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Abstract

Model form uncertainty arises from physical assumptions made in constructing models either

to model physical processes that are not well understood or to reduce the physical complexity.

Understanding these uncertainties is important for both quantifying prediction uncertainty and

unraveling the source and nature of model errors. Physics-based uncertainty quantification (UQ)

utilizes inherent physical model assumptions to estimate and ascertain the sources of model form

uncertainty or error. Compared to data-based approaches, physics-based approaches can be ex-

trapolated beyond available data and go beyond strictly uncertainty estimation. In this work, an

implied models approach is developed where the transport equation for the model error is derived

by taking the difference between the exact transport equation for a quantity of interest and the

transport equation implied by a particular model form. The implied models approach is then specif-

ically applied to the modeling of the Reynolds stresses by the Boussinesq eddy viscosity model.

Budgets of the model error transport are analyzed to better understand the sources of error in

two-equation RANS models focusing on the relative contributions from the Boussinesq hypothesis

and the specific form of the eddy viscosity in turbulent channel flow at various friction Reynolds

numbers. The results indicate that the errors are largely due to the misalignment of the mean

strain rate tensor and the Reynolds stress tensor as well as the high degree of anisotropy near the

wall, with errors in the shear component being dominant. An exploration of the k − ε and k − ω

models reveals that both models benefit from error cancellation. In particular, the improved results

of the k−ω model over the k− ε model are shown to be the direct result of this error cancellation.

An exploration of the effect of friction Reynolds number on the error budgets reveals that the

errors saturate with increasing Reynolds number owing to the relative decrease of anisotropy.

∗ kklemmer@princeton.edu
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I. INTRODUCTION

Reynolds-Averaged Navier-Stokes (RANS) models and Large Eddy Simulation (LES) are

widely used due to their relatively cheap computational cost compared to Direct Numerical

Simulation (DNS). However, the accuracy and fidelity of RANS and LES closure models

are known to be extremely susceptible to both parametric and model form uncertainty.

The parametric uncertainty in these models has been widely studied and deals with the

uncertainty associated with the optimal choice of the model coefficients. The model form

uncertainty present in RANS and LES closure models arises from the assumptions inherent

in these models. Understanding the sources of model form uncertainty or error present in

these models is paramount to the interpretation of the model outputs and the development

of more accurate models.

Data-driven techniques have long been employed to quantify uncertainty in turbulence

models. This has been achieved through both parametric uncertainty and, more recently,

model form uncertainty quantification methods. Parametric uncertainty techniques treat the

turbulence model parameters as random variables and propagate this uncertainty through

the model, ultimately obtaining a probability density function (PDF) for the quantity of

interest (QoI). These methods only capture the uncertainty associated with the parameters,

giving the user the optimal value of the model parameters for a given flow. This means

that the model form uncertainty is not quantified or is embedded into the parametric un-

certainty so is not separately or well understood in this approach. Examples of this as

applied to turbulence modeling can be found in work from Meldi et al. [1]. In that work,

the authors studied the parametric uncertainty in two different models for the turbulent en-

ergy spectrum by introducing stochasticity into the free model parameters and using general

polynomial chaos to propagate the uncertainty. In doing so, they look at the effect of these

free model parameters on the resulting energy spectrum and subsequently the Smagorinsky

model constant.

Model form uncertainty techniques have become increasingly more prevalent. Some of

these leverage parametric UQ methods by incorporating an additional uncertainty parameter

meant to quantify the model inadequacy or discrepancy. This has been done in the work

from Edeling et al. [2] and Oliver and Moser [3], both of which use Bayesian estimation. In

the former, parametric uncertainty as well as model inadequacy, through a multiplicative
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term, are quantified for the k− ε turbulence model. In the latter, various model inadequacy

formulations are explored (multiplicative and additive through both the mean velocity and

Reynolds stresses) and applied to multiple RANS models.

Other model form UQ approaches have specifically focused on introducing machine learn-

ing algorithms in aiding in the turbulence closure problem. These data-driven techniques

use high fidelity data from DNS or experiments to aid in closure of and estimation of the

uncertainty in the turbulence model [4] [5]. Generally, these works build off of existing UQ

methodologies, such as Bayesian estimation, and introduce machine learning techniques,

such as Gaussian process regression [4] or neural networks [4] [5], in order to learn the func-

tional form of the model discrepancy or inadequacy. These machine learning techniques

have the advantage of being able to achieve a more complex model discrepancy but are ul-

timately still physics-blind, save for the inclusion of data. It is important to note that these

data-driven methods are limited by the availability of high fidelity data, which in many cases

is limited by computational cost or complexity, and the resulting model form uncertainties

are unlikely to be extrapolatable much beyond the available data.

