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Microscopic organisms must frequently swim through complex biofluids, including bacterial
biofilms and the mucus lining of the upper respiratory tract. Recently, there has been great in-
terest in understanding how the non-Newtonian behavior of the fluids, in particular fluid elasticity,
can enable methods of self-propulsion that otherwise would not work in a Newtonian fluid. We
present such a swimmer that consists of two spheres of unequal size that rotate in opposite direc-
tions. The swimmer is force- and torque-free and placed in an elastic fluid. Using a combination
of analytical theory and numerical simulations, we show that this model swimmer, which has zero
propulsion in a Newtonian fluid under Stokes flow, swims in the direction of the larger of the two
spheres in an elastic fluid. We show that the speed of swimming increases nearly linearly with the
Deborah number (De), or primary normal stress coefficient, Ψ1, which is an appropriate measure of
the elasticity of the fluid, and for De ≤ 1 is also nearly linear in the concentration of polymer in the
fluid. The dependence of the swim speed on the relative size of the two spheres is non-monotonic,
exhibiting a maximum at a size ratio of about 0.75. By analyzing the forces acting on the swimmer
and the surrounding flow field, we find that propulsion is driven by thrust due to pressure applied
along the swimmer. This thrust originates from flow advection driven by hoop stresses surrounding
the faster-spinning smaller sphere. We compare our predictions to experimental measurements of
swimming speeds for the bacteria E. coli, which swims via a rotating flagellar bundle and counter-
rotating body, and find that the speeds predicted by our analysis are remarkably close to the speed
increase E. coli experiences in viscoelastic fluids. Finally, we conclude our work by showing how our
analysis can be extended to different swimmer configurations and gaits, as long as the propulsion is
driven by swirl alone.

I. INTRODUCTION

Recently, there’s been a great deal of work examining the fundamental fluid mechanics of the motion of swimming
microorganisms [1–3]. Of particular interest is their motility in complex fluids, since the biofluids in which these
microorganisms are commonly immersed (e.g. biofilms [4, 5] and mucus in the human body [6, 7]) very often exhibit
significant non-Newtonian behavior [8]. One active area of research is focused on developing and understanding
propulsion mechanisms that otherwise would be ineffectual in a Newtonian fluid, since, for example, translation via
reciprocal motion is forbidden at zero Reynolds number [9]. Such microswimmers in non-Newtonian fluids could be
used in biomedical applications such as targeted drug delivery [10, 11] or could serve as a microrheometer for the
fluid itself [12]. Some of these proposed swimming mechanisms include a synthetic micro-scallop [13], a sphere-dimer
rotated in a reciprocal motion by an external magnetic field [14], and a model swimmer consisting of two spheres that
oscillate along their axis of symmetry [15]. While these swimmers achieve net translation by utilizing a reciprocal
gait in an elastic fluid, propulsion can also be achieved by leveraging normal stress differences in viscoelastic fluids to
break symmetry [16, 17].

One example of propulsion in non-Newtonian fluids was examined by Pak et al. [12] and Puente-Velázquez et al.
[18], where they consider a body comprised of two rigid spheres that undergoes net translational motion along the
axis of symmetry in a viscoelastic fluid when rotated by a net torque (e.g. provided by an external magnetic field).
However, the propulsion examined by Pak et al. [12] does not apply to a torque-free swimming microorganism. We
are inspired by Pak et al. [12] to develop a coarse-grained model swimmer that is force- and torque-free and can
be realized experimentally. Moreover, such a swimmer can be used to study the effect of rheology on the motion
of swimming microorganisms, particularly those whose gait induces a significant degree of swirling flow, e.g. the
bacteria E. coli [19, 20] (c.f. Fig. 1a). Our interest in this particular class of swimmers comes from recent work
demonstrating the significance of rotational-translational coupling in predicting the kinematics of passive and active
particles [21–23], i.e. that swirl aids propulsion in elastic fluids. Other studies [24–26] have also demonstrated the
importance of swirling flow in viscoelastic fluids by considering helical swimmers, although it should be noted that
in these cases the swimmer is not torque-free. The distinction from this prior work and the reason for this present
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FIG. 1. (a) Depiction of a swimming E. coli cell (left) and the schematic of a coarse-grained model swimmer (right) that can
be tuned to reproduce the azimuthal flow field created by E. coli’s rotating flagellar bundle and counter-rotating body. (b)
Dimensions and coordinate system for the model two-sphere swimmer.

effort is that the specific squirmer slip velocity containing swirl in Binagia et al. [22] and Housiadas et al. [23] showed
that swirl aided propulsion in viscoelastic fluids, but the swirl did not create propulsion alone. In contrast, as we will
demonstrate the microswimmer shown in Fig. 1 merely requires spinning two spheres in opposite directions connected
by a fixed link to achieve propulsion of the freely suspended body.

II. GOVERNING EQUATIONS AND SOLUTION METHODOLOGY

We begin by noting the geometry and arrangement of our model microswimmer. The situation is illustrated in
Fig. 1b, where the two-sphere swimmer is oriented vertically along the z-direction with the larger sphere placed above
the smaller sphere. RL and DL denote the radius and diameter of the larger sphere, while RS and DS refer to the
radius and diameter of the smaller sphere. The spheres counter-rotate, and let’s assume the larger sphere rotates
counter-clockwise (looking from above) with a rotation rate ΩL while the smaller sphere rotates clockwise with a
rotation rate ΩS . Note that ΩL and ΩS denote only the magnitude of the angular velocity, not the direction (i.e.
they are always positive quantities). Lastly, the gap between the two spheres is of size hsep, such that the distance

between the centers of the two spheres is given by h
′

= RL + hsep +RS .
For the fluid surrounding the microswimmer, the equations for conservation of momentum and mass written in

dimensionless form are:

Re

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ, ∇ · u = 0 (1)

where u is the velocity of the fluid, t is time, and σ is the Cauchy stress. We have chosen to scale lengths by the
radius of the larger sphere, RL, time by the inverse of the smaller sphere’s rotation rate, Ω−1S , velocities by the
product RLΩS , and stresses by µ0R

2
LΩS where µ0 is the total zero-shear viscosity of the fluid. Note that we use ΩS

rather than ΩL in our scaling since in our application the former is considered prescribed” as the rotation rate of the
swimmer’s tail”, while the latter is determined by the fact that the total torque on the swimmer vanishes. With this
choice of characteristic scales, the Reynolds number Re is given by Re = ρR2

LΩS/µ0 where ρ is the density of the
fluid. Owing to their small size and the viscous environments in which they are commonly found, microorganisms
swim at virtually zero Reynolds number [9]. For this reason, in both our analytical theory and numerical simulations
we assume Re = 0.

