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Abstract10

Flow and transport in coupled channel-matrix systems are ubiquitous to many environmental11

and engineering applications such as flows in fractured porous media, over canopies and in mem-12

brane filtration units. The multiscale nature of such systems, where the horizontal length scale is13

often orders of magnitude larger than the vertical one, allows one to employ vertically averaged14

descriptions of the system. As a result, two dimensional transport in the channel and the matrix15

can be upscaled to a coupled system of transient one-dimensional advection-dispersion equations,16

where matrix and channel properties can be analytically related to macroscopic transport observ-17

ables. In this work, we first develop a semi-analytical solution based on integral transforms that18

can be employed to predict macroscopic transport in channel-matrix shear flows in a computa-19

tionally efficient manner. Then, we demonstrate that under appropriate dynamic conditions, the20

coupled system at the macroscale can be further simplified to a single upscaled one-dimensional21

advection-dispersion equation, which admits an analytical closed-form solution, thus enabling real-22

time macroscale concentration estimates in relevant applications.23

INTRODUCTION24

Flows above surfaces with complex topological features or coated by porous media, often25

referred to as channel-matrix systems [3, 56, 57] and/or obstructed shear flows [25, 45], are26

present in many environmental, biological and engineering applications at virtually any scale.27

Such textured surfaces constitute the physical boundaries that regulate and control mass,28

momentum and energy fluxes between adjacent systems. Some examples include surfaces of29

channels and pores in geological formations and hydraulically fractured rocks [48, 55], the30

surfaces of flowers, leaves and roots [7, 9, 38], carbon nanotube coatings in shear sensors,31

ultra-capacitors and batteries [19], canopy-coated riverbeds [6, 29, 50, 51], coral reefs and32

urban canopies [33, 59].33

Textured and porous surfaces exhibit macroscopic properties and dynamical responses34

to external stimuli that can significantly deviate from the behavior of their smooth coun-35

terparts’. For example, micro-patterns can lead to drag reduction and/or enhanced scalar36

mixing in both laminar and turbulent flows [8, 28, 34, 36, 37, 40, 47, 50]; they can alter the37

surface wettability or impact fouling propensity in reverse osmosis membranes [30, 39, 60].38

A number of novel technologies make use of ultra-porous coatings to increase, for example,39
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the heat exchange and capacitance in energy storage devices [2, 23].40

A common feature among most of these systems is the presence of shear as a consequence41

of the interaction of a free flow with a textured permeable/porous surface. The primary42

challenge in modeling such systems, and specifically their macroscopic response, lies in their43

inherent multi-scale nature: the characteristic size of the surface features or the porous44

medium can be orders of magnitude smaller than the largest scales of the system. Despite45

the relative lack of understanding of the connection between microscopic parameters and46

macroscopic properties, i.e. between structure and function, the multi-scale nature of the47

problem renders numerical investigations particularly challenging. However porous media48

theory, where the matrix can be treated as a continuum, have been successfully employed49

to model laminar and turbulent flows over different types of textured surfaces characterized50

by both ordered or disordered arrays of obstacles at different scales, while they provide51

a framework to relate macro-scale response (e.g. effective slip, dispersion coefficients) to52

the properties of the effective medium (e.g., permeability) [6, 8]. Ling et al. [31] have53

shown experimentally and computationally that a continuum approximation may still be54

appropriate even for a few layers of obstacles constituting the matrix. Porous media theory55

has been applied to model flow over and within micro-scale riblets in superhydrophobic56

surfaces [4] and carbon nanotube forests [5], in micro-fluidic mixers [31], in biological [27, 52]57

and membrane filtration systems [30, 54, 60], and through submerged canopy layers [6, 50,58

51]. Through the use of integral transforms, Rubol et al. [50] derived a semi-analytical59

solution for the advection-dispersion equation in a obstructed shear flow (i.e. aquatic flows60

over submerged vegetation) and showed how the permeability of the obstruction affected61

solute mass fluxes and peak concentrations. Ling et al. [32] numerically solved transport62

in a channel-matrix system in the presence of advection and anisotropic dispersion in the63

permeable media.64

Further ad hoc approximations - which reduce the problem dimensionality from 2D to 1D65

- can be made if, e.g., transport in the matrix is purely diffusive (i.e. matrix permeability is66

very low) or transport in the matrix is advection dominated (i.e. matrix permeability is high)67

and the horizontal length is much larger than the overall height of the channel-matrix system.68

In the former case, Tang and et al. [55] developed analytical solutions in a one-dimensional69

channel embedded in an impermeable (to flow) porous matrix. More recently, other works70

[11, 22] developed an analytical or semi-analytical model that couples non-uniform channel71
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(or fracture) velocity and diffusion-driven matrix transport. The model of Dejam et al. [22]72

shows good applicability in tight matrix systems and has been extended to reactive transport73

[20, 21]. In the latter case, the system can be further upscaled/averaged in the vertical74

direction and described by a system of two coupled one-dimensional partial differential75

equations (PDEs) as derived and analyzed in [31, 32]. Note that matrix permeability effects76

may not always be neglected, especially in applications where dispersive effects are important77

such as in geothermal energy production [42] and in natural aquatic systems [17, 18, 24].78

In this work, we consider flow in a planar channel embedded in a permeable porous matrix.79

