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Abstract

The direct monitoring of a rotating detonation engine (RDE) combustion chamber has en-
abled the observation of combustion front dynamics that are composed of a number of co-
and/or counter-rotating coherent traveling shock waves whose nonlinear mode-locking behav-
ior exhibit bifurcations and instabilities which are not well understood. Computational fluid
dynamics simulations are ubiquitous in characterizing the dynamics of RDE’s reactive, com-
pressible flow. Such simulations are prohibitively expensive when considering multiple engine
geometries, different operating conditions, and the long-time dynamics of the mode-locking in-
teractions. Reduced-order models (ROMs) provide a critically enabling simulation framework
because they exploit low-rank structure in the data to minimize computational cost and allow for
rapid parameterized studies and long-time simulations. However, ROMs are inherently limited
by translational invariances manifest by the combustion waves present in RDEs. In this work,
we leverage machine learning algorithms to discover moving coordinate frames into which the
data is shifted, thus overcoming limitations imposed by the underlying translational invariance
of the RDE and allowing for the application of traditional dimensionality reduction techniques.
We explore a diverse suite of data-driven ROM strategies for characterizing the complex shock
wave dynamics and interactions in the RDE. Specifically, we employ the dynamic mode decom-
position and a deep Koopman embedding to give new modeling insights and understanding of
combustion wave interactions in RDEs.

1 Introduction

A rotating detonation engine (RDE) is a novel combustion engine that uses detonative heat re-
lease - a nearly constant-volume process - as the dominant mechanism of energy addition to the
reactive, compressible fluid flow, contrasting deflagration-based, constant-pressure heat addition
typical of aerospace engines. The RDE offers a number of advantages for application in propulsion
or land-based power generation, including mechanical simplification, broad operability limits [1, 2],
the potential for increased thermal efficiency [3, 4], and the reduction of propellant pumping re-
quirements [5, 6]. The operating dynamics of the RDE include co- and counter-rotating coherent
combustion wave fronts of varying number which interact to produce a rich set of nonlinear dy-
namics and instabilities. Recent modeling efforts have focused on phenomenological models [7, 8]
that are capable of reproducing and characterizing the RDE dynamics and bifurcations observed in
experiments. This includes models that characterize the nucleation and formation of combustion
pulses, the soliton-like interactions between these combustion fronts, and the fundamental, under-
lying Hopf bifurcation to periodic modulation of the waves [8]. The goal of the present work is
to characterize the dynamics of the combustion wave front interactions directly from experimental
data, specifically with the goal of developing reduced-order models (ROMs) for characterizing the
origins of dynamic instabilities in RDEs. We will explore several leading techniques in data-driven
optimization (i.e., machine learning) of varying complexity.
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RDE hardware is designed to amplify thermoacoustic instabilities associated with reacting
flows in circular and/or periodic geometries. For thrust-producing RDEs, the typical design is an
annular combustion chamber, see Figure 1a. Fuel and oxidizer are supplied through independent
feeds into the head-end of the annulus, where they promptly mix to form a combustible medium. An
ignition source (spark plug) initiates a chemical reaction that quickly and locally releases energy
into the fluid. Supposing the geometry of the engine and the rate of heat release allow for a
local accumulation of energy (Rayleigh’s criterion), sharp gradients in pressure and density (and
therefore temperature) form. This creates a feedback loop where chemical kinetics are further
accelerated by the increase in temperature, which in turn releases more energy into the fluid. This
process saturates once all propellant is locally consumed and combustion halts. However, in the
RDE, the sharp gradients in pressure and density form traveling shock waves strong enough to
auto-ignite propellant. These shock-reaction structures, or detonation waves, move supersonically
about the periodic chamber of the RDE, consuming the newly injected and mixed propellant in its
path. The detonations continuously propagate so long as a sufficient amount of mixed propellant
exists in its path to overcome dissipative effects (exhaust, for example). A number of experimental
RDE programs have detailed the effects of geometry, injection schemes, and fueling conditions
([9, 2, 10, 11]) on the RDE dynamics.

The detonations follow attractor-like dynamics that are the manifestation of underlying multi-
scale balance physics of the driven-dissipative RDE [12]. The RDE is similar in nature to mode-
locked lasers [13, 14], where global gain and loss dynamics produce a similar cascading bifurcation
diagram of mode-locked states [15]. In this context, the mode-locked structures of the RDE are
classified as autosolitons, or stably-propagating nonlinear waves where the local physics of nonlin-
earity, dispersion, gain, and dissipation exactly balance. These physics are multi-scale in nature:
the local fast scale of combustion provides the energy input to generate the mode-locked state,
while the slow scales of dissipation and propellant regeneration shape the waveform and dictate
the total number of detonation waves. Thus, the global multi-scale balance physics give the deto-
nations their mode-locking properties - not exclusively the frontal dynamics prescribed by classical
detonation theory.

These properties have been experimentally observed at the University of Washington High
Enthalpy Flow Laboratory using a gaseous methane-oxygen 76-mm flowpath outside diameter RDE,
as described in previous works [16, 7, 8]. This experimental apparatus is unique in that the RDE
tested is fully modular and that the apparatus exists in a closed system. The modularity of the
RDE allows for parametric testing of engine geometries (flowpath lengths and annular gaps) and
injectors (varying injection scheme, orifice count, and total injection area) with respect to varied
propellant feed rates and stoichiometry. Because the entire apparatus is closed, implied is both
the inlet and outlet boundary conditions of the combustor are able to be set, and are controlled
here to give rise to stable traveling wave dynamics. The inlet boundary condition is implicitly
set via a desired flow rate and propellant mixture, thereby constraining the manifold pressures.
The outlet boundary condition is set via controlling the backpressure of a large (approximately
four cubic meters) dump volume. Lastly, the exhaust routing of the engine has allowed for the
installation of an optical viewport approximately 2 meters downstream of the exit plane of the
combustor. Each experiment consists of four main phases. First, a pre-purge of inert diluent,
typically nitrogen, floods the system. Second, the diluent is shut off and propellant begins to flow
through the combustor. Third, chemical reactions are triggered, typically via an automotive spark
plug or a pre-detonation tube. In a successful experiment, the self-organization of traveling waves
occurs and persists so long as propellant is flowing into the combustor. Lastly, the propellant is
shut off and diluent is re-introduced into the combustor. For each experiment, a high-speed camera
records the duration of the ‘hot’ portion of the run, including the ignition event, the transient
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mode-locking phase, and steady operation of the combustor. The experiments exhibited in this
manuscript are representative of modes of operation and transients observed in this experimental
apparatus. These experimental spatiotemporal dynamics are taken from Koch et al. [16, 7, 8].

