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We study the instability of a thin membrane (of zero bending rigidity) to out-of-plane deflections,
when the membrane is immersed in an inviscid fluid flow and sheds a trailing vortex-sheet wake. We
solve the nonlinear eigenvalue problem iteratively with large ensembles of initial guesses, for three
canonical boundary conditions—both ends fixed, one end fixed and one free, and both free. Over
several orders of magnitude of membrane mass density, we find instability by divergence or flutter
(particularly at large mass density, or with one or both ends free). The most unstable eigenmodes
generally become “wavier” at smaller mass density and smaller tension, but with regions of non-
monotonic behavior. We find good quantitative agreement with unsteady time-stepping simulations
at small amplitude, but only qualitative similarities with the eventual steady-state large-amplitude
motions.

I. INTRODUCTION

When extensible membranes of zero bending rigidity are placed in a fluid flow, the interaction between
membrane inertia, resistance to stretching, and external fluid forces can result in complex time-dependent
deformations and dynamics. This holds both for large-amplitude motions and the initial small-amplitude
motions that determine the stability of undeflected membranes. Predicting the onset of membrane instability
across parameter space, either by flutter, divergence, or a combination of the two [36, 63, 65], is fundamental to
a wide range of applications. As lightweight, deployable structures that are stable in a variety of configurations,
membranes are used, for example, in sails [10, 29, 43, 44, 46], parachutes [48, 59], micro-air vehicles [3, 21,
33, 55, 58], ballutes for space exploration [50, 52], supersonic aircraft and rockets [7, 38, 68], roofs in civil
engineering [20, 30, 62, 63], and the wings of flying animals [9, 56, 61].

In an early work, Nielsen [46] studied a membrane with both edges fixed in a two-dimensional flow, and
determined the critical value of the pretension parameter that gives rise to a fully convex membrane shape.
An overview of early models based on potential-flow aerodynamics can be found in [43]. Previous works have
studied the difference between the flutter of membranes (with zero bending rigidity) and plates in the limit
of zero bending rigidity. Because the bending rigidity term has the highest (fourth-order) spatial derivative,
it is a singular limit, and thus the two problems can have significant differences. In the case of panels in
supersonic flows, the membrane is stable whereas the plate can be unstable to flutter in the limit [14, 26, 57];
see also [13, pp. 25–26]. This so-called “membrane paradox” also arises in solar sails [17], and a related
boundary-layer phenomenon occurs for heaving plates, hanging under gravity [35]. Over the past few decades,
theoretical [45, 63], computational [23, 36, 41, 65], and experimental [32] studies of membrane stability have
revealed a wide range of membrane stability behavior and dynamics with various boundary conditions.

In [36], we used a non-linear time-stepping algorithm to compute the stability thresholds for membranes
with three sets of boundary conditions: “fixed-fixed,” “fixed-free,” and “free-free” leading and trailing edges.
Membrane tension has a stabilizing effect in all cases. The ratio of membrane-to-fluid inertia has a less obvious
effect—heavier membranes may be unstable when a lighter membrane was not, but the instability grows more
slowly as membrane mass increases, to the point where it is difficult to determine whether the membrane is
stable or not. Nonlinear time-stepping simulations with evolving vortex sheet wakes are expensive when large
simulation times are required (i.e. to assess the stability of heavy membranes), and when the membrane develops
fine deformations (as occurs for lighter membranes and smaller pretension values). In the latter case a fine grid
on the membrane is required, increasing the size of the coupled system of equations that is solved implicitly,
and making it more ill-conditioned, slowing convergence at each time step.

Therefore, in this work, we develop a less expensive alternative to study the stability problem—a nonlinear
eigenmode solver. We solve for an ensemble of eigenmodes and corresponding eigenvalues (growth rates and
frequencies) corresponding to small-amplitude deformations. By comparing with unsteady simulations, we find
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that the modes accurately capture the early stages of the unsteady motion starting from the undeflected state.
By comparing at later times, we find that the mode shapes qualitatively resemble those of the steady-state large
amplitude motions to varying degrees.