This configuration mimics relevant environmental shear flow systems such as channel-porous80

matrix [48, 49, 55] or river flow with surrounding permeable media (i.e. vegetation, riparian81

area) [1, 41, 46, 50]. Starting from the model of Ling et al. [32], we develop a new semi-82

analytical solution for the coupled system of 1D macroscopic advection-dispersion equations83

based on the Generalized Integral Transform Technique (GITT) [13, 44]. The solution is84

applicable to a much more general class of problems, whose balance laws have a given85

form. A comparison between the approximate 1D GITT solutions, the numerical solution86

of the 1D coupled macroscopic PDEs and the spatially averaged 2D microscale equations87

is provided, together with a convergence and error analysis. Furthermore, we show that,88

under appropriate dynamic conditions, controlled by the magnitude of the Peclét number,89

the system can be further simplified to a 1D PDE which admits a closed-form solution for90

the average concentration in the channel and the matrix.91

THEORY92

Problem Formulation93

The problem of interest consists of two domains: a porous medium and a channel em-94

bedded in it. Both domains are saturated by an incompressible fluid, with a passive solute95

dissolved in it. We consider a fully developed (uni-directional) flow in the 2-D domain de-96

picted in Figure 1. The Cartesian coordinate system is denoted by (x̂, ŷ). The semi-infinite9798

channel of width 2b is embedded in a porous material characterized by an effective porosity99

φ, permeability κ and transverse dimension H. The longitudinal velocity in the channel or100

porous medium is represented by ûi with i = 1 denoting the channel and i = 2 denoting the101

4



FIG. 1. Problem domain and coordinate system.

porous matrix. In our work, the fully developed flow in the channel-porous matrix system102

is described by coupling Stokes equation (within the channel) and Darcy-Brinkman model103

(for the permeable medium) [3, 6, 32]104

µ
d2û1(ŷ)

dŷ2
− J = 0 for ŷ ∈ (0, b) , (1)

µ
d2û2(ŷ)

dŷ2
− µ

κ
û2(ŷ)− J = 0 for ŷ ∈ (−H, 0) , (2)

where J ≡ dp̂/dx̂ is the constant pressure gradient and µ is the dynamic viscosity of the105

fluid. The boundary conditions are as follows106

û2(ŷ)|ŷ=−H = 0;
dû1(ŷ)

dŷ

∣∣∣∣
ŷ=b

= 0;
dû1(ŷ)

dŷ

∣∣∣∣
ŷ=0

=
dû2(ŷ)

dŷ

∣∣∣∣
ŷ=0

; û1(ŷ)|ŷ=0 = û2(ŷ)|ŷ=0 .

(3)

An inert scalar is continuously released into the channel-matrix system. Transport in the107

obstructed shear flow is assumed to be governed by a coupled system of advection-diffusion108

and advection-dispersion equations109
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∂ĉ1(x̂, ŷ, t̂)

∂t̂
+ û1(ŷ)

∂ĉ1(x̂, ŷ, t̂)

∂x̂
= D̂1

∂2ĉ1(x̂, ŷ, t̂)

∂x̂2
+ D̂1

∂2ĉ1(x̂, ŷ, t̂)

∂ŷ2
for ŷ ∈ (0, b) ,

(4)

∂ĉ2(x̂, ŷ, t̂)

∂t̂
+ û2(ŷ)

∂ĉ2(x̂, ŷ, t̂)

∂x̂
= D̂2,x

∂2ĉ2(x̂, ŷ, t̂)

∂x̂2
+ D̂2,y

∂2ĉ2(x̂, ŷ, t̂)

∂ŷ2
for ŷ ∈ (−H, 0) ,

(5)

with ĉi representing the concentration in the channel (i = 1) and permeable medium (i = 2).110

The molecular diffusion coefficient in the channel is given by D̂1. The anisotropic diffusion111

coefficients in the porous medium domain are defined as: D̂2,x and D̂2,y, and all the diffusion112

coefficients are constant in this study. For varying diffusion coefficients, i.e. when non-113

Fickian transport at small scale [35] and/or continuum scale dispersion due to the local114

velocity heterogeneity occur, the same upscaling process as presented in this study can be115

adopted. The initial and boundary conditions for the transport problem are given by116

ĉ1 (x̂, ŷ, 0) = 0; ĉ2 (x̂, ŷ, 0) = 0, (6)
117

ĉ1

(
0, ŷ, t̂

)
= co for ŷ ∈ (0, b) ; ĉ1

(
∞, ŷ, t̂

)
= 0 for ŷ ∈ (0, b) ;

∂ĉ1(x̂, ŷ, t̂)

∂ŷ

∣∣∣∣
ŷ=b

= 0, (7)

118

∂ĉ2

∂x̂

∣∣∣∣
x̂=0

= 0 for ŷ ∈ (−H, 0) ; ĉ2

(
∞, ŷ, t̂

)
= 0 for ŷ ∈ (−H, 0) ;

∂ĉ2(x̂, ŷ, t̂)

∂ŷ

∣∣∣∣
ŷ=−H

= 0.

(8)

The injected concentration is given by co. No-flux boundary condition is imposed on the119

wall of the porous layer and symmetric boundary condition is applied at the center of the120

fracture. The continuity on the channel-matrix interface is imposed through the following121

conditions122

ĉ1

(
x̂, 0, t̂

)
= ĉ2

(
x̂, 0, t̂

)
and

∂ĉ1(x̂, ŷ, t̂)

∂ŷ

∣∣∣∣
ŷ=0

= φ
D̂2,y

D̂1

∂ĉ2(x̂, ŷ, t̂)

∂ŷ

∣∣∣∣
ŷ=0

. (9)

Note that (4) and (5) consider advection and diffusive mass transfer (in x̂ and ŷ directions)123

in both the channel and the permeable matrix. This differs from previous models [11, 12,124

48, 49, 55] where advection in the porous matrix is neglected as well as longitudinal mass125

exchange.126

Next, we define the following dimensionless quantities:127
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x =
x̂

