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An ensemble Kalman filter for vortex models of disturbed aerodynamic flows
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The task of dynamic flow estimation is to construct an instantaneous approximation of an evolving
flow—and particularly, its response to disturbances—using measurements from available sensors.
Building from previous work by Darakananda et al. (Phys Rev Fluids 2018), we further develop an
ensemble Kalman filter (EnKF) framework for aerodynamic flows based on an ensemble of randomly-
perturbed inviscid vortex models of flow about an infinitely-thin plate. In the forecast step, vortex
elements in each ensemble member are advected by the flow and new elements are released from
each edge of the plate; the elements are modestly aggregated to maintain an efficient representation.
The vortex elements and leading edge constraint are corrected in the analysis step by assimilating
the surface pressure differences across the plate measured from the truth system. We show that
the overall framework can be physically interpreted as a series of adjustments to the position and
shape of an elliptical region of uncertainty associated with each vortex element. In this work, we
compare the previously-used stochastic EnKF with the ensemble transform Kalman filter (ETKF),
which uses a deterministic analysis step. We examine the response of the flat plate at 20◦ in two
perturbed flows, with truth data obtained from high-fidelity Navier–Stokes simulation at Reynolds
number 500. In the first case, we apply a sequence of large-amplitude pulses near the leading edge
of the plate to mimic flow actuation. In the second, we place the plate in a vortex street wake
behind a cylinder. In both cases, we show that the vortex-based framework accurately estimates
the pressure distribution and normal force, with no a priori knowledge of the perturbations or their
structure. We show that, in each case, the ETKF is consistently more robust than the stochastic
EnKF and is qualitatively better at representing the coherent structures of the true flow. Finally,
we examine the mapping from measurements to state update in the analysis step through singular
value decomposition of the Kalman gain.
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I. INTRODUCTION

The objective of aerodynamic flow estimation is to construct an approximation of the time-varying flow about a
lifting surface from the available sensors. This task has a variety of potential uses, principally within the context of an
overall closed-loop control strategy, in which the estimation of the evolving flow field enriches the information available
to the controller. For example, we may seek to exploit transient flow mechanisms, such as the high lift achievable in
dynamic stall [1–5], or to manage the flow in the presence of unknown atmospheric disturbances (gusts) [6, 7]. In
such situations, the flow is subjected to transient disturbances—from flow actuators, wing maneuvers, or gusts—and
in many instances, the disturbance induces the flow to separate or significantly affects an already separated flow.

The flow estimation problem can be posed in a variety of settings, loosely categorized by the degree to which the
estimator is built on a physics-based model. At one extreme, the estimator incorporates little to no physics and a
supervised machine learning architecture is trained to map sensor data to some description of the flow field [8, 9]. In
contrast, if the estimator relies on a predictive physics-based model, then its job is to use the sensor data to correct
that prediction for unrepresented effects. In particular, though the physics model may be outfitted with the geometry
and the basic flow state, the sensor data is the only source of information on disturbances. This prediction and
measurement update process is the generic task of data assimilation, the focus of this paper.

All estimation strategies seek the state vector xk, which contains sufficient information to specify the system’s
state at any discrete time step tk. In flow estimation, xk not only contains a finite-dimensional representation of the
flow field, but also any boundary conditions or model parameters that are uncertain. This state vector’s evolution is
predicted (forecast) with a dynamical operator fk, based on a time discretization of some underlying physics model,

xk = fk(xk−1). (1)

The dynamical model is paired with an observation operator hk,

zk = h (xk) , (2)

which returns a vector of predicted observations, zk. The data assimilation framework provides a means of folding new
observations from the true system into the model through adjustments of the state vector. Generically, this adjustment
(analysis) is carried out through an optimization: determine the adjustment that minimizes the difference between
new sensor measurements z? from the truth system and the model-predicted measurements from (2). Though this
optimal adjustment can be derived deterministically, it is important to remember that we anticipate uncertainty in
the estimation task due to random noise in both the dynamics and the measurements. Thus, in stochastic estimation,
such as in the various forms of the Kalman filter, the adjusted state estimate is the one that minimizes its uncertainty
after new measurements have been assimilated [10, 11]. The degree to which we favor the dynamical prediction or
the measurements is determined by the relative levels of noise we assume for each.

Under the assumption that the noises are drawn from Gaussian distributions, the system’s uncertainty is com-
pletely characterized by the covariance matrix. Both the Kalman filter and its variant for non-linear systems, the
extended Kalman filter, require that this covariance matrix be stored and propagated along with the mean state
itself. For high-dimensional systems such as in fluid dynamics, this storage and propagation of the covariance matrix
is computationally intractable. This challenge was addressed by Evensen with the ensemble Kalman filter (EnKF)
[12], a Monte Carlo approach to the two-step filter algorithm. In the EnKF, the system’s mean and covariance are
approximated by an ensemble of states randomly sampled from the probability distribution. In the forecast, each
state is advanced by the dynamical model; in the analysis step, each ensemble member is updated with the new
observation to minimize the posterior covariance. Thus, for state dimension n and ensemble size M < n, one need
only store Mn state components rather than a n× n matrix.

The dynamical operator in a flow estimation framework can take various forms, including high-fidelity Navier–
Stokes simulation. Indeed, this has been the basis for recent work by da Silva and Colonius [13, 14]. In [13], they
advanced the state vector for flow past an airfoil with an operator derived from an immersed boundary projection
method [15]. The state vector contained grid velocity data as well as the value of the freestream velocity and its
time derivative. The truth system in this case was generated by the same simulations, but with the time-varying
freestream velocity prescribed. However, the EnKF-based estimator only used sparse surface pressure measurements
from this truth system, from which it successfully estimated the model’s instantaneous freestream velocity.

Since an ostensible goal for flow estimation is real-time control, dynamical models obtained from CFD will generally
not be fast enough to update the state. In their subsequent work in [14], da Silva and Colonius utilized a dynamical
model for the airfoil flow consisting of cheaper coarse-grid simulations. Their state vector was then augmented with
a bias error, which they successfully estimated along with the coarsened grid state from surface observations of the
higher-fidelity truth data. Though this coarse-grid approach is certainly faster, it is unclear whether the approach
can be extended to very small-dimensional state vectors before aliasing errors would overwhelm the solution of the
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governing flow (Navier–Stokes or Euler) equations. Data-based modal decompositions, such as proper orthogonal
decomposition (POD), are commonly used to reduce the dimension of grid-based solutions [16], and a Galerkin model
based on such a decomposition might provide a suitable approach for computationally-efficient estimation. However,
a modal decomposition cannot efficiently capture the influence of large-amplitude flow disturbances if they are missing
from the basis modes.

We seek an alternative low-dimensional representation of the flow, with a dynamical model that is computationally
efficient but remains sufficiently rich to describe important physical phenomena. Aerodynamics has long relied on
inviscid vortex models for representing and interpreting unsteady flow phenomena [17–21]. Vortex models have a
particular advantage in a flow estimation framework, because their physical fidelity and numerical accuracy are
distinct. For example, even a model consisting of a small number of point vortices is still an exact solution (to within
time marching error) of the two-dimensional inviscid equations of motion, including the non-linear convection. Thus,
a vortex model of any size might serve as a low-dimensional representation of a more complex flow furthermore, it
can readily account for the influence of disturbances, e.g., through Biot–Savart interactions.

Viscosity is obviously explicitly absent from an inviscid vortex model. However, among the roles of viscosity in
moderate to large Reynolds number external flows, only the generation of vorticity at the surface of a body is truly
essential to the flow’s large-scale dynamics. Classically, this vorticity generation was restricted to vortex shedding
from the trailing edge, by regularizing to flow at the edge with the Kutta condition [17, 21]. However, in recent
years, a number of inviscid vortex models have been developed for predicting aerodynamic flows with leading-edge
separation, at a wide range of angles of attack [22–25]. Ramesh et al. [24] introduced the concept of the leading-edge
suction parameter (LESP), a nondimensional measure of the amount of suction (integrated pressure) at the nose of an
airfoil. In their criterion [24], which can be interpreted as a generalization of the Kutta condition [21], vortex elements
are only shed from the leading edge if LESP exceeds a critical value, LESPc; if LESPc is set to zero, then the Kutta
condition is enforced at that edge. The circulation of the new vortex element is proportional to the amount by which
LESP exceeds LESPc. Thus, to complete a basic inviscid vortex model of a separated flow past an airfoil, one need
only specify the value of LESPc. Ramesh et al. [24] hypothesized that this critical value is constant and a function
only of the airfoil shape; they tuned its value in a thin airfoil model to match the observed separation in a high-fidelity
Navier–Stokes simulation of the airfoil. This hypothesis has been confirmed to hold for a wide variety of unsteady
flows generated by an airfoil undergoing unsteady maneuvers [26]. However, for flows subjected to disturbances such
as gusts, there is no a priori reason to believe that the hypothesis still holds, and, without further knowledge, its
value should be assumed time-varying and uncertain. Furthermore, because LESPc is a measure of a critical behavior
in the pressure, its value is likely to be observable from surface pressure measurements.

Thus, an inviscid vortex model outfitted with a leading-edge shedding condition based on LESPc is a strong
candidate for the forecast step in aerodynamic flow estimation. A caveat of the model is that its computational
complexity is O(q2), where q is the number of elements. With elements shed from the edges at every time step,
the model can easily lose its computational advantage over CFD-based approaches. To restrain the growth of this
dimensionality, vortex elements can be aggregated with various conservation constraints, e.g., based on moments
of the vortex system [27], the rate of change of linear impulse [25], or the velocity induced at the leading edge
[28]. Aggregation addresses another issue that arises when a vortex model is applied to a flow past an airfoil at
moderate angle of attack. Such flows exhibit extensive interactions between shed vorticity and the plate. Singular
vortex elements thus remain close to the plate and, without the influence of viscosity, create strong and non-physical
pressure disturbances that interfere with the model’s predictive utility. Aggregation tends to move vortex elements
away from the plate, thereby mitigating this behavior [25].

To exploit these potential benefits of a vortex-based assimilation procedure, Darakananda et al. [29] developed a
data-assimilated vortex model in which the state vector consisted of the positions and strengths of vortex elements
and the value of LESPc for a flat-plate airfoil. The vortices were aggregated by the same approach as in [25], which
ensured that the number of elements remained lower than 60 in all cases considered. The vortex model was expressed
in an EnKF framework, with the observation vector composed from the jump in surface pressures across the flat plate.
By assimilating measurements from a high-fidelity simulation at Reynolds number 500, the estimation framework was
able to successfully reproduce the force history on the plate.