Due to the vortex wake, simple exact eigenmode solutions are difficult to obtain, and the physical mechanisms
that underlie the membrane instability are somewhat elusive, but in the present study we are able to present
a comprehensive characterization of the modes and growth rates in the vicinity of the stability boundary. The
eigenmode approach has been used previously to study membrane stability with fixed-fixed [41, 46, 63, 65]
and periodic [45] boundary conditions. We use our method on the fixed-fixed case, as well as the fixed-free
and free-free cases introduced in [36], where a wider range of dynamics can occur. In each case, we study a
much wider range of membrane mass density and pretension values than previous studies. A version of the
present method was previously used to study the flutter instability of bending beams in inviscid flows [1]. There
solutions were obtained by continuation, starting from the known oscillation modes of a beam in a vacuum.
Here we study membranes (with zero bending rigidity), and find that the continuation approach is now more
susceptible to jumping between different eigenmode branches as we vary parameters. Therefore, we solve the
nonlinear eigenvalue problem using dense meshes of initial eigenvalue guesses that cover the range of lower-mode
states. As a result, we obtain a larger ensemble of eigenmodes at each parameter value set. We obtain good
agreement with the stability results in [36], but are able to extend the results to much larger and smaller values
of the membrane-to-fluid density ratio, and resolve shapes with finer structures.

The structure of the paper is as follows. In § II we present the membrane and vortex sheet model and in § III
its linearized, small-amplitude version, along with a summary of the numerical method for determining the
eigenvalues and eigenmodes (§ III A). In §§ IV–VI we present our results for an extensive range of parameters
for each of the three boundary conditions. We then turn to simulations of the initial value problem and examine
how the unsteady motions compare to the eigenmode shapes from the linearized model (§ VII). § VIII presents
conclusions.

II. MEMBRANE-VORTEX-SHEET MODEL

We model the dynamics of an extensible membrane that is nearly aligned with a two-dimensional background
fluid flow with speed U in the far field (see figure 1).
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FIG. 1. Schematic diagram of flexible membranes (solid curved black lines) at an instant in time. Here 2L is the chord
length (the distance between the endpoints) and U is the oncoming flow velocity. For the nonlinear, large-amplitude
model (panels A, C, and E), y(x, t) is the membrane deflection and the dashed line is the free vortex wake. The right
columns show the corresponding linearized, small-amplitude eigenvalue problems, where the motions are represented by
the real and imaginary parts of the eigenmodes Y (x), shown as green and blue lines, respectively, and flat vortex wakes
of fixed length Lw shown as dashed lines at y = 0 (panels B, D, and F). The boundary conditions shown are: fixed-fixed
membranes (panels A and B), fixed-free membranes (panels C and D), and free-free membranes (panels E and F).

In figure 1, we illustrate schematically the three cases of boundary conditions at the two ends of the membrane
that we investigated in [36]: fixed-fixed (panels A and B), fixed-free (panels C and D), and free-free (panels E
and F). In all three cases, the x-coordinates of the ends are fixed at 0 and 2L. In the “fixed-fixed” case, we set
the deflection to zero at both ends of the membrane; most previous studies of membrane flutter considered this
boundary condition [32, 41, 51, 63, 65]. In the “fixed-free” case, the leading edge deflection is again set to zero
but the trailing edge is allowed to deflect freely in the vertical direction. This is the classical free-end boundary
condition for a membrane [16, 19]. The membrane end is fixed to a massless ring that slides along a vertical
frictionless pole (represented by the red lines in figure 1). Since the pole is frictionless and the ring is massless,
the membrane can exert no vertical force on the free end by tension, and hence the membrane slope must be
zero.

Free-end boundary conditions have been implemented in various problems in classical mechanics such as beam
flutter [2, 4, 6, 11, 12, 15, 18, 22, 24, 25, 28, 31, 34, 37, 39, 47, 53, 64, 66, 70], but they have not been used
to a great extent in membrane flutter problems. Recently, an experimental study determined that membrane
wing flutter can be enhanced by the vibrations of flexible leading and trailing edge supports [5]. For membrane
wings with partially free trailing edges, trailing edge fluttering may occur at relatively low angles of attack [21].
Partially free edges occur also in sails. In [29], it is shown that by altering the tension in cables running along
its free edges one can control the shape of a sail membrane and when the tension in these edges is sufficiently
low, flutter can occur [10]. A related application is to energy harvesting by membranes mounted on tensegrity
structures and placed in fluid flows [60, 69].