We further assume that the fluid in which the microswimmer is immersed is viscoelastic; thus the total stress σ is
given as the sum of a Newtonian and polymeric contribution:

σ = −pI + β(∇u +∇uT ) + τ p (2)
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where p is the pressure, τ p is the extra stress from the polymer molecules in the fluid, and β = µs/(µs +µp) = µs/µ0

is the viscosity ratio for a fluid with solvent viscostiy µs and polymer viscosity µp. To describe the extra polymer
stress τ p, we use the Oldroyd-B constitutive equation, which models the polymer molecules as Hookean dumbbells
[27]:

τ p =
1− β

De
(c− I) (3)

De
O
c +(c− I) = 0. (4)

In the above set of equations, c is the conformation tensor,
O
c= ∂c/∂t+u ·∇c−∇uT ·c−c ·∇u is the upper-convected

derivative, and De = λΩS is the Deborah number, which measures the degree of elasticity of a viscoelastic fluid having
a relaxation time λ.

These governing equations are supplemented by an appropriate set of boundary conditions and constraints applied
to the swimming motion. Applying the no-slip boundary condition at the surface of the swimmer gives the velocity at
the surface of the smaller sphere as uS = U+ΩS×rS and that at the surface of the larger sphere as uL = U+ΩL×rL,
where U is the velocity of the swimmer and rS and rL are position vectors originating from the center of the smaller
and larger sphere respectively. Finally, upon applying conservation of linear and angular momentum to the swimming
body in the limit of Re = 0, one finds that the net force and torque on the microswimmer must vanish [28]:

F =

∫
S

σ · ndS = 0, (5)

L =

∫
S

x× (σ · n)dS = 0. (6)

in which S denotes the surface of the swimmer, x is the position vector for a coordinate system placed at the center
of the gap between the two spheres, and n is the outward surface unit normal vector. Finally, the fluid far from the
swimmer is stagnant so that u(|x| → ∞) = 0.

In what follows, we will use a combination of analytical theory and numerical simulations to determine the swimming
speed of this model microswimmer subject to the above set of governing equations and boundary conditions. With
respect to the former, our derivation is a generalization of that done in Puente-Velázquez et al. [18] and Section V
of Pak et al. [12], but now the rotation rates of the two spheres, ΩS and ΩL, are not necessarily equal since they
are determined from the torque-free condition. We begin by considering the leading order radial disturbance flow at
small De for each sphere in isolation [29]:

uSr (θ, rS) = r∗(1− β)De

[
r∗2

2r2S
− 3r∗4

2r4S
+
r∗5

r5S

]
(3 cos2 θ − 1) (7)

uLr (θ, rL) =
(1− β)De

(Ω∗)2

[
1

2r2L
− 3

2r4L
+

1

r5L

]
(3 cos2 θ − 1) (8)

where rL = |rL|, rS = |rS |, and θ is the polar angle in the spherical coordinate system, as shown in Fig. 1b.
Additionally, two new dimensionless groups emerge: Ω∗ = ΩS/ΩL is the ratio of the rotation rates of the two spheres,
and r∗ = RS/RL is the ratio of their radii. Finally, with r∗ defined, we can write the distance between the centers of
the spheres in dimensionless form as h = 1 + h∗+ r∗, where h∗ = hsep/RL. In the scenario where the two spheres are
touching, h∗ = 0 and h = 1 + r∗.

Owing to the axisymmetry of the problem, the x and y components of the net force F acting on the swimmer are
trivially zero. This leaves us with the component acting in the z direction, Fz, which consists of drag from the steady
translation of the swimmer as well as contributions from the hydrodynamic interactions between the two spheres.
The sum of the latter two contributions is the propulsive” contribution to the net force, i.e. Fz = F drag + F prop.
We explicitly write this contribution as the sum of the force acting on the smaller sphere due to the flow field of the
larger sphere and the force acting on the larger sphere due to the flow field of the smaller sphere. These are given
approximately by Faxen’s law [30], viz.:

F propz = 6π

(
1 +

1

6
∇2

)
uSr (θ = 0, rS = h)− 6πr∗

(
1 +

r∗2

6
∇2

)
uLr (θ = π, rL = h). (9)

Note that in the above, as distinct from Section V of Pak et al. [12] and Puente-Velázquez et al. [18], we have included
the Laplacian term in Faxen’s law since we find that it significantly improves the accuracy of the final result. It
should be mentioned here that a more accurate prediction for the propulsive force and hence the swimming speed



4

could likely be obtained by performing a formal perturbation expansion in the limit of small De, as was done in
Pak et al. [12]. Satisfied with the agreement between theory and numerics shown in Section III, we forego this more
detailed calculation in the interest of providing a final result that through its conciseness can yield greater physical
intuition and more readily be employed to make predictions for a range of geometries and conditions.