Computational fluid dynamic (CFD) simulations have been heavily relied upon to diagnose the
RDE flowfields. These simulations vary from periodic 2-D ‘unwrapped’ rectangular domains [17, 18,
19] to full detailed 3-D engine geometries [20, 21, 22, 23]. From these simulations, the canonical RDE
flowfield is obtained (a cartoon of which is shown in Figure 1a) and relevant metrics can be extracted,
such as thrust, specific impulse, available mechanical work, and thermodynamic efficiency [24, 3].
However, long-time parametric simulations of RDE dynamics is prohibitively expensive since the
fastest physics (the detonation front) and the slowest physics (mixing and/or exhaustion) both
need to be adequately resolved for proper system behavior. Thus, simulations need to be run for
several - if not dozens or hundreds - of cycles (or until the physics of the slowest scales are fully
developed). The computational cost of simulations can quickly become prohibitive and it typically
requires high-performance computing architectures for even moderate lengths of simulation time.
Consequentially, ROMs have been developed, with varying degrees of success, for recreating the
RDE canonical flowfield [25, 26], predicting thermodynamic trends [27], predicting application-
based propulsive performance [28], or reproducing the dynamics of the waves [29, 30, 7, 8]. However,
because of the multi-scale nature of the RDE and the intricate interactions of its fundamental
physical processes, these modeling efforts are often constrained to geometry, propellant, or mode-
specific operating regimes, with the imposition of wave topology or detonation structure. In an
alternative approach, experiments allow us to build ROMs directly from data. To further ease
computational burden in the study of RDE flowfields, recent work [7] has indicated that the relevant
flow physics can be fully captured by in a single dimension, eliminating the need to compute over
the full three-dimensional flow domain.

In order to construct ROMs of the combustion-front dynamics, one must first move to a frame of
reference of the mode-locked states. ROMs exploit the intrinsic, low-rank structure of the simulation
data in order to create more tractable models for the spatiotemporal evolution dynamics. Typically,
ROMs leverage the singular value decomposition (SVD) to produce a linear dimensionality reduc-
tion [31, 32], whereby a dominant set of correlated modes provide a subspace in which to project
the PDE dynamics [33, 34, 35]. Low-energy modes are then truncated, and the governing equations
are projected onto the remaining high-energy modes to create an approximate and low-dimensional
model. Dimensionality reduction and modal decomposition approaches have been well-studied and
are extremely efficient [36, 33, 37, 38, 34, 35]. However, SVD-based ROMs are typically compro-
mised by traveling wave physics, which represent an underlying translational invariance. Thus a
growing body of literature is aimed at producing mathematical architectures that are capable of
determining the traveling wave frame of reference of the underling wave [39, 40, 41, 42]. While
these works are critical to addressing the shortcomings of traditional methods, they are limited
to applications with constant wave speeds or knowledge of the underlying physics. Mendible et
al. [43] recently developed an unsupervised machine learning procedure for transport-dominated
systems characterized by traveling waves. This method can be applied with or without knowl-
edge of the governing equations, providing an interpretable mathematical architecture for ROMs
exhibiting traveling wave phenomenon. This algorithmic infrastructure can be used to extract the
intrinsic features associated with the RDE front evolution, uncovering a coordinate system where
it is possible to obtain low-order models. We then leverage a selection of machine learning algo-
rithms to explore the dynamics prescribing the ubiquitous RDE front interactions. Importantly, the
methodology is data-driven in that the ROMs are constructed entirely from detailed experimental
observations. This work is part of a growing body of literature that is bringing emerging technology
in machine learning to bear on problems in fluid mechanics [44, 45, 46].

3



Figure 1: (a) RDE schematic, (b) Schematic of one time slice of video data, viewing down the axis
of rotation of the RDE, (c) The same time slice viewed in an (x, t) plot, with each column of the
data in time constructed by integrating the pixel intensity along the annulus, (d) demonstration
of the peak detection and clustering necessary to model the wave speeds with UnTWIST, (e) a
preliminary processing of (c) using the UnTWIST algorithm, (f) a refining processing of (e) with
the UnTWIST algorithm, which then becomes the basis for a suite of data-driven models.

2 Detonation Wave Tracking with UnTWIST

It is widely known that transport phenomenon such as traveling waves impair the effectiveness of
traditional dimensionality reduction methods, mainly due to an issue of separation of space and
time variables [32, 39, 40, 41, 42]. While an approach like the method of characteristics can be used
when governing equations are known, this experimental framework necessitates a system-agnostic
method. One numerical approach to resolve this issue is to shift the frame of reference from the
laboratory frame to a moving coordinate frame that matches the speed of the traveling waves. Once
the traveling quantities have been made stationary in this way, efficient traditional methods such
as proper orthogonal decomposition (POD) can be utilized for dimensionality reduction.

In order to build reduced-order models on the RDE data, rife with traveling shock fronts,
it is necessary to preprocess it by aligning these traveling waves in time. Here, we employ the
unsupervised traveling wave identification with shifting and truncation (UnTWIST) [43] algorithm
to perform this preprocessing step. This method allows for a data-driven and interpretable model for
the speeds of the traveling shock fronts, as well as separable low-rank modes, providing an intuitive
insight into the physics of the system. A basic overview of UnTWIST and its implementation is
described here. For further details and a complete algorithm, please refer to [43].

