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In the past couple of years, there is a proliferation in the use of machine learning approaches to represent
subgrid scale processes in geophysical flows with an aim to improve the forecasting capability and to accelerate
numerical simulations of these flows. Despite its success for different types of flow, the online deployment of
a data-driven closure model can cause instabilities and biases in modeling the overall effect of subgrid scale
processes, which in turn leads to inaccurate prediction. To tackle this issue, we exploit the data assimilation
technique to correct the physics-based model coupled with the neural network as a surrogate for unresolved
flow dynamics in multiscale systems. In particular, we use a set of neural network architectures to learn
the correlation between resolved flow variables and the parameterizations of unresolved flow dynamics and
formulate a data assimilation approach to correct the hybrid model during their online deployment. We illus-
trate our framework in a set of applications of the multiscale Lorenz 96 system for which the parameterization
model for unresolved scales is exactly known, and the two-dimensional Kraichnan turbulence system for which
the parameterization model for unresolved scales is not known a priori. Our analysis, therefore, comprises a
predictive dynamical core empowered by (i) a data-driven closure model for subgrid scale processes, (ii) a data
assimilation approach for forecast error correction, and (iii) both data-driven closure and data assimilation
procedures. We show significant improvement in the long-term prediction of the underlying chaotic dynamics
with our framework compared to using only neural network parameterizations for future prediction. More-
over, we demonstrate that these data-driven parameterization models can handle the non-Gaussian statistics
of subgrid scale processes, and effectively improve the accuracy of outer data assimilation workflow loops in
a modular non-intrusive way.

Keywords: Neural network, subgrid scale processes, data assimilation, ensemble Kalman filter, chaotic system,
multiscale Lorenz 96 model, Kraichnan turbulence

I. INTRODUCTION

Geophysical flows are characterized by the multiscale
nature of flows where there is a massive difference be-
tween the largest and smallest scales, and these scales
interact with each other to exchange heat, momentum,
and moisture. This makes the numerical simulations of
geophysical flows in which every flow feature is resolved
computationally unmanageable, even though the physi-
cal laws governing these processes are well known. There-
fore, the atmosphere and ocean models compute the ap-
proximate numerical solution on the computational grid
that consists of O(107) to O(108) grids with a spacing of
O(10 km) to O(100 km). The effect of unresolved scales
is taken into account by using several parameterization
schemes, which represent the dynamics of subgrid scale
processes as a function of resolved dynamics1–3. How-
ever, the weather projection is marred by large uncertain-
ties in the parameters of these parameterization schemes,
and also due to incorrect structure of these parameteri-
zations equations itself4–6.

Typically, the parameters of these parameterization
schemes are estimated by the model tuning process based
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on the observations from experimental and field measure-
ments or the data generated from high-resolution numer-
ical simulations7,8. The nonlinear and multiscale nature
of geophysical flows makes this tuning procedure cum-
bersome and can impede accurate climate prediction9.
A recent development in machine learning, particularly
deep learning10, along with the huge volume of data gath-
ered from high-resolution numerical simulations11 and
remote sensors measurements12 offers an alternative to
the physics-based parameterization schemes and can pave
the way for improved climate and weather models. Deep
learning approaches have been demonstrated to be suc-
cessful for different scientific tasks in Earth system sci-
ence, such as extreme weather pattern detection13, pre-
cipitation nowcasting14, transport process modeling15,
and many more. Deep learning has also been utilized
to represent subgrid scale processes in climate models.
Rasp, Pritchard, and Gentine 16 trained a deep neu-
ral network (DNN) to emulate a cloud resolving model
and formulated a procedure to produce stable results
in the online deployments close to the original super-
parameterized global circulation model. Gentine et al. 17

used an ensemble of random forests as a machine learn-
ing (ML) algorithm to parameterize the moist convection
and implemented it in a global circulation model. They
demonstrated the stable and robust performance of ML
based parameterization in capturing important climate
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statistics including precipitation extremes.

Along with the Earth system science, there is a surge
in the application of machine learning for fluid mechan-
ics. Readers are directed to an excellent review by
Brunton, Noack, and Koumoutsakos 18 on how ML algo-
rithms are being used for augmenting the domain knowl-
edge, automating tasks such as flow-control and opti-
mization by the fluid mechanics’ community. In a re-
cent perspective, Brenner, Eldredge, and Freund 19 dis-
cuss the strength and limitations of ML based algorithms
to advance fluid mechanics. The closure problem in
turbulence modeling is similar to the parameterization
in climate modeling and is encountered in Reynolds-
Averaged Navier-Stokes (RANS) and large eddy simu-
lation (LES) which are widely adopted for engineering
flow simulations. There have been several studies that
use ML algorithms to address the turbulence closure
problem20–23. Ling, Kurzawski, and Templeton 24 pro-
posed a novel neural network architecture with embed-
ded Galilean invariance for the prediction of Reynolds
stress anisotropy tensor. Wang, Wu, and Xiao 25 em-
ployed random forest as an ML algorithm to reconstruct
the discrepancy in RANS-modeled Reynolds stresses and
evaluated its performance for fully developed turbulent
flows and separated flows. Deep learning has also been
utilized for LES of turbulent flows, for example, subgrid
scale closure modeling of Kraichnan turbulence26, decay-
ing homogeneous isotropic turbulence27, forced isotropic
turbulence28, compressible isotropic turbulence29, and
wall-bounded turbulence30. The feasibility of deep learn-
ing has been investigated to produce a predictive model
for turbulent fluxes, such as heat fluxes31 and anomalous
fluxes in drift-wave turbulence32. In a recent work, No-
vati, de Laroussilhe, and Koumoutsakos 33 introduced a
multi-agent reinforcement learning framework as an au-
tomated discovery tool for turbulence models and ap-
plied it to forced homogeneous isotropic turbulence. Be-
sides turbulence closure modeling, deep learning has been
proved to be very successful for challenging problems
such as super-resolution of turbulent flows34–36, data-
driven modeling of chaotic systems37–39, reduced order
modeling of high-dimensional multiphysics systems40–43,
and developing forecast models for complex physical
systems44–46.

Despite the development of deep learning algorithms as
a powerful tool to extract spatio-temporal patterns from
the data, these methods are criticized for their black-box
nature and are prone to produce physically inconsistent
results due to their lack of generalizability47,48. More-
over, the increase in spatial and temporal dimensionali-
ties raises a computational challenge in terms of the train-
ing. Hence, it is essential to integrate machine learning
with physics-based modeling to address the challenge of
interpretability, physical consistency, and computational
burden49. One way to combine machine learning with
physics-based modeling is by incorporating physical con-
servation laws into training through a regularization term
added to the loss function of a neural network36,50–53.

Another way is to change the structure of neural net-
work architecture to enforce physical conservation laws
as hard constraints54,55. The hybrid modeling in which
a sub-model within the physics-based model is replaced
by machine learning methods is another approach to ad-
dress the limitation of pure data-driven methods15,49,56.
One of the issues with hybrid models is that the trained
neural network often suffers from instability once they
are deployed in the forward model. For example, a small
change in the training dataset or the input and output
vector of the neural network led to unpredictable blow-
ups in the global circulation model that employs a neural
network to emulate cloud resolving model16,57. Similarly,
Brenowitz and Bretherton 58 found that the nonphysical
correlations learned by neural networks were the cause of
instabilities in their online deployment within the global
circulation model59 and developed an approach to en-
sure stability. Wu et al. 60 highlighted the gap between
a priori and a posteriori performance of data-driven
Reynolds stress closure models as the RANS equations
with such model can be ill-conditioned. Therefore, even
though data-driven turbulence closure models predicted
better closure terms, their online deployment does not
lead to significant improvement in the mean velocity field
prediction22,25. Wu et al. 60 proposed a metric to eval-
uate the conditioning of RANS equations in the a pri-
ori settings and showed that the implicit treatment of
Reynolds stresses leads to reduced error in mean velocity
prediction.