We can estimate the speed of the microswimmer by noting that this propulsive force is equal and opposite to the
viscous drag experienced by the swimmer, i.e. Fz = F dragz + F propz = 0. As a simple approximation, we can estimate
this drag using the hydrodynamic resistance for a Newtonian fluid, i.e. F dragz = −6π(1 + r∗)Uz, so that the velocity
(specifically the z component Uz) is given by:

Uz =
F propz

6π(1 + r∗)
(10)

For the sake of presentation, we will split the contribution to Uz originating from the two terms that involve the

Laplacian in Eq. (9) as U
(HO)
z . The velocity of the swimmer can then be written explicitly as:

Uz = U0
z + U (HO)

z =
uSr − r∗uLr

1 + r∗
+

1

6

∇2uSr − r∗
3∇2uLr

(1 + r∗)
(11)

We can express Uz in terms of the dimensionless groups r∗, h∗, De, β, and Ω∗ by plugging in the velocity fields given
in Eqs. (7) and (8) into Eq. (11) and we obtain:

U0
z = De(1− β)

(1 + h∗)2r∗3(1 + h∗ + 3r∗)Ω∗2 − r∗(h∗ + r∗)2(3 + h∗ + r∗)

(1 + r∗)(1 + h∗ + r∗)5Ω∗2
(12)

and

U (HO)
z = De(1− β)r∗3

(
Q

3(1 + r∗)(1 + h∗ + r∗)7Ω∗2

)
(13)

where Q, the factor in the numerator of UHOz , is:

Q(r∗, h∗,Ω∗) = −3 + 15h∗ + 6h∗2 + 2h∗3 + 15r∗ + 12h∗r∗ + 6h∗2r∗ + 6r∗2 + 6h∗r∗2

+2r∗3 −
[
2(1 + h∗)3 + 6(1 + h∗)2r∗ + 15(1 + h∗)r∗2 − 3r∗3

]
Ω∗2 (14)

Note that alternatively, since for the Oldroyd-B fluid the relaxation time is directly related to the primary normal
stress coefficient, Ψ1, via the expression

λ =
Ψ1

2µp
(15)

we have expressed the propulsion velocity as linear in the primary normal stress coefficient and therefore a direct
measure of the fluid elasticity via rheometry.

With this result in hand, we first consider specific sub-cases of the overall parameter space. For example, if we
consider the situation where the two spheres are touching (h∗ = 0), are rotating together as a rigid-body (Ω∗ = 1),

and we neglect the higher-order terms in the propulsive force (achieved in effect by setting U
(HO)
z = 0), then we in

fact recover the result derived from the use of Faxen’s law in Section V of Pak et al. [12]:

Uz = De(1− β)
2(r∗ − 1)r∗3

(1 + r∗)6
(16)

As stated above, we are interested in using this model swimmer to understand the effect of swirling flow on
microorganism motility in complex biofluids. For a freely suspended swimmer, we must ensure the two-sphere swimmer
is torque-free, as is the case for all freely suspended microswimmers. This is achieved in our model by allowing the
two-spheres to rotate in opposite directions such that the net torque vanishes, regardless of the chosen size ratio r∗.
Noting that the (dimensional) torque on a sphere rotating at Re = 0 is equal in magnitude to 8πµ0ΩR3, we see that
the torques on the two spheres sum to zero when Ω∗ = (1/r∗)3. Assuming the two spheres are touching (h∗ = 0), we
can then obtain a simplified result for the velocity:

Uz = De(1− β)r∗3
(1− r∗)(1 + 10r∗ + 16r∗2 + 28r∗3 + 28r∗4 + 28r∗5 + 16r∗6 + 10r∗7 + r∗8)

3(1 + r∗)8
(17)
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Note that the assumption in taking this limit (h∗ = 0) is that the propulsion speed is regular as h∗ → 0. We
demonstrate via lubrication theory in the appendix that while the flow demonstrates a pressure singularity in this
limit, the propulsion speed is bounded as h∗ → 0, which is demonstrated in Fig. 4 below as well. One can easily verify
that the numerator of the fraction in Eq. (17) is positive for 0 ≤ r∗ ≤ 1, indicating Uz > 0 for all values of De and β;
in other words, our model predicts that a torque-free two-sphere swimmer always swims in the direction of the larger
sphere for any size ratio and specific Oldroyd-B fluid rheology. For the remainder of this study, we will use our theory
(i.e. Eqs. (12), (13) and (17)) and complementary numerical simulations to understand this result.

For the numerical calculations, we perform 3D simulations of the governing equations and boundary conditions
using a third-order accurate finite volume flow solver developed at Stanford’s Center for Turbulence Research [31].
As detailed in a number of previous studies, this code has been thoroughly tested for accuracy and robustness for
a wide range of problems, including viscoelastic flows [32–34], deformable particles [35], and active swimmers [36].
Specifically for this problem, the numerical solution closely follows that described in our previous work [22]; namely,
we consider the co-moving frame of reference such that we may use a body-fitted mesh, the evolution equation for the
conformation tensor (Eq. (4)) is solved using the log-conformation method [37, 38], and for boundary conditions for the
conformation tensor we set c = I at the entrance to the domain and utilize a convective outlet boundary condition at
the exit. We use a cylindrical computational domain of length and diameter 20RL, whose axis of revolution is aligned
with the z direction and in which the two-sphere swimmer shown in Fig. 1 is placed at the center. To resolve the
stress boundary layers present near the swimmer, we use an unstructured tetrahedral mesh with increasing resolution
towards the center of the domain. We found by performing a series of mesh convergence studies that the results
presented here, which use a mesh spacing of 0.025 along the swimmer, change by no more than 4% upon upon
doubling the mesh size. Finally, to determine the steady state kinematics of the two-sphere swimmer, we advance
Eq. (1) forward in time, solving for Uz and ΩL at each time step such that Fz = 0 and Lz = 0 by using a quasi-Newton
method, specifically Broyden’s method [39].

III. RESULTS, DISCUSSION, AND MORE GENERAL SWIMMERS

A. Speed and mechanism of propulsion for the two-sphere swimmer

With our theory and numerical simulations described above, we proceed to discuss our results, starting with the
dependence of the swimming speed on the rheology of the surrounding fluid when the swimmer has achieved steady
state. The results are shown in Fig. 2a, where the swimming speed U = |Uz| is plotted as a function of the Deborah
number for the case of β = 0.5 and r∗ = 0.5. Note that in Fig. 2, we assume h∗ = 0.05; choosing a small but
nonzero value of h∗ in this way allows us to consider the case where the two vortical flows induced by the spheres are
interacting with one another (as they likely are for real microorganisms like E. coli), but the gap is still large enough
such that the stress within it can be resolved numerically (c.f. Fig. 7). From this plot, we see that both theory (dashed
lines) and simulations (solid markers) indicate an increase in swimming speed with fluid elasticity (increasing De)
and increasing polymer concentration (decreasing β). The theory agrees remarkably well with the simulations, with
the agreement increasing as the fraction of the fluid that is Newtonian solvent increases. Thus, for small values of β,
the theoretical and numerical predictions depart from one another for De > 1, with the theory over-predicting the
swimming speed observed in simulations. The inset shows that for small De, the swimming speed increases linearly
with respect to (1− β)De, as is predicted by the theory.