L
, y =

ŷ

b
, p =

p̂

p0

, ui =
ûi
U

ci =
ĉi
co

with i = {1, 2}, (10)

where L is a characteristic macroscopic/observation length scale, e.g., the distance far from128

the inlet where model predictions are registered, p0 is a characteristic pressure, e.g., the am-129

bient pressure, and U is the average velocity across the channel. Therefore, the dimensionless130

representation of equations (1)-(2) is131

d2u1(y)

dy2
−Ψ =0, y ∈ (0, 1), (11a)

d2u2(y)

dy2
− λ2u2(y)−Ψ =0, y ∈ (−h, 0), (11b)

subject to132

u2(y)|y=−h = 0,
du1(y)

dy

∣∣∣∣
y=1

= 0, u1(y)|y=0 = u2(y)|y=0 ,
du1(y)

dy

∣∣∣∣
y=0

=
du2(y)

dy

∣∣∣∣
y=0

,

(12)

where133

λ2 =
b2

k
, Ψ =

p0b
2

µUL

dp

dx
, and h =

H

b
. (13)

The system (11) admits an analytical solution for the velocity profiles in the channel and134

the matrix, u1 and u2, respectively,135

u1(y) =
Ψ

2
y2 + Ay +B, y ∈ [0, 1], (14)

u2(y) = −Ψ

λ2
+ Eeλy + Fe−λy, y ∈ [−h, 0], (15)

where the coefficients A, B, E and F are136

A = −Ψ, (16a)

B = −Ψ

λ2

(
−1 + eΛ

) (
−1 + eΛ + λ+ λeΛ

) (
1 + e2Λ

)−1
, (16b)

E = −Ψ

λ2
eΛ(−1 + λeΛ)(1 + e2Λ)−1, (16c)

F = −Ψ

λ2

(
λ+ eΛ

)
(1 + e2Λ)−1. (16d)
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The parameter Λ is defined as137

Λ = λh. (17)

We remark that Λ exclusively depend on the geometric properties of the system, and it is138

the ratio between the square root of the permeability (
√
k) and the characteristic length139

scale (H) of the porous layer. Following the same procedure, the scalar transport equations140

(4)-(5) are re-written in dimensionless form as follows141

εPe
∂c1(x, y, t)

∂t̂
+ εPe u1

∂c1(x, y, t)

∂x
= ε2

∂2c1(x, y, t)

∂x2
+
∂2c1(x, y, t)

∂y2
for y ∈ (0, 1) ,

(18)

εPe
∂c2(x, y, t)

∂t̂
+ εPe u2

∂c2(x, y, t)

∂x
= ε2D2,x

∂2c2(x, y, t)

∂x2
+D2,y

∂2c2(x, y, t)

∂y2
for y ∈ (−h, 0) ,

(19)

with142

ε =
b

L
; Pe =

Ub

D̂1

; D2,x =
D̂2,x

D̂1

; D2,y =
D̂2,y

D̂1

(20)

where Pe is the Peclét number. The normalized initial and boundary conditions for the143

transport problem are144

c1 (0, y, t) = 1 for y ∈ (0, 1) ; c1 (∞, y, t) = 0 for y ∈ (0, 1) ;
∂c1(x, y, t)

∂y

∣∣∣∣
y=1

= 0,

∂c2(x, y, t)

∂x

∣∣∣∣
x=0

= 0 for y ∈ (−h, 0) ; c2 (∞, y, t) = 0 for y ∈ (−h, 0) ;
∂c2(x, y, t)

∂y

∣∣∣∣
y=−h

= 0,

(21)
145

c1 (x, 0, t) = c2 (x, 0, t) and
∂c1(x, y, t)

∂y

∣∣∣∣
y=0

= φD2,y
∂c2(x, y, t)

∂y

∣∣∣∣
y=0

. (22)

Upscaling146

The 2-D transport equations (18) and (19) can be transformed into a coupled system of147

1-D advection dispersion equations (ADEs) through the use of spatial averaging. Following148

the procedure described in [32], we define the spatial averaging operator as149

8



〈·〉 =
1

`

∫ `

0

dy (23)

with ` = 1 the channel region and ` = −h the porous matrix region. For additional details150

pertaining the upscaling method, we refer to the work of Ling et al. [32]. Performing151

the spatial averaging together with asymptotic homogenization, the upscaled coupled ADE152

system reads153

∂ 〈c1〉
∂t

= A1
∂ 〈c1〉
∂x

+ A2
∂2 〈c1〉
∂x2

+ A3
∂ 〈c2〉
∂x

+ A4 〈c1〉+ A5 〈c2〉 ; (24)

∂ 〈c2〉
∂t

= B1
∂ 〈c2〉
∂x

+B2
∂2 〈c2〉
∂x2

+B3
∂ 〈c1〉
∂x

+B4 〈c2〉+B5 〈c1〉 . (25)

where the variables 〈ci〉 (x, t) = 〈ci(x, y, t)〉. In this paper, we omit (x, t) from the notation154

for simplicity. Expressions for the coefficients A1 - A5 and B1 - B5 are provided in the155

Appendix. Notice that the coupled system of partial differential equations, see (24) and156

(25), can be used to analyze scalar transport for a broad spectrum of physical systems. For157

instance, when the transient term is neglected and A2 = A3 = 0, equation (24) can applied158

to model the concentration polarization in a Reverse Osmosis membrane system [10]. When159

B1 = B2 = B3 = 0, equation (25) converts to classic dual-porosity model [58]. For the case160

when B1 = B3 = B4 = B5 = 0, diffusion is the only transport mechanism in the matrix161

[22]. Equations (24) and (25) can be written in a compact form that follows the summation162

convention:163

∂ 〈ci〉
∂t

= Lij 〈cj〉 , {i, j} = 1, 2 (26)

where Lij are four differential operators:164

L11 = A1
∂ ·
∂x

+ A2
∂2 ·
∂x2

+ A4; (27)