The authors in [35, 67] consider the dynamics and flutter of membranes and cables under gravity with free
ends. In [36] and in the current work, to focus on the basic flutter problem [54], we do not include gravity in the
model. However, we still need to ensure that the problem remains well-posed by requiring some restriction on the
motion of the free membrane ends to eliminate the possibility of membrane compression [67]. This restriction is
provided by the vertical frictionless poles. This has been carried out experimentally by representing a membrane
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as an extensional spring tethered by steel wires to vertical supports [27], for example.
The model here is the same as in [36] but we repeat the main points for completeness. The membrane

dynamics are described by the unsteady extensible elastica equation with body inertia, stretching resistance,
and fluid pressure loading, obtained by writing a force balance equation for a small section of membrane lying
between α and α+ ∆α:

ρshW∂ttζ(α, t)∆α = T (α+ ∆α, t)ŝ− T (α, t)ŝ− [p]+−(α, t)n̂W (s(α+ ∆α, t)− s(α, t)) . (1)

Here ρs is the mass per unit volume of the undeflected membrane, h is its thickness, and W is its out-of-plane
width, all uniform along the length. In (1), ζ(α, t) = x(α, t) + iy(α, t) is the membrane position in the complex
plane, parameterized by the material coordinate α, −L ≤ α ≤ L (L is half the chord length) and time t. The
pressure jump across the membrane is [p]+−, the local arc length coordinate is s(α, t), the local stretching factor
is ∂αs, and the unit vectors tangent and normal to the membrane are ŝ and n̂, respectively. These are given by

ŝ = ∂αζ(α, t)/∂αs(α, t) = eiθ(α,t) and n̂ = iŝ = ieiθ(α,t), (2)

with θ(α, t) the local tangent angle. For the pressure jump term we use + to denote the side towards which the
membrane normal n̂ is directed, and − for the other side. However, for the remainder of this paper, we drop
the + and − for ease of notation.

Dividing (1) by ∆α and taking the limit ∆α→ 0, we obtain:

ρshW∂ttζ(α, t) = ∂α(T (α, t)ŝ)− [p](α, t)W∂αsn̂. (3)

The membrane tension T (α, t) is given by linear elasticity [8, 40, 42] as

T (α, t) = T + EhW (∂αs(α, t)− 1), (4)

where E is the Young’s modulus and T is the tension in the (initial) undeflected equilibrium state. Equation (3) is
made dimensionless by nondimensionalizing length by the membrane’s half-chord L, time by L/U , and pressure
by ρfU

2, where ρf is the density of the fluid and U is the oncoming flow velocity. The nonlinear, extensible
membrane equation becomes

R1∂ttζ − ∂α((T0 +R3(∂αs− 1))̂s) = −[p]∂αsn̂. (5)

The dimensionless membrane mass isR1 = ρsh/(ρfL), the dimensionless stretching rigidity isR3 = Eh/(ρfU
2L),

and finally, T0 = T/(ρfU
2LW ) is the dimensionless pretension. The model is linearized for small-amplitude

membrane deflections in § III (shown schematically in figure 1, right column).
We let z = x+ iy to use the complex representation of the xy flow plane. The complex conjugate of the fluid

velocity at any point z not on the vortex sheets is a sum of the horizontal background flow with dimensionless
speed unity and the flow induced by the bound and free vortex wakes:

ux(z)− iuy(z) = 1 +
1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα+

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds, (6)

where s is the arc length along the free sheet starting at 0 at the membrane’s trailing edge and extending
to smax at the free sheet’s far end. To determine the bound vortex sheet strength γ we require that the fluid
does not penetrate the membrane, i.e. the kinematic boundary condition. Here γ also represents the jump in
the component of the flow velocity tangent to the membrane from the − to the + side, i.e. γ = −[(ux, uy) · ŝ].
The normal components of the fluid and membrane velocities are equal:

Re(n̂∂tζ(α, t)) = Re

(
n̂

(
1 +

1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα+

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds

))
, (7)

where n̂ is written as a complex scalar. Solving (7) for γ on the body requires an additional constraint that
the total circulation is zero for a flow started from rest. At each instant the part of the circulation in the free
sheet, or alternatively, the strength of γ where the free sheet meets the trailing edge of the membrane, is set
by the Kutta condition which makes the flow velocity finite at the trailing edge. At every other point of the
free sheet, γ is set by the criterion that circulation (the integral of γ) is conserved at material points of the free
sheet. The vortex sheet strength γ(α, t) is coupled to the pressure jump [p](α, t) across the membrane using a
version of the unsteady Bernoulli equation written at a fixed material point on the membrane:

∂αs∂tγ + ∂α (γ(µ− τ)) + γ(∂ατ − νκ∂αs) = ∂α[p], (8)

where µ is the average flow velocity tangent to the membrane, τ and ν are the tangential and normal components
of the membrane velocity, respectively, and κ(α, t) = ∂αθ/∂αs is the membrane’s curvature. At the trailing
edge, [p]|α=1 = 0. The derivation of (8) is included in [36, appendix A].
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III. SMALL-AMPLITUDE LINEARIZATION

The large-amplitude, nonlinear system described in § II becomes more amenable to analysis in the small-
amplitude regime. Here we focus on the computation of eigenmodes and eigenvalues for the three boundary
conditions studied in [36]: “fixed-fixed,” “fixed-free,” and “free-free” membranes. We are thereby able to
present the small-amplitude motions of the membranes at larger and smaller membrane densities than in the
previous work, and in much greater detail. A similar linearized model was derived in [1] for the dynamics of a
flapping flag. We consider small deflections y(x, t) from the straight configuration, aligned with the flow. Since
the membrane stretching factor is ∂αs ≈ 1 + ∂xy

2/2, to linear order α ≈ s ≈ x, all α-derivatives in (5) are
x-derivatives, and ζ(α, t) ≈ ζ(x, t) = x+ iy(x, t). At linear order, the tangent and normal vectors are:

ŝ ≈ (1, ∂xy)>, n̂ ≈ (−∂xy, 1)>. (9)

The linearized version of the membrane equation is

R1∂tty − T0∂xxy = −[p]. (10)

The term in the tension force T (α, t) = T0 + R3(∂αs − 1) involving R3 (dimensionless stretching rigidity)
is of quadratic order, so the linear dynamics are governed by the dimensionless membrane mass R1 and the
dimensionless pretension T0. The boundary conditions are:

fixed-fixed: y(±1, t) = 0, (11)

fixed-free: y(−1, t) = 0, ∂xy(1, t) = 0, (12)

free-free: ∂xy(±1, t) = 0. (13)

The dynamics of the membrane are coupled to the fluid flow through the pressure jump term [p](x, t). The
linearized version of the pressure jump equation is

∂tγ + ∂xγ = ∂x[p]. (14)

The set of equations is closed by relating the vortex sheet strength γ(x, t) back to the membrane position y(x, t),
through the kinematic condition, in linearized form:

∂ty(x, t) = −∂xy(x, t) +
1

2π
−
∫ 1

−1

v(x′, t)√
1− x′2(x− x′)

dx′ +
1

2π

∫ `w+1

1

γ(x′, t)

x− x′
dx′, −1 < x < 1. (15)

Here, we use that ∂tζ(x, t) ≈ −i∂ty and from (9), the normal velocity component Re(n̂∂tζ) ≈ ∂ty. The general
solution γ(x, t) has inverse square-root singularities at x = ±1 and so we define v(x, t), the bounded part of

γ(x, t) by γ = v/
√

1− x2. The second integral in (15) represents the velocity induced by the vortex sheet wake,
which extends downstream from the membrane on the interval 1 < x < `w + 1, y = 0. Therefore, the eigenvalue
problem assumes a free vortex wake of a given fixed length `w, which we take to be large (i.e. we assume we
start with a deflection that is sufficiently small that we remain in the small-amplitude regime for a long time).