2.1 UnTWIST Method

Similar to other methods, UnTWIST learns a moving coordinate frame, given by the speed of a
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(a) (b) (c)

Figure 2: (a) Example of a traveling wave data set, (b) wave peak points (xi, ti) are identified using
a ridge detection, shown overlaid with the waves, (c) wave peak points are clustered into wave
groups using spectral clustering. Once these points are identified and clustered, a model is fit to
each based off of a user-provided library of candidate linear or nonlinear functions.

traveling wave. This holds the wave of interest stationary within the coordinate frame, allowing for
models to be built for that particular wave. Unique to UnTWIST is the ability to learn physically-
relevant wave speeds directly from the data with little knowledge of underlying dynamics. It
allows for a wide variety of physics, including linear, nonlinear, non-constant, and non-smooth
wave speeds, to be considered. To do so, UnTWIST relies on an optimization over a user-input
library of potential wave speed functions to learn this coordinate frame. This library may include
any number of linear or nonlinear functions. If expert knowledge of the system is available, a
judicious choice of functions is possible. In many cases, simple functions such as sinusoids and
polynomials suffice. Inclusion of many candidate functions will increase the computational cost of
the algorithm, therefore, a balance between completeness and the size of the library must be found.

To execute the optimization on wave profile data u(x, t), two main steps are first performed:
(1) ridge detection to learn the location in (x, t) space of the traveling wave fronts or peaks, and
(2) spectral clustering to divide the points (xi, ti) into groupings for each wave. For example, these
two steps are shown in Figure 2.

Once the wave fronts are identified and separated, the data is assembled into the optimization.
We construct matrices X and T using the (x, t) locations of the wave fronts in u(x, t), where T
contains the values of t evaluated for each function in the user-defined library. The cost function
is given by Equation 1

min
C,B,W∈Ω

1

2
W � ‖X−TC‖22 + λR(B) +

1

2ζ
‖C−B‖22, (1)

where W is the weighting matrix that serves to mask wave peak points for clustering into wave
groups. With values of 0 or 1, each row of W corresponds to each wave peak point (xi, ti), and
each column corresponds to a given wave. Values in C are the coefficients of the speed models that
are discovered for each wave. A row of C corresponds to a wave, and columns give the coefficients
of each term in the model library T, which multiply together to generate the wave speed models. It
is desirable for C to be sparse, i.e. to have few nonzero terms, to glean an interpretable, physically
realistic model for the wave speeds. Rather than placing a sparsity constraint on C directly, the
constraint can be relaxed by introducing an auxiliary matrix B, which is close to C. B is directly
forced to be sparse via a regularizing function R(·), relieving the burden on C to meet both sparsity
and accuracy goals. The hyperparameter λ is chosen to calibrate the sparseness of auxiliary matrix.
The hyperparameter ζ is chosen to enforce the closeness of C and B, ensuring that the solution
C itself is also sparse. These two hyperparameters are tuned in tandem in order to meet sparsity
and accuracy requirements of the model. This optimization presents a large search space over
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multiple parameters, and is not guaranteed to be convex. Sparse relaxed regularized regression
(SR3) [47] is used to minimize the cost function because of its ability to handle non-convexity and
its computational efficiency compared to similar sparsity-promoting optimization schemes.

Once the model coefficients C are learned, they can be used to shift each time segment of data
in order to align the data into one wave group’s moving coordinate frame. The mask matrix W
allows for easy separation of the wave fronts for this alignment. Once the data is aligned into the
new coordinate frame, traditional dimensionality reduction methods can easily be applied and can
be expected to reveal extremely low-rank modes for the ‘straightened’ wave or wave group.

2.2 UnTWIST Applied to RDE Data

An example of the UnTWIST algorithm applied to snapshots of RDE data can be seen in Figure 3.
UnTWIST was applied in two steps for each data set presented. The models we build are based on
time series that are long relative to the spatial dimension– with between 1,000 and 10,000 time steps
relative to 180 or 360 spatial points. The snapshots also contain wave fronts that travel on a fast
time scale relative to the slow time scale of the relevant dynamics, see Figure 3a, necessitating an
extreme shift in order to shift into a straightened wave coordinate frame. Because of the fast-moving
fronts and long time series, the UnTWIST algorithm was applied in two steps– a preprocessing step,
and a refining step, with different inputs for each.

For the preprocessing step, only 10 time steps of the data are considered, as seen in Figure 3b.
Using the UnTWIST algorithm and the identified wave peak points as shown in Figure 3c, we obtain
the best linear speed model for each wave, Figure 3d. A single linear-speed shift, the average of
the speed models, is applied to original data for the entire time series, and gives Figure 3e. This
first shift reveals critical underlying dynamics of the shock wave interactions.

After the first shift is performed, a second refining shift can be used with a more diverse library
of potential wave speed models to completely align the data for building low-rank models. The
refining shift is performed similarly to the first shift, but we now include potential wave speed
functions such as sinusoids, polynomials, exponentials, and nonlinear combinations of these terms.
For the example shown in Figure 4, sinusoids and exponentials were included in the candidate
function library. Once the models were computed, the data was shifted into n refined coordinate
frames, one for each shock wave.

The outcome of the second shift can be seen in Figure 4. Each coordinate frame allows one
shock wave to appear stationary at a time. The shifted data is now aligned in a manner that is
amenable to traditional dimensionality reduction methods, such as POD. An example of the first
mode of a robust dimensionality reduction [48] of the shifted data is shown in Figures 4b and 4d,
compared to the first mode of the POD of the original (laboratory frame) data. Here, we only
explore the first segment of the time series, before the bifurcation point.