L12 = A3
∂ ·
∂x

+ A5; (28)

L21 = B3
∂ ·
∂x

+B5; (29)

L22 = B1
∂ ·
∂x

+B2
∂2 ·
∂x2

+B4. (30)
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The boundary and initial conditions are as follows165

〈c1〉|x=0 = 1; 〈c1〉|x=∞ = 0; 〈c1〉|t=0 = 0 (31)

∂ 〈c2〉
∂x

∣∣∣∣
x=0

= 0; 〈c2〉|x=∞ = 0; 〈c2〉|t=0 = 0 (32)

The solutions for equations (24) and (25) are valid for ε� 1 and Pe < ε−1/2. The upscaled166

equations are obtained by i) asymptotically expanding the unknown variables (c1 and c2)167

based on ε, and ii) solving the ordered equations with matched magnitude of ε. The former168

condition (ε � 1) ensures the accuracy of the expansion and the latter one (Pe < ε−1/2)169

regulates that all the terms are kept in certain order when Pe changes. These conditions are170

proven to be the sufficient conditions for the upscaled equations [31], however, not necessary.171

For instance, when the system has a large flow rate, the concentration reaches saturation172

shortly after the injection started, and the gradient of the concentration approaches zero,173

thus the gradient term’s influence is negligible (e.g. the third term on the right hand side of174

equations (24) and (25)) to the accuracy of the final solution even though the Peclét number175

is large.176

Effective velocity and dispersion177

Prior to solving the transport problem formulated in (24) and (25), we provide a brief178

analysis of the role of the parameters λ and h on the flow field in both the channel and porous179

matrix (see equations (11a) and (11b)) as well as in the upscaled dispersion coefficients,180

namely A2 and B2 (see equations (24) and (25)). Since transport is affected by the fluid181

velocity, we show the functional dependence between the average velocity and the parameters182

λ and h. This analysis will assist in interpreting the computational results.183

Mainly, we are interested in exploring the average velocity under two limiting cases for λ184

and h. When h tends to 0, the width of channel becomes large compared to the dimensions185

of the porous matrix (i.e. b � H). Under this condition, the channel carries the bulk186

of the fluid and the system behaves like a channel flow. However, when λ → ∞, the187

permeability in the porous matrix tends to zero and the flow system resembles a channel188

flow with impermeable walls (i.e. Poiseuille flow). In both limits, the average dimensionless189

velocity in the channel should asymptotically converge to 1/3, which corresponds to the190
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FIG. 2. Average velocities as a function of h and λ. Continuous lines represent the average velocity

in the channel 〈u1〉. Dotted lines represent the average velocity in the porous matrix 〈u2〉. The

thick black dotted line is the Poiseuille limit 〈u〉 = 1/3.

average velocity in a Poiseuille flow. These results are illustrated in Figure 2. By fixing λ191

and varying h, we observe that the average velocity in the channel converges to 1/3 when192

h → 0 (Figure 2, left). Figure 2 (right) shows that the average velocity also approaches to193

1/3 when we increase λ while keeping h fixed. The average velocity in the porous medium194

is illustrated in Figure 2 (see dashed lines), and, as expected, it tends to zero when λ→∞195

(Figure 2, right).196

In equations (24) and (25), A2 and B2 correspond to the dispersion coefficients. To assess197

the dispersion coefficients in different geometrical and transport scenarios, we map A2 and198

B2 in a Pe − λ space (Figure 3). Both A2 and B2 are large when λ → 0, Additionally,199

the channel dispersion A2 shows a dual-peak both at Pe → 0 and Pe → ∞. This result200

is expected: The dispersion coefficient is larger when Pe → 0, diffusion is the dominant201

transport mechanism, and when Pe→∞ advection plays a major role .202

In the following Section, we provide a semi-analytical solution for (24) and (25).203
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FIG. 3. Behavior of the dispersion coefficients A2 and B2 with respect to λ and Pe. The base of

the logarithm in the figure is 10.

SEMI-ANALYTICAL SOLUTION VIA INTEGRAL TRANSFORM204

Transformation205

In order to solve the coupled system of 1-D ADEs, (24) and (25), we resort to the use of

the generalized integral transform technique (GITT) [13, 14, 44, 53]. This methodology has

been adopted to solve scalar transport in channel flow characterized by spatially variable

velocity and eddy diffusivities [16, 18, 50]. It has also been used to address transport in

a channel-porous matrix system in the absence of advection in the porous matrix [12]. In

order to apply the GITT, we consider a finite domain [0, L∗], with L∗ � L where L is the

first characteristic length. We start by defining the re-scaled variables

C1(x, t) = 〈c1〉 −
(
L∗ − x
L∗

)
and C2(x, t) = 〈c2〉 . (33)

It is worth emphasizing that this transformation ensures the left boundary condition for C1

becomes homogeneous (i.e. C1(0, t) = 0). We can now rewrite equations (24) and (25) as:

∂Ci(x, t)

∂t
= LijCj(x, t) + C∗i (x), {i, j} = 1, 2 (34)
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where Ci is an element of C = [C1, C2]T , and C∗i denotes the additional terms introduced

by the transformation, namely:

C∗(x) = [C∗1(x), C∗2(x)]T =

[
−A1 + A4

(
L∗ − x
L∗

)
,−B3 +B5

(
L∗ − x
L∗

)]T
(35)

and equation (34) is subject to the following initial and boundary conditions

C1(0, t) = 0, C1(L∗, t) = 0, C1(x, 0) = 0, (36a)

∂C2(x, t)

∂x

∣∣∣∣
t=0

= 0, C2(L∗, t) = 0, C2(x, 0) = 0. (36b)

In order to apply the GITT, we define the following integral transform pairs [13, 14, 53]206