In Fig. 2b, the swimming speed U is plotted as a function of time for h∗ = 0.05, r∗ = 0.5, β = 0.5, and for the
range of De shown in Fig. 2a. From this figure, we can see how the two-sphere swimmer reaches a steady state speed
starting from rest. We see that the time to reach steady state increases with increasing De. For small to moderate
values of De, the speed increases monotonically until the steady state speed is reached. For large values of De (e.g.
De = 3), however, there is an overshoot in the swimming speed prior to reaching the steady state value. As we see in
Fig. 2b, it takes between 0.1 and 0.8 rotations of the small sphere tail” to reach steady state for De ≤ 1.

In Fig. 3a, the swimming speed U is plotted as a function of the relative size of the two spheres r∗ for the case
of β = 0.5, De = 1, and h∗ = 0.05. From this plot, we see that speed of the two-sphere swimmer exhibits a non-
monotonic dependence on r∗, with U vanishing for either r∗ = 0 or r∗ = 1. Both theory and simulations predict that
the speed is approximately maximized at a size ratio of about 0.75, with the theory under-predicting the quantitative
value of the maximum speed. We believe the disagreement for this range of size ratios is a manifestation of the
far-field assumption inherent in applying Faxen’s law. That is, Faxen’s law prescribes the force on a particle as that
due to the external flow (from another particle) applied at its center and the Laplacian of that flow; this is valid
when the particles are well-separated but is inaccurate in the near-field. In other words, as the size of the two spheres
become comparable, higher-order hydrodynamic reflections become significant and need to be taken into account for
a quantitative theory. Neglecting these interactions is fine for smaller values of r∗ since as r∗ decreases, the larger
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sphere is increasingly in the far-field of the smaller sphere.

To understand how this picture changes as the gap size is altered, in Fig. 3b we have plotted the theoretical
prediction of the swimming speed U as a function of r∗ for a range of values of h∗. Interestingly, up to a gap size of
h∗ = 0.5, there appears to be little effect with respect to increasing h∗. Past h∗ = 0.5, an increase in h∗ leads to a
decrease in swimming speed for all values of r∗ and a very slight increase in the location of the optimal size ratio. To
explore the effect of the gap size further, in Fig. 4 we have plotted the swimming speed U normalized by the factor
De(1− β) as a function of h∗ for both theory and simulations for the case of r∗ = 0.75. We divide U by De(1− β) in
this case to isolate the effect of geometry; e.g. as shown in Eqs. (12) and (13), U/(De(1−β) depends solely on the size
ratio r∗ and gap size h∗ (recall we have taken Ω∗ = (1/r∗)3). From this figure, we see that the theory predicts a very
slight increase in swimming speed with increasing gap size size before exhibiting a monotonic decay. The numerical
results, in contrast, suggest that the swimming speed only decreases with increasing gap size. The agreement between
theory and simulations becomes better with increasing gap size, as expected given the far-field approximations made
in our derivation. Taking this into account, i.e. that we expect the theory to become less accurate for very small gap
sizes, and considering that the simulations are valid for any geometry, we believe that the true trend with respect to
the gap size is a monotonic decrease in speed.

We now turn to an examination of the forces acting on the microswimmer and the surrounding flow field in
an effort to understand the origin of the self-propulsion observed in Figs. 2 and 3. We split the contributions to
the net hydrodynamic force in accordance with Eq. (2) as those due to pressure, viscous stress, and polymeric
stress (written using indicial notation): Fz =

∫
S
σzjnjdS = F presz + F viscz + F polyz = 0 where F presz = −

∫
S
pnzdS,

F viscz = β
∫
S

(∇zuj + ∇juz)njdS, and F polyz =
∫
S
τpzjnjdS. These contributions are plotted as a function of De in

Fig. 5b. We see from Fig. 5a, where these contributions are further divided into those acting on the large and small
sphere respectively, that the contribution due to pressure dominates both the force on the larger (indicated with the
dashed-dotted line) as well as the smaller (indicated with a solid line) sphere. The former is the seemingly only positive
contribution to the net force on the swimmer, indicating that it is pressure on the larger sphere that provides the
dominant thrust for the microswimmer’s motion. In contrast, all of the contributions related to the smaller sphere are
negative and thus oppose the motion of the swimmer. This suggests that the drag on the overall body is concentrated
at the back of the swimmer and thus on the smaller sphere.

To understand this mechanism of self-propulsion in more detail, we now examine the surrounding flow field to see
exactly where tractions are being exerted on the swimmer. From Fig. 7a, we see that there is a significant pressure in
the small gap between the two rotating spheres. If we examine the streamlines of the radial flow field (presented in
the co-moving frame) while recalling that the swimmer translates in the direction of the larger sphere (as indicated
by the gray arrow), we see that fluid is readily advected by the fast-spinning smaller sphere, thereby creating a high
pressure region in the thin gap and along its sides. Hence, in analogy with E. coli (c.f. Fig. 1a), it appears that
the fast-spinning tail” of our model swimmer pulls fluid inward so as to create an overall thrust due to pressure.