The current work extends the estimation framework of Darakananda et al. [29] and is motivated by two observations
from that work. In one of the examples in [29], the flat plate was subjected to vortical gusts generated upstream.
Remarkably, the estimation framework performed well even with no representation for the gust itself in the state vector.
In other words, the dynamics of interaction between the gust and the separated flow was entirely accounted for through
adjustments made in the analysis steps to vorticity shed from the plate. The estimator needed no knowledge of the
gust’s structure, a great advantage since gusts are, by definition, unknown. In this work, we probe this more deeply
by focusing exclusively on flows subjected to incident gusts. We purposely apply gusts that are stronger and in faster
sequences than in [29], so that their individual influences on the flow cannot easily be decorrelated. Even if we knew
each gust’s parametric form, it would be very difficult to unambiguously disentangle their parameters. In this paper,
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FIG. 1. Schematic of the two-dimensional infinitely-thin plate.

we explore whether this parameter estimation task can be avoided.
The second observation from [29] was that the estimator’s performance on any given flow varied substantially

from one realization to the next, often exhibiting non-physical spikes in the pressure and force at random instants.
This lack of consistent behavior is clearly undesirable for practical estimation applications. We attempt to address
this by utilizing a variant of the EnKF called the ensemble transform Kalman filter (ETKF). As we review later,
the ensemble in the original EnKF (called the stochastic EnKF, or sEnKF) does not reproduce the exact posterior
covariance relation of the Kalman filter, causing spurious noise in the resulting estimate. The ETKF, developed by
Bishop et al. [30], fixes this with an analysis step that exactly reproduces the expected covariance.

The rest of this paper is organized as follows. Section II reviews the aggregated vortex model and presents a state-
space formulation of the model. Section III introduces the ensemble Kalman filter theory, including both the original
sEnKF and the ETKF. The results of the data-assimilated aggregated vortex model, using both forms of EnKF, are
presented on example problems in IV. Concluding remarks follow in V. For the sake of completeness, pseudo-codes
for the two EnKF methods are provided in the Appendix.

II. THE AGGREGATED VORTEX MODEL

This section provides a summary of the aggregated vortex model, which constitutes the dynamical part of our flow
estimator. Let (e1, e3, e3) be the canonical basis of R3. We focus in this paper on the response of a two-dimensional
infinitely-thin plate of chord length c at an angle of attack α, translating impulsively from rest at a velocity Ue1 in
a fluid of density ρ, see Fig. 1. Throughout this study, positions will be reported in chord lengths and time will be
measured in convective units t? = tU/c.

The flow is modeled by a collection of q regularized point vortices, called blobs, identical to the model used by
Darakananda et al. [29]. The vorticity field is given, as usual for a regularized vortex particle method, by

ω(r, t) =

q∑
j=1

Γqζε(r − rq), (3)

where ζε is a blob kernel with radius ε. The purpose of a blob is to de-singularize the Biot–Savart interactions with
other nearby elements. Its effect on elements farther than ε is indistinguishable from that of a point vortex. The blob
kernel in this work takes the commonly-used algebraic form ζε(r) = (ε2/π)(|r|2 + ε2)−2. We refer readers to [21] for
a review of modeling strategies of two dimensional inviscid flows.

As we have mentioned earlier, the main role of viscosity in moderate to high Reynolds number external flows, is to
generate vorticity at the surface of a body. We model this vorticity flux by shedding new vortex elements from the
edges of the plate. In particular, we apply the classical Kutta condition at the trailing edge. However, enforcing the
Kutta condition at the leading edge at small to moderate angles of attack leads to a non-physical flow. The regularized
flow will leave tangentially the leading-edge in the opposite direction to the freestream. Instead, Ramesh et al. [31]
found experimentally that the flow at the leading edge can support a finite amount of suction (integrated pressure)
before to trigger a flow separation. They defined the leading edge suction parameter (LESP) as a nondimensional
measure of the amount of suction at the noise of an airfoil. An elegant vortex shedding criterion can be formulated
from this definition: vortex elements are shed only if the LESP exceeds a critical value denoted LESPc [24, 31].
Eldredge [21] showed that the Kutta condition is recovered if LESPc is set to zero. The circulation of the new vortex
element is proportional to the amount by which LESP exceeds LESPc. We apply this shedding criterion at the leading
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edge. The LESPc is included with the vortex elements’ positions and strengths as part of the system state vector,
x. Following Ramesh et al. [24], the LESPc is forecast to remain constant. Ramesh et al. [26] and Darakananda et
al. [29] have shown that LESPc has a strong authority over the vortex dynamics near the leading edge. The true
vortex dynamics are encoded in the pressure measurements of the plate, from which we can distill an estimate of the
LESPc [9, 29]. In other words, though LESPc is predicted to remain constant, the assimilated pressure measurements
will tend to cause it to vary, thereby triggering the release of weaker or stronger vorticity.

We use the same vortex element aggregation scheme developed by Darakananda et al. [29]. By aggregating vortex
elements at every time step, the overall population remains modest (smaller than 60 in all cases explored) and the
aggregated elements stay relatively farther from the plate than without such treatment, dramatically reducing the
occurrence of spurious pressure disturbances.

In our flow estimator, the state variable xk contains the positions and circulations of q blobs and the critical
leading-edge suction parameter LESPc,

xk =
[
x1k y1k Γ1

k . . . xqk yqk Γq
k LESPck

]>
. (4)

Thus, the state vector dimension is n = 3q + 1. The dynamical model (1) applies the following operations:

(a) Enforce the no-flow-through condition on the plate,

(b) Introduce new vortices according to the Kutta condition at the trailing edge and the current estimate of LESPc
at the leading edge,

(c) Advect vortices and plate,

(d) Aggregate vortex elements, and nullify the strength of the source blobs.

More details on fk can be found in [29].
In this work, we propose to rely on the assimilation of pressure jump coefficients—∆Cp = 2(p+ − p−)/ρU2 where

+ and − denote the upper and lower side of the plate—obtained from the truth system to correct our aggregated
vortex model [29]. The role of the assimilation is twofold: to better account for the viscous effects, and to account
for the presence of flow disturbances in the true system that are not modeled into the vortex model. The observation
operator hk in (2) uses the unsteady Bernoulli equation to predict the pressure jump coefficients at d locations on
the plate [32]. In this work, pressure measurements are calculated (and also provided by the truth system) at the
following d = 50 sampled Chebyshev points:

c

2
cos

(
10iπ

512 + 1

)
for i = 1, . . . , d. (5)

III. ENSEMBLE KALMAN FILTERING METHODOLOGY

In this section we describe the filtering methodology that underpins our data-assimilated vortex model. We start
by reviewing the basic filtering problem and the purpose of addressing this problem with an ensemble approach. We
then present two flavors of ensemble Kalman filter: the sEnKF as well as a deterministic variant called the ensemble
transform Kalman filter (ETKF) (Bishop et al. [30]). Both will be evaluated in the vortex model applications that
follow in Section IV. Then, we will review the important technique of covariance inflation to prevent filter divergence.
Finally, we will interpret the data-assimilated vortex model on physical grounds.

A. A review of the filtering problem

In this section, we present a basic outline of the general filtering problem and its connection with Bayesian inference;
details on this can be found in several references, including Asch et al. [11], Bishop et al. [30], Carrassi et al. [33],
Evensen [34] and Vetra-Carvalho et al. [35]. Though the variants of the ensemble Kalman filter can be explained
without this background, it is useful to discuss it in order to justify the use of the ensemble Kalman filter in a filtering
problem and to identify some of its limitations. In this section and those that follow, we use the following font
conventions. Serif fonts refer to random variables, e.g. A on Rn, or A on R. Lowercase roman fonts refer to realization
of random variables, e.g. a on Rn, or a on R. πA denotes the probability distribution for the random variable A,
and a ∼ πA means that a is a realization of A. πA | B=b, or πA | B(· | b), is the probability distribution of the random
variable A knowing that random variable B takes the value b. It is called the conditional probability of A given b.
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FIG. 2. One time step of the data-assimilated aggregated vortex model

For the sake of generality, we frame our discussion on a generic discrete nonlinear state-space model (1), but we
will connect the reader throughout to the present case of a low-order vortex model. Formally, the model is described
by the pair of random variables (Xk,Zk) for k ≥ 1, where Xk is the state variable of a Markov process in Rn and
Zk ∈ Rd is an observation of the state Xk, assumed to be conditionally independent of the state (detailed later in this
section). In our case, the state variable is composed of the LESPc and the positions and strengths of the entire set of
point vortices, while the observation vector is given by the vector of pressure jump coefficients along the plate. The
dynamics of the state Xk is described by the probability distribution for the initial condition πX0

and a propagation
equation, also called the dynamical equation:

Xk = fk(Xk−1) + Wk, (6)

where fk : Rn −→ Rn is the forward operator and Wk is an additive process noise. In the present case, fk is the time-
discretized vortex model. Propagating the dynamical equation for the state variable Xk−1 is equivalent to sampling
from the transition distribution πXk | Xk−1

(· | xk−1) where xk−1 is one realization of the random variable Xk−1.
In general, the state Xk is only indirectly observed in a noisy and nonlinear fashion through Zk:

Zk = hk(Xk) + Vk, (7)

where hk : Rn −→ Rd is the observation operator and Vk is an additive measurement noise. In our case, hk applies
the unsteady Bernoulli equation to the state vector to obtain a vector of pressure differences, at discrete locations,
between the upper and lower surfaces of the plate. The gradient of the observation operator hk evaluated at the
current state xk is called the tangent linear of the observation operator, denoted Hk, i.e., Hk = ∇hk [11]. It is
important to note that we do not restrict ourselves in this section to Gaussian distributions for the initial condition,
process noise, or measurement noise. Furthermore, the forward and observation operators can be time-dependent. In
general, the dynamical and observation models could include forcing terms. In our case, the system is not subject to
known forcing terms, and we have omitted these terms for brevity.
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In the filtering problem, we leverage the realizations of the observation process (z)1:k to infer the realization of
the state variable x at time step k. Our main objective is to estimate the posterior distribution of this state—
providing us with complete information about the state and its uncertainty—given all of the observations made thus
far, πXk | Z1:k

(x | z1:k) = πXk | Z1,Z2,··· ,Zk
(x | z1, z2, · · · , zk). In the present case, we seek to estimate the position and

strength of the vortex elements and the LESPc based on all the pressure observations that are available up to this
time. Let us consider the estimation of this posterior distribution from the most recent observation, zk, which can be
computed from Bayes’ theorem [11, 33, 35]:

πXk | Z1:k
(x | z1:k) =

πZk | Xk
(zk | x)πXk | Z1:k−1

(x | z1:k−1)

πZk
(zk)

, (8)

where πZk | Xk
(zk | x) is the likelihood distribution, i.e., the probability of the observation zk if we knew the state x;

πXk | Z1:k−1
(x | z1:k−1) is the prior distribution, our estimate of the state before knowledge of the new observation zk;

and πZk
(zk) is the distribution of the observation. In our case, Bayes’ theorem tells us how the probability densities

of the positions and strengths of the vortex elements and the LESPc value get updated by the assimilation of a new
pressure observation. Note that, in the likelihood, we have assumed that the observation errors are independent in
time, so it is only conditioned on the current state and not on past observations. Indeed, the Bernoulli equation only
depends on the current collection of vortex elements and LESPc value, and not on its past values. Since πZk

(zk) can
be thought of as a normalizing constant, we can rewrite (8) as:

πXk | Z1:k
(x | z1:k) ∝ πZk | Xk

(zk | x)πXk | Z1:k−1
(x | z1:k−1). (9)

This equation provides us with a means of assimilating a new observation, zk, into our forecast probability distribution
for the state [36]. The forecast itself comes from our dynamical model. Under the Markov assumption for the state
dynamics, the distribution of the state at time step k depends only on the state at the previous time step k − 1, i.e.,
πXk | X0:k−1

= πXk | Xk−1
. The Markov assumption is appropriate in this problem as the time marching of the discrete

vortex model only depends on the distribution of vortex elements and the LESPc value at the previous time step.
The joint distribution πXk−1:k

can thus be factorized into this state transition and the posterior distribution at the
end of the previous step:

πXk−1:k | Z1:k−1
= πXk | Xk−1

πXk−1 | Z1:k−1
. (10)

By recursively applying this equation with (9) substituted for the posterior distribution, it is easy to show that

πX0:k | Z1:k
∝ πX0

k∏
i=1

πZi | Xi
πXi | Xi−1

. (11)

This equation is central in Bayesian inference since it justifies the use of sequential methods to estimate the posterior
distribution [33, 36]. We can update our previous estimate with new observations sequentially without having to
restart the calculation at every time step.

The prior distribution πXk|Z1:k−1
can be obtained by marginalizing (10) over all the possible realizations of the state

at time k − 1:

πXk | Z1:k−1
=

∫
Xk

πXk | Xk−1
πXk−1 | Z1:k−1

dXk−1. (12)

This equation is called the Chapman–Kolmogorov equation and corresponds to a direct integration of the state
transition kernel [33, 36].

Thus, Bayes’ theorem (9) coupled with equation (12) provides us with an elegant update rule for incorporating
new measurements into the probability distribution, and thus, improving our estimate of the mean and uncertainty of
the state. It requires a time-discretized dynamical model (6) for the state transition, πXk|Xk−1

, and an observational
model (7) for the likelihood πZk|Xk

.
However, there are two primary challenges with applying this in the contexts of interest here. First, we do not

generally know the forms of distributions involved in any of these formulas. In what follows in this paper, we will
make the typical assumption that all errors are drawn from Gaussian distributions with zero mean, but there are
good reasons to doubt that this is reasonable in the present nonlinear context of a vortex model. Second, for high-
dimensional problems, the integration of the Chapman–Kolmogorov equation (12) is intractable. Indeed, here, as in
many physics contexts, the forecast step corresponds to the time advancement of a partial differential equation (the
Euler equations), so it is infeasible that we could advance such an equation over all possible values of the state. In
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our case, this corresponds to one time step of the discrete vortex model for all the possible values of the strength and
position of the vortex elements and the LESPc. Even if our the discrete vortex model is lower dimensional than the
discretized Navier–Stokes system, to be sure, it still contains tens to hundreds of degrees of freedom.

Both of these challenges motivate our use of ensemble filtering methods in this work to sequentially estimate the
posterior distribution. We use a set of M particles

{
x1,x2, · · · ,xM

}
sampled from the state distribution πXk−1 | Z1:k−1

and we aim to construct a particle approximation of the posterior distribution πXk | Z1:k
. It should be stressed that

the term “particle” is used here in its usual sense in stochastic estimation as a member of the ensemble; it does not
denote a vortex particle, a term that we avoid in this paper in favor of “vortex element” or “vortex blob”. In the
present case, a particle xi is a sample of the distribution of interest for the positions and strengths of the vortex
elements and the LESPc.

To construct this particle approximation of the posterior distribution, we perform the following two steps: a forecast
step and an analysis step. In the forecast step, each particle xi is propagated through the dynamical equation (1)
(the vortex model) and randomly perturbed with noise (called additive covariance inflation, discussed below) to
form samples from the prior distribution πXk | Z1:k−1=z1:k−1

. This ensemble forecast step constitutes a Monte Carlo

approximation of the Chapman–Kolmogorov equation (12). Given this sampling
{
xi
}

from the prior distribution,

one can easily create a sampling
{
zi
}

from the likelihood distribution πZk | Xk
by evaluating the observation equation

(2) (the Bernoulli equation) for each ensemble member xi, i = 1, . . . ,M .
The analysis step then updates the set of ensemble members by assimilating the new realization z?k of the observation

variable Zk; in this paper, z?k represents a new pressure difference measured from the truth system, a high-fidelity
Navier–Stokes simulation. With the probability distributions unknown, this would require that we estimate the
posterior distribution via Bayes’ theorem (9) given the finite set of samples

{
xi, zi

}
from the joint distribution formed

by the prior and likelihood. However, the task is made considerably simpler if we assume that the distributions are
Gaussian. Under that assumption, and with knowledge of the prior mean and covariance matrix, then Bayes’ theorem
leads naturally to the analysis step of the classical Kalman filter [10]. In the particle approximation, in which we
estimate this mean and covariance from the finite ensemble statistics that emerge from the forecast, we obtain the
ensemble Kalman filter [11]. It should be noted, however, that since the underlying distributions are likely non-
Gaussian, our EnKF framework is not expected to converge in the limit of large ensemble size to the true Bayesian
solution (Mandel et al. [37]). Indeed, the EnKF can only produce a Gaussian approximation of the posterior density.
In the following sections we will present two forms of this method, but first we present some important notation.

B. Additional notation

We will use the superscript f to denote prior, forecast quantities and the superscript a to denote analysis, posterior

quantities. In particular, the exact prior mean is xf
k = E[Xk | Z1:k−1 = z1:k−1] = E[Xk | z1:k−1] and exact prior

covariance is P f
k = Cov[Xk | z1:k−1]. The posterior mean and covariance are given by xa

k = E[Xk | z1:k] and P a
k =

Cov[Xk |z1:k], respectively. The notations used in this section are similar to those of Asch et al. [11] and Raanes [38].
Given an ensemble (xi) of size M , we define the ensemble matrix X ∈ Rn×M as [11, 38]:

X =
[
x1,x2, . . . ,xM

]
. (13)

We use an overbar to denote statistics obtained from the ensemble, such as the sample mean and covariance:

x =
1

M

M∑
i=1

xi, P =
1

M − 1

M∑
i=1

(
xi − x

) (
xi − x

)>
, (14)

where > denotes the transpose operator. We define the anomaly matrix X ′ ∈ Rn×M of an ensemble as

X ′ =
1√

M − 1
[x1 − x,x2 − x, . . . ,xM − x]. (15)

The anomaly matrix obviously has zero mean. Using 1 to denote the vector of ones of length M , we can conveniently
define the sample mean, anomaly matrix, and sample covariance from the ensemble matrix:

x =
1

M
X1, X ′ =

1√
M − 1

X(I − 11>/M), P = X ′X ′
>
. (16)

Finally, we have the relation between the ensemble matrix and the anomaly matrix:

X = X +
√
M − 1X ′ (17)

where X = x1> = [x,x, . . . ,x] ∈ Rn×M . It is easy to verify that 1>1 = M , X ′1 = 0, and X1/M = x.
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C. The stochastic ensemble Kalman filter

The application of the stochastic ensemble Kalman filter for aerodynamic flow estimation was already presented in
[13, 29], but we review it here in order to identify an important deficiency that motivates our current treatment. The
forecast step of the sEnKF—and, indeed, of all forms of the EnKF—is given by applying (6) (the vortex model) to
each ensemble member [34]:

xf,i
k = f(xa,i

k−1) +wi
k for i = 1, . . . ,M, (18)

where the random process noise wi
k is drawn from the distribution wi

k ∼ πQk . It should be noted that this process
noise is not inherently part of the dynamical model and must be explicitly introduced; this is discussed in Section III E.

In order to simplify notation, we drop the time dependence subscript of the variables in the rest of this section, since
the analysis step does not involve time propagation. The analysis step of the sEnKF seeks a linear transformation of
the form:

xa,i = xf,i +K(z? + vi − h(xf,i)), for i = 1, . . . ,M, (19)

where xf,i and xa,i are the ith prior and posterior ensemble member, respectively; vi is drawn from the measurement
noise distribution πV; and z? is the realization of the observation variable Z at the current assimilation time. The
expression z? + vi − h(xf,i) is called the innovation for the ith ensemble member. In our case, (19) shows how
discrepancies in the pressure observations are mapped via the Kalman gain K into linear updates of the position and
strength of the vortex elements and the LESPc for each ensemble member.

The algorithm of the sEnKF is provided in Algorithm 1. The original analysis step derived by Evensen [12] did not
include the measurement noise term, but this was corrected by Burgers et al. [39] to reflect that z? is drawn from a
random distribution and to avoid some spurious correlations within the ensemble. The matrix K ∈ Rn×d is called the
Kalman gain and is identical to its form in the standard Kalman filter, derived to minimize the trace of the posterior
covariance matrix P a (as we will discuss further below):

K = P fH>(HP fH> + V )−1 (20)

with V the covariance matrix of the measurement noise and H the tangent linear of the observation operator. The

exact prior covariance P f is approximated by the sample prior covariance P
f

formed from the prior ensemble
{
xf,i

}
with (16), P

f
= X ′fX ′f

>
; similarly, the posterior covariance is approximated by P

a
= X ′aX ′a

>
.

The Kalman gain suggests that we must calculate the tangent linear of the observation operator. Evensen [12]

proposed a technique called implicit linearization that approximates P fH and HP fH> given the prior ensemble.
First, we construct zf the mean of the observations

{
h(xf,i)

}
for i = 1, . . . ,M :

zf =
1

M

M∑
i=1

h
(
xf,i

)
. (21)

Let us then define the innovation anomaly matrix Z ′f , with ith column given by

Z ′f,i =
h(xf,i)− zf − vi + v√

M − 1
, for i = 1, . . . ,M, (22)

and with v the sample mean of
{
vi
}

. It should be noted that this mean is itself a random number whose expected
value is 0.