Data assimilation (DA) is a well-established discipline
where observations are blended with the model to take
uncertainties into account for improving the numerical
prediction of the system61–66 and can be applied to
achieve accurate prediction in hybrid models that em-
ploy data-driven model as a sub-model for some processes
(for example subgrid scale processes). DA tools are being
extensively utilized in geoscience and numerical weather
forecast centers to correct background predictions based
on a combination of heterogeneous measurement data
coming from ground observations and satellite remote-
sensing. These techniques have been also investigated
recently for integrating experimental data into large-eddy
simulations of engineering flows67–70. In a DA workflow,
we merge forward model predictions with observational
data. However, it has been often remarked that no-model
is correct but some of them are useful. In typical DA
studies and twin experiments, therefore, the subgrid scale
processes have been modeled as Gaussian noise due to a
lack of structural information on their mechanisms. If we
would know their dynamics either structurally or func-
tionally, for sure it would be wise to include them in the
model before a DA analysis is executed. However, the
subgrid scale processes in turbulent flows often cannot be
accurately modeled by Gaussian noise, and ML method-
ologies can be adopted to get a grip on subgrid scale pro-
cesses. Hence, we put forth a neural network based sta-
tistical learning approach to improve model uncertainty
and incorporate this information as a data-driven closure
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term to the forward model. We examine how the forecast
error reduces due by including ML based closure term to
the underlying forward model. Indeed, the integration of
DA with ML methodologies holds immense potential in
various fields of physical science71–75 and we demonstrate
this through our study.

In this work, we propose a neural network closure
framework in developing hybrid physics-ML models sup-
plemented with DA for multiscale systems. In particular,
we advocate the use of sequential DA techniques to im-
prove the state estimate of the system by incorporating
observations into a model equipped with neural network
parameterization schemes for unresolved physics. To this
end, we use real-time measurements to regularize ML em-
powered predictive tools through ensemble Kalman filter
based approach. Our first example a two-level Lorenz
96 model76 for our numerical experiments since it gen-
erates a controllable test case for advancing turbulence
parameterization theories, especially in the age of data-
driven models. The Lorenz 96 is an idealized model of
atmospheric circulation and is used widely to test re-
search ideas77–80. Even though the dynamics of both
large and small scales are known exactly for a two-level
Lorenz 96 model, it is very difficult to predict it because
of the strong interplay between fast and slow subsystems.
Therefore, we select this multiscale model for the assess-
ments of data-driven closures for capturing the physics
of subgrid scales. Since we use an “explicit” evolution
equation for the closure parameterizations, we can easily
assess the data-driven models in a posteriori simulations.
This often comprises a challenging task in LES computa-
tions since the low-pass filtering operation is “implicitly”
applied to the governing equations. We further extend
our framework to Kraichnan turbulence81, where it is
shown that the DA improves the state estimate of the
hybrid physics-ML model and this leads to better pre-
diction for statistical properties like kinetic energy spec-
tra and vorticity structure functions in comparison with
high-fidelity direct numerical simulation (DNS). Our ap-
proach is multifaceted in at least two ways. We first show
that the infusion of the DA approaches improves the fore-
casting quality of predictive models equipped with data-
driven parameterizations. Second, we also demonstrate
that the data-driven parameterizations help significantly
to reduce forecast errors in DA workflows. Therefore,
our modular framework can be considered as a way to
incorporate real-time observations that are prevalent in
today’s weather forecast station into hybrid models con-
stituted from a physics-based model as the dynamical
core of the system, and a data-driven model to describe
unresolved physics.

The paper is structured as follows. In Section II, we
discuss the problem of parameterizations using a two-
level Lorenz 96 model and Kraichnan turbulence as a pro-
totypical examples. Section III details two types of neural
network utilized in this study for learning the mapping
between resolved variables and parameterizations of un-
resolved scales. We explain the methodology of sequen-

tial data assimilation and ensemble Kalman filter based
algorithms in Section IV. In Section V, we discuss the
findings of our numerical experiments with a two-level
Lorenz 96 model and Kraichnan turbulence. Finally, we
conclude with the summary and direction for future work
in Section VI.

II. PARAMETERIZATIONS IN MULTISCALE SYSTEMS

A. Two-level Lorenz 96 model

In this section, we describe the two-level vari-
ant of the Lorenz 96 model proposed by Lorenz 76 .
This model has been extensively investigated to
study stochastic parameterization schemes82–84, scale-
adaptive parameterizations85, and neural network
parameterizations57,86. The two-level Lorenz 96 model
can be written as

dXi

dt
= −Xi−1(Xi−2 −Xi+1)−Xi −

hc

b

J∑
j=1

Yj,i + F,

(1)

dYj,i
dt

= −cbYj+1,i(Yj+2,i − Yj−1,i)− cYj,i +
hc

b
Xi, (2)

where Equation 1 represents the evolution of slow, high-
amplitude variables Xi (i = 1, . . . , n), and Equation 2
provides the evolution of a coupled fast, low-amplitude
variable Yj,i (j = 1, . . . , J). We use n = 36 and J = 10
in our computational experiments. We utilize c = 10 and
b = 10, which implies that the small scales fluctuate 10
times faster than the larger scales. Also, the coupling
coefficient h between two scales is equal to 1 and the
forcing is set at F = 10 to make both variables exhibit
the chaotic behavior. The boundary conditions for the
slow and fast variables are detained in Section V along
with the generation of initial condition for the two-level
Lorenz 96 system.

In parameterization research, small scale variables are
not resolved and their effect is typically parameterized
as a function of resolved large scale variables. A forecast
model for the resolved variables given in Equation 1 can
be constructed with the parameterization for unresolved
variables as follows

dX̃i

dt
= −X̃i−1(X̃i−2 − X̃i+1)− X̃i −

hc

b
Gi + F, (3)

where the tilde is used to denote the fact that the param-
eterization Gi is used to represent the effect of unresolved
variables. Typically, the parameterizations is a function
of resolved variables and can be written mathematically
as

J∑
j=1

Yj,i :≈ Gi = N(X̃), (4)
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where N(·) is the nonlinear mapping of resolved variables
to the parameterizations at the ith grid point. This map-
ping can be based on certain physical arguments or can
also be learned with any data-driven methods. There-
fore in parameterization research for multiscale systems,
the underlying physical laws governing the dynamics of
resolved variables are assumed to be known exactly, and
the effect of unresolved variables is considered through
parameterizations Gi. If we use data-driven methods
to represent the parameterization Gi, then the forecast
model given in Equation 3 can be considered as a hybrid
model. Our main objective in this work is to improve the
forecasting capability of multiscale systems that are rep-
resented by a hybrid model embedded with data-driven
parameterizations and we achieve this through data as-
similation techniques.