(b)(a)

FIG. 2. (a) Swimming speed U as a function of the Deborah number (De) and the viscosity ratio β for h∗ = 0.05 and r∗ = 0.5.
Markers connected by solid lines denote simulation data, while the dashed lines denote the low-De theory, i.e. Eqs. (12)
and (13). As indicated by the black arrow, as one moves down the set of curves, the value of β increases from 0.25 to 0.75,
i.e. an increasing contribution from the Newtonian solvent. The theory and simulations show that the speed of the two-sphere
swimmer increases with increasing fluid elasticity (De) and increasing polymer concentration (decreasing β). The inset shows
the same set of data but with the speed U now normalized by (1 − β) to show that all data collapses onto a single curve for
low De, as predicted by the theory. (b) Swimming speed U as a function of time for h∗ = 0.05, r∗ = 0.5, and β = 0.5.
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(b)(a)

FIG. 3. (a) Swimming speed U as a function of the size ratio r∗ for h∗ = 0.05, De = 1, and β = 0.5. Both theory and simulations
predict a non-monotonic dependence of U on r∗, with U vanishing in the case of r∗ = 0 and r∗ = 1 while reaching a maximum
at r∗ ≈ 0.75. (b) Theoretical prediction for the swimming speed U as a function of the size ratio r∗ for De = 1, β = 0.5, and a
range of values of h∗. As h∗ is increased, U decreases in magnitude for all r∗. However, the functional dependence of U with
respect to r∗ is not strongly affected by the value of h∗.

FIG. 4. Normalized swimming speed U/(De(1− β) as a function of the gap size h∗ for a size ratio of r∗ = 0.75. The numerical
simulations were conducted at De = 1 and β = 0.5. While the theory predicts a slight increase in the swimming speed before
a monotonic decrease with increasing gap size, the simulation results predict a purely-decreasing function of gap size. As
expected, the two predict the same result for large values of h∗ since the theory becomes more accurate as the separation
increases.

Interestingly enough, the net effect of the pressure specifically in the thin gap region is zero; i.e. the pressure tractions
exerted on the larger and smaller sphere in this region cancel each other. We show this below by applying lubrication
theory to the thin gap region. While we refer the reader to the appendix for the full derivation, the key result is that
the pressure in the gap is given by:

p = De(1− β)
(Ω∗ + 1)2

B(h∗ +Br2)
(18)

where B = 1
2 (r∗−1 + 1) and r is the radial coordinate in cylindrical coordinates (made dimensionless by RL). A

comparison of the pressure as predicted by this equation and to that from our numerical simulations is shown in
Fig. 6. This demonstrates that in the limit of h∗ → 0, there is a pressure singularity. However, if we integrate this
function over the surface of the large and small sphere in the thin gap region, we find that the result is zero, i.e. the
individual pressure forces exerted on each sphere are equal and opposite. This suggests that the net pressure thrust
seen in Fig. 5b is not coming from the high pressure in the thin gap, but rather from the pressure observed at the
back of the smaller sphere and swimmer as a whole as seen in Fig. 7a. This makes sense in light of the results varying
the gap size (i.e. Fig. 3b and Fig. 4); that is, if the thrust had been primarily due to the high pressure in the thin
gap, then we’d expect to see a strong dependence of the swimming speed on the size of the gap. Finally, if we plot the
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polymer stress energy τpii, i.e. the trace of the polymer stress tensor, as done in Fig. 7b, we observe the development of
hoop stresses created by the fast-rotating smaller sphere. This likely corresponds to the negative elastic contribution
to the net force seen in Fig. 5b, suggesting that the elasticity of the fluid directly only hinders motion, but indirectly
can provide thrust through a modification of the pressure field (an effect seen previously in several different studies
[21, 23]).

A natural question to ask is how the results presented above relate to a real microorganism. We can perform an
approximate calculation to determine the appropriate values for r∗, β, and De for a bacteria like E. coli and compare
the swimming speed of E. coli in a viscoelastic fluid to that predicted by our theory and simulations. For this, we
reference the work of Patteson et al. [40], where they measure a swimming speed of about 11.2 µm/s in a 225 ppm
carboxy-methyl cellulose (CMC) solution. To put this speed in dimensionless terms, we scale it by RLΩS , where for
the value of RL we consider the radius of E. coli ’s body and for ΩS we use the angular frequency of the flagellar
bundle. The former is about 0.4 µm [19], while the latter was measured by Patteson et al. [40] to be 56 Hz (i.e. ≈ 352
rad/s) in the CMC solution. This yields a dimensionless speed of 11.2/(0.4 · 352) ≈ 0.08. For the value of RS and
thus r∗, we use the radius of one of E. coli ’s helical flagella, which is about 0.4 µm [19] such that r∗ ≈ 0.5. Finally, to
compute appropriate values for β and De, we note the measured value of λ = 9.5× 10−3s in Patteson et al. [40] and
then fit their data for the shear viscosity as a function of shear rate to a polymer constitutive equation that exhibits
shear-thinning, specifically the Giesekus equation [41]. From this fit, we estimate that β ≈ 0.1, and since De = λΩS ,
De ≈ 9.5 × 10−3 · 352 = 3.3. Our nearest simulation to r∗ = 0.5, β = 0.1, De = 3.3 is at r∗ = 0.5, β = 0.25, and
De = 3, where we predict a speed of about 0.021. If we consider the dependence on β to be linear in (1 − β) as
predicted by the theory, then we expect our simulations to yield a speed of 0.021 · (1 − 0.1)/(1 − 0.25) ≈ 0.025 at
this smaller value of β. This value is thus about 31% of the experimentally-measured swimming speed of E. coli,
suggesting that the propulsion mechanism as described above from swirling flow could account for up to about a third
of E. coli ’s motility in viscoelastic fluids. If we assume that the remaining 69% of the swimming speed is a product of
the viscous propulsion generated from rotating a helix at zero Reynolds number [20], then we expect the Newtonian
speed of E. coli to be about two-thirds that in the elastic fluid. Patteson et al. [40] measured a Newtonian swimming
speed of 8.3 µm/s, which is 74% that in the 225 ppm solution and is remarkably close to the value of 69% predicted
by our simple estimation.