The key ingredient of the technique is to make the following approximation [11]:

H(xf,i − xf ) ' h(xf,i)− zf . (23)

Using this approximation, it is easy to show that P fH> and HP fH> are approximated by X ′fZ ′f
>

and Z ′fZ ′f
>−

V , respectively [11], and thus, the Kalman gain (20) takes the simple form

K = X ′fZ ′f
> (
Z ′fZ ′f

>)−1
. (24)

To gain more insights on this formulation of the filter, we can rewrite the analysis update (19) with ensemble
matrix notations. From (17), the update of each posterior ensemble member is equivalent to a separate update of the
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posterior mean xa and the posterior anomaly matrix X ′a. From the linear analysis step (19), the posterior anomaly
matrix X ′a is updated according to ([11]):

X ′a = X ′f −KZ ′f ; (25)

the update equation for the posterior mean state xa is obtained by taking the expectation of the analysis step (19):

xa = xf +K(z? − zf ), (26)

where zf is defined in (21). Equation (26) is the exact Kalman update equation.
Our derivations thus far have omitted the fact that our actual ensemble is finite sized. Because of the assumed

linear form of the analysis step, equation (26) is reproduced almost exactly for finite-sized ensembles, except for
the addition of a lingering sample mean of the measurement noise, v, in parentheses. However, a more problematic
discrepancy lies in the relationship between the posterior and prior covariance matrices. For obtaining this relationship,
let us first denote by W ′ the anomaly matrix of the measurement noise W ′,i = (vi − v)/

√
M − 1; the product

W ′W ′> approximates the measurement covariance V . Then, from the update equation (25) and the definitions of
the covariances and innovation anomaly matrix, we can construct the equation for the posterior covariance matrix
[11]:

P
a

= (In −KH)P
f
(In −KH)> +KW ′W ′>K> + (In −KH)X ′fW ′>K> +KW ′X ′f

>
(In −KH)>. (27)

By taking the expectation of this matrix over the measurement noise process and then minimizing its trace over
K, we recover the classical Kalman gain (20) and a simple form of the expected value of the posterior covariance:

E[P
a
] = (In −KH)P

f
. (28)

Indeed, the classical Kalman filter adopts this expected value in order to propagate the covariance matrix, P a =

(In −KH)P f . However, the finite sample covariance P
a

= X ′aX ′a
>

does not reproduce this ideal relation except
in the limit of infinite ensemble sizes. Rather, the covariance of the finite ensemble only strictly satisfies (27),

due to spurious correlations between the forecast anomalies and observation noise, X ′fW ′>. Thus, the stochastic
analysis step of the sEnKF introduces error that degrades the performance of the ensemble Kalman filter [11, 30]. An
alternative form of the EnKF will be presented in the next section that addresses this issue.

D. The ensemble transform Kalman filter

In the previous section, it was shown that finite ensembles do not reproduce the expected value of the posterior
covariance matrix P

a
, and that this can cause the performance of the sEnKF to degrade. To circumvent the issue,

Bishop et al. [30] developed the ensemble transform Kalman filter (ETKF) that exactly reproduces the ideal propaga-
tion equation for the covariance. This has been shown to give better performance in other applications [11, 38]. The
ETKF belongs to a more general class of ensemble Kalman filters—called deterministic ensemble Kalman filters—that
verify exactly the correct propagation equation through various analysis schemes.

To generate a posterior anomaly matrix X ′a, one can start from the desired propagation equation for the covariance
and use the factorization of the sample covariance matrix (16):

P
a

= X ′aX ′a
>

= (In −KH)P
f (29)

The right-hand side of this equation can also be factorized when P
f

is replaced with its own factorization and the
ensemble expression (24) of the Kalman gain is introduced. In the following, it should be noted the innovation anomaly

matrix Z ′f is defined as in (22), but now without the observation noise, so that Z ′f = HX ′f :

X ′aX ′a
>

= (In −KH)X ′fX ′f
>

= (In −X ′fZ ′f
>

(Z ′fZ ′f
>

+ V )−1H)X ′fX ′f
>

= X ′f (IM −Z ′f
>

(Z ′fZ ′f
>

+ V )−1Z ′f )X ′f
>

= X ′fGX ′f
>
.

(30)
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Matrix G ∈ RM×M is symmetric positive definite. In order to produce an analysis equation for the posterior

anomaly matrix, we seek a square-root factorization of G [11]. In other words, we look for a matrix G1/2 such that

G = G1/2G1/2> = G1/2>G1/2. For a positive-definite matrix, the square-root decomposition exists but is not unique.

Indeed for an arbitrary orthogonal matrix U ∈ O(M)—i.e., any matrix such that UU> = U>U = IM—then G1/2U
is also a square-root of G [11, 38].

Therefore, the analysis update of the anomaly can be written as a right linear transformation [11]:

X ′a = X ′fG1/2U (31)

with some choice of U ∈ O(M), discussed below. Furthermore, the analysis update of the sample mean (25) can be
written with the help of (24) as

xa = xf +X ′fZ ′f
>

(Z ′fZ ′f
>

+ V )−1δ, (32)

where δ = z? − h(xf ) is the mean innovation. Equations (31) and (32) are used together, through (17), to update
the ensemble.

It is notable that this analysis step assembles both the posterior anomaly and the update to the mean from the
columns of X ′f . In other words, the analysis is said to be performed in the ensemble space: the update to the state
vector is a linear combination of the deviations among the forecast ensemble members from the mean. In our case, for
example, the position of a certain vortex element will be updated with a linear combination of the ensemble deviations
of that element’s position from the ensemble mean, after the ensemble has been advanced by the vortex model. This
emphasizes the importance of such variance among ensemble members: without it, any discrepancy δ between the
new observation and the predicted observation is simply ignored.

The form of this update is an attractive property of the ETKF since the ensemble size M—which is on the order of
100—is typically similar to the size of the state n encountered in the vortex model, and certainly much smaller than
the state vector associated with a CFD simulation [11, 30, 35]. Using Sherman–Morrison–Woodbury identities, the

formula for G1/2 can be simplified [35]:

G1/2 = (IM −Z ′f
>

(Z ′fZ ′f
>

+ V )−1Z ′f )
1/2

= (IM +Z ′f
>
V −1Z ′f )

−1/2
. (33)

In this work, we choose the symmetric square-root factorization, G = G1/2G1/2, among the different possibilities.

Given an eigendecomposition G = RΣR>, the symmetric square root G1/2 is given by RΣ1/2R>, with Σ1/2 the
entry-wise positive square root of the diagonal matrix Σ. Several studies [34, 38, 40] have shown that the symmetric
root has useful properties, particularly that it does not introduce a spurious mean in the posterior anomaly matrix:

G1 = 1, so 1 is an eigenvector of G with unit eigenvalue; thus, this is also true of G1/2, so X ′fG1/21 = X ′f1 = 0.

The overall construction of the size M square-root G1/2 is computationally inexpensive.
Sakov and Oke [41] have found that the choice of the symmetric square root leads consistently to better performance.

However, for large ensemble, the symmetric square root can lead to the creation of outliers in the ensemble. One can

prevent the appearance of these spurious members by right multiplying G1/2 by a random orthogonal matrix U from
time to time. To avoid bias in the posterior anomaly matrix, we must also ensure that X ′a has zero mean. To do
so, U must preserve the mean, equivalent to requiring that U1 = 1. Some authors [42, 43] have have proposed a
scheme based on sampling of the standard normal distribution and use of Householder reflections to construct such
mean-preserving random rotations; this algorithm is presented in Algorithm 2. For the other assimilation steps, U
is simply the identity IM . The overall ETKF is summarized in Algorithm 3. For further reading on the differences
between the sEnKF and the ETKF, we refer readers to Katzfuss et al. [44].

E. Covariance inflation

In the different flavors of the EnKF, one seeks to estimate the posterior covariance matrix of a state variable of
large dimension n with only a few ensemble members, M ∼ 100. Therefore, the posterior covariance is usually
underestimated with large sampling errors. This rank deficiency typically leads to long-range spurious correlations
within the covariance matrix. Over multiple assimilation cycles, the Kalman gain will decrease to zero and the
measurements will no longer be assimilated into the ensemble; this is called filter divergence. However, efficient
regularization techniques such as the covariance inflation and localization have been developed to mitigate these
sampling errors. These techniques underpin the success of the ensemble Kalman filters in high-dimensional filtering
problems. Localization is not implemented in this work but will be discussed in section IV to circumvent certain flaws
of our flow estimator and will be investigated in future work.
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Covariance inflation is typically applied between the forecast and analysis steps. A physical interpretation of the
covariance inflation in the context of our vortex modeling is presented in the next section. The multiplicative inflation
increases the spread of the ensemble about the sample mean, by rescaling the deviation xf,i−xf by the multiplicative
factor β > 1 for each ensemble member:

xf,i ←− xf + β(xf,i − xf ), for i = 1, . . . ,M. (34)

This form of inflation is equivalent to multiplying the sample prior covariance P
f

by β2; the best results are typically
found when β is set to 1.01 and 1.03 for the sEnKF and ETKF, respectively.

Additive inflation, in contrast, accounts for the process noise that is inherently missing from the dynamical model;
such noise is critical for ensuring that the ensemble maintains a variance among its members. This technique adds
to each ensemble member a sample from a Gaussian distribution with zero mean and covariance Q. The additive
inflation corresponds to a Tikhonov regularization of the prior covariance matrix:

P
f ←− P f

+Q. (35)

Whitaker and Hamill [45] proposed to combine the additive and multiplicative inflations. Indeed, Anderson and
Anderson [46] have shown that additive and multiplicative inflation account for distinct kind of errors. The multiplica-
tive inflation tends to account for sampling errors due to the small ensemble size, while the additive inflation tends
to correct intrinsic errors of the model. Multiplicative inflation only requires the tuning of one parameter. Adjusting
additive inflation requires tuning as many parameters as the dimension of the state. This requires more work and a
deeper understanding of the dynamical system. Raanes [38] showed that the additive inflation is a robust technique
to account for model errors, more complex inflation schemes can be constructed to reduce further model errors which
are not considered in this study [38, 45].

F. Flow estimation with an ensemble of aggregated vortex models

With the aggregated vortex model summarized in Section II and the details of the ensemble filtering methods
discussed above, we are now in a position to summarize the overall method. A schematic of this method is presented
in Fig. 2. In the forecast, an ensemble of aggregated vortex models are advanced by one time step. At the end of this
forecast, multiplicative and additive covariance inflation are applied to each member of the ensemble. The analysis
step is then carried out, either by applying Algorithm 1 for the sEnKF or Algorithm 3 for the ETKF.