The circulation in the wake,

Γ(x, t) = −
∫ `w+1

x

γ(x′, t) dx′, (16)

is conserved along material points of the wake by Kelvin’s circulation theorem. At linear order, the wake moves
at the constant speed (unity) of the free stream; self-interaction is negligible.

At each time t, the total circulation in the wake, Γ(1, t), is set by the Kutta condition, which in linearized
form is unchanged, i.e.

v(1, t) = 0. (17)

Using the system of equations (10), (14), (15), and (17) we solve for the following unknowns: the motion of
the membrane and the strengths of the vortex sheets along the membrane and in the wake.

For the linearized system, we may write solutions in the following form:

y(x, t) = Y (x)eiσt, (18)

γ(x, t) = g(x)eiσt, (19)

v(x, t) = V (x)eiσt, (20)

Γ(1, t) = Γ0e
iσt, (21)
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where Y , g, V , and Γ0 are components of eigenmodes with complex eigenvalues σ = σR + iσI ∈ C. The real
parts of the eigenvalues are the angular frequencies and the imaginary parts are the temporal growth rates. If
σI > 0, small perturbations decay exponentially and the mode is stable, while if σI < 0, small perturbations
grow exponentially and the mode is unstable. If σI = 0 the mode is neutrally stable.

We wish to identify the region of R1–T0 space in which unstable eigenmodes exist, and when there are multiple
unstable modes, identify the fastest growing mode.

Since Γ is conserved at material points of the free vortex sheet as they move downstream (at speed 1), and
the material point at location x ≥ 1 at time t was at location x = 1 at time t− (x− 1), we can write

Γ(x, t) = Γ0e
iσ(t−(x−1)) = Γ0e

−iσ(x−1)eiσt, 1 < x < `w + 1, (22)

γ(x, t) = ∂xΓ(x, t) = −iσΓ0e
−iσ(x−1)eiσt, 1 < x < `w + 1, (23)

using (21). Inserting the eigenmodes (18)–(21) into the governing equations, (10) and (15), yields

− σ2R1Y = T0∂xxY − iσ
∫ 1

−1
g dx− g, (24)

and

iσY = −∂xY +
1

2π
−
∫ 1

−1

V (x′)√
1− x′2(x− x′)

dx′ − 1

2π
iσΓ0

∫ `w+1

1

e−iσ(x
′−1)

x− x′
dx′, −1 < x < 1, (25)

respectively. Because σ appears in the exponential in the second integral in (25), this is a nonlinear eigenvalue
problem.

A. Numerical method for finding the eigenvalues and eigenmodes

We solve the nonlinear eigenvalue problem iteratively. At each iteration, we have an approximation σ0 to a
given eigenvalue σ. We approximate the equations as a quadratic eigenvalue problem:

[σ2A2 + σA1 +A0(σ0)]w = 0, (26)

where the matrices A2, A1, A0 are known from equations (24), (25), and g(x) = V (x)/
√

1− x2. The eigen-
vector w consists of: (a) values of the eigenmodes, defined as Y (x) on the Chebyshev grid {xj = cos θj , θj =
(j−1)π/m, j = 1, . . . ,m+ 1} and (b) the scalar Γ0. The term A0(σ)w includes the exponential integral involv-
ing σ in (25) as well as terms that are constant in σ. In the exponential integral, σ is fixed at σ0, the value of σ
from the previous iteration, resulting in the quadratic eigenvalue problem (26), which is solved using polyeig in
Matlab. Equation (26) has 2m+ 4 eigenvalue solutions. As in [1], we define an error function as the difference
between σ0 and the eigenvalue (out of the 2m + 4 possibilities) closest to it. We also compute the derivatives
of the error function (i.e. the Jacobian matrix) with respect to σR and σI using finite differences at the initial
iterate, and update it at subsequent iterates using Broyden’s approximate formula [49]. The error function and
Jacobian define the search direction (via Newton’s formula) for the next iterate. With this approach we obtain
superlinear convergence to a given eigenvalue. By using a wide range of initial guesses, we obtain convergence
to various eigenvalues and corresponding eigenmodes.