C̄ki(t) =

∫ L∗

0

ξ̃ki(x)Ck(x, t)dx, k = {1, 2}, (37)

207

Ck(x, t) =
∞∑
i=1

ξ̃ki(x)C̄ki(t), k = {1, 2}, (38)

where the symmetric kernels ξ̃ki(x) are defined as follows208

ξ̃ki(x) ≡ ξki(x)√
Nki

, k = {1, 2}. (39)

Here, Nki corresponds to the norm of the eigenfunctions ξki(x). The norm is defined as the209

integral over the eigenfunction squared over the entire domain[12, 18], and it writes:210

Nki =

∫ L∗

0

ξ2
ki(x)dx, (40)

The eigenfunctions are the solution of the uncoupled auxiliary problem

A2
d2ξ1i(x)

dx2
+
(
µ2

1i + A4

)
ξ1i(x) = 0 (41)

B2
d2ξ2i(x)

dx2
+
(
µ2

2i +B4

)
ξ2i(x) = 0. (42)

Equations (41) and (42) are subject to the following homogeneous boundary conditions

ξ1i(0) = 0; ξ1i(L
∗) = 0, (43a)

dξ2i(x)

dx

∣∣∣∣
x=0

= 0; ξ2i(L
∗) = 0. (43b)

A set of solutions for equations (41) and (42), satisfying the boundary conditions defined in

(43a) and (43b), is

ξ1i(x) = sin (β1ix) , (44)

ξ2i(x) = cos (β2ix) , (45)
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where β1i are the positive roots of sin (β1iL
∗) = 0 and β2i are the positive roots of

cos (β2iL
∗) = 0. Moreover, by using equations (41) and (42), the eigenvalues µki are

determined by

µ1i =
√
A2β2

1i − A4; (46)

µ2i =
√
B2β2

1i −B4. (47)

Multiplying equation (34) by ξ̃ki(x), integrating from 0 to L∗ and using (37)-(38) together211

with the boundary conditions, we obtain the following set of coupled ordinary differential212

equations (for additional details, see Refs. [13, 14])213

dC̄ki(t)

dt
+ µ2

kiC̄ki(t) = Ḡki(C̄1i(t), C̄2i(t)), k = {1, 2}, (48)

where the function Ḡki(C̄1i, C̄2i) writes:214

Ḡ1i(t) =
∞∑
j=1

[(
−A1

∫ L∗

0

ξ̃1i(x)
dξ̃1j(x)

dx
dx

)
C̄1j(t) +(

−A3

∫ L∗

0

ξ̃1i(x)
dξ̃2j(x)

dx
dx+ A5

∫ L∗

0

ξ̃1i(x)ξ̃2j(x)dx

)
C̄2j(t)

]
+

(A4 − A1)

∫ L∗

0

ξ̃1i(x)dx+
A4

L∗

∫ L∗

0

xξ̃1i(x)dx, (49a)

Ḡ2i(t) =
∞∑
j=1

[(
−B1

∫ L∗

0

ξ̃2i(x)
dξ̃2j(x)

dx
dx

)
C̄2j(t) +(

−B3

∫ L∗

0

ξ̃2i(x)
dξ̃1j(x)

dx
dx+B5

∫ L∗

0

ξ̃2i(x)ξ̃1j(x)dx

)
C̄1j(t)

]
+

(B4 −B1)

∫ L∗

0

ξ̃2i(x)dx+
B4

L∗

∫ L∗

0

xξ̃2i(x)dx. (49b)

The transformed initial condition is

C̄1i(0) = 0, (50a)

C̄2i(0) = 0. (50b)

Note that the integrals involving ξki can be computed analytically using any symbolic solver215

and the system of coupled ordinary differential equations (48) is solved numerically. Once216

the coefficients C̄ki at any given time step have been determined, the inverse formula (38) is217
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applied to obtain the functions C1 and C2 and therefore, the concentrations 〈c1〉 and 〈c2〉.218

To compute the concentration in the channel and the porous matrix, we need to truncate219

the series expansion, see (38). The truncation order is denoted by N . In the following, we220

present first a convergence analysis and then investigate the impact of matrix permeability221

on the scalar concentration distributions.222

FIG. 4. Eigenfunction convergence analysis of the semi-analytical solution obtained with the gen-

eralized integral transform technique (GITT). (a) 〈c1〉 at different time instance by varying the

number of eigenfunctions; (b) 〈c2〉 at different time instance by varying the number of eigenfunc-

tions. Parameter values used to generate the results are associated with scenarios SIM-01 and

SIM-05 listed in Table I.

15



FIG. 5. Time convergence analysis the GITT algorithm. (a) 〈c1〉 at x = 1 by varying the time

step; (a) 〈c2〉 at x = 1 by varying the time step. Simulations parameters are provided in scenarios

SIM-05, SIM-14 to SIM-16 listed in Table I.

Numerical Implementation223

We use an implicit Adams scheme to march C̄ki in time, see equation (48). The time224

step used in the scheme is denoted by δt. The GITT algorithm is implemented using the225

Python language. The simulation parameters (and scenarios) used for all upcoming results226

are listed in Table I. Next, we perform a convergence study by assessing the truncation error227

of using N finite terms of the series (38) and temporal accuracy of using time step δt.228

Figure 4 shows the result for the computed concentrations using two different N for the229

channel 〈c1〉 and porous medium 〈c2〉 at distinct times as a function of x. When N is low,230
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the solution has oscillations which can be eliminated by increasing N . Figure 5 illustrates231

the channel and matrix concentration as a function of the dimensionless time for different232

dimensionless time steps. The upscaled concentration in both the channel 〈c1〉 and porous233

medium 〈c2〉 are depicted in Figure 5 at dimensionless position x = 1 and at different234

dimensionless times (δt = 0.5, 0.1 and 0.01). To evaluate the error, we define the square235

mean error as:236

Ex(fstd|f) =
1

n

n∑
i=1

√
[f(xi, t∗)− fstd(xi, t∗)]2 (51)

where Ex is the square mean error evaluated at t = t∗ and n is the total number or output237

data points. Note that f represents the function to be evaluated (i.e. concentration). The238

function fstd corresponds to the concentration solution obtained with a higher N or smaller239

δt.240

FIG. 6. Analysis of the error Ex as a function of N and δt. Circle markers correspond to channel

results and triangle markers indicate porous matrix solutions. Simulation parameters are SIM-01

to SIM-05, SIM-14 to SIM-16, and SIM-22 to SIM-26 (see Table I).