It is useful to interpret the method physically. Before we discuss the physical roles of each step of the filter, it is
important to understand the effect of the ensemble and its propagation on the vorticity field. To demonstrate this
effect in the clearest manner, let us assume that the q vortex elements in each ensemble member are singular: point
vortices rather than blobs. Their blob form is only used to regularize the Biot–Savart interactions between them, and
our discussion here focuses only on the interpretation of the vorticity field itself.

We can then write the vorticity field at location r and time step k as a function of the random state vector Xk,
whose components (aside from LESPc) constitute the strengths and positions of the singular elements:

ω(r,Xk) =

q∑
j=1

Γj
kδ(r − r

j
k), (36)

where δ is the Dirac delta function. The expected value of the vorticity field at the end of time step k is given (ideally,
for infinite ensemble) in terms of the posterior distribution function

E[ω(r,Xk)] =

∫
ω(r,xk)πXk

(xk) dxk. (37)

(For simplicity of notation, we have omitted the fact that the distribution πXk
is conditioned on the observations

made thus far.) Under our Gaussian assumption, it is particularly easy to evaluate these integrals, and we arrive at

E[ω(r,Xk)] =

q∑
j=1

Γ
j

k

2π|P rj
k |1/2

exp

(
−1

2
(r − rjk)>P

rj
k

−1
(r − rjk)

)
, (38)

where | · | denotes determinant; Γ
j

k and rjk denote, respectively, the mean circulation and position of vortex element j
at time step k; and P

rj
k is the 2× 2 covariance submatrix associated with the position of vortex element j at step k.
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In other words, we can interpret each vortex element’s uncertainty as defining an elliptically-shaped region, centered
at its mean location and endowed with its mean strength. The behavior of this elliptical region’s shape over time is
determined by the combined influences of three processes in the filter: the forecast, the inflation, and the analysis.

The role of the forecast step is straightforward: it constitutes an inviscid (i.e., advective) advancement of the vortex
elements by one step and the creation of new vorticity to satisfy modeled edge conditions. The ensemble of such
inviscid models establishes a set of slightly different displacements of each vortex element. Since we interpret this
ensemble as approximating a Gaussian distribution both before and after the forecast, the set of displacements of
each vortex define a constrained transformation of the vortex’s ellipse: a net advection of the center and a stretching
and rotation of its shape.

The inflation step imposes two influences on each region’s shape. The multiplicative inflation stretches the ellipse
uniformly by a small fraction in every direction. The additive inflation, on the other hand, comprises a single step
of a random walk. It is well known that a random walk, applied over a large number of steps, approaches a Wiener
process, and the associated probability distribution satisfies a linear diffusion equation [47]. This diffusion causes the
elliptical region to spread, reminiscent of core spreading in vortex methods [48]. To simulate diffusion of viscosity ν,

the random step is chosen from a normal distribution with standard deviation
√

2ν∆t.
In the context here, the additive inflation occurs among other processes, so its interpretation is less clear. Chorin’s

random vortex method [49], utilizing a large number of overlapping vortex blobs undergoing random walks, is known
to converge to the solution of the Navier–Stokes equation as q−1/2 log q, where q is the number of blobs [50]. In the
EnKF context, it is possible to identify a stochastic differential equation that asymptotically describes the forecast
and inflation steps in the limit of large ensemble [51]. We leave a rigorous interpretation of the ensemble of vortex
models in this manner for future work. We merely observe that the variance of the distribution from which we select
the additive inflation parameter loosely specifies the viscosity of a diffusion process. However, we do not attempt
to match this effective viscosity to the actual viscosity in the truth system; rather, we tune the additive inflation to
balance the trust between the forecast and analysis steps.

Finally, in order to reconcile the new observations made in this step—namely, the pressures measured on the surface
of the wing—with the pressures predicted via the Bernoulli equation, the vortex elements’ positions and strengths
(and LESPc) need to be adjusted. The EnKF analysis step provides this adjustment by assembling a minimum
least-squares solution to the problem h(xa) = z?, subject to measurement noise V ; the minimization is regularized

by the forecast xf , with its associated covariance P
f
, ensuring that the new state vector does not stray far from its

forecast. Mathematically, this problem is expressed as [14, 52]:

xa = argmin
x∈Rn

1

2
(z? − h(x))>V −1(z? − h(x)) +

1

2β
(x− xf )>P

f−1
(x− xf ), (39)

with β the multiplicative covariance inflation factor. The analysis step causes the covariance to shrink, according to
(27). The elliptical region associated with each vortex element is translated, stretched, and rotated by the analysis
step, but its area shrinks.

It should be noted that the dimension of the state vector, n, changes with each time step of this filtering process:
it increases typically by six (three per newly released blob originating from each edge), and occasionally decreases as
elements of zero strength are eliminated. There are no inherent restrictions in the EnKF on changes to the dimension
of the state. However, in order to keep a consistent state dimension, i.e., the same number of blobs across the different
ensemble members, the vortex elements whose circulations are aggregated into another element are not removed, but
rather, are simply assigned zero circulation. Similarly, even if the LESP does not exceed the current estimate of the
LESPc, a new vortex with zero circulation is still introduced. If the blob has zero circulation across all ensemble
members, then it is removed from the state vector.

We discretize the vortex model with the forward Euler time scheme with time step ∆t? = 0.01. The blob radius δ
(normalized by c) is set to 5× 10−3 and 9× 10−3 for the sEnKF and the ETKF, respectively. The difference between
these two blob sizes is of little physical relevance: each blob radius was chosen concomitantly with the inflation
and noise parameters to reduce the time-averaged root mean-square error of the normal force prediction and the
appearance of spurious pressures on the surface for the sEnKF and the ETKF. We use the same blob radius for the
sEnKF as the previous study by Darakananda et al. [29]. For the aggregated vortex model, the vortex elements are
mostly isolated and their interactions require little regularization. The non-zero blob radius primarily regularizes the
interactions of the vortex elements soon after their release from the edges. Throughout this study, we use an ensemble
of size M = 50. At the initial time, no vortices are present in the state vector of the vortex model. The ensemble is
initiated with random samples for the LESPc drawn from N (0.5, 0.1), i.e., a normal distribution with mean 0.5 and
covariance 0.1.

We use a different set of inflation parameters for the sEnKF and the ETKF:

• A multiplicative inflation β = 1.01, 1.028 for the sEnKF and ETKF, respectively.
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• An additive inflation for the position of the vortices drawn from N (0, 1× 10−5) (normalized by c)

• An additive inflation for the strength of the vortices drawn from N (0, 1× 10−3∆t?) (normalized by Uc)

• An additive inflation for the LESPc drawn from N (0, 5 × 10−5), N (0, 8.5 × 10−5) for the sEnKF and ETKF,
respectively.

• The measurement noise Vk is drawn from N (0, 1× 10−8) (normalized by ρU2)

These parameters and the blob radius have been manually determined, independently for the sEnKF and the ETKF,
to minimize the time-averaged root-mean-squared error of the predicted normal force and the occurrence of spurious
pressures on the surface. The sEnKF and ETKF share the same additive inflation parameters for the vortex properties.
It is important to note that each of these parameters is chosen in order to balance the trust between the vortex model
and the analysis step; lower values, for example, lead to a vortex model that is less responsive to measurement
innovation. For example, the relatively larger additive inflation for the LESPc makes this parameter more responsive
than the vortex parameters. The same parameters are used for all examples in the next section. These parameters
are nondimensionalized by the undisturbed characteristic scales of the problem: the density of the fluid ρ, the chord
length c and the translational velocity of the plate U . In our various numerical experiments, we have found that this
choice of the parameters work well for perturbations of different strengths and shapes.

IV. RESULTS

In this section, we present the results of flow estimation for two strongly-perturbed flows about an infinitely thin
plate at 20◦. In the first case, a sequence of perturbations that mimic pulse actuation is applied near the leading edge
of the plate. In the second case, the plate is subject to large scale and coherent perturbations created in the wake
of an upstream cylinder. In the discussion of the results, positive and negative vortex elements will refer to vortex
elements with positive (counter-clockwise) and negative (clockwise) circulation respectively.

In this study, the true pressure jump measurements are generated from simulations of a flat plate at Reynolds
number Re = 500, carried out with a high-fidelity Navier–Stokes solver, based on the immersed boundary projection
method with lattice Green’s function [15, 53]. It is important to emphasize that the flow perturbations are only
present in the truth system, and their effect is only made available to the vortex model through the assimilation of
the true pressure measurements.

Due to the stochastic nature of the filtering problem, results may vary from one simulation to another for the same
filter. We estimate the uncertainty in the results in order to draw consistent conclusions about the performance of
each filter. For assessment purposes, the results presented in this work have been obtained by running an ensemble
of 100 realizations of the same filter on each flow configuration, with each realization consisting of an application
of the EnKF (using an M = 50 ensemble of vortex models). From this ensemble of realizations, we construct the
sample mean and standard deviation of the quantity of interest for comparison with the truth. If we assume that the
results obtained over the different runs follow a Gaussian distribution, the 95% confidence interval can be estimated
by considering the plus and minus deviation of twice the standard deviation from the mean. It should be noted that
the number of vortex elements—and hence, the dimensionality of the state vector—varies from one realization of the
filter to the next, so it is not possible to define a mean state from the ensemble of realizations.

As mentioned in Section II, the near encounters between the singular vortex elements and the plate can lead to
spurious errors in the estimate of the pressure distribution, and hence, in the prediction of overall normal force on
the plate. We use a median filter to remove these spurious spikes from our presented results. At each time step, the
current value is replaced by the median value of the l = 7 previous time steps. The median filter is causal, so it is
directly integrated into the estimation sequence.

Unfortunately, there is no simple and direct way to compare the discrete vorticity distribution generated by the
state estimate with the true continuous vorticity distribution. Instead, we compare the normal force coefficient Cn

(i.e., the integral of this pressure distribution on the plate rescaled by ρcU2/2) from the high-fidelity simulation
and from its evaluation for the analysis ensemble obtained from either the sEnKF or the ETKF. The performance
of each filter is assessed with the root-mean-squared error (RMSE), the standard deviation of the ensemble [36],
and the interquantile range defined by the 2.5% and the 97.5% quantiles. These metrics are time-averaged. We
define the RMSE between the true observation C?

n (from the high-fidelity simulation) and the mean posterior normal

force coefficient C
a

n (i.e., the mean normal force coefficient for the different realizations computed from the posterior

ensemble) as RMSE = ||C?
n − C

a

n||2. We quantify the dispersion of the ensemble with the sample standard deviation
of the normal force coefficient σCa

n
. While the RMSE and the standard deviation of the ensemble can be affected by

the spurious force events, the interquantile range defined between the 2.5% and the 97.5% quantiles is insensitive to
outliers, and is used as a companion to the standard deviation to quantify the spread of the ensemble.



