundary layer. We first demonstrate that
the approach reproduces the vortical structures, the high and low-speed streaks, and streak spacing associated with
the vortices generated due to a single exposed electrode dielectric-barrier discharge (DBD) plasma actuator operated
in constricted discharge mode [4]. We then focus on two geometric patterns; a linear spanwise array of symmetric
DBD plasma actuators [32] and a serpentine DBD plasma actuator [24]. In both cases, the model reproduces the
structural features of the time-averaged velocity fields obtained from the validation data. Our results indicate that
the proposed analytical approach can evaluate the efficacy of these common streak and vortex generation mechanisms,
which play an essential role in boundary layer flow control in obtaining drag reduction, controlling transition, mixing,
and separation [33, 34].

In the sequel, the model derivation is presented in Sec. II. Validation of the model for the three different actuation
geometries is provided in Sec. III. Finally, concluding remarks and future directions are discussed in Sec. IV.

II. ANALYTICAL MODEL OF ACTUATED BOUNDARY LAYERS

We consider incompressible wall-bounded parallel shear flow with streamwise direction (x), wall-normal direction

(y), and spanwise direction (z). We decompose the velocity field into a base flow of the form U =
[
U(y) 0 0

]T
and

perturbations about that base flow u =
[
u v w

]T
.

We compute the effect of actuation on the flow field as a solution of the linearized Navier-Stokes equations about
the base flow, U, subject to body forcing. Spatial invariance of the parallel flow field in the horizontal directions
enables us to evaluate these equations through their (x, z) spatial Fourier transform

∂tψψψ(kx, y, kz, t) = A(kx, y, kz)ψψψ(kx, y, kz, t) + B(kx, y, kz)d(kx, y, kz, t). (1)

Here ψψψ :=
[
v̂ ω̂y

]T
is the state vector comprised of the transformed wall-normal velocity v̂, and wall-normal vorticity

ω̂y parametrized by the respective streamwise and spanwise wave-numbers, kx, and kz. The vector d(kx, y, kz, t) =[
d̂x d̂y d̂z

]T
describes the transformed body forcing. The operator

A :=

[
−ikx 4−1 U 4+ikx 4−1 U ′′ + (Re4)−142 0

−ikzU ′ −ikxU + Re−14

]
, (2)
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where U ′ := dU(y)/dy, 4 := ∂yy − k2. k2 := (k2
x + k2

z), and

B :=
[
Bx By Bz

]
:=

[
−ikx 4−1 ∂yγ −k2 4−1 γ −ikz 4−1 ∂yγ

ikzγ 0 −ikxγ

]
, (3)

shapes the forcing through the function γ(y) [11].
The response of the velocity field to the given input is described through the output equation

φφφ(kx, y, kz, t) = C(kx, y, kz)ψψψ(kx, y, kz, t), (4)

where

C :=

CuCv
Cw

 :=
1

k2

ikx∂y −ikzk2 0
ikz∂y ikx

 , (5)

transforms the state vector ψψψ into the output vector φφφ = û =
[
û v̂ ŵ

]T
.

Our model for different actuation geometries is built upon spatially localized forcing at a specific wall-normal
location, y0. We adopt the approach in [10] and represent the forcing at this location as a normal distribution with
mean y0 and variance 2ε, i.e.

γ(y) =
1

2
√
πε
e−

(y−y0)2

4ε , ε > 0, (6)

where ε is sufficiently narrow to ensure that the forcing is concentrated at y0. We consider actuation signals that can
be represented as special cases of pulse train body forcings of the form

d(t) =

N−1∑
n=0

[H(t− nT )−H(t− nT − τ)], (7)

where H(t) is a unit step function, N is the number of pulses, T is the period between pulses, and τ ∈ (0, T ). The
parameters τ , T and N in Eq. (7) can be adjusted to represent a number of temporal signals, e.g. an impulse (with
sufficiently short τ and N = 1) or an impulse train with N > 1. A step input can be obtained by setting N = 1 and
τ > t.