B. Kraichnan turbulence

Here, we summarize the mathematical background
of subgrid-scale parameterizations in the LES of two-
dimensional turbulence. Even though two-dimensional
turbulence cannot be realized in practice, it is extensively
used for modeling geophysical flows in the atmosphere
and ocean87,88. The confinement of fluid turbulence to
two spatial dimensions leads to KraichnanBatchelorLeith
(KBL) theory of dual cascade with an inverse energy
cascade to larger scales and direct enstrophy cascade to
smaller scales. The non-dimensional vorticity transport
equation for incompressible flows can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (5)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (6)

where ω is the vorticity, ψ is the stremfunction, J is the
Jacobian (or the nonlinear term), and Re is the Reynolds
number of the flow. The vorticity and streamfunction are
related to each other through the Poisson equation given
by

∇2ψ = −ω. (7)

The governing equations for LES are obtained by apply-
ing a low-pass filtering operation, and the filtered vortic-
ity transport equation can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω. (8)

The above equation can be rewritten as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Π, (9)

where the overbar quantities represent filtered variables
and are evolved on a grid which is significantly coarse

than required for the DNS. The effect of the unresolved
scales due to truncation of high wavenumber flow scales is
encompassed in a subgrid-scale source term Π and must
be modeled. Mathematically, the true source term Π can
be expressed as

Π = J(ω, ψ)− J(ω, ψ). (10)

The approximation of subgrid processes plays an im-
portant role in determining the accuracy of large-scale
flows and therefore the subgrid-scale parameterizations
are critical to accurate LES simulations of geophysical
flows89. Different models have been proposed in the lit-
erature for subgrid-scale parameterizations in geophysi-
cal flows90–95, and remains an active area of research due
to complexity of the subgrid-scale closure modeling. In
the present work, we put forth a data-driven framework
based on a neural network to predict the approximate
value of the source term Π as a function of resolved flow
variables on the coarser grid. One of the main advantages
of data-driven closure modeling is that they are computa-
tionally faster than dynamic closure modeling procedure
that involves several test filtering operations21,96,97.

III. NEURAL NETWORK PARAMETERIZATIONS

The parameterization problem in multiscale flows can
be posed as a regression problem where the mapping be-
tween resolved scales and unresolved scales has to be de-
termined. We consider supervised class of machine learn-
ing algorithms, where the optimal map between inputs
and outputs is learned. In this section, we describe an
artificial neural network (ANN) also called as multilayer
perceptron, and convolutional neural network (CNN) to
build data-driven parameterization models.

A. Artificial neural network

An artificial neural network is made up of several lay-
ers consisting of the predefined number of neurons. Each
neuron consists of certain coefficients called weights and
some bias. The weight determines how significant cer-
tain input feature is to the output. The input from the
previous layer is multiplied by a weight matrix as shown
below

Sl = WlX l−1, (11)

where X l−1 is the output of the (l − 1)th layer, Wl is
the matrix of weights for the lth layer. The summation
of the above input-weight product and the bias is then
passed through a node’s activation function which is usu-
ally some nonlinear function. The introduction of non-
linearity through activation function allows the neural
network to learn highly complex relations between the
input and output. The output of the lth layer can be
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written as

X l = ζ(Sl +Bl), (12)

where Bl is the vector of biasing parameters for the lth

layer and ζ is the activation function. If there are L layers
between the input and the output in a neural network,
then the output of the neural network can be represented
mathematically as follows

Ỹ = ζL(WL, BL, . . . , ζ2(W2, B2, ζ1(W1, B1,X ))),
(13)

where X and Ỹ are the input and output of the ANN,
respectively. There are several activation functions that
provides different nonlinearity. Some of the widely used
activation functions are sigmoid ζ(φ) = 1/(1 + e−φ), hy-
perbolic tangent (tanh) ζ(φ) = (eφ − e−φ)/(eφ + e−φ),
and rectified linear unit (ReLU) ζ(φ) = max[0, φ].

The matrix W and B are determined through the min-
imization of the loss function (for example mean squared
error between true and predicted labels). The gradient
of the objective function with respect to weights and bi-
ases are calculated with the backpropagation algorithm.
The optimization algorithms like the stochastic gradient
descent method98 provide a rapid way to learn optimal
weights. The training procedure for ANN can be sum-
marized as:

• The input and output of the neural network are spec-
ified along with some initial weights initialization for
neurons.

• The training data is run through the network to pro-
duce output Ỹ whose true label is Y.

• The derivative of the objective function with each of
the training weight is computed using the chain rule.

• The weights are then updated based on the learning
rate and the optimization algorithm.

We continue to iterate through this procedure until
convergence or the maximum number of iterations is
reached. There are different ways in which the relation-
ship between resolved and unresolved variables in mul-
tiscale systems can be learned with the ANN. The most
common method is to employ point-to-point mapping,
where the input features at a single grid point are utilized
to learn the output labels at that point22,29,99. Another
method is to include the information at neighboring grid
points to determine the output label at a single point26,96.
For a two-level Lorenz system, we train our ANN by in-
cluding information at different number of neighboring
grid points and assess how does this additional informa-
tion affects in learning the correlation between resolved
and unresolved variables. We investigate three types of
ANN models and they can be written as

ANN-3 : {Xi−1, Xi, Xi+1} ∈ R3 → {G̃i} ∈ R1, (14)

ANN-5 : {Xi−2 . . . , Xi+2} ∈ R5 → {G̃i} ∈ R1, (15)

ANN-7 : {Xi−3 . . . , Xi+3} ∈ R7 → {G̃i} ∈ R1, (16)

where G̃i is the predicted parameterization at ith grid
point and Xi is the resolved variable. For the training,
we assume that the resolved variables and the parameter-
izations are known exactly and are computed by solving
Equation 1 and Equation 2 in a coupled manner. For
all ANN architectures used in this study, we apply two
hidden layers with 40 neurons and ReLU activation func-
tion for all hidden layers. For the output layer, the linear
activation function is used. The ANN is trained using an
Adam optimizer for 300 iterations.

B. Convolutional neural network

The convolutional neural network (CNN) is particu-
larly attractive when the data is in the form of two-
dimensional images100. Here, we present the CNN archi-
tecture assuming that the input and output of the neural
network have the structure of two-dimensional images.
This formulation can be easily applied to one-dimensional
images when the dimension in one direction is collapsed
to one. The Conv layers are the fundamental building
blocks of the CNN. Each Conv layer has a predefined
number of filters (also called kernels) whose weights have
to be learned using the backpropagation algorithm. The
shape of the filter is usually smaller than the actual image
and it extends through the full depth of the input volume
from the previous layer. For example, if the input to the
CNN has 256 × 256 × 1 dimension where 1 is the num-
ber of input features, the kernels of the first Conv layer
can have 3 × 3 × 1 shape. During the forward propaga-
tion, the filter is convolved across the width and height of
the input volume to produce the two-dimensional map.
The two-dimensional map is constructed by computing
the dot product between the weights of the filter and the
input volume at any position and then sliding it over the
whole volume. Mathematically the convolution operation
corresponding to one filter can be written as

Slij =

∆i/2∑
p=−∆i/2

∆j/2∑
q=−∆j/2

∆k/2∑
r=−∆k/2

Wl
pqrX l−1

i+p j+q k+r+Bpqr,

(17)
where ∆i, ∆j , ∆k are the sizes of filter in each direction,
Wl

pqr are the entries of the filter for lth Conv layer, Bpqr
is the biasing parameter, and X l−1

ijk is the input from (l−
1)th layer. Each Conv layer will have a set of predefined
filters and the two-dimensional map produced by each
filter is then stacked in the depth dimension to produce
a three-dimensional output volume. This output volume
is passed through an activation function to produce a
nonlinear map between inputs and outputs. The output
of the lth layer is given by