More recent work from Iaccarino and co-workers [6] [7] [8] has attempted to inject ad-

ditional physics into model form uncertainty for RANS models. In all of these works, a

physics-motivated approach is taken in which the anisotropic Reynolds stress tensor aij is

decomposed into its eigenvalues and eigenvectors, and perturbations are then introduced

into the eigenvalues in order to provide error bounds on the base RANS model. The decom-

position of aij results in a direct representation of the magnitude, shape, and orientation

of the Reynolds stresses via the turbulent kinetic energy, eigenvalues, and eigenvectors of

the anisotropy tensor, respectively. In this way, perturbations can be introduced into these

three different aspects of the Reynolds stresses, and the uncertainty can be propagated to

the QoIs, such as the mean velocity. Ultimately, this method uses perturbations towards

the limiting states of the realizable Reynolds stresses as error bounds, and, in doing so, they

are able to capture the behavior of flows that were previously indescribable using linear

eddy viscosity models for RANS closure, such as separated flows [8]. These approaches have

been further extended by Gorlé and co-workers to modeling the scalar flux vector [9] and

the pressure scrambling term in the scalar flux transport equation [10]. Additionally, this

perturbation methodology has been coupled with machine learning techniques in order to

learn the appropriate perturbations necessary to capture the physically correct flow [11] [12].
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The aforementioned works utilize methodologies that are able to characterize the uncer-

tainty in RANS closure models through physically motivated perturbations to the structure

of the anisotropic Reynolds stress tensor. In this way, this perturbation framework informs

the user how to introduce perturbations but not necessarily why these perturbations are

needed. As such, the source of the model error, as in why the model fails to capture the cor-

rect physical behavior, is still unknown. In other words, this approach essentially highlights

the shortcomings of the turbulence models but does not necessarily indicate the root cause of

such errors. The cause, in many cases, is the inadequacy of the model assumptions, simplifi-

cations that are not necessarily applicable in all conditions, and the failure of inadequacy of

these assumptions can only be assessed using fully physics-based UQ approaches. In some

cases, these assumptions are easily identifiable and can be leveraged to provide estimates

of model form uncertainty as in the work of Klemmer and Mueller [13]. In that work, a

methodology was developed for assessing the uncertainty associated with a specific model

assumption by a hierarchical UQ approach. In that approach, a hierarchy of models was

identified, and then the explicit assumptions were used to estimate the error between the

different models in the hierarchy. While they looked at turbulent combustion models, the

physics-based nature of their work is applicable to turbulence models as well. The present

work builds upon this idea of utilizing the physical assumptions, the difference being that

the explicit nature of the assumptions, which is not always known, is not the driving force

behind the formulation. Instead, the present framework uses the implicit knowledge of the

model assumptions embedded within the fundamental governing equations to characterize

the sources of the model form uncertainty. In doing so, this framework provides insight

regarding the reasons and conditions under which model assumptions are wrong.

In this work, a physics-based UQ methodology is developed and applied to two-equation

RANS turbulence models in order to understand the model assumptions that contribute to

model inadequacy or error. In the approach, the individual model assumptions are isolated

through the derivation of a transport equation for the model error implied by the model.

The general implied models approach is outlined in Section II, and this approach is then

applied to RANS turbulence models in Section III. The results are presented in Section IV,

where in Sections IVA-IVC the implied models approach is applied to an incompressible,

turbulent channel flow at Reτ = 180 and then in Section IVD extended to higher Reτ .
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II. IMPLIED MODELS APPROACH

Consider a quantity R to be modeled by M. The difference between them is the model

error e:

e = R−M. (1)

The quantity R has an exact transport equation. Likewise, an analogous transport equation

implied by the model M can be derived. The difference between these transport equations

is the model error transport equation:

De

Dt
=

DR

Dt
−

DM

Dt
. (2)

While this approach requires the existence of transport equations for R and M, the result

provides insightful information that would otherwise not be accessible with Eq. 1 alone. A

transport equation for the error allows for a dynamical view of the processes that produce,

transport, redistribute, and dissipate the model error, while the error itself only provides a

static picture of the model error with no information as to its sources or transport mecha-

nisms. As such, when available, a model error transport equation is a powerful and insightful

tool that provides an enhanced understanding as well as specific identification of the model

assumptions, through analysis of the budget of the model error transport equations, that

contribute most to the model error.

III. APPLICATION TO RANS TURBULENCE MODELING

In turbulence, a transport equation can be derived for almost any physical quantity. This

fact is exploited in the implied models approach, such that a transport equation is derived

for the error from the transport equations for the true physical quantity and the model. In

the present work, the anisotropic Reynolds stress tensor aij will be considered as the true

physical quantity:

Rij = aij = u′
iu

′
j −

2

3
kδij , (3)

where u′
iu

′
j is the Reynolds stress tensor and k = 1

2
u′
iu

′
i is the turbulent kinetic energy. The

anisotropic Reynolds stress tensor is modeled with the Boussinesq eddy viscosity model:

Mij = −2νTSij , (4)
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where νT is the eddy viscosity and Sij is the mean strain rate tensor. Substituting Eqs. 3

and 4 into Eqs. 1 and 2 yields

eij = aij + 2νTSij (5)

and
Deij
Dt

=
Daij
Dt

+ 2νT
DSij

Dt
+ 2Sij

DνT
Dt

, (6)

where D
Dt

is the material derivative with convection by the mean velocity Uk. In order to

obtain a transport equation for the model error, eij , a transport equation for each of the

three terms in Eq. 6 needs to be specified. For the Reynolds stress and mean strain rate

tensors, these are straightforward. For an incompressible flow with constant viscosity, the

transport equation for the anisotropic Reynolds stress tensor is given by

Daij
Dt

= − u′
iu

′

k

∂Uj

∂xk

− u′
ju

′

k

∂Ui

∂xk

+
2

3
u′

ku
′

ℓ

∂Uk

∂xℓ

δij (7)

−
∂

∂xk

(

u′
iu

′
ju

′
k −

2

3
ku′

kδij − ν
∂u′

iu
′
j

∂xk

+
2ν

3

∂k

∂xk

δij

)

−
1

ρ

〈

u′

i

∂p′

∂xj

+ u′

j

∂p′

∂xi

〉

+
2

3ρ

∂u′
kp

′

∂xk

δij − εij +
2

3
εδij,

where the terms on the first line are the production of the anisotropic Reynolds stresses

and the terms on the second line are anisotropic turbulent transport and viscous transport,

respectively. On the third line, the first three terms are pressure redistribution, and the last

two terms are the anisotropic dissipation, where εij is the dissipation rate tensor

εij = 2ν

〈

∂u′
i

∂xk

∂u′
j

∂xk

〉

(8)

and ε = 1

2
εii. The transport equation for the mean strain rate tensor is given by

DSij

Dt
=−

1

2

(

∂Uk

∂xj

∂Ui

∂xk

+
∂Uk

∂xi

∂Uj

∂xk

)

−
1

ρ

∂2P

∂xi∂xj

(9)

+ν
∂2Sij

∂xk∂xk

−
1

2

(

∂u′
iu

′
k

∂xk∂xj

+
∂u′

ju
′
k

∂xk∂xi

)

,

where the first term in parentheses can be rewritten as the sum of the inner products of the

strain rate tensor with itself and the rotation rate tensor with itself, the second term is the

Hessian of the pressure, the third term is viscous transport of the mean strain rate, and the

last term in parentheses is turbulent transport.
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The transport equations for νT depend on the choice of the model. There are many

different choices for the eddy viscosity — in this work the k− ε and k− ω [14] formulations

are explored — based on the variables chosen to represent νT and also whether the transport

equations for these variables are exactly derived or modeled. The k − ε and k − ω models

are two of the most popular models, and, as they are two-equation models, they are two of

the simplest RANS closure models that are complete and appropriate to describe turbulent

flows [15]. In this work, there are three different formulations for evaluating the model error

budgets. The first uses DNS data to evaluate the terms in the exact transport equations

for k, ε, and ω; this is a strictly a priori analysis. This analysis assesses the model error

associated solely with the assumptions present in the Boussinesq model. The second and

third methods both employ the model transport equations for k, ε, and ω and evaluate

them through a priori and a posteriori analysis, respectively. As discussed further below,

together, the a priori and a posteriori analyses assess the error cancellation present in the

two models. The details of these three approaches are outlined in Sections IIIA, III B 1,

and IIIB 2.

A. Exact Transport Equations

1. k − ε

In the k − ε model, the eddy viscosity is defined via the turbulent kinetic energy k and

the dissipation of turbulent kinetic energy ε:

νT = Cµ

k2

ε
, (10)

where Cµ is a model constant taken to be 0.09 [14]. The exact transport equations for the

turbulent kinetic energy k and dissipation of turbulent kinetic energy ε are exactly derived

with no assumptions, aside from incompressible flow with constant viscosity. The transport

equation for the turbulent kinetic energy is given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂xj

−
∂

∂xj

(

u′
jk +

1

ρ
u′
jp

′ − ν
∂k

∂xj

)

− ε, (11)

where the first term is production, the second term in parentheses is transport via turbu-

lence, pressure fluctuations, and viscosity, respectively, and the last term is dissipation. The
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transport equation for the dissipation is given by

Dε

Dt
=−2ν

(

∂u′
i

∂xk

∂u′
j

∂xk

+
∂u′

k

∂xi

∂u′

k

∂xj

)

∂Ui

∂xj

− 2νu′
k

∂u′
i

∂xj

∂2Ui

∂xk∂xj

− 2ν
∂u′

i

∂xk

∂u′
i

∂xm

∂u′

k

∂xm

(12)

+
∂

∂xj

(

ν
∂ε

∂xj

− νu′
j

∂u′
i

∂xm

∂u′
i

∂xm

− 2
ν

ρ

∂p′

∂xm

∂u′
j

∂xm

)

− 2ν2
∂2u′

i

∂xk∂xm

∂2u′
i

∂xk∂xm

,

where the first line terms are production of dissipation, the first term in parentheses on the

second line is transport of dissipation, and the final term is dissipation of dissipation [16].