The response to inputs of the form Eq. (7) can be computed as [35]

φφφ(t) = CA−1
N−1∑
n=0

[(
eA(t−nT ) − I

)
H(t− nT )−

(
eA(t−nT−τ) − I

)
H(t− nT − τ)

]
G, (8)

where G := Bx + By + Bz.
We next exploit the linearity of the system dynamics in Eq. (1) and Eq. (4) to develop a method to compute

the flow response to actuation over a spatial pattern. In particular, we build the desired response function as a
superposition of the velocity fields due to weighted point source inputs arranged in a pattern that models the desired
flow actuation. This extension of well-known input-output techniques, see e.g. [10, 36, 37], enables its application
to common experimental actuator configurations that may not be well represented as a single point input or more
general body forcing, e.g. delta-correlated stochastic forcing [8, 11].

Consider a single spatially localized input (source), denoted as s1, at horizontal location (x1, z1), which we assign
as the origin. The location of a second source s2 can then be described through distances ∆x2 = x2 − x1 and
∆z2 = z2 − z1 from this origin, as shown in figure 1a. The (x, z) spatial Fourier transform of the flow field arising
from source s2 can then be computed as

φφφ(kx, y, kz, t|s2) = e−i(kx∆x2+kz∆z2)φφφ(kx, y, kz, t|s1), (9)

where e−i(kx∆x2+kz∆z2) results from a shift theorem [38], and φφφ(kx, y, kz, t|s1) represents the transformed flow response
to a point source at the origin (x1, y1).

The linearity of the model in Eq. (1) and the expression in Eq. (9) enables the construction of arbitrary geometric
actuation patterns as an array of weighted Ns sources, with each source sm shifted by ∆xm and ∆zm from the
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FIG. 1. Conceptual sketches of the streamwise velocity fields (xz-plane at wall-normal location y0) at time t > 0 due to
individual point sources indicated as red circles. (a) The responses u(x, y0, z, t|s1) and u(x, y0, z, t|s2) due to respective sources
s1 and s2. (b) The bold blue rectangle represents the streamwise velocity field u(x, y0, z, t|

∑
sm) due to an actuator modeled

as a superposition of Ns sources organized in a triangular pattern.

predefined origin (x1, z1), as illustrated in Fig. 1b. The flow response due to this patterned actuation can then be
computed as

(10)ΦΦΦ(kx, y, kz, t) =
1

Ns

Ns∑
m=1

e−i(kx∆xm+kz∆zm)cm
∑

j=x,y,z

ed,j(m)φφφj(kx, y, kz, t|sm)

,
where cm(kx, y, kz) is a weighting function that takes values [−1, 1] and assigns a relative amplitude to each source
sm with respect to source s1. Negative values of cm represent forcing in the negative direction. The normalization
Ns in Eq. (10) ensures that the response is invariant to the number of sources. Forcing in a given direction is
defined through the term

∑
j=x,y,z ed,j(m)φφφj(kx, y, kz, t|sm), which is a weighted sum of the responses of source sm

to forcing in an axial (x, y, z) direction j. The weights are defined through the unit vector ed =
[
ed,x ed,y ed,z

]T
and

φφφj(kx, y, kz, t|sm) is obtained by setting G = Bj in Eq. (8), where Bj for each direction (x, y, z) is defined in Eq. (3).
In the next section, we employ the analytical approach described above to compute the response of a transitional

boundary layer to a spanwise array of symmetric DBD plasma actuators, and a DBD plasma actuator operating in
constricted discharge mode. We focus on the steady-state step response, which corresponds to the time-averaged flow
fields arising due to continuous actuation. The response to a point source input of this form applied in the j direction
can be computed as a special case of Eq. (8) in limt→∞ with t < τ , and N = 1, which leads to functions of the form

φφφj(kx, y, kz) = −CA−1Bj . (11)

We note that although the numerical results in this work focus on a single type of actuation signal, the procedure
described above can be also used to study the flow response due to an impulse and or an impulse train applied in
the j direction by respectively replacing the function φφφj in Eq. (10) with φφφj(kx, y, kz, t) = CeAtBj or φφφj(kx, y, kz, t) =

C
∑N−1
n=0 e

A(t−nT )Bj , respectively.