15

-0.4 -0.2 0.0 0.2 0.4
x/c

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

y
/c

(a)

0 1 2 3 4 5
t?

0.0

0.5

1.0

1.5

2.0

f
(t
?
)/
F
n

(b)

FIG. 3. (a): Schematic of the plate at 20◦ at t? = 0 subject to actuation. Green dot depicts the location of the actuation. (b)
Time history of the flow actuation.

A. Translating plate subjected to pulse actuation disturbances

In this section, we assess the data-assimilated vortex model on the response of an impulsively translating plate at
20◦ to disturbances applied near the leading edge. We apply the perturbations at a point 0.475c from the centroid
along the plate and 0.1c above it, as shown in Fig. 3(a). The pertubations are introduced as a superposition of vertical
body force of nominal strength Fn = 0.03ρU2c at t? = 2.5, 2.9, 3.0 and 3.2, distributed in Gaussian form in time and
space, with temporal standard deviation of t?std = 0.1 and spatial standard deviation 0.1c. The vertical body force
f(t?) is given by:

f(t?)

Fn
= N (t?; 2.5, t?std) +N (t?; 2.9, t?std) +N (t?; 3.0, t?std) +N (t?; 3.2, t?std), (40)

where N (t?;µ, σ) denotes the temporal Gaussian kernel, with mean µ and standard deviation σ, evaluated at t?.
Fig. 3(b) shows the time history of the force actuation. For reference, the gusts considered in Darakananda et
al. [29] were weaker and non-overlapping, applied further upstream of the plate at t? = 3, 4 with nominal amplitude
Fn = 0.01ρU2c. The disturbance considered here is more challenging due to the presence of strong and overlapping
perturbations.

Fig. 4 compares the history of the surface pressure response from the truth with the mean of 100 realizations of
the sEnKF and the ETKF. During the first two convective times, we observe the development of the leading-edge
vortex. The successive flow actuation disturbances are easily detected by the distinct regions of strongly negative
pressure. The first suction region is due to the disturbance applied at t? = 2.5, while the second one is due to the
superposed response to the flow disturbances centered at t? = 2.9, 3.0, and 3.2. Both filters match well with the true
pressure distribution. The uncertainty of each filter is characterized by the sample standard deviation of the pressure,
computed over the 100 runs; these are shown in the right column of Fig. 4. In both filters, two narrow bands of
high variance, particularly strong near the leading edge, can be identified at t? = 2.5 and 3.0. These correspond to
the instants of local maxima in the disturbance force. However, the sEnKF has a higher level of variability in the
pressure distribution from one run to another. In particular, there is a significant band of high dispersion for the
sEnKF at around t? = 3.8, and additional smaller bands at other times. The ETKF does not exhibit such bands, a
direct consequence of its statistically consistent analysis update.

The normal force coefficient is the integral of this pressure distribution on the plate. The top left panel in Fig. 5
compares the force coefficient obtained from the truth system with the mean of the sEnKF and the ETKF applications
over 100 realizations. The mean force predicted by each filter agrees very well with the true force response. The peaks
created by the actuation and the subsequent drop of force around t? = 4 are also well predicted. However, consistent
with our observations of the surface pressure data, both filters show variability near the peak disturbances; Fig. 5 also
shows that the peaks are slightly underpredicted.

The sEnKF exhibits more variability than the ETKF at all times, and this higher variability is apparent in the
wider uncertainty envelope for the normal force coefficient, particularly after t? > 3.5. To better appreciate the raw
behavior of each filter, the top right panel in Fig. 5 show the same results, but without the use of the median filter.
The sEnKF, in Fig. 5(b), exhibits frequent spikes throughout the simulation, and particularly so after t? > 3.5. These
spikes are not eliminated by the ETKF, but they are much weaker and less frequent. Due to the presence of spikes, the
95% confidence interval based on the standard deviation can be corrupted. To better appreciate the raw performance
of the two filters, we have also plotted the 2.5% and 97.5% quantiles for each filter in the lower panel in Fig. 5. Table
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FIG. 4. Left column [(a), (b), (d)]: Spatiotemporal map of the pressure coefficient jump for an impulsively translating plate at
20◦ subjected to pulse actuation disturbance from (a) high-fidelity numerical simulation at Reynolds number 500, and mean
over 100 realizations of an inviscid vortex model with (b) the sEnKF and (d) the ETKF. Right column [(c), (e)]: Spatiotemporal
map of standard deviation of the pressure coefficient jump over 100 realizations for (c) the sEnKF and (e) the ETKF

I reports the time-averaged RMSE, the standard deviation and the interquantile range of the normal force coefficient
for the sEnKF and the ETKF, without the application of the median filter. The ETKF outperforms the sEnKF with
an average reduction of 29% of the RMSE, 49% of the standard deviation and 17% of the interquantile range. We
should note that there is no downside to apply the median filter.

The origins of this high uncertainty are clear when we examine the flow behavior. In Fig. 6 we show the vorticity
distribution from the truth system at three instants, t? = 3.0, 4.0, and 5.0. Since the vorticity in the fluid is modeled
with limited number of regularized point vortices, it is not possible to make a direct comparison; instead, we plot the
locations of the elements for one realization of each filter, with the elements’ signed circulations represented in colors
consistent with the sign of vorticity in the truth data. Most of the large-scale vortex dynamics are captured by the
data-assimilated vortex model. Over the first two convective times, the impulsive translation of the plate creates a
leading-edge vortex that grows in size and strength. This feature is captured by the continuous release of new vortex
elements in both filters. The disturbance applied at t? = 2.5 creates a coherent structure that is rapidly advected
along the plate and merges with the initial leading-edge vortex. At around t? = 3.0, the resulting vortex lies slightly
above the mid chord of the plate, evident in the left column of Fig. 6. Both the sEnKF and ETKF capture this
feature with positive vortex elements clustered at a similar position. It is also important to note that the vorticity
associated with the disturbance itself, clearly evident at t? = 3.0, is not observed in the vortex model results. The
absence of this disturbance vorticity is by design; only its effect on vortex elements shed from the edge of the plate is
captured by the assimilation of pressure data.

Over the time interval t? ∈ [3.0, 4.0], the vortex models predict a separation of a cluster of positive vortex elements
from the plate with dynamics similar to the truth flow. The middle column of Fig. 6 compares the results at t? = 4.0.
The large coherent structure with positive vorticity is well captured by the inviscid model with both filters, but is
more tightly clustered in the case of the ETKF. From t? = 4.0 to 5.0, the vortex is shed into the wake and triggers
a large flux of negative vorticity from the trailing edge. The right column of Fig. 6, for t? = 5.0, shows a good
visual agreement between the truth and the prediction of the ETKF. The spatial vortex distribution predicted by the
sEnKF is less representative of the true vorticity distribution, however. Overall, the ETKF predicts a more structured
and physically consistent spatial distribution of the vortices than the sEnKF. The coherence of these vortex element
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(a) (b)
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FIG. 5. Top left panel (a): Normal force coefficient of an impulsively translating plate at 20◦ subject to actuation, from
high-fidelity numerical simulation at Reynolds number 500 ( ), mean over 100 realizations of the inviscid vortex model with
sEnKF ( ), mean over 100 realizations of the inviscid vortex model with ETKF ( ). Shaded areas show the 95% confidence
interval for the inviscid vortex model with sEnKF and ETKF. Time history of the flow actuation ( ). Top right panel (b):
Comparison with the same normal force coefficient from high-fidelity simulation, but without application of the median filter
for the sEnKF ( ) and ETKF ( ). Lower panel (c): Comparison of the same normal force coefficient from high-fidelity
simulation, with the 2.5% (lower curve) and 97.5% (upper curve) quantiles of the normal force coefficient over 100 realizations
of the inviscid vortex model for the sEnKF ( ) and ETKF ( ) without application of the median filter.

clusters is consistent with the narrower uncertainty in the normal force coefficient, and demonstrates a clear advantage
of the ETKF over the sEnKF for modeling the flow response to unknown flow perturbations.

In Fig. 7 we compare the time histories of the LESPc estimated by the sEnKF and the ETKF. The LESPc is
constrained to remain positive, and the constraint reverts to the Kutta condition if LESPc becomes zero. Before the
flow is disturbed, the mean estimate of the LESPc stays on a plateau about 0.5, the mean value in the initial ensemble.
This behavior supports the hypothesis of Ramesh et al. [24, 31]: the LESPc remains constant for a given Reynolds
number and airfoil section. The time variation of the imposed disturbance is reflected in a similar variation of the
LESPc. Indeed, the application of an actuation-like disturbance near the leading edge directly controls the vorticity
flux about this edge. Large values of LESPc lead to weaker vorticity, temporarily suppressing the flux into the shear
layer. The small decay of LESPc after the first disturbance increases the vorticity flux, triggering the creation of
a new coherent structure that merges with the initial leading-edge vortex about the mid-chord. This leading-edge
development is then halted after the next disturbance peak, and the leading-edge vortex is shed. The uncertainty
envelopes of the two filters are very similar and tend to grow over time. The width of these envelopes is large, reflecting
significant variation in the estimated values of LESPc from one realization to the next. This variation indicates a weak
physical correlation between this threshold value and the pressure on the plate: this threshold’s effect on pressure is
only exerted indirectly, through the subsequent release of vorticity. (The LESP itself, in contrast, is more strongly
correlated, since shed vortex elements contribute to this value [21, 24].)

The population histories of vortex elements is depicted in Fig. 8. The histories are nearly identical for each filter. In
the initial time steps, the number of vortex elements increases linearly from 0 to 20; the model prevents aggregation
of elements during this interval. Subsequently, the population grows slowly up to 35± 7 at t? = 5. It should be noted
that, without aggregation, this population would be approximately 1000 vortex elements (500 time steps, with two
elements shed per step). The variation in population among the different realizations of each filter is attributable to
the variation in LESPc, which sets the initial strengths of the elements, which in turn affects their later aggregation.
It is interesting to note that this variation of vortex element populations is proportionally larger than the variation
in the pressure and normal force, indicating that there is some non-uniqueness in the mapping from surface pressures
to vortex element dynamics.
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FIG. 6. Snapshots of the vorticity distribution at t? = 3.0 (left column), t? = 4.0 (middle column) and t? = 5.0 (right column)
for an impulsively translating plate at 20◦ subject to actuation, predicted from [(a)-(c)] high-fidelity numerical simulation at
Reynolds number 500, [(d)-(f)] inviscid vortex model with sEnKF, and [(g)-(i)] inviscid vortex model with ETKF.
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FIG. 7. Time history of the ensemble mean value of the LESPc of an impulsively translating plate at 20◦ subject to actuation,
averaged over 100 realizations, from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with ETKF
( ). Shaded areas show the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.