X lijk = ζ(Slijk), (18)

where ζ is the activation function. It should be noted
that as we convolve the filter across the input volume,
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the size of the input volume shrinks in height and width
dimension. Therefore, it is common practice to pad the
input volume with zeros called zero-padding. The zero-
padding permits us to control the shape of the output
volume and is used in our neural network parameteriza-
tion framework to preserve the shape so that input and
output width and height are the same. The main ad-
vantage of CNN is its weight sharing property because
the filter of the smaller size is shared across the whole
image which is larger in size. This allows CNN to handle
large data without the significant computational over-
head. The CNN mapping for learning parameterizations
in a two-level Lorenz model can be mathematically pre-
sented as

CNN : {X1, . . . , Xn} ∈ Rn → {G̃1, . . . G̃n} ∈ Rn, (19)

where Xi is the resolved variable and G̃i is the predicted
parameterization. Therefore, the solution at a single time
step corresponds to one training example for training the
CNN. In our CNN architecture, we use only one hidden
layer between the input and output. This hidden layer
has 128 filters with 7× 1 shape. We apply ReLU activa-
tion function for all hidden layers and the linear activa-
tion function for the output layer. Also, the zero-padding
is used to keep the input and output shape the same.
The CNN is trained with an Adam optimizer for 400 it-
erations. The hyperparameters of both ANN and CNN
architectures were obtained through parametric study for
a different number of neurons/filters and the number of
hidden layers. 80% of the total data selected randomly
was used for training and the remaining 20% of the data
was used for validation. The selection of hyperparam-
eters is done in such a way that the mean squared er-
ror between the actual and predicted parameterization
drops smoothly for both training and validation dataset
so that overfitting is avoided and our model generalizes
well to the unseen data. There are other methods like
regularization, dropout, ensembling from different mod-
els, early stopping that can be adopted to prevent overfit-
ting. An extensive hyperparameter search can be carried
out for complex geophysical flows using neural architec-
ture search packages like DeepHyper101 and Tune102.

For the two-dimensional turbulence, we learn the
source term Π as a function of resolved flow variables,
i.e., the vorticity ω, the streamfunction ψ, and two eddy-
viscosity kernels as input features. The use of eddy-
viscosity kernels as input features can be considered as a
feature engineering step where certain important quan-
tities are pre-computed and the neural network is pre-
sented with it as raw input features so as to facilitate the
faster training and robust prediction. The CNN map for
two-dimensional turbulence can be mathematically writ-
ten as

CNN : {ω̄, ψ̄, |S̄|, |∇ω̄|} → {Π̃}, (20)

where Π̃ is the predicted source term, |S̄| is the Smagorin-
sky kernel, and |∇ω̄| is the Leith kernel. The Smagorin-

sky and Leith kernels are computed as follow

|S̄| =
√

4

(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
− ∂2ψ̄

∂y2

)2

, (21)

|∇ω̄| =
√(

∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

. (22)

The CNN architecture to learn the parameterization
model for Kraichnan turbulence consist of 6 hidden lay-
ers and 16 filters in each hidden layers. The size of the
filter in each hidden layer is 3× 3 and the ReLU activa-
tion function is utilized for hidden layers. The training
is performed for 800 epochs using the Adam optimizer.
We note here that the predicted source term by the CNN
is further post-processed during the deployment before it
is injected into the vorticity transport equation to en-
sure numerical stability and we detail that procedure in
Section V.

IV. DATA ASSIMILATION

As highlighted in many studies, neural network pa-
rameterizations suffer from instabilities and biases once
the trained model is deployed in a forward solver16,58–60.
From our numerical experiments with the two-level
Lorenz system, we observe that the forward model with
only neural network parameterizations delivers accurate
prediction only up to some time and after that the model
starts deviating from the true trajectory. In order to ad-
dress this issue and improve the long-term forecast with
hybrid models, we utilize the data assimilation (DA) to
incorporate noisy measurements for the prediction of fu-
ture state. The main theme of DA is to extract the in-
formation from observational data to correct dynamical
models and improve their prediction. There is a rich
literature on DA61–63,103,104 and here we discuss only se-
quential data assimilation problem and then outline the
algorithm procedure for perturbed observations ensemble
Kalman filter (EnKF), and the deterministic ensemble
Kalman filter (DEnKF).

We consider the dynamical system whose evolution can
be represented as

xk+1 = Mtk→tk+1
(xk) + wk+1, (23)

where xk ∈ Rn is the state of the dynamical system at
discrete time tk, M : Rn → Rn is the nonlinear model
operator that defines the evolution of the system. The
term wk+1 denotes the model noise that takes into ac-
count any type of uncertainty in the model that can be
attributed to boundary conditions, imperfect models, etc.
Let zk ∈ Rm be observations of the state vector obtained
from noisy measurements and cane be written as

zk = h(xk) + vk, (24)

where h(·) is a nonlinear function that maps Rn → Rm,
and vk ∈ Rm is the measurement noise. We assume
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that the measurement noise is a white Gaussian noise
with zero mean and the covariance matrix Rk, i.e.,
vk ∼ N (0,Rk). Additionally, the noise vectors wk and
vk are assumed to be uncorrelated to each other at all
time steps. The sequential data assimilation can be con-
sidered as a problem of estimating the state xk of the sys-
tem given the observations up to time tk, i.e., z1, . . . , zk.
When we utilize observations to estimate the state of
the system, we say that the data are assimilated into the
model. We will use the notation x̂k to denote an analyzed
state of the system at time tk when all of the observa-
tions up to and including time tk are used in determining
the state of the system. When all the observations before
(but not including) time tk are utilized for estimating the
state of the system, then we call it the forecast estimate

and denote it as xfk .
The ensemble Kalman filter (EnKF)105 follows the

Monte Carlo approach to approximate the probability
distribution in the Kalman filter equations106. We start
by initializing the state of the system for different ensem-
ble members as follows

X̂0(i) = m0 + y0(i), i = 1 . . . N (25)

where y0(i) ∼ N (0,P0), m0 is some assumed mean state
of the system, P0 is the initial covariance error matrix,
andN is the number of ensemble members. The propaga-
tion of the state for each ensemble over the time interval
[tk, tk+1] can be written as

Xf
k+1(i) = Mtk→tk+1

(X̂k(i)) + wk+1. (26)

The term wk+1 accounting for model imperfections is
usually assumed to be Gaussian noise. In this study,
we consider the model error by means of multiplica-
tive inflation107 and without loss of generality we set
wk+1 = 0. The prior state and the prior covariance ma-
trix are approximated using the sample mean and error

covariance matrix Pfk+1 as follows

xfk+1 =
1

N

N∑
i=1

Xf
k+1(i), (27)

Efk+1(i) = Xf
k+1(i)− xfk+1, (28)

Pfk+1 =
1

N − 1

N∑
i=1

Efk+1(i)(Efk+1(i))T. (29)

Once the observations are available at time tk+1, we gen-
erate N realizations of perturbed observations as follows

Zk+1(i) = zk+1 + vk+1(i), (30)

where vk+1(i) ∼ N (0,Rk+1). Each member of the fore-

cast ensemble Xf
k+1(i) is analyzed using the Kalman filter

formulae as shown below

X̂k+1(i) = Xf
k+1(i) + Kk+1[Zk+1(i)− h(Xf

k+1(i))],

(31)

Kk+1 = Pfk+1H
T
k+1[Hk+1P

f
k+1H

T
k+1 + Rk+1]−1,

(32)

where H ∈ Rm×n is the Jacobian of observation function
h(·). The analysis state estimate at time tk+1 is com-
puted using the sample mean of all ensemble members
as

x̂k+1 =
1

N

N∑
i=1

X̂k+1(i). (33)

In order to take model imperfections into account, all
ensemble members are updated by applying inflation to
all ensemble anomalies as follows

X̂k+1(i)← x̂k+1 + λ · (X̂k+1(i)− x̂k+1), (34)

where λ is the inflation factor. The inflation also helps to
address the problem of covariance underestimation due
to small number of ensembles63. The inflation factor can
either be a scalar or it can be made space and time de-
pendent to improve the filter performance108,109. In this
study, we use the constant value of the inflation factor
over the entire space at all times.