III. RESULTS

We now demonstrate the efficacy of the approach described in Sec. II in reproducing the steady state response
of transitional boundary layer to a continuous input from three different types of DBD plasma actuation: a DBD
actuator operating in constricted discharge mode (Sec. III A), and arrays of DBD actuators arranged in both a line
along the spanwise direction (Sec. III B) and in a serpentine geometry (Sec. III C). For each case we first detail the
actuation model in terms of its effect on the flow and then describe the corresponding response in both the velocity
and vorticity field based on Eq. (10) with the appropriately defined output matrix in Eq. (5).

We compute the flow response by discretizing the operators in the wall-normal direction using Chebyshev co-
location points, which leads to a Fourier-Chebyshev-Fourier discretization of the problem. We employ a quasi-parallel
assumption and use the change of variables described in Schmid and Henningson [39] to transform the bounded domain[
−1, 1

]
to the semi-infinite domain

[
0, ∞

]
of the flat plate boundary layer (for details see Schmid and Henningson

[39] Appendix A.4). We set the wall-normal domain range to [0, Ly] =
[
0, 15

]
as this height is well within the
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FIG. 2. a) xz-plane view of the actuator operating in constricted discharge mode. We denote the exposed electrode using a gray
rectangle. The constricted filaments (plasma bursts) with approximate spacings of 2.5 mm are indicated in bright white. This
cropped image of the discharge is taken from Moralev et al. [4, figure 4]a. b) A schematic of our actuator model comprised of an
array of sources in the form of streamwise ribs placed between filament pairs. Each array consists of 51 sources equally spaced
at a distance of 0.1 in dimensionless units (non-dimensionalized by δ∗). In the figure, each source is denoted by a magenta
dot as noted in the blow up of the forcing on the far right. A steady-state step response to wall-normal forcing is used and
weighted as c̃m(x) = 1− 0.2x (in physical space and dimensionless unit, which non-dimensionalized by δ∗), which corresponds
to the variation in filament intensity as a function of streamwise distance.

a Reprinted from Moralev et al. [4], with permission from Elsevier

free stream and thus captures the entire base flow profile variation. The computations are performed in Matlabr

R2017B with differentiation in the wall-normal direction implemented via the pseudo-spectral differentiation matrices
of [40]. We employ N = 40 Chebyshev grid points over the pre-transformation wall-normal extent of

[
−1, 1

]
, and

use 2048×256 linearly spaced grid points over {kx,min := −5, kx,max := 4.98} × {kz,min := −18, kz,max := 17.86375}.
We verified that the selected N and the (kx, kz) range were sufficient by doubling the domain and the number of
points and verifying that the changes to the observed structures were negligible.

In all cases, we employ a Blasius base profile in Eq. (1). The Reynolds number is determined through non-
dimensionalizeation of the flow parameters by the displacement thickness δ∗ and the free stream velocity U∞. The
forcing is applied at the grid point closest to the wall (to simulate forcing at the wall). This location corresponds to
y0 = 0.02 in Eq. (6) for the Chebyshev grid with N = 40. For each point source used to construct the representation
of the actuation input we specify the width of the forcing function as ε = 5 × 10−4. This choice of ε was validated
by decreasing the value to 5 × 10−7, i.e., increasing the intensity and decreasing the width of the forcing, and then
verifying that the effect on the flow structures is negligible. The choice is also consistent with the value used in
Jovanović [36] and Hariharan et al. [37], who studied the response to localized body forces in channel flows. We build
the actuator model as a superposition of these weighted point sources.