This provides an example of how UnTWIST is used on a particular data set in order to align
the traveling waves to uncover low-rank representations of their wave fronts. The same steps have
been used to process various data sets. While UnTWIST can align these wave fronts into more
amenable coordinate frames for dimensionality reduction of the wave field as a whole, it is also of
great interest to study the linear and nonlinear interactions between wave fronts in RDEs. Using
similarly aligned data and the wave speeds and locations throughout the time series, we explore
models of the shock wave interactions in the following section.
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(a)

(b) (c) (d)

(e)

Figure 3: Preprocessing step using UnTWIST: (a) Example of an original data set, presenting
fast-moving shock fronts and a long time series relative to the spatial dimension, (b) A 10 time step
segment of (a) showing approximately linear-speed shock front propagation, (c) wave peak points
identified and separated, (d) linear models of the shock wave speeds, (e) Data from (a) shifted
into the average wave speed, dictated by the models identified in (d), which reveals the relevant
interactions between the shock waves.

3 Data-Driven Models of Rotating Detonation Front Dynamics

The ability to automate the discovery of a moving coordinate system pinned to a shock front allows
for a wide range of reduced-order modeling possibilities. In what follows, we utilize data-driven
modeling strategies that reduce the dynamics to simple models that characterize the observed
interactions of the rotating detonation waves. Experiments show that these interactions can range
from simple linear dynamics to more complicated nonlinear dynamical interactions. Our choice of
methods allow us to characterize the full range of observed data.

3.1 Linear Dynamics: Dynamic Mode Decomposition

The dynamic mode decomposition (DMD) [49, 50, 51, 52] is an alternative to the the proper
orthogonal decomposition (POD) reduction typically used in ROMs. It not only correlates spatial
activity, but also enforces that various low-rank spatial modes be correlated in time, essentially
merging the favorable aspects of POD in space and the Fourier transform in time. Thus in addition
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(c) (d)

Figure 4: Refinement step using UnTWIST: (a) Data shifted into coordinate frame of the first
(yellow) wave. (b) Corresponding first mode of a robust dimensionality reduction of the shifted
data in (a) compared to the first mode of the original data. The shifted mode shows a clear
shock front where the first wave is straightened, and a smaller artifact where the second wave
exists, whereas the original data mode reveals no interpretable structures within the data. (c) Data
shifted into the coordinate frame of the second (orange) wave. (d) First mode from dimensionality
reduction of the second wave frame, showing the same shock front shape in the correct position, and
artifact of the first wave. Higher modes of the unshifted dimensionality reduction are not shown,
but similarly do not indicate soliton structure.

to performing a low-rank SVD approximation, it further performs an eigendecomposition on a
best-fit linear operator that advances measurements forward in time in the computed subspaces in
order to extract critical temporal features. The DMD algorithm is a least-square regression. In its
simplest form [51], one can consider two sets of measurement data u

X =

u1 u2 · · · um−1

 and X′ =

u′1 u′2 · · · u′m−1

 (2)

where the primed data is advanced ∆t into the future compared to its unprimed counterpart. Exact
DMD computes the leading eigendecomposition of the best-fit linear operator A relating the data

A = X′X†. (3)

where † represents the Moore-Penrose pseudo-inverse. This gives a least-square fit to the best linear
model fitting the data whose solution is

uk =

n∑
j=1

φjλ
k
j bj = ΦΛkb (4)
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Figure 5: True distance between the shock wave fronts compared to the linear DMD model.

where φj and λj are the eigenvectors and eigenvalues of the matrix A, and the coefficients bj are
the coordinates of the initial condition u0 in the eigenvector basis. The eigenvalues λ of A deter-
mine the temporal dynamics of the system. It is often convenient to convert these eigenvalues to
continuous time, ω = log(λ)/∆t, so the real parts of the eigenvalues ω determine growth and decay
of the solution, and the imaginary parts determine oscillatory behaviors and their corresponding
frequencies. The eigenvalues and eigenvectors are critically enabling for producing interpretable
diagnostic features of the dynamics.

A simple DMD model is computed by stacking one time shift as follows in Equation 5 and
utilizing a variable projection method to compute an optimized DMD [53]. This simplified DMD
formulation circumvents many of the biases introduced by standard DMD algorithms [49, 50, 51, 52]
by directly fitting an exponential solution.

X =

[
x(t1) x(t2) · · · x(tm−2)
x(t2) x(t3) · · · x(tm−1)

]
and X′ =

[
x(t2) x(t3) · · · x(tm−1)
x(t3) x(t4) · · · x(tm)

]
(5)

Figure 5 shows the true distance between the shock fronts compared to discovered DMD model,
using one pair of modes to approximate the dynamics.

3.2 Nonlinear Dynamics: Lotka-Volterra Model

Although there are many interacting wave dynamics that appear to be described by simple harmonic
motion, i.e. linear oscillators well-captured by DMD, the RDE also produces dynamics that are
strongly nonlinear in nature. Figure 6a presents three RDE shock fronts interacting in an oscillatory
manner. When shifted into the coordinate frame of the top wave, shown in 6b, it is clear that the
middle and lower wave exhibit sharp, periodic changes in wave speed with respect to the top wave.
Such oscillations are beyond a simple linear description.

The Lotka-Volterra equations, also known as the predator-prey equations, are a coupled pair
of nonlinear equations often used to model population changes in two species and are given by:

dy

dt
= αy − βyz (6)

dz

dt
= δyz − γz, (7)

where α, β, δ, and γ are positive real parameters controlling the growth and decay of y (prey), and
growth and decay of z (predators), respectively.

A Lotka-Volterra model may be a good candidate to describe the dynamics in this system, not
least because of its capture the periodic changes with sharp peaks. Preliminary analytical models
for traveling waves within RDEs [7] indicate a similar form: by eliminating the spatial dependence
in these equations, which is achieved in practice by processing with the UnTWIST algorithm, this
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(a)

(b)

Figure 6: Figure (a) an example data set in the laboratory frame. (b) Same data set shifted
into the coordinate frame learned by UnTWIST using linear models for wave speed for both the
preprocessing and refinement steps.

model is phenomenologically equivalent to Lotka-Volterra. Additionally, the Lotka-Volterra model
intuitively fits the nature of the data. The competition between combustion and regeneration of
the propellant gives the analogous dynamics, where the prey is the reactant and the predator is
combustion. One wave’s acceleration combusts more fuel along the annulus, and therefore leads to
the other waves’ deceleration due to lack of fuel regeneration, similar to how an increase in predator
population results in a decrease in prey.