In Figure 6 , we plot the error between the GITT solutions computed with different N ,241

withN = {10, 50, 100, 200, 500, 1000, 2000, 5000}, and δt, with δt = {0.1, 0.05, 0.01, 0.005, 0.001}.242

The fstd is the solution of a higher N (Figure 6-left) or a smaller δt (Figure 6-right). For243

instance, the error Ex at N = 1000 is computed by using fstd at N = 2000, and the error244
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at N = 2000 is computed by using fstd at N = 5000. We can see both N and δt show245

convergent solutions. We consider the solution converged when the error is smaller than246

1 × 10−5. Thus, we conclude that when N ∼ 500 and δt < 0.1, the solver converges. All247

parameters used in the simulations will be listed in Table I.248

COMPUTATIONAL RESULTS AND DISCUSSION249

We now evaluate the performance of the GITT solution with: i) the numerical solution250

of the upscaled model presented in equations (24) and (25) (denoted here as “Ling et al.251

[32]”) ; and ii) the numerical solution of the 2-D model presented in equations (18) and (19)252

(referred as “2D”). For the “Ling et al. [32]” solution, equations (24) and (25) were solved253

by the Matlab’s built-in partial differential equation solver PDEPE. As for the “2D” solution,254

a finite-difference script (i.e. central-difference-backward-time method) was implemented in255

Matlab to solve equations (18) and (19). Both solvers accuracy and convergence study is256

performed in Ling et al. [32].257

The three solutions (GITT, Ling et al. and 2D) are plotted in Figure 7 using the same258

parameters. Figures 7.a and 7.b show the spatial distribution of both the concentration in259

the channel and porous matrix for Pe = 10−1, λ = 1 and Pe = 10, λ = 10, respectively. As260

observed in Figure 7, a good agreement is obtained between the upscaled concentration and261

the numerical solution of the full 2-D system. The results depicted in Figure 7 also show the262

capability of the upscaled model, solved using the GITT, in reproducing the concentration263

field in the original 2-D setting.264

Figure 8 illustrates the spatial distribution of the upscaled concentration profile in the265

channel (red lines) and the porous matrix (blue line) for different dimensionless times (t =1266

and 5) and h = 10 (see SIM-05 to SIM-07 listed in Table I). The results depicted in Figure267

8 were obtained for Pe = 1, 10 and 100. Solutions from the GITT (solid lines) and those268

from the solution of (24) and (25) (Ling et al. [32]) (dashed lines) are plotted. When Pe269

is high (i.e., Pe = 100), differences between the concentration solutions for the channel and270

the matrix are enhanced. The difference between the solutions obtained in the two regions271

decreases when the system becomes more diffusive (Pe → 0). The results presented in272

Figure 8 also show that the GITT results are in good agreement with the solution of Ling273

et al. [32] obtained for different different parameter pairs.274
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FIG. 7. Comparison between the GITT solution, the solution of (24) and (25) (Ling et al. [32]) and

the spatial average of the 2D numerical solution of (18) and (19) (“2D”) at different dimensionless

time t = 1. The GITT computational results correspond to the upscaled concentration and the

numerical solution refers to the concentration in a 2D system. Results for the concentration in the

channel versus distance for Pe = 10−1, λ = 1 and Pe = 10, λ = 10 (see SIM-17 and SIM-18 listed

in Table I).

ANALYTICAL APPROXIMATION AND EFFECTIVE PARAMETERS275

The semi-analytical results obtained through the use of the GITT show that in some276

cases, the difference between the concentrations in the channel and in the matrix is very277

small (for instance, see Figure 8.c). Inspection of Equations (24) and (25) suggests that, for278

any fixed λ and h (or, alternatively, Λ), 〈c1〉 ' 〈c2〉 when Pe � ε2 for ε → 0 (i.e., L � b).279

In other words, the average concentration of the solute is similar in both the channel and280

the porous matrix under the appropriate dynamical conditions. Setting 〈c1〉 = 〈c2〉 while281
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FIG. 8. Comparison between the GITT solution, the numerical solution of (24) and (25) (Ling et

al. [32]) and the Ogata-Banks solution (53). The red solid line indicates the GITT channel solution

(〈c1〉) and the blue solid line represents matrix solution (〈c2〉). The red and blue dashed lines are

the Ling et al. solutions for 〈c1〉 and 〈c2〉. The black dashed line is the Ogata-Banks solution (53).