A. Plasma actuator operating in constricted discharge mode

In this section, we model a DBD plasma actuator operating in a constricted discharge mode configuration based on
the set-up in [4, 41]. We then compare the steady-state flow response computed from Eq. (10) with Eq. (11) to that
obtained in the experiments in [4]. The actuator configuration consists of a single exposed electrode whose upstream
edge is located 200 mm downstream from the geometric leading edge of the plate. The measured displacement
thickness at the actuator is δ∗=0.81 mm, the freestream velocity is U∞ = 12 m/s and the Reynolds number is
Re = U∞δ

∗/ν = 650.
Fig. 2a illustrates how the operation of the DBD actuator in constricted discharge mode affects the flow field at the

actuation site [4, figure 4]. The actuation introduces plasma filaments that are elongated in streamwise direction (the
bright regions in Fig. 2a) to the flow. These produce wall-normal fluid jets between the filaments (illustrated in the
inset sketch in Fig. 2a) that decay with streamwise distance along the filament. It is this vertical injection of velocity
in the flow that we model, as it is directly responsible for the induced vorticity that is the goal of the constricted
discharge actuation.

We model the vertical injection of fluid as an array of sources centered between the plasma filaments organized in
the form of streamwise ribs at the plate surface. This configuration is shown in Fig. 2b, where the locations of the
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sources are denoted by magenta. We set the dimensionless rib length to 5, which corresponds to our computed value
for the average length of the bright regions in the experimental data, as indicated in the annotation in Fig. 2a. We
model each of the ribs as a cluster of 51 sources spaced at 0.1 dimensionless units apart where the intensity of the
forcing in the downstream direction decays as 1 − 0.2x. The selected slope of -0.2 is determined through a linear
fitting of the intensity decay of a single representative filament. Our model corresponds to a uniform spacing between
the filaments of 3.7δ∗, based on the average filament spacing in Fig. 2a. However, we note that the experiment has
an inhomogeneous distribution of the discharge’s plasma density (in a classical electrodes arrangement used in [41]
for that plot), which results in nonuniform spacing between the filaments. We then compute the flow response to
continuous actuation by applying Eq. (10) with weighting functions of the form c̃m(x) = 1− 0.2x (in physical space)
and φφφj(kx, y, kz) from equation Eq. (11) with j = y.

The longitudinal vortex pairs arising due to actuation in the yz-plane at 10 mm (12.6δ∗) downstream the actuator
are shown in Fig. 3. The top panel provides the vortical fields computed from the experimental data of Moralev
et al. [4, figure 10a] and the lower panel provides results from the proposed approach. A comparison of the two fields
indicates that the proposed input-output-based model obtains good qualitative agreement in terms of the structural
features. In particular, the four counter-rotating vortices between each filament pair, which are the most significant
features of the actuated flow, are reproduced. However, the vortical structures arising from our analysis are more
localized, which is likely related to the simplified actuation model that only perturbs the flow between the filaments.
We also note that the effect of the nonuniform spacing in the experiment affects both the shape and the spacing of
the structures, with some being closer in aspect ratio to those obtained from the model than others. It is unclear if
the differences observed arise from the simplified actuation model that only applies forces in the wall-normal direction
or due to nonlinear interactions that are not captured in the framework. Isolating these effects would require the
development of a detailed actuator model and the introduction of nonlinear effects, which are both beyond the scope
of this study. Refinement of the model representing this type of actuation to understand this discrepancy better is a
direction for future work.