With all of these transport equations, a transport equation for the model error is derived

by substituting Eqs. 7, 9, 11, and 12 into Eq. 6. For the k−ε model with the exact transport

equations for k and ε, the error transport equation is given by

Deij
Dt

= − eik
∂Uj

∂xk

− ejk
∂Ui

∂xk

+ 2νT
∂Ui

∂xk

∂Uj

∂xk

+
2

3
(ekl − 2νTSkl)

∂Uk

∂xl

δij (13a)

+
1

ρ

∂νT
∂xk

(

∂P

∂xi

δjk +
∂P

∂xj

δik

)

(13b)

+
∂νT
∂xk

[

∂

∂xj

(

eik − 2νTSik +
2

3
kδik

)

+
∂

∂xi

(

ejk − 2νTSjk +
2

3
kδjk

)]

(13c)

+
∂

∂xk

[

−u′
iu

′
ju

′
k +

2

3
ku′

kδij −
νT
ρ

(

∂P

∂xi

δjk +
∂P

∂xj

δik

)

+ ν
∂eij
∂xk

− 2νSij

∂νT
∂xk

(13d)

− νT
∂

∂xj

(

eik − 2νTSik +
2

3
kδik

)

− νT
∂

∂xi

(

ejk − 2νTSjk +
2

3
kδjk

)]

(13e)

−
1

ρ

〈

u′

i

∂p′

∂xj

+ u′

j

∂p′

∂xi

〉

+
2

3ρ

∂u′
kp

′

∂xk

δij − 2ν
∂νT
∂xk

∂Sij

∂xk

−
4

3
kSij (13f)

+
4νTSij

k

[

−(ekl − 2νTSkl)
∂Uk

∂xl

−
∂

∂xk

[

ku′
k +

1

ρ
p′u′

k − ν
∂k

∂xk

]

− ε

]

(13g)

−
2ννTSij

ε

[

∂

∂xl

(

∂ε

∂xl

− u′
l

∂u′
k

∂xn

∂u′
k

∂xn

−
2

ρ

∂p′

∂xn

∂u′
l

∂xn

)

− 2ν
∂u′

k

∂xm∂xn

∂u′
k

∂xm∂xn

]

(13h)

+
4ννTSij

ε

[(

∂u′
k

∂xm

∂u′
l

∂xm

+
∂u′

m

∂xk

∂u′
m

∂xl

)

∂Uk

∂xl

+ u′
m

∂u′
k

∂xl

∂2Uk

∂xl∂xm

+
∂u′

k

∂xm

∂u′
k

∂xn

∂u′
m

∂xn

]

(13i)

− εij +
2

3
εδij. (13j)

Note that all the terms in Eq. 13 can be classified as production (non-viscous source),

dissipation (viscous source), redistribution (traceless), or transport (divergence of a flux).

Equations 13a-13c are the production terms; Eqs. 13d-13e are the transport terms; Eqs. 13f-

13i are redistribution terms; and Eq. 13j are the dissipation terms. All terms from the

transport equation for νT are classified as redistribution because they are multiplied by Sij
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and as such are necessarily traceless for an incompressible, turbulent flow. The right hand

side of the transport equation of k is found in Eq. 13g, and the right hand side of the

transport equation of ε is found in Eqs. 13h and 13i.

2. k − ω

For the k − ω model, the eddy viscosity is defined via the turbulent kinetic energy and

the specific dissipation ω as

νT =
k

ω
, (14)

where ω is defined by its relation to the dissipation as ω = ε/ (Cµk) [14]. The exact transport

equation for ω is then directly derived from its relation to ε using Eq. 12, which yields

Dω

Dt
=

1

Cµk

[

−2ν

(

∂u′
i

∂xk

∂u′
j

∂xk

+
∂u′

k

∂xi

∂u′

k

∂xj

)

∂Ui

∂xj

− 2νu′
k

∂u′
i

∂xj

∂2Ui

∂xj∂xk

− 2ν
∂u′

i

∂xk

∂u′
i

∂xm

∂u′

k

∂xm

(15)

−2ν2
∂u′

i

∂xk∂xm

∂u′
i

∂xk∂xm

+
∂

∂xj

(

νCµk
∂ω

∂xj

+νCµω
∂k

∂xj

− νu′
j

∂u′
i

∂xm

∂u′
i

∂xm

− 2
ν

ρ

∂p′

∂xm

∂u′
j

∂xm

)]

−
ω

k

[

∂

∂xj

(

−ku′
j −

1

ρ
p′u′

j + ν
∂k

∂xk

)

− u′
iu

′
j

∂Ui

∂xj

− Cµkω

]

.

It should be noted that, since the definitions of νT are exactly equivalent in both the k − ε

and k − ω models, the model error transport equations are also exactly equal in these two

formulations.

B. Model Transport Equations

1. A Priori Analysis

In the a priori analysis, all terms in the model error transport equation are evaluated

with DNS data, regardless of whether they originate from the model or the exact physical

quantity. This analysis provides insight into how well the models capture the underlying

physics given the physically correct data. The transport equations used for the modeled

quantities k, ε, and ω in this formulation are given below.