Parameters are listed as SIM-05 to SIM-07 in Table I.

using (24), one can derive the following approximate model formulation for the upscaled282

concentration in the channel,283

∂ 〈c1〉
∂t
− (A1 + A3)

∂ 〈c1〉
∂x

− A2
∂2 〈c1〉
∂x2

= 0 (52)

with continuous injection 〈c1〉|x=0 = 1. The formulation presented in Equation (52) can be284

analytically solved following the procedure outlined in [43]. The Ogata-Banks solution [43]285

is valid for a continuous injection at the inlet of the channel with uniform flow and it admits286

the following analytical solution:287

20



〈c1〉 = 〈c2〉 =
1

2

[
erfc

(
x− uefft

2
√
Defft

)
+ exp

(
ueffx

Defft

)
erfc

(
x+ uefft

2
√
Defft

)]
(53)

where the modified (i.e., effective) velocity and dispersion coefficients are defined as:288

ueff = − (A1 + A3) , (54)

289

Deff = A2. (55)

It is important to note that the physical properties of the porous medium affect the transport290

in the channel since both ueff and Deff depend on λ and h. Although equation (53) is valid291

for continuous injection of an inert scalar, the one dimensional ADE (52) can be solved for292

other types of boundary and initial conditions. Analytical solutions for equation (52) are293

available under more generic boundary and initial conditions through the use of the Unified294

Transform (also known as the Fokas Method) [15]. Solutions can also be obtained by the295

well-known Duhamel theorem for an instantaneous pulse injection [26].296

The results reported in Figure 8 show that when 〈c1〉 ∼ 〈c2〉 (or Pe � ε2), the solu-297

tion (53), parameterized with ueff (54) and Deff (55), is in excellent agreement with the one298

obtained through the GITT. As a consequence, under the limiting condition ε → 0, the299

approximate formulation (52) can yield accurate predictions of the upscaled solute concen-300

tration while incorporating the parameters characterizing the porous matrix.301

Such an approximation can largely reduce the computation time when estimating a large302

channel-matrix coupled system, however, when the matrix becomes more permeable: λ→ 0,303

solute is dispersed strongly within the porous matrix domain, which causes larger difference304

between the 〈c1〉 and 〈c2〉, and this further reduces the accuracy of the Ogata-Banks ap-305

proximation.306

To further investigate this, we plot three error maps: 1) the error between the GITT307

solution and the numerical solutions of (24) and (25) (Ling et al. [32]), 2) the error between308

the GITT solution and the 2D solution, and 3) the error between ADE solution and the309

numerical solutions of (24) and (25) (Ling et al. [32]). Figure 9 shows the error computed310

with equation (51) between the GITT solution and the numerical solutions of (24) and (25)311

(Ling et al. [32]) in a Pe − λ space, with the standard function fstd selected as the latter312

solution. Warmer colors indicate a larger error regions, and the dashed contours are 1%,313

5% and 10% error bounds. Figure 10 shows the error computed with equation (51) between314
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FIG. 9. Error between the GITT solution and the numerical solution of (24) and (25) (Ling et

al. [32]). The white dots indicate where the error values are calculated exactly and the points in

between are computed through linear interpolation. The dashed lines correspond to the 1%. The

base of the logarithm in the figure is 10.

the GITT solution and the numerical solutions of the 2D problem [32]). From Figure 10,315

it is apparent that the upscaled equation solved by the GITT has a wide range of accuracy316

in representing the 2D solution. Figure 11 shows the same error evaluation between the317

Ogata-Banks solution and the numerical solutions of (24) and (25) (Ling et al. [32]) in a318

Pe− λ space. For consistency, three error maps use the same color scale. We can see that319

the GITT has a good agreement with the numerical solution of the upscaled equation, and320

it suggests that the GITT algorithm is suitable for solving equations with the form of (24)321

and (25). Further, in Figure 11, we can see the ADE solution has a reasonable accuracy,322

however, either a larger matrix permeability or a more advective transport can lead to low323

accuracy of the Ogata-Banks solution. Finally, a comparison between Figure 9 and Figure324
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FIG. 10. Error between the GITT solution and the two dimensional solution. The white dots

indicate where the error values are calculated exactly and the points in between are computed

through linear interpolation. The dashed lines correspond to the 1% and 5%. The base of the

logarithm in the figure is 10.

11 shows that the Ogata-Banks solution has a smaller applicability zone than that of the325

GITT.326

SUMMARY AND CONCLUSIONS327

Flow and transport in channel-matrix systems occur in a large variety of natural and328

industrial settings : examples range from fractured geological formations to porous media-329

coated devices.330

This paper investigates macroscopic transport of an inert scalar in a shear flow through331

a infinitely thin coupled channel-matrix system, which can be described by a system of332
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FIG. 11. Error between the Ogata-Banks solution (53) and the numerical solution of (24) and (25)

(Ling et al. [32]). The white dots indicate where the error values are calculated exactly and the

points in between are computed through linear interpolation. The dashed lines correspond to the

1%, 5% and 10% error contours. The base of the logarithm in the figure is 10.

coupled 1D partial differential equations. We develop a semi-analytical solution based on333

the Generalized Integral Transform Technique (GITT). The GITT framework is applicable334

for any coupled system of one-dimensional partial differential equations that is consistent335

with the general form analyzed in this work. The semi-analytical solution consists of series336

summations, which are smooth and differentiable over the entire domain, and such solution337

form allows one to assess derived quantities e.g. flux, transfer rate analytically.338

The GITT solver is implemented with Python and followed by a convergence study. The339

results show that, the GITT algorithm converges with large number of eigenfunctions (N)340

and small time step (δt). The solution is successfully compared with the spatially averaged341

numerical solution of the corresponding “microscale” 2D problem. The proposed integral342
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transform solution is computationally efficient due to its analytical features. Finally, we343

show that under appropriate dynamic conditions, expressed in terms of Peclét number, the344

problem can be further simplified to a 1D partial differential equation (1D-PDE) for the345

average concentration in the channel and the matrix, which admits a closed-form analytical346

solution.347

We show the accuracy of the various solutions through a parametric study in terms of the348

Peclét number and the geometric parameter λ. By evaluating the error between the GITT349

solution and the direct numerical solution of the upscaled equation, we validated the GITT.350