B. Generalization to arbitrary bodies of revolution

While the results above were presented in the context of the two-sphere swimmer, similar arguments in the derivation
of the theory can be made for arbitrary bodies of revolution (e.g. ellipsoids, cones, etc.). For example, consider a
swimmer consisting of two axisymmetric shapes of different sizes that are rotating in opposite directions about the

(b)(a)

FIG. 5. Contributions to the net force acting on the swimmer as a function of De for h∗ = 0.05, r∗ = 0.5, β = 0.5. (a)
Total integrated force contributions acting on each sphere. Solid lines denote forces on the smaller sphere, while dash-dotted
lines denote force on the larger sphere. The plot indicates that pressure acting on the larger sphere creates a positive (i.e.
propulsive) contribution to the net hydrodynamic force, while contributions from pressure, viscous, and elastic stresses acting
on the smaller sphere are negative and thus oppose the swimming motion. (b) Total integrated force contributions acting over
the entire swimmer (i.e. summing individual forces acting on the large and small sphere). This plot indicates that the net
effect of pressure is propulsive, while that of viscous and elastic stresses are resistive.
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FIG. 6. Comparison of the pressure p predicted by lubrication theory (i.e. Eq. (18)) to that from our numerical simulation as
a function of the radial coordinate r in cylindrical coordinates for the case of r∗ = 0.5, h∗ = 0.05, β = 0.5, and De = 1.

(a)

Y X

Z

(b)

Y X

Z

P

4.5
4
3.5
3
2.5
2
1.5
1
0.5

τii
p

9
8
7
6
5
4
3
2
1

FIG. 7. Contour plots in the x-z plane at y = 0 of (a) pressure and (b) the polymer stress energy τpii for the simulation at
De = 1, β = 0.5, h∗ = 0.05, r∗ = 0.5. Streamlines indicate the direction of the radial flow field in the co-moving frame of
reference; the gray arrow in each subfigure indicates the swimming direction in the lab frame. Given the results shown in
Fig. 5, propulsion appears to be created by a build-up of pressure on the back of the larger sphere that originates from flow
pulled inward from the faster-spinning smaller sphere. In (b), we see the development of hoop stresses from the rotation of the
smaller sphere, that otherwise act to impede motion according to Fig. 5

axis of symmetry (c.f. Fig. 8). We define length scales for the smaller” and larger” of these two bodies through the
torque they exert on the surrounding fluid at Re = 0, i.e.:

L′,Sz = −8πµ0l
3
SΩS (19)

L′,Lz = 8πµ0l
3
LΩL (20)

where ()′ denotes a dimensional quantity. The requirement of no-torque on the combined body thus gives Ω∗ =
ΩS/ΩL = l3L/l

3
S = 1/r∗3. In the far-field from the Representation theorem in Newtonian Stokes flow, these rotating

objects produce a rotlet disturbance flow, such that their respective flow fields in isolation are given by [30]:

u′,Sφ = − l
3
SΩS sin θ

r2S
(21)

u′,Lφ =
l3LΩL sin θ

r2L
(22)

Note that this is exactly the flow created by a rotating sphere in Stokes flow, with the length scales lS and lL taking
the place of the sphere’s radius. It follows that to first order in De, the far-field radial velocity are the most slowly
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decaying terms in Eqs. (7) and (8), viz.:

u′,Sr (θ, r′S) = l3SΩ2
Sλ

(3 cos2 θ − 1)

2r′2S
(23)

u′,Lr (θ, r′L) = l3LΩ2
Lλ

(3 cos2 θ − 1)

2r′2L
(24)

Assuming these far-field velocities are the largest contribution, we can write the propulsive force as the difference
between the force exerted on the larger body by the smaller body and vice-versa:

F ′,propz = DLµ0lLu
′,S,
r (θ = 0, r′S = h′)−DSµ0lSu

′,L
r (θ = π, r′L = h′) (25)

F ′,propz = DLµ0lL

[
l3SΩ2

Sλ

h′2

]
−DSµ0lS

[
l3LΩ2

Lλ

h′2

]
(26)

where we have used an approximation to the Faxen’s law for bodies of revolution [30]. Note that h′ is the dimensional
distance between the center of mass of each body. Thus we might anticipate a net propulsive force as before, but now
accounting for the particular shape of the two halves of the swimmer via drag coefficients DS and DL. By factoring
this expression, we can determine under what conditions we expect propulsion in the positive z-direction:

F ′,propz =
DLµ0lLl

3
SΩ2

Sλ

h′2

(
1− DS

DL
· lS
lL
· Ω2

Ll
3
L

Ω2
Sl

3
S

)
(27)

For self-propulsion in the positive z-direction, we need F ′,propz > 0, meaning that the expression in parentheses in
Eq. (27) must be positive. Note though that for the swimmer to be torque-free, ΩL/ΩS = l3S/l

3
L. Thus, for F ′,propz to

be positive, indicating propulsion towards the larger body, it must be the case that:

1− DS

DL
· lS
lL
· Ω2

Ll
3
L

Ω2
Sl

3
S

> 0 (28)

DS

DL
· lS
lL
· Ω2

Ll
3
L

Ω2
Sl

3
S

< 1 (29)

DS

DL
· l

4
S

l4L
< 1 (30)

i.e. there is net propulsion if (DLl
4
L)/(DSl

4
S) > 1. Thus, using the effective lengths and the drag coefficients of the

two body swimmer, the criterion above can be used to predict propulsion by swirl in viscoelastic fluids.
The drag resulting from translation of the swimmer in the z-direction is given by −µ0(DLlL+DSlS)U ′z; thus, using

only the far-field flow as an approximation and balancing the propulsive and drag force yields the following for U ′z:

U ′z =
F ′,propz

µ0(DLlL +DSlS)
(31)

U ′z =
DLlLl

3
SΩ2

Sλ

h′2(DLlL +DSlS)

(
1− DS

DL
· l

4
S

l4L

)
(32)

ΩS

ΩL

FIG. 8. Illustration of one particular example of an axisymmetric swimmer consisting of two counter-rotating bodies of
revolution.
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Or in dimensionless terms:

Uz =
DLr

∗3De

h2(DL + r∗DS)

(
1− DS

DL
r∗4
)

(33)

To illustrate the utility of our criteria for propulsion in the direction of the larger” body, (DLl
4
L)/(DSl