As a variant of the low-rank sequential nonlinear fil-
tering framework, we also utilize the deterministic EnKF
(DEnKF) algorithm proposed by Sakov and Oke 110 for
the data assimilation. We start the DEnKF algorithm
by initializing the state estimate for all ensemble mem-
bers similar to the EnKF algorithm as given in Equa-
tion 25. The anomalies between the forecast estimate
of all ensembles and its sample mean (calculated using
Equation 27) is

Af
k+1(i) = Xf

k+1(i)− xfk+1. (35)

Once the observations are available at time tk+1, the fore-
cast state estimate is assimilated using the Kalman filter
analysis equation as follows

x̂k+1 = xfk+1 + Kk+1[zk+1 − h(xfk+1)]. (36)

Here, the Kalman gain matrix is computed using its

square root version (without storing or computing Pfk+1
explicitly) as follows

Kk+1 =
Afk+1(Hk+1Afk+1)T

N − 1

[
(Hk+1Afk+1)(Hk+1Afk+1)T

N − 1

+ Rk+1

]−1

, (37)

where H ∈ Rm×n is the Jacobian of the observation op-

erator (i.e., Hkl = ∂hk

∂xl
), and the matrix Afk+1 ∈ Rn×N is

concatenated as follows

Afk+1 = [Af
k+1(1),Af

k+1(2), . . . ,Af
k+1(N)]. (38)

The anomalies for all ensemble members are then up-
dated separately with half the Kalman gain as shown
below

Âk+1(i) = Af
k+1(i)− 1

2
Kk+1Hk+1A

f
k+1(i). (39)
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The analysis state for all ensemble members is obtained
by adding ensemble anomalies and can be written as

X̂k+1(i) = x̂k+1 + λ · Âk+1(i), (40)

where λ is the inflation factor. We validate our imple-
mentation of the DEnKF algorithm using the one-level
Lorenz 96 model and is detailed in Appendix A.

V. NUMERICAL EXPERIMENTS

In the following, we present the findings of our numer-
ical experiments with a two-level Lorenz 96 model and
Kraichnan turbulence.

A. Two-level Lorenz 96 model

In this subsection, we discuss the results of numeri-
cal experiments with a two-level variant of the Lorenz
96 system embedded with neural network parameteriza-
tions for the unresolved variables. We utilize the fourth-
order Runge-Kutta numerical scheme with a time step
∆t = 0.001 for temporal integration of the Lorenz 96
model. We apply the periodic boundary condition for
the slow variables, i.e., Xi−n = Xi+n = Xi. The fast
variables are extended by letting Yj,i−n = Yj,i+n = Yj,i,
Yj−J,i = Yj,i−1, and Yj+J,i = Yj,i+1. The physical ini-
tial condition is computed by starting with an equilib-
rium condition at time t = −5 for slow variables. The
equilibrium condition for slow variables is Xi = F for
i ∈ 1, 2, . . . , n. We perturb the equilibrium solution for
the 18th state variable as X18 = F + 0.01. At the time
t = −5, the fast variables are assigned with random num-
bers between −F/10 to F/10. We integrate a two-level
Lorenz 96 model by solving both Equation 1 and Equa-
tion 2 in a coupled manner up to time t = 0. With this
initial condition (i.e., at t = 0), we generate the train-
ing data for neural networks by integrating the two-level
Lorenz 96 model from t = 0 to t = 10. Therefore, we
gather 10,000 temporal snapshots to generate the train-
ing data. For all our numerical experiments, we use 80%
of the data to train the neural network and 20% data
to validate the training. We assess the performance of
a trained neural network by deploying it in a forecast
model for temporal integration between time t = 10 to
t = 20. Therefore, there is no overlap between the data
used for training and testing. Since the neural network
has not seen the testing data during the training, the
performance of neural network parameterizations in this
temporal region will give us an insight on its generaliz-
ability to unseen data.

First, we present results for ANN based parameteriza-
tions trained using neighboring stencil mapping as dis-
cussed in Section III A. Figure 1 displays the full state
trajectory of the Lorenz 96 model from time t = 10 to
t = 20 computed by solving both the evolution of slow

and fast variables (i.e., True) and with ANN based pa-
rameterizations for fast variables (i.e., ANN-3, ANN-5,
ANN-7). The difference between the true solution field
and the predicted solution field is also depicted in Fig-
ure 1. It can be observed that the predicted solution field
starts deviating from the true solution field at around
t ≈ 12 for all ANN-based parameterizations.

Next, we illustrate how the prediction of a two-level
Lorenz 96 model with neural network parameterizations
can be improved using sequential data assimilation by
incorporating noisy observations in the future state pre-
diction. For our twin experiment, we obtain observa-
tions by adding noise drawn from the Gaussian distri-
bution with zero mean and the covariance matrix Rk,
i.e., vk ∼ N (0,Rk). We use Rk = σ2

b I, where σb is the
standard deviation of measurement noise and is set at
σb = 1. We assume that observations are sparse in space
and are collected at every 10th time step. The number
of ensemble members used for all numerical experiments
is N = 30. We present two levels of observation density
in space for the DA. For the first case, we employ ob-
servations at [X4, X8, . . . , X36] ∈ R9 for the assimilation.
The second set of observations consists of 50% of the
full state of the system, i.e., [X2, X4, . . . , X36] ∈ R18. In
Figure 2, we provide the full state trajectory prediction
for the ANN-5 parameterization without any DA and
with DA for two sets of observations. We can observe
that there is a substantial improvement in the long-term
prediction even with only 25% of the observations incor-
porated through the DEnKF algorithm. The results in
Figure 2 provide the evidence for the good performance
of the present framework in achieving accurate long-term
prediction for hybrid models embedded with data-driven
parameterizations. Therefore, the present framework can
lead to accurate forecasting by exploiting online measure-
ments coming from various types of sensor networks and
can find applications in different fields like climate model-
ing, turbulence closure modeling where the subgrid scale
parameterizations are unavoidable.

Figure 3 illustrates the time evolution of the full state
trajectory of a two-level Lorenz 96 model with CNN
based parameterizations for unresolved scales. CNN is
fed with the entire state of the slow variables as an input
and it calculates the parameterizations of fast variables
at all grid points. From Figure 3, we can deduce that the
predicted state trajectory starts deviating from the true
state at around t ≈ 12 when only CNN based parame-
terizations are employed in the forward model of slow
variables. When we incorporate observations through
DA, we observe considerable improvement in the state
prediction over a longer period.