We explore these nonlinear dynamics by fitting a Lotka-Volterra model to the peak locations of
the middle and lower waves. We take y and z to be the locations of the two traveling waves from
Figure 6b, using the negative of the middle wave to orient the sharp peaks in the positive direction.
Parameters for the best-fit model were determined via a Nelder-Mead simplex optimization, and
were found to be α = 0.07, β = 0.13, δ = 0.10 and γ = 0.05. The first 500 time steps were used as a
training set. The error was computed over these time steps as the Frobenius norm of the difference
between model and true [y, z]. The resulting model, with forward-time prediction for testing data
from time 501-1000 can be seen in Figure 7. This model proves to be a good fit for the periodic
nonlinear dynamics of wave interactions, with the frequency matching through to the end of the
test data set.

The Lotka-Volterra model is only one of a potential wealth of interpretable nonlinear models
that may describe and give insight into the physics governing the RDE. An interesting avenue
of future work is to automate the identification of nonlinear dynamics, for example using the
sparse identification of nonlinear dynamics (SINDy) [54] algorithm. SINDy has been widely applied
to identify reduced-order models for fluid systems [55, 56], including those with predator-prey
dynamics [76], and is a promising candidate for obtaining low-order models of RDE dynamics.

3.3 Deep Koopman

In the following, ROMs based on Koopman theory are explored that do not rely on an explicit
dimensionality reduction technique and can therefore avoid translational invariances. Koopman
theory postulates that any nonlinear dynamical system can be lifted by the means of a nonlinear
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Figure 7: Lotka-Volterra model for the two traveling waves in Figure 6. Yellow and orange indicate
the true peak locations y and z of the two wave fronts of the data set in the shifted frame, and
black shows the Lotka-Volterra model. Parameters of α = 0.07, β = 0.13, δ = 0.10 and γ = 0.05
yield a well-fitting model for the two waves which compete for resources.

and time-invariant functional, oftentimes referred to as observables, into a space where its time
evolution can be described by linear methods. It was first introduced in the seminal 1931 paper for
Hamiltonian systems [57] but later generalized to continuous-spectrum systems [58]. Even then it
was of considerable importance as a building block for advances in ergodic theory [59, 60, 61, 62, 63].
Koopman theory has experience renewed interest in the past two decades [64, 65, 66].

Let u(t) be the collected measurements at time t and ψ be the time-invariant observable func-
tional, Koopman theory dictates that there a linear operator K always exists such that:

Kψ(u(t)) = ψ(u(t+ 1)).

K is usually referred to as the Koopman operator and might in practice be infinite dimensional as
for example in chaotic systems.

Recent applied research has focused on algorithmic approaches to estimate the Koopman oper-
ator from measurement data. Early approaches relied on auto-encoder structures [67, 68, 69, 70, 71]
and solved an optimization objective, usually by means of gradient descent, usually composed of
terms that encourage linearity in ‘Koopman space’ and reconstruction performance. These ap-
proaches were extended in various ways. For example, Bayesian Neural Networks as encoders
were utilized to extend Koopman theory to the probabilistic setting [72]. Furthermore Champion
et al. [73] relaxed the linearity requirement and allowed for sparse dynamics in the latent space.
Because linearity in ‘Koopman space’ is part of the optimization objective, these approaches are
usually only approximately and locally linear, which in turn impedes their ability to predict far into
the future. A more recent approach called Koopman forecast [74] is linear in ‘Koopman space’ by
construction and does not require training an encoder network. In order to overcome its nonlinear
and non-convex objective, the Koopman Forecast algorithm employs gradient descent in conjunc-
tion with the Fast Fourier Transform. In the following, variants of the Koopman Forecast algorithm
are introduced and their efficacy in modeling rotating detonation waves is evaluated.
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3.3.1 Koopman Forecast

The Koopman Forecast algorithm provides the tools to approximate the Koopman operator from
data that is assumed to be quasi-periodic. The quasi-periodicity assumption in turn restricts the
Koopman operator to have purely imaginary eigenvalues, i.e. the Koopman operator describes a
stable linear dynamical system.

Note that for any linear system y(t) with purely imaginary eigenvalues the following holds:

y(t) ∝



cos(ω1t)
...

cos(ωnt)
sin(ω1t)

...
sin(ωnt)


:= Ω(ωt).

Because of this, the Koopman Forecast algorithm solves the following optimization problem:

E(~ω,Θ) =
T∑
t=1

||u(t)− fΘ(Ω(ωt))||22.

In this case, fΘ is some nonlinear function parameterized by Θ, for example a Neural Network.
Thus, colloquially speaking, the Koopman Forecast algorithm fits a Neural Network driven by a
linear oscillator to data. Because of the nonlinearity of f , the objective E is notoriously difficult
to solve for ω. However, as laid out in [74], by exploiting periodicities in temporally local loss
functions in conjunction with coordinate descent, globally optimal values in the direction of ωi can
be obtained. Specifically, for every t, the temporally local loss function ||u(t) − fΘ(Ω(ωt))||22 is
periodic in 2π

t . Thus, it is sufficient to sample each temporally local loss function within its first
period in order to reconstruct E. The reader is referred to [74] for a more thorough discussion of
this technique.