4
S) > 1, we

consider a specific axisymmetric swimmer consisting of a spherical head and prolate spheroidal tail oriented in the
vertical z-direction (c.f. Fig. 9a). The diameter of the spherical head is DL while the dimensions of the spheroidal
tail are given by its polar radius a and equatorial radius c. To study how the relative size of the head and tail affect
the direction of propulsion, we vary the polar radius of the tail while maintaining c/RL = 0.75. We consider five
such swimmers with tail aspect ratios, AR = c/a, equal to 1, 2, 2.75, 3.6, and 4. For each swimmer, we measure its
velocity in the z-direction and compute the ratio (DLl

4
L)/(DSl

4
S) for its specific geometry using formulas provided in

Kim and Karrila [30] to compute translational and rotational resistance coefficients for prolate spheroids.
The results are shown in Fig. 9b, where the swimming speed is plotted as a function of the ratio (DLl

4
L)/(DSl

4
S)

in the case of De = 1, β = 0.5, h∗ = 0.05, and c/RL = 0.75. For large values of (DLl
4
L)/(DSl

4
S), corresponding to

relatively short tails, we find that Uz > 0. Below a critical value, however, the velocity changes sign once the tail
becomes too long and the swimmer propels in the direction of the prolate spheroid. From this figure, we estimate that
the crossover occurs at approximately 1.3, which is remarkably close to our critical value of unity predicted above.
Considering the many far-field assumptions made above, we anticipate that the measured value of (DLl

4
L)/(DSl

4
S) for

which Uz changes sign will converge to unity as h∗ is increased.

C. Extension to novel swimming gaits and configurations

We conclude our work by illustrating how the simple theory and physical insight we have developed can be easily
extended to a variety of microswimmer configurations. For example, consider the situation illustrated in Fig. 10,
where the swimmer consists of a large sphere (head”) of diameter DL flanked by two smaller spheres of diameter
DS , each offset from the symmetry axis by an angle equal to α and located a (dimensional) distance h′ from the
center of the large sphere. This swimmer can undergo torque-free motion by rotating each of the smaller spheres
at equal rotation rates directed in opposite directions. We can derive an estimate for the speed of this swimmer in
the z direction, by again considering the net thrust on the microswimmer via Eq. (9), and balancing the net drag of
6π(1 + 2r∗), viz.:

Uz =
2 cosα

1 + 2r∗

(
1 +

1

6
∇2

)
uSr (θ = α, rS = h) (34)

2a

DL

2c

(a) (b)

FIG. 9. (a) Schematic of an axisymmetric swimmer with a spherical head and prolate spheroidal tail oriented along the vertical
z-direction. (b) Swimming velocity Uz as a function of the ratio (DLl

4
L)/(DSl

4
S) for the case of c/RL = 0.75, De = 1, β = 0.5,

and h∗ = 0.05. From far-field hydrodynamic interactions, we predict that the swimmer shown in (a) should self-propel in the
direction of the spherical head if (DLl

4
L)/(DSl

4
S) > 1. From this set of simulations, we find that Uz changes sign at a value

of approximately 1.3; we expect this value to converge to unity as h∗ increases and the far-field approximation becomes more
accurate.
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Again, splitting Uz into the terms including and not including the Laplacian in Eq. (34), i.e. Uz = U0
z + U

(HO)
z , we

obtain the following result for the speed in the z direction of this three-sphere swimmer:

U0
z = De(1− β)r∗3

(1 + h∗)2(1 + h∗ + 3r∗)(cosα)(1 + 3 cos(2α))

2(1 + h∗ + r∗)5(1 + 2r∗)
(35)

U (HO)
z = −De(1− β)r∗3

(2(1 + h∗)3 + 6(1 + h∗)2r∗ + 15(1 + h∗)r∗2 − 3r∗3)(cosα)(1 + 3 cos(2α))

6(1 + h∗ + r∗)7(1 + 2r∗)
(36)

We can simplify this expression significantly by considering a specific gap distance, e.g. h∗ = 1:

Uz = De(1− β)r∗3
(80 + 3r∗(72 + r∗(46 + 13r∗)))(cosα)(1 + 3 cos(2α))

6(2 + r∗)7(1 + 2r∗)
(37)

We illustrate how the velocity in the z-direction depends on the tilt angle α and the size ratio r∗ in Fig. 11 (assuming
De = 1 and β = 0.5 since the dependence on these variables is already clear from Eq. (37)). In Fig. 11a, we see
that velocity of the swimmer shows a complex dependence on α, actually changing sign at an intermediate value of
α. The speed |Uz| appears to be maximized by minimizing the tilt angle α and maximizing the size of the smaller
spheres, i.e. r∗. Note that this is distinct from the two-sphere swimmer, whose swimming speed vanishes as the size
ratio approaches unity. We suspect that the increase in swimming speed with respect to r∗ in this case is analogous
to the mechanism described for the two-sphere swimmer; i.e. an increase in size of the spinning ”tail” spheres for
a fixed rotation rate would lead to more fluid being advected to the rear of the swimmer, thereby creating a net
imbalance of pressure on the entire swimmer that acts as a thrust. Note since the head” does not rotate, there is
no elastic push” back on the tail”. Of course, as r∗ increases, the minimum achievable angle αmin increases since
the two smaller spheres cannot overlap, and it is straightforward to calculate this minimum angle using geometry
as αmin = r∗/(1 + h∗ + r∗). We plot the velocity of the swimmer assuming α = αmin in Fig. 11b. This concludes
our analysis of the three-sphere swimmer, and illustrates how one can quickly generate predictions for the swimming
speed of newly proposed swimmer configurations through the general framework suggested here.

IV. CONCLUSION

In summary, we have examined a simple model swimmer in a viscoelastic fluid that is both force- and torque-free
using analytical and numerical calculations in an effort to understand how the interaction between swirling flow and
fluid elasticity impacts microorganism motility. The theory and numerical simulations show excellent agreement, and
predict that the the torque-free two-sphere swimmer translates in the direction of the slower-rotating larger sphere.
Furthermore, we predict that the swimming speed increases nearly linearly with the Deborah number (measuring the
elasticity of the fluid) and (1 − β) (i.e. the concentration of polymer in the surrounding fluid). The speed shows a
non-monotonic dependence on the relative size of the two spheres, r∗, with a maximum reached at a value of r∗ ≈ 0.75.