Based on results presented in Figure 2 and Figure 3, we
can notice that the error is slightly higher between time
t = 18 to t = 20 for the CNN based parameterizations
empowered with DA. One reason for the inaccurate fore-
cast can be attributed to the uncertainty in the predic-
tion of parameterizations by CNN. We highlight here that
both ANN-5 and CNN architectures used in this study
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FIG. 1. Full state trajectory of the multiscale Lorenz 96 model with the closure term computed using the different neighboring
stencil mapping feedforward ANN architecture.

have similar number of trainable parameters. However,
we see a better performance of the ANN-5 architecture
over CNN due to a more number of training examples in
the case of the ANN. For the ANN, every single point of
the two-level Lorenz 96 system is one training example
and therefore a single time snapshot of the training data
leads to 36 samples for training. However, in the case of
CNN, the total number of training samples is equal to
the total number of time snapshots available for train-
ing. Therefore, we observe the better performance of the
ANN-5 over CNN.

Another potential reason for this discrepancy can be
the stochastic nature of the parameterization model. The
true parameterization model in itself is stochastic and
might not follow a Gaussian distribution. To isolate the
source of error, we integrate the forecast model for a two-
level Lorenz 96 model without any parameterizations.
The two-level Lorenz 96 model with no parameterizations
is equivalent to setting the coupling coefficient h = 0 in
Equation 1 and it reduces to one-level Lorenz 96 model
as presented in Equation A1. We note here that the ob-

servations used for data assimilation are the same as the
numerical experiments with a two-level Lorenz 96 model.
Therefore, the effect of unresolved scales is embedded
in observations. The parameterization of fast variables

(i.e.,hcb
∑J
j=1 Yj,i term in Equation 1) can be considered

as an added noise to the true state of the system for a
one-level Lorenz 96 model presented in Equation A1.

In Figure 4, we report the true state of a two-level
Lorenz 96 model and also the predicted state trajectory
using the DA framework with no parameterization. We
provide the results for three sets of observations utilized
in DA. The observations are incorporated at every 10th

time step of the model through assimilation stage. We
can observe that, even when 100% of the full state is ob-
servable, we do not recover the true state trajectory of a
two-level Lorenz 96 model. With this observation, we can
conclude that it is essential to incorporate parameteriza-
tion of unresolved scales into a forward model of the DA
procedure to recover the accurate state trajectory. The
root mean squared error between the assimilated states
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FIG. 2. Full state trajectory of the multiscale Lorenz 96 model with the closure term computed using the five-point neighboring
stencil mapping feedforward ANN architecture and the DEnKF used for data assimilation.

and true states for three sets of observations is provided
in Table I.

In this numerical experiment with the truncated
model, the observations include the effect of unresolved
scales and can be considered as an added noise. The se-
quential DA methods based on Kalman filters deliver a
considerably accurate solution when the model and ob-
servations noise is drawn from a Gaussian distribution
and enough observations are provided. If the parame-
terization of unresolved scales follows a Gaussian distri-
bution, we should be able to recover the accurate state
of the system as the density of observations is increased.
However, as reported in Figure 4, there is a high level
of inaccuracy even when 100% of the state is observ-
able. Therefore, we can conclude that there is a consid-
erable benefit of including neural network parameteriza-
tions compared to using no parameterization in the fore-
cast model. The results provided in Figure 2 and Figure 3
also shows that the neural network parameterizations can
capture the non-Gaussian statistics of subgrid scale pro-
cesses and this leads to accurate forecasting over a longer

period. There are other DA approaches that deal with
non-Gaussian distributions for noise vectors111–116. We
restrict ourselves to the DEnKF algorithm for DA in this
study and plan to explore other DA algorithms in our
future work.

We assess the quantitative performance of different nu-
merical experiments performed in this study using the
root mean squared error (RMSE) between the true and
predicted state of slow variables in a two-level Lorenz 96
model. The RMSE is computed as shown below

RMSE =

√√√√ 1

n

1

nt

n∑
i=1

nt∑
k=1

(
XT
i (tk)−XP

i (tk)
)2
, (41)

where XT
i is the true state of the system and XP

i is
the predicted state of the system. Table I reports the
RMSE for a two-level Lorenz 96 model for all cases in-
vestigated in this work. We can see that the RMSE is
very high when we do not use any parameterizations for
unresolved scales even when measurements for an entire
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FIG. 3. Full state trajectory of the multiscale Lorenz 96 model with the closure term computed using the CNN architecture
and the DEnKF used for data assimilation

state of the system are incorporated through DA. The
data assimilation alone can not account for the effect of
unresolved scales, even though their effect is present in
the observations data. Therefore, it is imperative to in-
clude parameterizations of fast variables in the forecast
model of slow variables. We observe that the ANN archi-
tecture provides slightly more accurate results than the
CNN based parameterizations for fast variables. Also,
the RMSE is minimum for the ANN-3 parameterizations
and we observe a slight increase in RMSE by including
more neighboring information. One potential reason for
this observation can be the use of the same hyperparam-
eters for all ANN architectures. However, this change is
very small and the RMSE is the same order of magni-
tude for all types of neural network parameterizations.
The RMSE is almost the same when 25% or 50% of the
full state of the system is observed in data assimilation
framework.

We highlight here that in the previous numerical ex-
periment with the truncated model, we assumed that our
forecast model is a true model. However, often the fore-

TABLE I. Quantitative assessment of different neural network
parameterizations for subgrid scale processes using the total
root mean square error given by Equation (41).

Framework RMSE

Only neural network parameterizations
ANN-3 3.38
ANN-5 3.73
ANN-7 3.77
CNN 3.79

Only data assimilation
No parameterizations (m = 9) 5.11
No parameterizations (m = 18) 4.30
No parameterizations (m = 36) 3.92

Neural network parameterizations with data assimilation
ANN-5 (m = 9) 0.52
ANN-5 (m = 18) 0.53
CNN (m = 9) 2.13
CNN (m = 18) 2.20
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FIG. 4. Full state trajectory of the multiscale Lorenz 96 model with no closure for subgrid processes. The observation data for
the DEnKF algorithm is obtained by adding measurement noise to the exact solution of the multiscale Lorenz 96 system.

cast models in DA are imperfect, and the model error
introduced due to truncation of the sub-model is usu-
ally either modeled using the Gaussian noise or covari-
ance inflation. Indeed, the ensemble Kalman filter frame-
work is very well established and, to the extent that if
modeling errors can be represented as zero-mean with a
simple correlation structure, then the DA is very effec-
tive at correcting model errors. For example, Brajard
et al. 75 utilized a Gaussian noise with zero mean and a
certain value of standard deviation (optimized by tun-
ing experiments) to account for the model error arising
due to truncation of the parameterizations in a two-level
Lorenz system. Similarly, Attia and Constantinescu 109

proposed a variational framework for adaptive tuning of
inflation and localization parameters and demonstrated
its successful performance for a two-level Lorenz system.
For a fair comparison with neural network-based param-
eterizations, we repeat the numerical experiments with
the truncated model for different values of inflation fac-
tor. We keep the number of ensembles fixed at N = 30,
and the inflation factor is varied from 1.0 to 1.05 with

an increment of 0.01. Figure 5 reports the RMSE for the
truncated model for different inflation factors, and we
can notice that with the proper choice of inflation factor
and sufficient observations, the truncated model can also
predict the true state of the two-level Lorenz system. In
contrast to Figure 4, Figure 6 depicts the full state trajec-
tory of the two-level Lorenz system estimated using the
DEnKF algorithm with the inflation factor λ = 1.03 for
three sets of observations. Overall, the results presented
in Figure 5 suggest that the true state of the two-level
Lorenz system can be determined when more than 50%
of the state is observable, and a proper value of inflation
factor is employed for the DA with the truncated model.
Moreover, the prediction of the true state of the system
with neural network-based parameterization can be fur-
ther improved by applying the inflation and the RMSE
for different values of the inflation factor for CNN-based
parameterization model are also shown in Figure 5. It
can be clearly seen that there is a significant accuracy
gain by adding the CNN based parameterizations for al-
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most all configurations.