Fig. 9 depicts the ensemble variances of the positions and strengths of the vortex elements and the LESPc estimate,
averaged over the 100 realizations of each filter. Each variance is lower-bounded by the additive covariance inflation
to avoid filter divergence. The variances of the strengths of the vortices and LESPc are fairly constant (and near the
values set by the inflation parameter) while those of the x and y positions are more variable. These values are larger
than the variance set by the inflation, likely due to additional error incurred by aggregation.
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FIG. 8. Time history of the particle count for an impulsively translating plate at 20◦ subject to actuation, averaged over 100
realizations, from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with ETKF ( ). Shaded areas
show the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.
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FIG. 9. Time history of the ensemble variances of an impulsively translating plate at 20◦ subject to actuation, averaged over
100 realizations. Mean variances for (a) the x coordinate of the blobs, (b) the y coordinate of the blobs, (c) the circulation
of the blobs, and (d) the LESPc from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with ETKF
( ). Fainter dashed lines show the standard deviation of the different variances over the 100 realizations for the inviscid vortex
model with sEnKF and ETKF.

RMSE Standard deviation Interquantile range

sEnKF 3.67 3.06× 10−1 4.71× 10−1

ETKF 2.61 1.56 × 10−1 3.92 × 10−1

TABLE I. Time-averaged RMSE, standard deviation and interquantile metrics of the normal force of the impulsively translating
plate subject to actuation with the sEnKF and the ETKF, without application of the median filter. The lowest RMSE, the
standard deviation and the interquantile range among the two filters is highlighted in bold.
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FIG. 10. Schematic of a plate at 20◦ behind a cylinder. The plate and cylinder translate to the right at uniform speed.

B. Plate in the wake of a cylinder

In this part, we assess our flow estimator when applied to a plate at 20◦ angle of attack in the wake of a cylinder.
In the truth system, high fidelity simulations are conducted of a cylinder of diameter 0.16c is centered 2 chord lengths
upstream and 0.3 chord lengths above the plate’s centroid, as shown in Fig. 10. The plate and cylinder are both
impulsively set in motion at t? = 0 at speed U , so that their relative configuration remains fixed for all time. The
Reynolds number based on the cylinder diameter is 80, sufficiently large that the cylinder’s wake exhibits a von
Kármán vortex street. The presence of the plate triggers the wake to break symmetry and achieve this vortex street.
This flow configuration distills the main features of a vehicle flying through the wake of a structure, e.g., buildings in
an urban environment or other flying vehicles.

It is important to recall that we do not include the cylinder and its wake in our vortex model flow estimator; its
effects are only felt through the pressure jump measurements obtained from surface sensors along the plate. Fig. 11
depicts the history of the true surface pressure distribution and those estimated by the sEnKF and ETKF; the
associated standard deviations are shown on the right. Both filters estimate pressure fields that agree very well with
the true distribution. As expected, it takes about 2 convective times for the cylinder wake to reach and be sensed
by the plate. Over this time window, the pressure field is essentially disturbance-free. The encounter of the vortex
structures shed by the cylinder leaves successive short-lived pressure disturbances.

The true vorticity distribution and mean sets of vortex elements are compared in Fig. 12 at t? = 3.5 (soon after the
wake has reached the plate), at t? = 4.2 (when the cylinder wake transitions to a von Kármán vortex street) and at
t? = 10 (long after the flow has achieved periodic vortex shedding). As expected, the vortex models do not attempt to
represent the cylinder wake with vortex elements; rather, the filter accommodates the influence of the wake vorticity
by modifying the behavior of the vortex elements shed from the plate. Large scale structures of the flow around the
plate are captured and match visually with the true vorticity field.

Concomitantly, the normal force estimate agrees well with the truth, as seen in Fig. 13. As in the first example, we
have plotted the normal force estimate of the two filters, without the application of the median filter, and the associated
uncertainty between different realizations based on the standard deviation (Fig. 13 (b)) and the interquantile range
(Fig. 13 (c)). The transition from a symmetric cylinder wake to a periodic vortex shedding causes some challenge to
the discrete vortex models, as highlighted by the temporary growth of the uncertainty envelope around t? = 4.0. The
envelope remains small for both filters after the periodic wake behavior has been established. Table II reports the
time-averaged RMSE and the standard deviation and the interquantile range of the normal force coefficient for the
sEnKF and the ETKF. The ETKF reduces on average the standard deviation by 16% and the interquantile range by
16%. The RMSE performance of the two filters are almost identical. The history of the LESPc estimate in Fig. 14
reveals the same growth and decay of this critical value observed in the previous example; here, they represent a
response to individual cylinder wake vortices passing the leading edge of the plate. These variations are essential
to our inviscid framework to control the leading-edge vortex shedding in the presence of flow perturbations. As in
the previous example, the weak correlation between the LESPc and measured pressure causes significant volatility in
the estimated LESPc among the different realizations. The vortex element population remains small, O(60), after 12
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FIG. 11. Left column [(a), (b), (d)]: Spatiotemporal map of the pressure coefficient jump for an impulsively translating plate at
20◦ in a cylinder wake (a) high-fidelity numerical simulation at Reynolds number 500, mean over 100 realizations of an inviscid
vortex model with the sEnKF (b) and the ETKF (d). Right column [(c), (e)]: Spatiotemporal map of standard deviation of
the pressure coefficient jump over 100 realizations for the sEnKF(c) and ETKF (e)

RMSE Standard deviation Interquantile range

sEnKF 2.63 1.63× 10−1 3.18× 10−1

ETKF 2.66 1.41 × 10−1 2.69 × 10−1

TABLE II. Time-averaged RMSE, standard deviation and interquantile metrics of the normal force of the impulsively translating
plate subject in a cylinder wake with the sEnKF and the ETKF without the median filter. The lowest RMSE, the standard
deviation and the interquantile range among the two filters is highlighted in bold.

convective time units. Without aggregation, we would have to track 2400 vortex elements.

C. Dissection of the EnKF analysis

The results shown thus far depict the overall evolution of the state with time, but do not reveal the manner in
which individual components of the state—vortex element positions and strengths, and LESPc—are modified by the
analysis step to account for pressure mismatch. Here, we examine this more closely, and particularly, ask whether
there is some notion of locality inherent in the radius of action of a given pressure measurement on the correction of
the state components. This question motivates our dissection of the input-output structure of the Kalman gain matrix
K ∈ Rn,d (20), the linear map from the d sensors (measurement innovation) to the n-dimensional state correction.
The component Kij of the Kalman gain tells us how much the jth measurement updates the ith component of the
state; a low value (in magnitude) indicates a low impact. As we recall from (32), the Kalman gain is derived from
the ensemble’s forecast anomalies.

Figs. 16, 17 examine how the ETKF algorithm modifies the state during the analysis step at t? = 1 and 10,
respectively. We use a different visualization convention for the vortex element distribution in Fig. 16(a) and 17(a).
The size of each element inversely indicates its index in the collection of vortices. Since newly-added elements are
assigned indices at the end of the list, larger circles correspond to “older” vortices. Colors still indicate vorticity sign
and strength. With this convention, it is easier to see which vortex elements are updated by the filter. At t? = 1, the
state vector has dimension n = 67, corresponding to 22 vortex elements and the LESPc estimate. Fig. 16(b) shows a
heat map of the magnitudes of the Kalman gain elements. Low measurement index corresponds to a pressure sensor



22

1 2 3 4 5 6
x/c

-1

0

1
y
/c

(a)

1.7 2.7 3.7 4.7 5.7 6.7
x/c

-1

0

1

y
/c

(b)

7.5 8.5 9.5 10.5 11.5 12.5
x/c

-1

0

1

y
/c

(c)

1 2 3 4 5 6
x/c

-1

0

1

y
/c

(d)

1.7 2.7 3.7 4.7 5.7 6.7
x/c

-1

0

1

y
/c

(e)

7.5 8.5 9.5 10.5 11.5 12.5
x/c

-1

0

1

y
/c

(f)

1 2 3 4 5 6
x/c

-1

0

1

y
/c

(g)

1.7 2.7 3.7 4.7 5.7 6.7
x/c

-1

0

1

y
/c

(h)

7.5 8.5 9.5 10.5 11.5 12.5
x/c

-1

0

1

y
/c

(i)

FIG. 12. Snapshots of the vorticity distribution at t? = 3.5 (left column), t? = 4.2 (middle column) and t? = 10.0 (right column)
for an impulsively translating plate at 20◦ in a cylinder wake, predicted from [(a)-(c)] high-fidelity numerical simulation at
Reynolds number 500, [(d)-(f)] inviscid vortex model with sEnKF, and [(g)-(i)] inviscid vortex model with ETKF.

near the trailing edge. The LESPc estimate is always the last component of the state vector. Overall, the magnitudes
of the components of the Kalman gain are small. The effect of these small gain values is highlighted in Fig. 16(e),
which shows the mean analysis updates to the non-dimensional x and y positions and circulations of vortex elements.
These updates are comparable to or smaller than the time step size 0.01, and thus, of similar order of magnitude to
their forecast updates.

It is useful to recall the relationship between pressure and vorticity in incompressible flow. Though we formally
compute the pressure in the vortex model with the unsteady Bernoulli equation, it can also be obtained through the
following Poisson equation:

∇2

(
p+

1

2
ρ|u|2

)
= ρ∇ · (u× ωe3), (41)

where u denotes the velocity field. This velocity depends in part on the contributions from all other vortices (along with
the body’s motion and/or uniform flow). Thus, this equation clearly illustrates that pressure depends non-linearly
on the vorticity field. But even if the model was made linearly dependent on vorticity, e.g., by linearizing about
some base flow, the pressure remains non-linearly dependent on the positions of the vortices, due to the ellipticity
of relationship (41). Therefore, the linear analysis step in the Kalman gain might be inadequate to estimate the
true modification of a vortex due to a pressure mismatch. Also, the EnKF is a sequential filter, which means that it
performs iterated state updates based on pressure difference. But even if each analysis step only slightly modifies the
state, the long-term impact of these linear updates is important.