The model transport equations for k, ε, and ω are constructed based on the idea that

a transport equation is comprised of three main components: production, transport, and
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dissipation. The model transport equations for the standard k − ε model are given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂xj

− ε+
∂

∂xj

[(

ν +
νT
σk

)

∂k

∂xj

]

(16)

Dε

Dt
= −Cε1

ε

k
u′
iu

′
j

∂Ui

∂xj

− Cε2

ε2

k
+

∂

∂xj

[(

ν +
νT
σε

)

∂ε

∂xj

]

, (17)

where σk, Cε1, Cε2, and σε are all model constants. The typical values for these constants

and those used in this work are σk = 1.0, Cε1 = 1.44, Cε2 = 1.92, and σε = 1.3 [14]. The

definition of νT is the same as in Eq. 10. With the model transport equations for k and ε,

the model error transport is derived by replacing the right-hand-side of the exact k and ε

equations in Eq. 13 (the terms in square brackets in Eq. 13g and Eqs. 13h-13i, respectively)

with the right-hand-side of the model equations.

The model transport equations for the standard k − ω model are given by

Dk

Dt
= −u′

iu
′
j

∂Ui

∂xj

− β∗kω +
∂

∂xj

[

(ν + σ∗νT )
∂k

∂xj

]

(18)

Dω

Dt
= −α

ω

k
u′
iu

′
j

∂Ui

∂xj

− βω2 +
∂

∂xj

[

(ν + σνT )
∂ω

∂xj

]

, (19)

where β∗, σ∗, α, β, and σ are all model constants with standard values given by β∗ = 0.09,

σ∗ = 0.5, α = 5/9, β = 3/40, and σ = 0.5 [17]. The definition of νT is the same as in Eq. 14.

The model error transport equation for the k − ω model is derived analogously to the k − ε

model.

At this point, only the standard, uncorrected models are being considered in order to

assess the error in the model of the lowest fidelity. Additionally, these model corrections are

ad hoc and problem specific, so the lowest level of fidelity should be assessed first in order

to understand the underlying physical inadequacies of the base models.

2. A Posteriori Analysis

In the a posteriori analysis, the same transport equations are used for the modeled k,

ε, and ω as shown just above. However, while DNS data is still used to evaluate all of the

terms that come from the transport of the true physical quantity DR

Dt
, data from fully-coupled

RANS calculations are used to evaluate terms from the modeled quantity DM

Dt
. Looking at

Eq. 6, this means that all terms from
Daij
Dt

are calculated using DNS data and all terms from

2νT
DSij

Dt
+ 2Sij

DνT
Dt

are calculated using RANS data.
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This a posteriori analysis serves two purposes. First, comparing the a priori and a

posteriori results for the model transport equations is an indication of how different the

real and modeled k, ε, and ω are and how this influences the Reynolds stresses. Second,

comparing the a posteriori results for the model transport equations and the a priori results

for the exact transport equations is an indication of how errors in the model transport

equations for k, ε, and ω compensate for errors in the baseline Boussinesq model.

IV. RESULTS

The test case for the implied models approach is an incompressible turbulent channel

flow. Direct Numerical Simulations (DNS) at Reτ = 180, 395, and 590 were calculated

using NGA, which is a structured, finite difference solver [18] [19], while the DNS data for

Reτ = 1000, 2000, and 5200 are from Lee and Moser [20]. The computational details of the

NGA simulations can be found in Table I. Lx and Lz are the domain size in the streamwise

and spanwise directions, respectively, normalized by the channel half-width δ; Nx, Ny, and

Nz are the number of grid points in the streamwise, wall-normal, and spanwise directions,

respectively, resulting in the non-dimensional uniform grid spacing ∆x+ and ∆z+ in the

streamwise and spanwise directions, respectively, and the non-dimensional non-uniform grid

spacing ∆y+c in the wall-normal direction at the centerline. In all cases, the domain size is

the same as and with resolution comparable or better than previous simulations of Moser et

al. [21]. While data from Lee and Moser for the lower friction Reynolds numbers are available,

the data does not contain information from the ε and ω model transport equations so cannot

be used to calculate the budgets for the shear component of the error for the model transport

equations (since S12 is the only non-zero component of the mean strain rate tensor).

It should be noted that, since the flow is both statistically stationary and homogeneous in

TABLE I: DNS parameters.

Reτ Lx Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+c

180 4πδ 4

3
πδ 256× 257 × 256 8.8 3.0 2.3

395 2πδ πδ 254× 513 × 192 9.7 6.5 2.6

590 2πδ πδ 384× 513 × 384 9.3 4.6 4.1
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two directions (so zero mean velocity in the third), the right-hand-side of all exact transport

equations is exactly zero (i.e., zero Lagrangian derivatives). This includes the model error

transport equation with exact equations for k, ε, and, ω. However, since the model transport

equations for k, ε, and, ω are not exact, their right-hand-sides do not balance to zero when

evaluated using DNS data in the a priori analysis (so neither will the model error transport

equation in these cases). This imbalance does not occur when the model transport equations

are coupled back to the mean velocity in an a posteriori RANS calculation since the mean

velocity is different and consistent with the model transport equations. This raises the

possibility of fortuitous error cancellation, as alluded to above, which will be discussed

subsequently in this section and assessed through the comparison of a priori and a posteriori

results.