The qualitative agreement observed in this example motivates the next two sections, which investigate whether the
approach is well suited to arrays of DBD actuators. These configurations are also commonly used in experiments yet
their affect on the flow are more straightforward to represent in the proposed framework.
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FIG. 3. Cross-flow plane showing the streamwise vortical structures (ωx = ∂yw − ∂zv) of the actuated boundary layer. a)
PIV measurements in Moralev et al. [4, figure 10a]aat x/δ∗ = 12.6 (corresponds to 10 mm). b) Our model at x/δ∗ = 12.6 for
umax/U = 0.25 and a rib gap of 3.7δ∗ (3 mm).

a Reprinted from Moralev et al. [4], with permission from Elsevier
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FIG. 4. a) The experimental and computational setup with a schematic view of the plasma actuator array (taken from Belson
et al. [32, figure 3]a). b) Each actuator is modeled as two linear arrays of forcing (top left). The lower line (shown in magenta)
applies forcing in the positive spanwise direction and the lower line (shown in cyan) applies forcing in the negative spanwise
directions. Together these forcings induce the sideways motion indicated in the lower schematic of panel a.

a Reprinted from Belson et al. [32] with permission from the authors.

B. Spanwise array of symmetric DBD plasma actuators

We model the spanwise array of symmetric DBD plasma actuators in the experimental configuration of Hanson
et al. [3] and associated DNS of [32]. We then compare the steady-state flow response computed from Eq. (10) with
Eq. (11) to that obtained in Hanson et al. [3] and [32]. Fig. 4a provides the schematic from Belson et al. [32, figure
3] of the actuator location and geometry. Here, the plasma actuator array is located 250 mm downstream from the
geometric leading edge of the plate and extends l =40 mm in the streamwise (x) direction. The width of each exposed
electrode is a = 5 mm and the electrodes are spaced ∆z = 20 mm apart. The displacement thickness at the upstream
edge of the actuator is δ∗=1.59 mm, and the Reynolds number is Re = Uδ∗/ν = 530, based on a freestream velocity
of U∞ = 5 m/s.

We model each electrode in the spanwise array of DBD actuators as two lines of point sources as indicated by the
magenta and cyan lines in Fig. 4a. We apply an outward forcing to each point in the cluster, which corresponds to
forcing in the positive spanwise direction for the points in magenta in figure 4a, and the negative spanwise direction
for the points in cyan. We impose a streamwise spacing between the sources of 0.1 in dimensionless units, which
results in 252 sources along each exposed electrode edge to model the full 40 mm length of the actuator. We build the
array of four actuators spaced 12.6 nondimensional units (20 mm) apart. The response is computed using Eq. (10)
with the steady-state step response defined in Eq. (11) with j = z. Sources that apply forcing in the positive z
direction are assigned weights of cm = 1, whereas a weighting of cm = −1 is assigned to sources that apply forcing in
the opposing direction.

Fig. 5 shows contours of the normalized streamwise component of the perturbation velocity (u/U∞) at distance of
200 mm (x/δ∗ = 125.8) downstream of the electrode array obtained through DNS [32] (panel a) and experiments [3]
(panel b) from Belson et al. [32, figure 11]. Fig. 5c provides results from the proposed approach, where the output
is scaled as umax/U = 0.4 to match the contour color range of the experimental results. The DNS data was also
scaled to match the experimental results, see [32] for details. The plots demonstrate that our model obtains good
qualitative agreement in terms of the shape of the flow structures with both the DNS and experiments. The streaks
of streamwise velocity show quantitative agreement with the spanwise spacing of the actuator electrodes in the array
with low-momentum regions between the electrode pairs.

Having validated the model’s performance for DBD actuators arranged in a simple geometric pattern, we next
examine its performance in the more complex serpentine pattern.

C. The serpentine geometry plasma actuator

We model the steady-state flow response to actuation from the DBD serpentine plasma actuator described in [24, 42]
and compare the predictions from the proposed approach, with Eq. (11), to simulations data from Riherd and Roy
[24]. The set-up is shown in Fig. 6a, which provides a schematic from Riherd and Roy [24, figure 2c] depicting one
segment (a single wavelength) of the actuator geometry. Here, the serpentine geometry plasma actuator is centered
at x/L = 1.025, where L = 300 mm is the downstream distance from the simulation box inlet. The geometry consists
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FIG. 5. Plots of yz-planes contours of the normalized streamwise component of the perturbation velocity (u/U∞) at 200 mm
(x/δ∗ = 125.8) downstream of the actuator from (a) DNS, (b) experiments taken from Belson et al. [32, figure 11]a. (c) Same

contours obtained from the model. Here η = y
√

(U∞/νx0) is the Blasius length scale, where x0 is the streamwise distance from
the leading edge of the plate. The electrode edges are indicated with magenta and cyan points. The results in (c) are scaled as
umax/U = 0.4 to match the contour color range of the experimental results.