Some interesting physical features can be inferred by a closer study of Fig. 16(b). The top line of the heat map
shows the impact of pressure measurements on the LESPc estimate. Only a few pressure sensors near the leading
edge have a high impact on the LESPc. This is not surprising, since LESP a measure of the integrated pressure about
the leading edge, and LESPc is a threshold on this value. The heat map also shows that pressure sensors near the
trailing edge do not impact the state substantially. For a given vortex element, the most impactful sensors are those
that are closest. Most of the state update are due to sensors between the leading edge and mid-chord, consistent
with the position of the leading-edge vortex about the mid-chord at t? = 1. The newly released vortex elements are
updated by the pressure sensors in the immediate vicinity of the leading-edge.
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FIG. 13. Top left panel (a): Normal force coefficient of an impulsively translating plate at 20◦ in a cylinder wake, from
high-fidelity numerical simulation at Reynolds number 500 ( ), mean over 100 realizations of the inviscid vortex model with
sEnKF ( ), mean over 100 realizations of the inviscid vortex model with ETKF ( ). Shaded areas show the 95% confidence
interval for the inviscid vortex model with sEnKF and ETKF. Top right panel (b): Comparison with the same normal force
coefficient from high-fidelity simulation, but without application of the median filter for the sEnKF ( ) and ETKF ( ).
Lower panel (c): Comparison of the same normal force coefficient from high-fidelity simulation, with the 2.5% (lower curve)
and 97.5% (upper curve) quantiles of the normal force coefficient over 100 realizations of the inviscid vortex model for the
sEnKF ( ) and ETKF ( ) without application of the median filter.
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FIG. 14. Time history of the ensemble mean value of the LESPc of an impulsively translating plate at 20◦ in a cylinder wake,
averaged over 100 realizations, from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with ETKF
( ). Shaded areas show the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.

To explore the update process more deeply, we perform a singular value decomposition of the Kalman gain matrix:

K = UΣV >, (42)

where K ∈ Rn,d, U ∈ Rn,d, Σ ∈ Rd,d, V ∈ Rd,d. The columns of U and V are called the left and right singular
vectors, and can also be interpreted here as modes of the response (of the state) and forcing (from the measurements),
respectively. The response-forcing pairs are ranked by decreasing gain, given by the diagonal entries of the diagonal
matrix Σ, the singular values; these are shown in Fig. 16(c) for the Kalman gain at t? = 1. Each measurement mode
is transformed into a response mode, amplified by their corresponding singular value. The decay rate of the singular
values is a useful indication of the effective number of pressure measurements used in the analysis step. Here, fourteen
modes are necessary to capture 99% of the energy (sum of the square of the singular values). The response modes
tell us which state indices are the most impacted. Fig. 16(d) depicts the first eight response modes that account for
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FIG. 15. Time history of the particle count for an impulsively translating plate at 20◦ in a cylinder wake, averaged over 100
realizations, from the inviscid vortex model with sEnKF ( ) and the inviscid vortex model with ETKF ( ). Shaded areas
show the 95% confidence interval for the inviscid vortex model with sEnKF and ETKF.

90% percent of the energy. The largest updates are applied to the LESPc estimate (the largest state index) and to
the oldest vortices with large circulation. Though the results in Fig. 16 correspond to the ETKF, we have also found
similar results for the sEnKF.

Fig. 17 shows equivalent plots for t? = 10. The update of the LESPc is still driven by the sensors near the leading
edge and a few about the mid-chord. The sensors near the leading edge still have a stronger impact on the state
correction. The SVD of the Kalman gain reveals in Fig. 17(d) that the LESPc and a particular vortex element are
the most affected components of the state. From Fig. 17(e), this particular element’s update is displaced by 0.06c,
0.02c in the x and y directions, respectively. The element is located five chord lengths away from the plate, an
unlikely recipient of update from any surface measurements, particularly to sensors near the leading edge as panel
(b) indicates. Similarly, we do not expect that pressure sensors about the mid-chord will update the LESPc value.
These spurious updates reveal a flaw of using a finite ensemble size. Indeed, the Kalman gain that maps measurement
discrepancies to state updates is estimated from the finite forecast ensemble. However, one cannot hope to recover the
exact covariance matrices from a limited number of samples. The empirical covariance matrices suffer from sampling
errors, leading to rank-deficiency and possible spurious long-range correlations. These errors in the estimated Kalman
gain might lead, as in this case, to an inadequate state update.

In future work, we will explore the concept of localization to remove these artificial correlations by performing a
local state update [11, 51, 54]. In other words, pressure measurements will be assimilated one at a time and only affect
state components that are within a certain distance from that specific pressure sensor location. Intuitively, we want
to embed into our estimation framework that vortices in the far wake of the plate should not be modified by pressure
discrepancies on the plate. Localization is another form of regularization, complementary to the covariance inflation
that helps overcome the rank deficiency of the covariance matrices. By performing local analyses, each reduced inverse
problem can be made full rank and improves the overall performance of the filter [11].

V. CONCLUSIONS

This paper presents several refinements of the framework introduced by Darakananda et al. [29] for the estimation of
two-dimensional unsteady aerodynamic flows. As in [29], the dynamical model is a discrete vortex model that advects
a collection of regularized vortices, successively released from the edges of an infinitely thin plate and aggregated to
maintain a modest population. The unrepresented physical features of the vortex model, e.g., effects of viscosity, are
accounted for by the assimilation of pressure measurements obtained from the true physical process. Vorticity flux
from the leading edge is obtained by a critical leading-edge suction parameter whose value is also obtained from the
measurements.

The data assimilation has been carried out with the ensemble Kalman filter (EnKF), which relies on a finite-sized
ensemble of vortex models to forecast the state and uncertainty of the system. We have interpreted this ensemble
forecast physically as an effective translation, stretching, and rotation of the elliptically shaped regions defining each
vortex element’s uncertainty region. We have explored two different versions of the EnKF: the stochastic ensemble
Kalman filter (sEnKF), which was also used in [29], and the ensemble transform Kalman filter (ETKF). The sEnKF
introduces additional numerical noise by not exactly obtaining the correct covariance propagation during the analysis
step. In the current vortex estimation procedure, this noise manifests itself as spurious pressures exerted on the surface
of the wing. The ETKF [30], in contrast, reproduces the exact covariance relation even for finite sized ensembles. We
have found that this latter filter greatly mitigates the appearance of spurious pressures on the surface, and clusters
of vortex elements match better with the true coherent structures. As in [29], multiplicative and additive covariance
inflation are used to prevent filter divergence. Overall, we have found that the ETKF has better performance and
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(a) (c) (e)

(b) (d)

FIG. 16. Study of the analysis step at t? = 1 for the impulsively translating plate in the cylinder wake. (a): Vorticity
distribution from the discrete vortex model with ETKF. Sizes indicate ”age” of the vortices (large means old). Colors indicate
vorticity sign (blue is negative). (b): Element-wise magnitude of the Kalman gain. (c): Singular values of the Kalman gain.
(d): First eight left singular vectors of the Kalman gain scaled by their associated singular value. (e): Mean difference of x, y
position and circulation of vortices during the analysis step.

(a) (c) (e)

(d)(b)

FIG. 17. Study of the analysis step at t? = 10 for the impulsively translating plate in the cylinder wake. (a): Vorticity
distribution from the discrete vortex model with ETKF. Sizes indicate ”age” of the vortices (large means old). Colors indicate
vorticity sign (blue is negative). (b): Element-wise magnitude of the Kalman gain. (c): Singular values of the Kalman gain.
(d): First eight left singular vectors of the Kalman gain scaled by their associated singular value. (e): Mean difference of x, y
position and circulation of vortices during the analysis step.
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robustness than the sEnKF.
Two flow configurations have been considered to assess the performance of our flow estimator and the influence

of the filtering algorithm. The true pressure measurements were obtained from high-fidelity numerical simulations
of an impulsively translating plate at 20◦ and Reynolds number Re = 500, subject to flow disturbances. The first
example examined the response to a sequence of strong body force pulses applied near the leading edge mimicking flow
actuation. We demonstrate that the ensemble of data-assimilated vortex models accurately capture the non-linear flow
interactions between the pulses’ responses. It should be stressed that a linear convolutional model, with a convolution
kernel based on a single pulse, would fail due to these non-linear interactions. The second example consisted of the
response of a plate subject to the large scale and coherent perturbations created in the wake of an upstream cylinder.
The normal force coefficient on the plate was accurately estimated over 12 convective time units. It should be stressed
that the estimation framework does not require a model of the disturbance itself. The disturbance’s effect on shed
vorticity is accounted for by using measurements to update the state vector in the filter analysis step. This feature is
particularly beneficial for a real-time aerodynamic flow estimator, in which the structure of incident flow disturbances
such as gusts are unknown.

It is important to stress that our framework is independent of the source of the measurements, and our objective
in ongoing work is to assimilate measurements from a small number of surface pressure transducers in a physical
experiment or on board a flight vehicle. However, there are still challenges to address first before we can achieve this.
In particular, we are exploring ways to further improve the analysis step. In this work, with the help of an SVD of
the Kalman gain, we have illuminated the function of this step by examining how pressure discrepancies modify the
state components. This examination has shown that, in most cases, the Kalman gain ensures that sensors primarily
affect state components that are physically close, e.g., vortex elements near the plate or the value of LESPc. However,
the finite ensemble size can lead to spurious long-range correlations and non-physical updates of the vortices in the
far wake. To mitigate this issue, we are currently investigating localization, which aims to remove these long-range
correlations by performing local analyses. We are also exploring approaches to systematically sparsify the sensors
needed for analysis updates.

Given the nonlinearity of the state-space model (i.e., the Biot-Savart law and the unsteady Bernoulli equation), it is
reasonable to expect the probability densities of the vortex states to be non-Gaussian. Therefore, the linear transfor-
mation of the analysis step of the EnKF can be inaccurate for estimating the true effect of a pressure discrepancy on
a vortex. To address this limitation, in our current work we propose to use a generalization of the EnKF introduced
by Spantini et al. [36], that relies on parsimonious and interpretable nonlinear transformations in the analysis step
to reduce the bias of the EnKF but maintain its robustness. Moreover, real-world pressure data typically contains
many outliers, and are not well represented by Gaussian distributions. To develop a flow estimator able to assimilate
limited observations from a physical experiment, we are currently exploring the use of a Laplace density to replace
the Gaussian density of the observational noise. A Laplace density has heavy tails that will assign higher probability
to outliers, and be more representative of the statistics of real-world pressure data [55].
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