B. Kraichnan turbulence

We now characterize the performance of the EnKF al-
gorithm, as described in Section IV, to estimate the state
of the two-dimensional turbulence system when observa-
tion from high fidelity simulation are available. This test
set-up is particularly challenging because of the modeling
of unresolved scales in the LES solver, which is employed
as the forecast model for two-dimensional turbulence.
The performance of the EnKF algorithm is impacted by
the choice of the model and the forecast model should be
accurate enough for error control techniques like covari-
ance inflation, covariance localization, stochastic forcing,
etc. to work. As we will see, if the effect of unresolved
scales are not modeled, even the EnKF algorithm with
high value of the inflation factor does not improve the
state estimate of the two-dimensional turbulence system.

The governing equations for the two-dimensional tur-
bulence are numerically solved using the second-order
finite difference discretization. The nonlinear Jaco-
bian term is discretized with the energy-conserving
Arakawa117 numerical scheme. A third-order total-
variation-diminishing Runge-Kutta scheme is used for
the temporal integration and a spectral Poisson solver is
utilized to update streamfunction from the vorticity118.
The computational domain is square in shape with di-
mensions [0, 2π] × [0, 2π] in x and y directions, respec-
tively, and the periodic boundary condition is applied in
both x and y directions. The training data for CNN is
generated by carrying out the DNS at Re = 8000 for
two different initial conditions (independent of the truth
model) on a grid resolution of 512×512 and then collect-
ing total 800 snapshots (400 for each initial condition)
between time t = −2 to t = 2. The initial condition is
assigned in such a way that the maximum value of the
initial energy spectra occurs at wavenumber Kp = 10.
Further details of the randomization process for the ini-
tial condition can be found in related work119. The DNS
data is coarsened to the 64× 64 grid resolution using the
spectral cutoff filter. The coarsened flow variables are
then used to compute input features and labels for de-
veloping the data-driven subgrid-scale parameterization
model as discussed in Section III B. Once the CNN is
trained, it is deployed in the forecast model from time
t = 0 to t = 4. We highlight that the data from time
t = 2 to t = 4 is not seen during the training.

The predicted source term Π̃ has negative eddy viscosi-
ties embedded in it and needs to be post-processed before
directly injecting it into the solver26. The numerical sta-
bility is ensured during the a posteriori deployment by
truncating the learned source term Π̃ corresponding to

negative numerical viscosities as follows

Π =

{
Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise
(42)

In addition to truncating the source term corresponding
to negative eddy viscosity, the truncation is also applied
at points where the local eddy viscosity is greater than
the local-average average eddy viscosity. This truncation
scheme can be mathematically expressed as

Πi,j =

{
Π̃i,j , if νi,j > νi,j
0, otherwise

(43)

where the eddy viscosity ν is computed as

νi,j =
Π̃i,j

∇2ω̄
, (44)

and the local-averaged eddy viscosity νi,j is calculated us-
ing the mean filtering kernel of size 3×3. This additional
truncation scheme given in Equation 43 aids in preserving
the statistical quantities like the kinetic energy spectra
close to the DNS solution as compared to utilizing only
negative eddy viscosity truncation scheme. In terms of
the computational cost, the data-driven subgrid-scale pa-
rameterization model is significantly fast compared to the
dynamic Smagorinksy model (DSM)120 and we observed
up to 30% reduction in computational speed in the a
posteriori runs with the CNN based closure model.

The ‘truth’ solution for the data assimilation is ob-
tained by solving the vorticity transport equation with
a grid resolution 512 × 512 for the Reynolds number
Re = 8000 and then applying the spectral cutoff filter
to get the filtered DNS solution on the coarse grid with
resolution 64 × 64. Other methods like multigridding
can also be adopted to relax the solution from fine grid
to coarse grid121. The DNS solution is generated from
time t = −2 to t = 0 with ∆t = 1 × 10−3. The as-
similation is started at time t = 0 once the turbulence
is developed and the initial transience from t = −2 to
t = 0 is discarded. The observations are assimilated at
every 10th time step of the forecast model. The synthetic
observations are generated by sampling vorticity field at
32 × 32 (corresponding to 25% of the full state of the
system) equidistant points in x and y directions from the
filtered DNS solution and then contaminating them with
the Gaussian noise, i.e., vk ∼ N (0,Rk), where Rk = σ2

b I.
We set observation noise at σ2

b = 2.
The initialization of the ensemble members also plays

an important role in the performance of the EnKF
algorithm122, especially in the initial period of the DA.
There are different ways that have been used for the ini-
tialization of ensemble members in DA of turbulent flows,
such as, using the solution field separated by a certain
time from the turbulent flow simulation70, adding ran-
dom perturbation to mean flow solution69. We initial-
ize all ensemble ensemble members by adding a random
perturbations drawn from N (0,P0) to the filtered DNS
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FIG. 5. The root mean squared error for different values of the inflation factor for three sets of observations. The number of
ensembles is kept fixed at N = 30 for all sets of observations.

10 12 14 16 18 20

10

20

30

X

(a) True

10 12 14 16 18 20

10

20

30

X

(b) DEnKF (m = 9)

10 12 14 16 18 20

10

20

30

ε

(e) Error (DEnKF (m = 9))

10 12 14 16 18 20

10

20

30

X

(c) DEnKF (m = 18)

10 12 14 16 18 20

10

20

30

ε

(f) Error (DEnKF (m = 18))

10 12 14 16 18 20

t

10

20

30

X

(d) DEnKF (m = 36)

10 12 14 16 18 20

t

10

20

30

ε

(g) Error (DEnKF (m = 36))

−10 −5 0 5 10

FIG. 6. Full state trajectory of the multiscale Lorenz 96 model with no closure for subgrid processes and for the inflation factor
λ = 1.03. The observation data for the DEnKF algorithm is obtained by adding measurement noise to the exact solution of
the multiscale Lorenz 96 system.
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solution at time t = 0. The initial covariance matrix is
set at P0 = σ2

0I, where σ2
0 = 1.

We illustrate the performance of the EnKF algorithm
for three different types of forecast models. The first fore-
cast model is the unresolved numerical simulation (UNS),
where subgrid-scale parameterization is completely dis-
carded. In the second forecast model, the dynamic
Smagorinsky model (DSM)123,124 is used for modeling
the source term in LES simulation. The third forecast
model consists of utilizing the CNN based subgrid-scale
parameterization. For a fair comparison of the applica-
tion of the EnKF algorithm to three different models,
we run experiments with different combinations of the
number of ensemble members and the inflation factor.
The number of ensemble members is increased from 40
to 120 with an increment of 20 and the inflation fac-
tor is varied from 1.0 to 1.5 with an increment of 0.1.
This gives us 30 different numerical experiments for each
model. The performance of each numerical experiment
is evaluated by computing the RMSE between the com-
pensated kinetic energy spectra for the state estimated
by the EnKF algorithm and the filtered DNS solution.
The energy spectra is considered over the inertial range,
i.e., between K = 8 to K = 32 and for 200 snapshots
stored over the last half of the experiment timespan (from
time t = 2 to t = 4). The RMSE results for these nu-
merical experiments are shown in Figure 7. Results in
Figure 7 suggest that the RMSE for the UNS model is
significantly higher than the DSM and CNN model. The
solution field predicted by UNS has a significant error
due to the truncation of subgrid-scale parameterization
and an increase in the number of ensembles or the infla-
tion factor does not seem to help improve the state of
the system predicted by the UNS model. The average
RMSE for both DSM and CNN models is of a similar
magnitude. Moreover, Figure 7 indicates that the lower
RMSE occurs at less number of ensembles for the CNN
model with a moderate inflation factor (i.e., 1.2-1.3).