3.3.2 Temporal Koopman with spatial decoder

In the following, we will show how the Koopman Forecast with a spatial decoder can alleviate
the problem of translational invariance. For this, a spatial decoder function fΘ is devised that
converts time into space. As fΘ, we choose a fully connected feed-forward Neural Network with the
following topology: 2→ 32→ 32→ 180 and tanh nonlinearity in intermediate layers. The output
dimensionality is 180 because space is sampled at 180 locations. The input dimensionality is 2
because we assume the system to be driven by a single frequency. Figure 8 shows graphically the
setup for the experiment. Note that fΘ can learn and preserve the nonlinear interactions between
waves but because it is a Neural Network, it is difficult to extract interpretable information about
the nature of the nonlinear interactions. Figure 9 shows the spatiotemporal prediction of the system
into the future (b) against the true data (a), with Figure 9c comparing a single time slice. The
algorithm correctly explains approximately 75% of the variance. Considering the measurements are
obtained by experimentation and therefore exhibit a considerable amount of noise, the Koopman
Forecast algorithm seems to perform well.
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Figure 8: A graphical depiction of the Koopman Forecast algorithm with one underlying frequency.
Colloquially speaking, the Koopman Forecast algorithm resembles a Neural Network driven by a
linear oscillator.

3.3.3 Spatiotemporal Koopman

The Koopman Forecast model paired with a spatial decoder seems to explain the data reasonably
well. However, because fΘ is a Neural Network, it is hard for practitioners to understand what the
algorithm has learned, i.e. the model gives little insight apart from the extracted frequency. In the
following a more idealized model will be introduced that is less flexible but also more interpretable.
The assumptions of the model are the following: We assume that N modes interact linearly and
that both modes travel at a constant speed. Specifically, we model the data as a superposition of
N rotating or shifted modes mi.

Let u(x, t) denote the wave height at position x and time t. Mathematically speaking, we
assume the following:

u(x, t) =
N∑
i

mi(fi(t) + x),

where fi(t) is a time-dependent function that models the offset of mode i at time t. In a next
step, we incorporate the knowledge that spatial boundary conditions are periodic. Assume that
u ∈ [0,K]. We can find a periodic parameterization of mi in the following way:

mi(x) = gθi

([
sin(2π

K x)
cos(2π

K x)

])
with θi being model parameters of the ith mode (e.g. weights of a Neural Network). Note that this
parameterization is periodic in K because:

mi(x+K) = gθi

([
sin(2π

K x+ 2π)
cos(2π

K x+ 2π)

])
= mi(x).
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(a)

(b)

(c)

Figure 9: (a) Original data in the laboratory coordinate frame, showing training data from times
t = [0, 1200) and testing data from times t = [1200, 1400], and a broader view of the testing data
set. (b) Prediction of the Koopman Forecast algorithm over the same testing time. (c) Comparison
of the prediction of the wave shape using the Koopman Forecast algorithm to the ground truth
wave shape at an example time step of t = 1300.

If we now assume that the offset of the ith mode increases at a constant speed ωi, we can
rewrite u(x, t) in the following way:

u(x, t) =

N∑
i

gθi

([
sin(2π

K x+ ωit)
cos(2π

K x+ ωit)

])
.

Let Θ = {θi}Ni=1. Fitting u(x, t) to measured data y(x, t) requires solving:

E(~ω,Θ) =
∑
t

∑
x

(y(x, t)− u(x, t)))2.

Solving this optimization objective for ω is, again, notoriously difficult as it is not only non-convex
but also non-linear. However, note that for every x and t, (y(x, t) − u(x, t)))2 is, again, periodic
in 2π/t. Therefore, an analogous strategy to the Koopman Forecast algorithm can be employed to
solve for ω.
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(a)

(b)

(c)

(d)

Figure 10: (a) Shows the prediction of the modal Koopman model on the same data from Figure 9a,
(b) and (c) show the inferred modes respectively. Note that colloquially, (a) = (b) + (c). (d) shows
the inferred modes at the same time step and the aggregate prediction (Mode 1 + Mode 2) in
comparison to the ground truth measurement data at an example time t = 1300.

Figure 10 shows the results when N = 2, i.e. when two additive modes are assumed. The
modal Koopman model is considerably stiffer as it only explains 65% of the variance in comparison
to the Koopman Forecast algorithm which explains 75%. However, the increase in stiffness also
results in an increase of interpretability. The algorithm allows us to decompose the data into the
co- and counter-rotating modes, Figure 10b and 10c. This enables practitioners to examine and
study modes individually. Figure 10d shows the prediction of the individual modes, the aggregate
prediction (Mode 1 + Mode 2) and ground truth respectively.

These two Koopman models prove to be useful tools in reduced-order modeling for RDE data,
giving reconstructions and predictions which provide a number of advantages. Primarily, the models
are extremely low-rank, representing the entire wave field in only 2 modes for the case of Figure 10.
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(a) (b)

(c)

(d)

(e) (f)

(g)

Figure 11: A comparison of the true measurements to the prediction of the Koopman Forecast
algorithm. (a) the full time series of original data in the laboratory frame. (b) highlights a short
time series showcasing the nonlinear interactions between wave fronts, as they do not run parallel
to the white guideline. (c) data shifted into the coordinate frame learned through UnTWIST. (d)
presents the prediction of the same data using the Koopman Forecast algorithm; (e) and (f) show
the Koopman Forecast shifted back into the laboratory frame, comparing to (a) and (b) respectively.
It is clear in (f) that the nonlinear interaction between the waves is well-preserved. (g) compares
the learned model to the true data at one time slice, t = 500, showcasing the robustness to noise
and the de-noising effect of the model.
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The models also prove to be applicable on RDE dynamics that behave linearly and nonlinearly,
preserving important nonlinear wave interactions. Another advantage of the Koopman approach is
that the methods are robust to noise that is rife in the experimental RDE data, effectively acting
as a de-noising filter as can be seen in Figure 11g. However, there is a lack of interpretability in
the wave interactions learned in the Koopman algorithms. This limits the use of Koopman and
neural network architecture in gaining intuition into the physics at play in the RDE system. While
methods such as UnTWIST may not perform as robustly in determining and separating modes in
traveling wave systems, they are able to provide more insight into the underlying dynamics.