a Reprinted from Belson et al. [32] with permission from the authors.

of patterned circular arcs with a radius of 7.5 mm. The displacement thickness at the actuator’s upstream edge is
δ∗ = 1.63 mm, and the Reynolds number is Re = U∞δ

∗ν = 544, based on a freestream velocity of U∞ = 5 m/s.
Further details regarding the geometry and set-up are provided in [24].

In the simulation of [24], they model the serpentine plasma actuation as a steady application of outward body
force perpendicular to the geometry edge. The simulation was validated against an experimental study [42], which
examined the effect of the actuation under quiescent conditions. In both studies it was shown that a vectored jet is
produced at the pinch points of the actuation (the upstream concave part of the geometry), whereas a simple wall
jet forms at the spreading point (the downstream convex part of the geometry). It is these effects that we seek to
reproduce in our model of the actuation.

We represent the outward body forcing perpendicular as a superposition of weighted responses in the streamwise
and spanwise directions. The weighting functions ed,x = cos(α) and ed,z = sin(α) for there respective directions are
shown in Fig. 2b, where α is a slope angle of the contour at each source location (see Fig. 2a). This forcing is applied
as 41 point sources spaced along each semi-circular arc of radius 4.66δ∗ (7.5 mm), which corresponds to a spacing
of 0.0766 (π/41) radians. These points are shown as magenta dots in Fig. 2a. This spacing was found sufficient to
get converged results, i.e., doubling the number of source points did not lead to visible changes in the flow fields
generated. More specifically, the maximum difference between the streamwise velocity fields generated with double
the number of source points was less than 3%.

Fig. 7 compares the streamwise velocity and vorticity fluctuations obtained through the application of the model
Eq. (10) with the given forcing functions to the simulation results. These cross-planes of streaks (panel a, and c)
and the corresponding streamwise vortical structures (panels b, and d) are shown at a distance x0/L = 1.2 from the
simulation box inlet (corresponding to a distance of x = 0.2L =' 37δ∗ from the actuator’s leading edge) obtained
through simulations of Riherd and Roy [24, figure 10] (panels a and b) and from our model (panels c and d). In
our model, the output is scaled as umax/U = 0.1 to match the settings in simulations. The plots show qualitative
agreement in the shape and location of both the streaks of streamwise velocity and the vortical structures. The high-
speed streak location is evident at the spreading point (the front edge of the geometry). The four counter-rotating
vortices between the streaks is well captured by the model. However, the magnitude of both, the streak and vortical
structures, appears weaker than in simulations. Also, our model does not capture the slight inclination angle in the
horizontal direction that is evident in the two top vortical structures obtained from simulations (panel b). In future
work, a refinement of the model for this type of actuation, including an extension of the model to account for the
3D-base flows will be explored to address these discrepancies. However, the given results are sufficient to provide
an understanding of the important structures that arise due the actuation, which are the key features of the flow
manipulation technique.
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FIG. 6. a) Reproducedaxz-plane view of the serpentine actuator used in Riherd and Roy [24, figure 2c]. A cluster of 82 equally
spaced point sources (41 sources for each semi-circular segment) denoted by magenta dots form one wavelength of the circular
pattern. The radius of the semi-circular arcs is 7.5 mm in our study and the experiment. A steady-state step response to
perpendicular forcing defined through the weighted sum of the responses of each to forcing in an axial direction (x, y, z) is
studied. b) The weights for each axial direction as a function of the arc length S, where ed,x (blue),ed,y (black),and ed,z (red).

a Reprinted from Riherd and Roy [24], with permission from AIP Publishing.