We evaluate the performance of different models
through kinetic energy spectra calculation and second-
order vorticity structure functions. We compute the vor-
ticity structure function using the formula given by125

for two-dimensional turbulence and is shown below

Sω(r) =< |ω̄(x + r)− ω̄(x)|2 >, (45)

where <> indicates ensemble averaging, x is the position
on the grid, and r is certain distance from this location.

Figure 8 displays the kinetic energy spectra at final
time t = 4 obtained with different models for Re = 8000.
We can observe that there is an accumulation of the en-
ergy near grid cutoff wavenumber in the case of the UNS
model. The UNS-EnKF model is not able to correct the
state estimate of the system due to very high noise in the
forward model. We see an improvement in the energy
spectra predicted by the DSM-EnKF and CNN-EnKF
model compared to utilizing only the parameterization
model. We note here that the kinetic energy spectra for
the filtered DNS solution is identical to the DNS spec-

tra till the grid cutoff wavenumber due to the use of a
spectral cutoff filter. Figure 9 depicts the second-order
vorticity structure functions at final time t = 4 where the
evaluation with the FDNS shows that the EnKF is suc-
cessful in improving the prediction of the vorticity struc-
ture function for both DSM and CNN model. We do not
observe any improvement in the vorticity structure func-
tion prediction for the UNS model, which again empha-
sizes the importance of using an accurate forecast model
in data assimilation.

VI. CONCLUDING REMARKS

The data-driven methods are successful in discovering
model-free parameterizations from high-fidelity numeri-
cal simulations or experimental measurements and offers
an alternative to parameterization models based on em-
pirical or phenomenological arguments. The data-driven
parameterization models are also computationally faster
and are suitable for sequential data assimilation where
multiple forward runs of a forecast model are required.
To this end, we introduce a framework to apply data as-
similation methods to the physics-based model embedded
with data-driven parameterizations to achieve accurate
long-term forecast in multiscale systems. We demon-
strate that the forecasting capability of hybrid models
can be significantly improved by exploiting online mea-
surements from various types of sensor networks. Specif-
ically, we use neural networks to learn the relation be-
tween resolved scales and the effect of unresolved scales
(i.e., parameterizations). The deployment of the trained
neural network in the forward simulation provides accu-
rate prediction up to a short period and then there is a
large discrepancy between true and predicted state of the
system. To address this issue and to improve the long-
term prediction, we exploit the sparse observations data
through data assimilation.

We illustrate this framework for a two-scale variant of
the Lorenz 96 model which consists of fast and slow vari-
ables whose dynamics are exactly known and for Kraich-
nan turbulence where the parameterization model for un-
resolved scales is not known a priori. We obtain a consid-
erable improvement in the prediction for both test cases
by combining neural network parameterizations and data
assimilation compared to employing only neural network
parameterizations. We also found that including an ML
based closure term seems to capture non-Gaussian statis-
tics and significantly improve the forecast error. Based
on our numerical experiments with data assimilation em-
powered neural network parameterizations, we can con-
clude that improving machine learning-based model pre-
diction with data assimilation methods offers a promising
research direction. We also highlight that the inaccu-
racy associated with data-driven parameterizations can
be tackled with data assimilation error control techniques
like covariance inflation, covariance localization, stochas-
tic forcing, etc.



16

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Inflation factor

40

60

80

100

120

N
u

m
b

er
of

en
se

m
b

le
s

UNS-EnKF

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Inflation factor

DSM-EnKF

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Inflation factor

CNN-EnKF

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

FIG. 7. Average RMSE of the compensated energy spectra for different combinations of the inflation factor and number of
ensembles. The RMSE is averaged over the inertial range (i.e., from K = 8 to K = 32) considering data from t = 2 to t = 4.

100 101 102

K

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
(K

)

k−3

DNS

UNS

UNS-EnKF

DSM

DSM-EnKF

100 101 102

K

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
(K

)

k−3

DNS

UNS

UNS-EnKF

CNN

CNN-EnKF

FIG. 8. A posteriori kinetic energy spectra at t = 4 at Nx ×Ny = 64 × 64 grid resolution for different models. The number of
ensembles and the inflation factor for the EnKF algorithm for different models corresponds to minimum value of the average
RMSE between the compensated energy spectra for the filtered DNS solution and the solution predicted with different models.
The EnKF related parameters are N = 40, λ = 1.0 for UNS-EnKF, N = 120, λ = 1.3 for DSM-EnKF, and N = 40, λ = 1.3 for
CNN-EnKF.

Our future work aims at leveraging the underlying
physical conservation laws into neural network training
to produce physically consistent parameterizations. As
the deep learning field is evolving rapidly, we can inte-
grate modern neural network architectures and training
methodology into our framework to attain higher accu-
racy. In the present framework, we employ the ensem-
ble Kalman filter based algorithms for data assimilation.
This algorithm gives accurate prediction when the un-
certainty in model and observations follows a Gaussian
distribution. We plan to investigate other data assimila-
tion approaches like maximum likelihood ensemble filter
methods that can handle the non-Gaussian nature of un-
certainty in the mathematical model to get further im-
provement in the accuracy prediction. We will also test
the present framework for more complex turbulent flows

as a part of our future effort. Finally, we conclude by
reemphasizing that the integration of data assimilation
with hybrid physics-ML models can be effectively used
for modeling of multiscale systems.

DATA AVAILABILITY

The data that supports the findings of this study
are available within the article. Implementation details
and Python scripts can be accessed from the Github
repository126.
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Appendix A: Validation of the Deterministic
Ensemble-Kalman Filter

In this Appendix, we provide results of data assimila-
tion with the DEnKF algorithm for one level Lorenz 96
model. The one level Lorenz 96 model is given as

dXi

dt
= −Xi−1(Xi−2 −Xi+1)−Xi + F, (A1)

for i ∈ 1, 2, . . . , 36 and F = 10. The above model is com-
pletely deterministic as there is no parameterization of
the unresolved scales. We use the similar settings as the
two-level variant of the Lorenz 96 model for temporal in-
tegration using the fourth-order Runge-Kutta numerical
scheme. The true initial condition is generated by inte-
grating the solution starting from an equilibrium condi-
tion from t = −5 to t = 0. For all ensemble members,
we start with an initial condition obtained by perturb-
ing the true initial condition with a noise drawn from the
Gaussian distribution with zero mean and the variance of
1×10−2. The observations are generated for data assimi-
lation by adding a measurement noise from the Gaussian
distribution with zero mean and the variance of σ2

b = 1
(i.e, Rk = I) to the true state of the system. The ob-
servations are assumed to be available at every 10th time
step, similar to the two-level variant of the Lorenz 96
model.

As depicted in Figure 10, we can conclude that the
DEnKF can correct the erroneous trajectory even when
only 9 observations are employed for data assimilation.
As the amount of observations is increased to 18, we ob-
serve a reduction in the error. We reiterate here that, we
have complete control over the model (since it is deter-
ministic) in the numerical experiments with a one-level
Lorenz 96 model. As we introduce fast scale variables,
the evolution of slow variables in a two-level Lorenz 96
model is no longer deterministic and simple Kalman filter
based algorithms might not be enough to give accurate
prediction over a longer period.
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