A. Channel at Reτ = 180 - A Priori Analysis

The initial test case for the implied models approach is the channel at Reτ = 180. The

resulting error and error budgets for the four non-zero error tensor components are shown

in Fig. 1 and Figs. 2-3, respectively. In the budgets, Fig. 2 shows the error production,

transport, and dissipation which are the same in all formulations, and Fig. 3 shows the model

error redistribution budgets with the exact and model formulations. All of the budgets are

normalized using the inner scale quantities, specifically the friction length scale δν (with

y+ = y/δν) and the friction velocity uτ .

The model error shown in Fig. 1 shows that the error in all four components is confined
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0
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6

FIG. 1: Model error in a turbulent channel at Reτ = 180.
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FIG. 2: Budget for eij using νT evaluated with the exact transport equations.

primarily to the near wall region. This is also clear in the model error budgets, in all three

formulations, where the error in both the shear and normal components is predominantly

confined to the near wall region and the largest errors are in the shear component production

and redistribution. It is possible to understand the sources of the error contributing to each

component in Figs. 2a-2c by looking at the dominant terms in Eq. 13. For the different

components, the dominant error production terms are given by

Pe11 ≈ −2e12
∂U1

∂x2

+ 2νT
∂U1

∂x2

∂U1

∂x2

+
2

3
(ekl − 2νTSkl)

∂Uk

∂xℓ

, (20)

Pe22 ≈
∂νT
∂x2

∂e22
∂x2

+
4

3

∂νT
∂x2

∂k

∂x2

+
2

3
(ekl − 2νTSkl)

∂Uk

∂xℓ

, (21)

Pe33 ≈
2

3
(ekl − 2νTSkl)

∂Uk

∂xℓ

, (22)

Pe12 ≈ −e22
∂U1

∂x2

− 2
∂νT
∂x2

∂νTS12

∂x2

+
∂νT
∂x2

∂e12
∂x2

, (23)

which, with the exception of the first two terms in Eq. 21 and the last two terms in Eq. 23,

correspond to the misalignment of the mean strain rate tensor and the Reynolds stress tensor,

which is also related to the isotropic eddy viscosity assumption. The alignment of these two

tensors with a scalar coefficient is the primary assumption embedded in the Boussinesq eddy

viscosity hypothesis, drawing an analogy between the Reynolds stresses and the viscous

stresses. Through this analogy, it is assumed that the turbulence is in equilibrium, so

a viscosity coefficient can be used to relate the mean strain rate tensor to the Reynolds

stress tensor [15]. Figure 2a illustrates how this assumption is not applicable particularly
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FIG. 3: Redistribution for eij with the exact and a priori

model transport equations.

in the near wall region. The production error in the normal component Pe22 and the shear

component Pe12 relating to the gradient of νT , is large in the presence of inhomogeneity, such

as near a wall. The equilibrium turbulence assumption implicitly assumes homogeneity, so

the contribution of the gradient of the eddy viscosity to the model error is consistent with

the same fundamental assumption. These misalignment errors can be alleviated by using a

model that employs a nonlinear constitutive relation [22].

The error dissipation in the normal components comes from the entirety of Eq. 13j, which

becomes large when the dissipation becomes anisotropic, so this represents the error in the

small scale isotropy assumption of the Boussinesq approximation. This occurs largely in

the vicinity of the wall as seen in Fig. 2c. Due to kinematic influence of the wall, the wall

normal velocity is damped much faster than the other components near the wall, resulting

in the anisotropy in the dissipation tensor [23]. In this case where the k − ε and k − ω

models are inadequate, the v2 − f model could be used instead as it is better suited to

handle this issue of near wall anisotropy [24]. Interestingly, at this Reynolds number, the

streamwise normal component of the dissipation tensor has a considerably larger error than

the spanwise normal component of the dissipation tensor, indicating the dominance of the

former. This is a low Reynolds number effect that is revisited in Section IVD.

The balance to production for the shear component error is redistribution. In the exact

formulation the dominant redistribution term is

Re12 ≈ −
4

3
kS12, (24)

while, in the model formulations the dominant terms are the right-hand-sides of the k and ε
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or k and ω model transport equations. These errors are representative of the inadequacies of

the k− ε and k− ω model transport equations, and, clearly from Fig. 3, these inadequacies

dominate the error of the shear component with the ω equation being grossly inadequate.

However, as discussed in the next section, the inadequacies of the model equations are

introduced by design to cancel the errors introduced by the Boussinesq hypothesis.

B. Channel at Reτ = 180 - A Posteriori Analysis

Figure 4 shows a comparison of the a posteriori predictions from the k − ε and k − ω

models compared with DNS for the mean velocity, turbulent shear stress, turbulent kinetic

energy, and dissipation at Reτ = 180. For the most part, the k − ω model out-performs

the k − ε model particularly in predicting the mean velocity profile, which is conventional

knowledge for wall-bounded flows. This means that, in looking at Fig. 3, the relatively high

error redistribution from the k − ω model is indicative of the fact that this model does not

necessarily more accurately capture the underlying physics than the k−ε model, despite the

better a posteriori predictions. Rather, there is more error cancellation that occurs within

the k − ω model that lends itself to better predictive capabilities in wall-bounded flows.