With comparison between the GITT solution and the 2D solution, we indicate that the351

GITT is expected to provide more accurate results when the matrix is less permeable and352

more diffusive. Further, the 1D-PDE representation provides high accuracy results when353

the solute flux between the channel and the matrix is irrelevant.354

The error study can be used as a criterion for algorithm/model selection such that the355

most computationally efficient model can be used, without compromising prediction accu-356

racy, depending on the specific values of relevant dimensionless numbers, that may vary357

across different applications. The flexibility of the proposed approach ensures the accu-358

racy of the upscaled system, and at the same time, provides efficient estimation of solute359

migration in channel-matrix coupled systems.360

Furthermore, the GITT algorithm can be applied to many other systems where the361

transport is modeled by coupled PDEs that have the general form shown in this study. The362

analytical series solution enables efficient estimation of higher derivative quantities such as363

the flux.364
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APPENDIX374

A: Upscaled equation375

The upscaled equation derived in [32] writes:

ε2Pe
∂ 〈c1〉
∂t

+ ε2Pe 〈u1〉
∂ 〈c1〉
∂x

= ε3D∗1
∂2 〈c1〉
∂x2

− φε2PeN1
∂ 〈c2〉
∂x

− φ3D2,y

h
[〈c1〉 − 〈c2〉] (A-1)

ε2Pe
∂ 〈c2〉
∂t

+ ε2Pe 〈u2〉
∂ 〈c2〉
∂x

= ε3D∗2
∂2 〈c2〉
∂x2

+
MI

φh
ε2Pe

∂ 〈c1〉
∂x

+
3

φh
[〈c1〉 − 〈c2〉] . (A-2)

thus, we have:

A1 = −〈u1〉 , A2 =
εD∗1
Pe

, A3 = −φN1, A4 = −3φD2,y

ε2Peh
, A5 =

3φD2,y

ε2Peh
(A-3)

B1 = −〈u2〉 , B2 =
εD∗2
Pe

, B3 = −M1

φh
, B4 = − 3

ε2Peφh
, B5 =

3

ε2Peφh
(A-4)

where:

〈u1〉 =
A

2
+B +

Ψ

6
(A-5)

〈u2〉 =−
λE
(
e−hλ − 1

)
− λF

(
ehλ − 1

)
+ hΨ

hλ2
(A-6)

and:

M1 =− A

2
−B − Ψ

6
(A-7)

M2 =
5A

24
+
B

3
+

3Ψ

40
(A-8)

N1 =− hΨ

λ2
− Ee−hλ

λ
+
Fehλ

λ
(A-9)

N2 =
e−hλ

[
−2ehλ (h3λΨ + 3E − 3F )− 3E (h2λ2 − 2) + 3Fe2hλ (h2λ2 − 2)

]
6hλ3

(A-10)
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and:

If =
7A2

240
+
AB

24
+
AΨ

40
+

7BΨ

360
+

3Ψ2

560
(A-11)

Im =− e−2hλ

6h2λ5

{
3λE2

(
h2λ2 + ehλ

(
h2λ2 − 2hλ− 4

)
3hλ+ e2hλ(2− hλ) + 2

)
− Eehλ

[
3λF

(
h2λ2 + e2hλ

(
h2λ2 − 2hλ− 4

)
+ ehλ

(
6h2λ2 + 8

)
+ 2hλ− 4

)
− hΨ

(
h2λ2 + 2ehλ

(
h2λ2 − 3hλ+ 3

)
− 6
) ]

+ Fe2hλ
[
3λF

(
ehλ
(
h2λ2 + 2hλ− 4

)
+ e2hλ

(
h2λ2 − 3hλ+ 2

)
+ hλ+ 2

)
− hΨ

(
2h2λ2 + ehλ

(
h2λ2 − 6

)
+ 6hλ+ 6

) ]}
(A-12)

D∗1 =Df + Pe2 If
Df

(A-13)

D∗2 =D2,x + Pe2 Im
D2,y

(A-14)

B: Simulation parameters376

All the parameters used in this study are listed in the following table377378
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N δt Pe ε λ h φ Df Dmx Dmy Ψ

SIM-01 10 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-02 50 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-03 100 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-04 200 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-05 500 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-06 500 0.01 10 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-07 500 0.01 1 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-08 500 0.01 100 0.02 1 10 0.1 0.01 0.01 0.01 -1

SIM-09 500 0.01 10 0.02 1 10 0.1 0.01 0.01 0.01 -1

SIM-10 500 0.01 1 0.02 1 10 0.1 0.01 0.01 0.01 -1

SIM-11 500 0.01 100 0.02 0.5 10 0.1 0.01 0.01 0.01 -1

SIM-12 500 0.01 10 0.02 0.5 10 0.1 0.01 0.01 0.01 -1

SIM-13 500 0.01 1 0.02 0.5 10 0.1 0.01 0.01 0.01 -1

SIM-14 500 0.05 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-15 500 0.1 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-16 500 0.5 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-17 100 0.01 0.1 0.1 1 5 0.5 1 1 1 -0.1

SIM-18 100 0.01 10 0.1 10 5 0.5 1 1 1 -0.1

SIM-19 200 0.05 100 0.1 10 5 0.5 0.1 0.1 0.1 -0.1

SIM-20 200 0.05 10 0.1 10 5 0.5 0.1 0.1 0.1 -0.1

SIM-21 200 0.05 1 0.1 10 5 0.5 0.1 0.1 0.1 -0.1

SIM-22 1000 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-23 2000 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-24 5000 0.01 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-25 500 0.005 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

SIM-26 500 0.001 100 0.02 10 10 0.1 0.01 0.01 0.01 -1

TABLE I. Parameters used in the simulation.
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