(c)

(d)

FIG. 7. (a,c) Streamwise velocity and (b,d) streamwise vorticity fluctuations at x = 1.2 (here x and z are non-dimensional
values that normalized by L = 300 mm). The 99% boundary layer height (δ99%) is marked by the thick solid line. Left (a,b):
Simulation in Riherd and Roy [24, figure 10]0. Right: (b,c) results from the model using the normalizatio from the simulation
u/U = 0.1. The locations of the point sources along the actuation contour are denoted by magenta in panel (c).
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IV. CONCLUDING REMARKS

This paper provides an extension to the widely used input-output approach that enables its use in evaluating a
range of actuation modalities for flow control applications. The advancement lies in exploiting the linearity of the
approach to construct flow fields due to localized actuator geometries comprised of a collection of point sources with
varying intensity and input directions. The applicable input set is also expanded from the common forcing types
(stochastic, harmonic, and impulsive signals) to pulse-width modulated signals that can be adjusted to represent a
range of common experimental actuation signals. The model is validated using experimental and DNS data for three
different DBD plasma actuator geometries that are commonly used in drag reduction studies. The analytical model is
shown to reproduce both the streamwise velocity and vortical structures observed downstream of the actuator in all
three configurations. In practice, the goal of creating such structures is to stabilize the flow and delay transition, which
in turn can lead to drag reduction. This analysis method can therefore provide insights into the effect of a wide range
of flow manipulation strategies that target important structural features such as the streamwise vortices involved in
the self-sustaining process. Moreover, these insights can be gained without the expense of detailed experimental or
high-fidelity simulations, which are too costly for extensive parametric studies.

The proposed approach is particularly well suited to control approaches aimed at producing the types of streamwise
vortical structures commonly used in control aimed at preventing transition and for drag reduction. However, as with
all models, there are limitations to the types of problems that this framework is designed to address. The linearization
of the dynamics around a base flow makes it less suited to applications aimed at large modifications of the base flow.
The approach is also not well suited to control approaches that exploit nonlinear effects. However, some aspects of the
nonlinear flow dynamics and different flow regimes can be captured through the inclusion of a modified base profile
or an eddy viscosity model [12–14]. Extensions that employ more detailed base flow models or investigate nonlinear
interactions between dominant response modes, e.g., using the approach in [43, 44], would allow additional nonlinear
effects to be modeled.

The results here focused on the steady-state response; however, the framework is also directly applicable to other
actuation signals (as discussed in Sec. II) and more complex actuation geometries. The input-output framework upon
which the proposed approach is based has proven applicable to a wide variety of flow regimes, including those with
spatially or temporally periodic base flows as well as both non-Newtonian and compressible flows, see e.g., the recent
review [45]. The actuated flow input-output model can be applied to these cases through similar extensions. The
technique can also benefit from data-driven turbulence modeling techniques that have already been combined with
input-output analysis in a variety of applications, see e.g. [46, 47].

Future work will examine the applicability of this framework in modeling systems with multiple actuators placed
at different locations along with a wider variety of input signals.

ACKNOWLEDGMENTS

The authors wish to thank Charles Meneveau for his insightful comments, as well as Thomas Flint and Stanislav
Gordeyev for their professional advice regarding plasma actuator operation and modeling. Funding by the US National
Science Foundation (CBET 1652244) and the Office of Naval Research (N000141812534) is gratefully acknowledged.

[1] T. Min, S. M. Kang, J. L. Speyer, and J. Kim, Sustained sub-laminar drag in a fully developed channel flow, J. of Fluid
Mech. 558, 309 (2006).
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[11] M. R. Jovanović and B. Bamieh, Componentwise energy amplification in channel flows, J. Fluid Mech. 534, 145 (2005).
[12] B. J. McKeon and A. S. Sharma, A critical-layer framework for turbulent pipe flow, J. Fluid Mech. 658, 336 (2010).
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