ΩS
DS

DL

h’�

FIG. 10. Illustration of a proposed 3-sphere swimmer that translates in a viscoelastic fluid by rotating the two smaller spheres
located at its rear.
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(a) (b)

FIG. 11. Velocity Uz of the 3-sphere swimmer illustrated in Fig. 10 at De = 1, β = 0.5, h∗ = 1. In (a), the velocity is plotted
as a function of the angle α and the size ratio r∗, and indicates that the speed of the swimmer U = |Uz| is maximized by
selecting the smallest angle and largest size ratio possible. Note that the range of α values considered for each curve is given
by α = αmin = 1/(1 + h∗ + r∗) to α = π/2, where αmin is the smallest achievable angle for a given size ratio (i.e. taking into
account the finite size of the spheres). In (b), the velocity is plotted as a function of r∗, assuming α = αmin.

By examining the tractions exerted on the surface of the swimmer and the surrounding flow field, we find that the
swimmer generates thrust from regions of high pressure surrounding the fast-spinning ”tail” of the swimmer. Upon
performing an approximate calculation using literature values for an actual swimming microorganism, i.e. E. coli, we
find that the speeds predicted are remarkably close to the increase in speed E. coli experiences when transitioning
from swimming in a Newtonian fluid to a viscoelastic fluid. This suggests that the extra thrust generated from the
coupling of rotational to translational motion due to fluid elasticity may be one of the dominant mechanisms in the
speed enhancement experienced by bacteria such as E. coli in viscoelastic fluids. Finally, we demonstrated how the
theory can be quickly extended to different microswimmer configurations and gaits, illustrating its potential utility,
for example, in the design of new synthetic swimmers that can be used in future studies on the effect of fluid rheology
on motility. We look forward to the verification of our theoretical work via future experiments.
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APPENDIX

A. Derivation of lubrication theory

To derive an approximation of the pressure in the thin gap region between the two spheres of the two-sphere
swimmer, we apply the lubrication approximation to the flow in the gap [42]. For this analysis, we operate in a
cylindrical coordinate system aligned with the axis of motion and centered between the two spheres. As is often done
in lubrication theory, we approximate the distance of the two surfaces from the center of the gap using a Taylor series
expansion truncated at the quadratic term, which of course is valid in the limit of hsep/RL � 1, hsep/RS � 1:

hL =
hsep

2
+

1

2

r2

RL
(38)

hS =
hsep

2
+

1

2

r2

RS
(39)

where hL and hS correspond to the distance from the center of the gap of the surfaces of the larger and smaller sphere
respectively and r is the radial coordinate (dimensional) in cylindrical coordinates. After applying the lubrication
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approximation, conservation of momentum in the θ direction is given by:

µs
∂2uθ
∂z2

+
∂τpθz
∂z

=
1

r

∂p

∂θ
= 0. (40)

In the above, ∂p
∂θ = 0 due to symmetry and all quantities are dimensional (note, this is in contrast to the main text

and is done for clarity in presentation). In the radial direction, conservation of momentum is given by:

∂p

∂r
= −

τpθθ
r
. (41)

Because the flow in the gap is simple shear flow to leading order (the flow direction being the azimuthal θ direction),
we can write the polymeric shear stress as:

τpθz = µp
∂uθ
∂z

(42)

Combining Eqs. (40) and (42), we find that the velocity in the θ direction is governed by the 1D Laplace equation:

∂2uθ
∂z2

= 0. (43)

Consequently, the solution must be given by uθ = C1(r)z+C2(r) where C1(r) and C2(r) are arbitrary functions of r.
These functions can be easily found by applying the boundary conditions at the surface of the large and small sphere:

uθ(z = hL) = rΩL = C1hL + C2 (44)

uθ(z = −hS) = −rΩS = −C1hS + C2. (45)

Through some simple algebra, we find that C1 and C2 are given by:

C1 =
r(ΩL + ΩS)

hS + hL
(46)

C2 = C2hS − rΩS . (47)

To derive an expression for the pressure in the gap, we must integrate Eq. (41) with respect to the radial coordinate.
Because the flow is locally simple shear flow, the hoop stress τpθθ is given by [29]:

τpθθ = 2λµp

(
∂uθ
∂z

)2

= 2λµpC
2
1 . (48)

The last equality comes from the fact that uθ = C1z +C2. With τpθθ now determined, we can integrate Eq. (41) with
respect to r, yielding:

p = p∞ − 2λµp

∫ r

∞

C2
1 (σ)

σ
dσ (49)

p = p∞ + 2λµp

∫ ∞
r

C2
1 (σ)

σ
dσ (50)

where σ is a dummy variable for the radial coordinate and p∞ = p(r →∞). Upon substituting in our expressions for
C1, hS , and hL into the above integral and performing the integration, we obtain:

p = p∞ + λµp
(ΩS + ΩL)2

b(hsep + br2)
(51)

where b = 1
2 (R−1S + R−1L ). If we divide both sides of this expression by µ0ΩS and make use of our definitions for

Ω∗, h∗, r∗, etc. presented in the main text, we arrive at the dimensionless version of this expression, i.e. Eq. (18).
The most significant result from this short lubrication theory is found when we integrate this pressure (i.e. Eq. (51))

over the surfaces of the large and small sphere to see if there is a net thrust created by the high pressure in the gap
region. That is,

Fthrust = Fpres,L + Fpres,S (52)

= 2π

∫ RS

0

(p− p∞)rdr − 2π

∫ RS

0

(p− p∞)rdr (53)

= 0 (54)
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where Fpres,L and Fpres,S are the integrated net force due to pressure exerted on the large and small sphere respectively.
Note that we have only integrated over the inner” region where lubrication theory is expected to hold. It is clear from
this that lubrication theory predicts no net propulsion of the swimmer and that the interaction of the outer” region
(of size RS) must be included to describe a nonzero pressure thrust on the swimmer. Therefore this region provides
terms that go to zero like some power of hsep/RS resulting in the propulsion speed being regular as the gap goes to
zero. This justifies our use of Eqs. (12) and (13) in the limit of h∗ → 0 in main the text, and is supported by the
results of Fig. 4.
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