4 Discussion and Conclusions

Data-driven ROMs are of growing importance across the engineering, physical and biological sci-
ences given our increasing ability to exploit emerging sensor technologies to observe and quantify
complex dynamical systems. Building models directly from observational data is at the forefront
of data-driven science and engineering [32] and addresses the increasing need for interpreting and
utilizing big data [75]. Importantly, good ROMs require that an appropriate coordinate system
be used in order for a low-rank representation of the dynamics to be achieved [33]. Invariances,
particularly rotational and translational, present significant challenges in making ROM models use-
ful for spatiotemporal systems. Simple traveling waves compromise standard ROM architectures,
thus requiring additional methods to handle the translational invariance [32, 39, 40, 41, 42]. More
recently, automated methods have been developed to handle traveling waves [43]. The so-called
UnTWIST method uses spectral clustering and machine learning techniques to provide a reference
frame pinned to a traveling wave. While the relevant RDE traveling wave dynamics are fully de-
scribed in one dimension, other open problems exist which demand higher-dimensional translations
to be captured. At present, there is a dearth of literature to approach translations in higher than
one dimension, and this is an interesting avenue of future work.

We have shown that the UnTWIST method can be used on observational data of a rotating
detonation engine to find a coordinate system that is pinned to any desired detonation wave. The
transformation gives a rotating coordinate system which is amenable to constructing ROMs that
characterize the detonation front interactions. The ROMs are constructed from observational data,
requiring no previous physics knowledge of the complex, multi-scale physics driving the combustion
dynamics themselves. Chiefly, the most advantageous aspect of this approach is that it is able to
separate the wave groups cleanly, and provide a clear representation of the waves traveling in
each direction. This is particularly useful in the RDE: the traveling wave shapes and velocities
give direct, though qualitative, indication of wave strength, chemical reaction rate, and relative
strengths of dissipative effects. Wave strength can be inferred by base-to-peak amplitude of the
waves, corresponding to a shock jump condition. Chemical reaction rate can be related to a chemical
length scale and is typically observed as the distance from the shock front to the point of greatest
luminosity, i.e. the peak of the waveform. Lastly, the rate of decay of the expansion-side of the
waves relates to the time scales associated with expelling the burnt combustion products away from
the combustion zone.

Moreover, UnTWIST allows a diversity of model reduction techniques to be applied. We demon-
strated three modeling approaches: (i) the DMD for building the best-fit linear dynamics model,
(ii) a Lotka-Volterra model for constructing nonlinear dynamical systems models for the detonation
wave interactions, and (iii) a deep Koopman model that uses a neural network to map the time-
dynamics to Fourier temporal behavior in order to characterize the dynamics. All three modeling
paradigms are relevant as the RDE data and detonation front interactions exhibit dynamics that
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range from approximately linear to strongly nonlinear. Such models provide reductions that enable
exploration of the complex and multi-scale dynamics of the reactive, compressible fluid dynamics
of RDEs.

The architecture presented here emphasizes the critical components necessary for data-driven
physics discovery, specifically the joint discovery of coordinates and parsimonious models that
represent interpretable and extrapolatory models of the physics. Given the recent emergence of
RDE data, and the lack of theory characterizing detonation wave interactions, our data-driven
method gives the beginnings of physical insights of the dynamics within RDEs. This proves to be a
promising first step for exploring data-driven models for similar transport-dominated experimental
data. Discovered models allow for engineering design and suggest control strategies that can be
imposed in order to manipulate the output of RDE. They can also better inform engineering of
the thermodynamic work loop [12] in order to optimize engine performance. This work shows that
these engineering challenges can be approached even if a detailed physics model is not available, or
if the computations are intractable.

Acknowledgements

We acknowledge the support from the Defense Threat Reduction Agency HDTRA1-18-1-0038. JNK
acknowledges support from the Air Force Office of Scientific Research (AFOSR) grant FA9550-17-1-
0329. SLB acknowledges support from the Army Research Office (ARO W911NF-19-1-0045). JNK
and SLB acknowledge support from the National Science Foundation (NSF HDR award #1934292).
ARM acknowledges support from Graduate Opportunities and Minority Achievement Program and
the Presidential Graduate Fellowship.

18



References

[1] V. Anand, A. S. George, R. Driscoll, and E. Gutmark, “Investigation of rotating detonation combustor
operation with h 2 -air mixtures,” International Journal of Hydrogen Energy, vol. 41, no. 2, pp. 1281–
1292, jan 2016.

[2] M. L. Fotia, F. Schauer, T. Kaemming, and J. Hoke, “Experimental study of the performance of a
rotating detonation engine with nozzle,” Journal of Propulsion and Power, vol. 32, no. 3, pp. 674–681,
may 2016.

[3] C. A. Nordeen, D. Schwer, F. Schauer, J. Hoke, T. Barber, and B. Cetegen, “Thermodynamic model of
a rotating detonation engine,” Combustion, Explosion, and Shock Waves, vol. 50, no. 5, pp. 568–577,
2014.

[4] Y.-T. Shao, M. Liu, and J.-P. Wang, “Numerical investigation of rotating detonation engine propulsive
performance,” Combustion Science and Technology, vol. 182, no. 11-12, pp. 1586–1597, oct 2010.

[5] J. Sousa, G. Paniagua, and E. C. Morata, “Thermodynamic analysis of a gas turbine engine with a
rotating detonation combustor,” Applied Energy, vol. 195, pp. 247–256, jun 2017.

[6] B. A. Rankin, M. L. Fotia, A. G. Naples, C. A. Stevens, J. L. Hoke, T. A. Kaemming, S. W. Theuerkauf,
and F. R. Schauer, “Overview of performance, application, and analysis of rotating detonation engine
technologies,” J. Prop. Power, vol. 33, no. 1, pp. 131–143, jan 2017.

[7] J. Koch, M. Kurosaka, C. Knowlen, and J. N. Kutz, “Mode-locked rotating detonation waves: Experi-
ments and a model equation,” Physical Review E, vol. 101, no. 1, jan 2020.

[8] ——, “Multi-scale physics of rotating detonation engines: Autosolitons and modulational instabilities.”

[9] R. Dyer, A. Naples, T. Kaemming, J. Hoke, and F. Schauer, “Parametric testing of a unique rotating
detonation engine design,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition. American Institute of Aeronautics and Astronautics, jan 2012.