In particular, the underestimation of k (Fig. 4c) and overestimation of ε (Fig. 4d) in both

the k − ε and k − ω models have been shown to provide a more accurate value for νT , for

example, in the book from Durbin and Pettersson Reif [24]. Thus, the k−ω model provides

a more accurate estimation of the mean velocity and turbulent shear stress despite being

fundamentally less correct.

A posteriori budget analysis provides further insight into the nature of this error can-

cellation. As mentioned in Section IIIB 2, all terms that come from
D2νTSij

Dt
in Eq. 6 are

evaluated using data from RANS calculations with either the k−ε or k−ω models. Figures 5

and 6 show the results of this analysis, where the production, transport, and redistribution

terms from the error budgets are shown. The dissipation terms are not shown because

they are unchanged from the a priori analysis: the non-zero contribution to the dissipation

terms comes only from the physical anisotropic dissipation with the Boussinesq model itself

assuming isotropic dissipation.

Comparing the results shown in Figs. 5 and 6 to those in Figs. 2 and 3, there are a

few key differences. In production, the shear component, which is dominant in the a priori
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FIG. 4: Comparison of DNS with a posteriori k − ε and k − ω models at Reτ = 180.

results, is not dominant in the a posteriori results. In contrast, the streamwise component

has the largest production magnitude; however, in general all three normal components are

of the same order of magnitude. An additional point of interest is found in the redistribution

terms. In the a priori analysis, both the k−ε and k−ω models saw increased magnitude of

the shear component of the redistribution term as compared to the exact formulation with

the k − ω model increasing by an order of magnitude. In the a posteriori analysis, there

is no such increase, and the shear component of the redistribution is actually larger for the

k − ε than the k − ω model. This supports the conclusion that the k − ω model provides

more accurate results over the k−ε due to error cancellation (between the Boussinesq model

and the model transport equations) and not because it is more physically accurate.
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FIG. 5: Error budgets for a posteriori k − ε analysis.
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FIG. 6: Error budgets for a posteriori k − ω analysis.

C. Channel at Reτ = 180 - k, ε, ω Budgets

The budgets of the models equations for k, ε, and ω, provide additional insight into

the role of error cancellation. This was carried out both through a priori and a posteriori

analysis and compared with the evaluation of the exact budgets. This analysis illustrates how

well or not the underlying physics is captured by Eqs. 16-19. These budget comparisons are

shown in Figs. 7-9. In first looking at the turbulent kinetic energy exact and model budgets,

the dissipation of turbulent kinetic energy is obviously exactly matched in the exact and a

priori evaluation, while the a posteriori dissipation in both models diverges from the exact

dissipation in the near wall region. The production in the two models is the same (since the

eddy viscosity is the same), though the a priori analysis is not a good approximation for

the exact k production and the a posteriori analysis does not capture the correct location

of the peak. In general, the a posteriori and a priori budgets are not the same and do not

match the exact budgets. However, this is due to the fact that the modeled quantities k,
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ε, and ω from model transport equations are tuned to cancel the error in the Boussinesq

model and not to faithfully represent their physical counterparts.
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FIG. 7: Exact and model turbulent kinetic energy budgets.

The exact and model comparisons of the ε and ω budgets have generally less agreement

than the k budgets, which is to be expected as these model transport equations are meant

to be very general characterizations of complicated differential equations involving unknown

double and triple correlations [14]. As such, it is not surprising that the model budgets eval-

uated with the DNS data do not capture the behavior of the exact budgets, particularly in

the near wall region, but do mimic some qualitative features. Overall, the models themselves

are consistently poor, such that the values of k, ε, and ω are either under or over estimated

to provide more accurately approximated values of the eddy viscosity, mean velocity, and

turbulent shear stress. Altogether, Figs. 3-9 illustrate that, while the error redistribution is

largest for the k− ω model in the a priori analysis with the model transport equations, the

error cancellation that occurs within this model, as evidenced specifically by the a posteri-
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FIG. 8: Exact and model dissipation budgets.
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FIG. 9: Exact and model specific dissipation budgets.

ori analysis shown in Fig. 6, serves to better approximate wall-bounded flow characteristics

compared with the k − ε model.

D. Extension to higher Reτ

The error budgets in the exact formulation for all four non-zero components of the error

tensor were calculated at five additional friction Reynolds numbers, Reτ = 395, 590, 1000,

2000, and 5200, where the data for Reτ = 1000, 2000, and 5200 comes from Lee and

Moser [20].

Figure 10 shows the maximum (magnitude) in the error production, redistribution, and

dissipation as a function of friction Reynolds number. As the Reynolds number increases,

the qualitative characteristics of the error budgets do not change. Looking first at the shear
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FIG. 10: Maximum (magnitude) in the error production, redistribution, and dissipation for

the error budgets with the exact νT transport equations.

19



0 20 40 60
2

4

6

8

10

12

FIG. 11: Anisotropy in the turbulence with increasing Reτ .

component of the production and redistribution of the error, these errors are increasing in

magnitude most strongly with friction Reynolds number. However, the rate of this increase

is slowing with increasing Reynolds number, indicating that, if Reτ continued to increase,

the errors would plateau. This plateau in the error budgets can be seen more clearly in the

normal component budgets. This behavior stems from the decrease in the anisotropy in the

turbulence between the streamwise and spanwise components near the wall as the Reynolds

number becomes large, which can be seen in Fig. 11. With increasingly isotropic turbulence,

the use of scalar quantities to describe the state of the flow becomes more appropriate [24].

Interestingly, given this discussion, one would expect the production and redistribution of the

error to decrease in magnitude, rather than increase, with increasing Reynolds number. This

then indicates some degree of error cancellation between the main assumptions (alignment of

Reynolds stress with mean strain rate and the use of scalar quantities for the eddy viscosity).

Conversely, the dissipation of the error in Fig. 8c does not exhibit the same degree of

saturation with increasing Reynolds number. As mentioned previously, due to kinematic

wall-blocking, the wall normal velocity component is preferentially damped near the wall.

Therefore, the wall normal normal component of the dissipation rate tensor is essentially

zero, so the dissipation can never be isotropic as assumed in the eddy viscosity model, and

the wall normal normal component of the dissipation tensor will always be overpredicted

with an isotropic assumption. Instead, near the wall, the turbulence tends toward a two-

component, two-dimensional limit as the Reynolds number is increased [25]. However, at the

Reynolds numbers considered here, the turbulence near the wall is more one-component [25],
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which is the why the streamwise component of the dissipation of the error is larger than

the spanwise component. As the Reynolds number is increased further, the streamwise

and spanwise normal components would eventually become comparable. Note also that the

scalar dissipation increases with increasing Reynolds number [25], so the magnitude of the

dissipation of the error increases with increasing Reynolds number.

Taken together, these results indicate two interesting features of two-equation turbulence

models. First, even if the models implicitly assume a high Reynolds number, compensat-

ing errors can actually lead to lower errors at lower Reynolds number. Second, since the

dissipation at the wall can never be isotropic, two-equation turbulence models relying on

an isotropic dissipation can only be accurate by taking advantage of error cancellation,

irrespective of Reynolds number.

E. Discussion

Both the sources of error and the error cancellation found in the k−ε and k−ω models in

this work are specific to turbulent channel flow. It is expected that fundamentally different

flow configurations, both canonical and otherwise, would have different sources of model

error. For example, in a free shear flow the influence of anisotropy in the dissipation is not

expected to greatly contribute to the error due to the general lack of small-scale anisotropic

features in such flows. More complex geometries that exhibit even more complicated tur-

bulent flow physics, such as flows with separation, would provide an interesting test case

as these flows would likely uncover further sources of error and potential mechanisms of er-

ror cancellation. The implied models approach provides a quantitative framework to assess

these model error sources.

In this work, the standard, uncorrected k − ε and k − ω models were analyzed using the

implied models approach. The assumptions in these models are known to break down in

the vicinity of walls, in which case wall functions can be employed or other models, such as

v2−f or nonlinear constituent relation models, that do not have the same shortcomings. An

exploration of these more complex models in canonical wall-bounded flows, as well as other

canonical and non-canonical flows, would reveal other sources of model error, which is ulti-

mately the utility of the implied models approach. This method allows for an investigation

of the reasons for model inadequacies, which has the potential to aid in the development of
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more accurate models.

V. CONCLUSIONS

In this paper, a physics-based approach for assessing model form uncertainty has been

developed, which provides information regarding the dynamics of model form error. The

approach develops a model error transport equation by taking the difference between the

exact transport equation for a quantity of interest and the transport equation implied by

the model for the quantity. This implied models approach was applied to the modeling of

the Reynolds stresses, was tested on a turbulent channel flow at various friction Reynolds

numbers, and was used to quantitatively assess the individual model assumptions in the

Boussinesq model and show where they are prone to failure. In general, the sources of error

were the misalignment between the anisotropic Reynolds stress tensor and the mean strain

tensor and the anisotropy of the dissipation tensor near the wall. All of the errors were

found to be largest in the near wall region, which was expected due to the deviation from

isotropy in this region. The error budgets are qualitatively similar as the Reynolds number

increases.

In analyzing the model error redistribution, the right-hand-sides of the k, ε, and ω trans-

port equations appear, and it was found that error cancellation plays an important role in

the accuracy of the k−ε model and especially in the accuracy of the k−ω model, which has

been shown to be more accurate in wall-bounded flows for a posteriori calculations. The a

priori error budget is extremely inaccurate for the k − ω model, but this is compensated in

a posteriori application by the resulting errors in k and ω. The error cancellation that is

clearly present in these models undermines their broad applicability and brings into ques-

tion the goal of turbulence model development. Should a good model be derived from valid

physical assumptions and be physically sound, or should a good model simply provide good

a posteriori predictions, even if due to fortuitous error cancellation?
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