[10] M. L. Fotia, J. Hoke, and F. Schauer, “Experimental performance scaling of rotating detonation engines
operated on gaseous fuels,” Journal of Propulsion and Power, vol. 33, no. 5, pp. 1187–1196, sep 2017.

[11] I. V. Walters, C. L. Journell, A. Lemcherfi, R. Gejji, S. D. Heister, and C. D. Slabaugh, “Parametric
survey of a natural gas-air rotating detonation engine at elevated pressure,” in AIAA Scitech 2019
Forum, jan 2019.

[12] J. Koch and J. N. Kutz, “Modeling thermodynamic trends of rotating detonation engines.”

[13] H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quan. Elec., vol. 6, no. 6, pp. 1173–1185, 2000.

[14] J. N. Kutz, “Mode-locked soliton lasers,” SIAM Review, vol. 48, no. 4, pp. 629–678, jan 2006.

[15] F. Li, P. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked
laser cavities,” JOSA B, vol. 27, no. 10, pp. 2068–2077, 2010.

[16] J. Koch, L. Chang, C. Upadhye, K. Chau, M. Kurosaka, and C. Knowlen, “Influence of injector-to-
annulus area ratio on rotating detonation engine operability,” in AIAA Propulsion and Energy Forum,
2019.

[17] D. Schwer and K. Kailasanath, “Numerical investigation of the physics of rotating-detonation-engines,”
Proc. Comb. Inst., vol. 33, no. 2, pp. 2195–2202, jan 2011.

[18] D. A. Schwer, R. F. Johnson, A. Kercher, D. Kessler, and A. T. Corrigan, “Progress in efficient, high-
fidelity, rotating detonation engine simulations,” in AIAA Scitech 2019 Forum. AIAA, jan 2019.

[19] S. Subramanian and J. Meadows, “Novel approach for computational modeling of a non-premixed
rotating detonation engine,” Journal of Propulsion and Power, vol. 36, no. 4, pp. 617–631, jul 2020.

[20] T. Gaillard, D. Davidenko, and F. Dupoirieux, “Numerical simulation of a rotating detonation with a
realistic injector designed for separate supply of gaseous hydrogen and oxygen,” Acta Astronautica, vol.
141, pp. 64–78, dec 2017.

[21] J. Sun, J. Zhou, S. Liu, Z. Lin, and J. Cai, “Effects of injection nozzle exit width on rotating detonation
engine,” Acta Astronautica, vol. 140, pp. 388–401, nov 2017.

[22] J. Sun, J. Zhou, S. Liu, and Z. Lin, “Numerical investigation of a rotating detonation engine under
premixed/non-premixed conditions,” Acta Astronautica, vol. 152, pp. 630–638, nov 2018.

[23] C. Lietz, N. L. Mundis, S. A. Schumaker, and V. Sankaran, “Numerical investigation of rotating deto-
nation rocket engines,” in 2018 AIAA Aerospace Sciences Meeting. AIAA, jan 2018.

[24] R. Zhou and J.-P. Wang, “Numerical investigation of flow particle paths and thermodynamic per-
formance of continuously rotating detonation engines,” Combustion and Flame, vol. 159, no. 12, pp.
3632–3645, dec 2012.

[25] R. T. Fievisohn and K. H. Yu, “Steady-state analysis of rotating detonation engine flowfields with the

19



method of characteristics,” Journal of Propulsion and Power, vol. 33, no. 1, pp. 89–99, jan 2017.

[26] J. Sousa, J. Braun, and G. Paniagua, “Development of a fast evaluation tool for rotating detonation
combustors,” Applied Mathematical Modelling, vol. 52, pp. 42–52, dec 2017.

[27] T. Kaemming, M. L. Fotia, J. Hoke, and F. Schauer, “Thermodynamic modeling of a rotating detonation
engine through a reduced-order approach,” Journal of Propulsion and Power, vol. 33, no. 5, pp. 1170–
1178, sep 2017.

[28] A. R. Mizener and F. K. Lu, “Low-order parametric analysis of a rotating detonation engine in rocket
mode,” Journal of Propulsion and Power, vol. 33, no. 6, pp. 1543–1554, nov 2017.

[29] M. Bohon, R. Bluemner, A. Orchini, C. Paschereit, and E. Gutmark, “Analysis of rdc operation by dy-
namic mode decomposition (dmd),” in AIAA Propulsion and Energy 2019 Forum. American Institute
of Aeronautics and Astronautics, Aug. 2019.

[30] J. Humble, S. V. Sardeshmukh, and S. D. Heister, “Reduced order modeling of rotational detonation
engines,” in AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics, jan 2019.

[31] J. N. Kutz, Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big
Data. Oxford University Press, 2013.

[32] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical
Systems, and Control. Cambridge University Press, 2019.

[33] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model reduction methods for
parametric dynamical systems,” SIAM review, vol. 57, no. 4, pp. 483–531, 2015.

[34] K. Taira, S. L. Brunton, S. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt,
S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal analysis of fluid flows: An overview,” AIAA
Journal, vol. 55, no. 12, pp. 4013–4041, 2017.

[35] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. Dawson, and C.-A. Yeh,
“Modal analysis of fluid flows: Applications and outlook,” arXiv preprint arXiv:1903.05750, 2019.

[36] A. C. Antoulas, Approximation of large-scale dynamical systems. Siam, 2005, vol. 6.

[37] J. S. Hesthaven, G. Rozza, B. Stamm et al., Certified reduced basis methods for parametrized partial
differential equations. Springer, 2016.

[38] A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations: an
introduction. Springer, 2015, vol. 92.

[39] M. Kirby and D. Armbruster, “Reconstructing phase space from PDE simulations,” Zeitschrift für
angewandte Mathematik und Physik ZAMP, vol. 43, no. 6, pp. 999–1022, 1992.

[40] C. W. Rowley and J. E. Marsden, “Reconstruction equations and the Karhunen–Loève expansion for
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