The numerical solution procedure followed in the current work differs from [1]. There we used a continuation
method, which for the current problem would start from the analytical solution for each eigenvalue in the limit
R1, T0 � 1, and use the solution at a given (R1, T0) as an initial guess for slightly smaller (R1, T0) (continuing
to smaller and smaller (R1, T0)). We find that this method fails to find solutions at certain (R1, T0) and
therefore at smaller values also, so we use a more robust approach here. We compute a large set of eigenvalues
at each (R1, T0) using a large grid of initial eigenvalue guesses in the complex plane covering in most cases
σR ∈ [−8, 8] and σI ∈ [−3,−0.5]. For each initial guess we perform the eigenvalue iteration described above
until it converges. This reveals the basins of attraction of the eigenvalues under Broyden’s iteration, which shows
that the imaginary part is not as important as the real part of the eigenvalue guess (especially for large R1

values). We note that in the system of equations (24)–(25) the eigenvalue σ appears in powers of iσ. For each
solution {iσ, w}, the complex conjugate {−iσ̄, w̄} is also a solution, so we need only compute one member of the
pair, and obtain the other by conjugation. For the eigenvalue iσ = iσR− σI, the conjugate is −iσ̄ = −iσR− σI;
i.e. the sign of σR is reversed. Thus we can restrict to σR ≥ 0.
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We now present typical examples of our eigenmode computations. Throughout the paper we use m = 120
for the Chebyshev grid, unless noted otherwise. Comparisons between m = 80 and 120 (as well as 240) are
presented in appendix A. Figure 2 shows results for (R1, T0) = (10−1, 10−0.27) with both membrane edges fixed.
The coloring in panels A and B indicates the converged values of σR (panel A) and σI (panel B) over a grid
of initial eigenvalue guesses in the complex plane spanning 320 values in the real direction and 4 values in the
imaginary direction. In panel C we plot the 25 distinct eigenvalues found with this set of initial guesses and
in D, the corresponding eigenmodes from the most unstable (smallest—or most negative—σI) on the left to the
most stable (largest σI) on the right. The vertical black line in D separates the (only) unstable mode (on its
left) from the stable modes (on its right). The unstable mode loses stability through divergence as is evident
from panel C, where the associated eigenvalue has σR ≈ 10−9 and σI < 0. We also illustrate with a red circle
in panels A and B an instance of an initial guess that gives rise to this mode. The converged σ values are more
sensitive to the real than to the imaginary part of the initial guess, which motivates the wider range of σR used
here and subsequently.
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FIG. 2. Fixed-fixed eigenvalues and eigenmodes with R1 = 10−1 and T0 = 10−0.27. Computed σR (panel A, values in
colorbars at right) and computed σI (panel B, values in colorbars at right), both plotted over the initial guess complex
plane. C) The distinct eigenvalues generated by the numerical method replotted as red dots in the (σR, σI) plane. D)
The corresponding eigenmodes (Re(Y (x)) in green, Im(Y (x)) in blue) from the only unstable one (with negative σI) on
the left to the most stable one (largest σI) on the right. The vertical black line separates the unstable mode (on its left)
and stable modes (on its right).

In figure 3 we show another example of the eigenvalue computation for fixed-fixed membranes, with larger
membrane mass and pretension: (R1, T0) = (103, 101.5). In panels A and B we use a grid of initial eigenvalue
guesses spanning 640 values in the real direction and 6 values in the imaginary direction. For smaller R1 (as
in figure 2) the converged σ vary more with the initial choice of σI compared to the larger R1 here, where the
converged eigenvalues are independent of the initial σI, and depend only on the initial σR.
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FIG. 3. Fixed-fixed eigenvalues and eigenmodes with R1 = 103 and T0 = 101.5 and other quantities as described in
figure 2.

Since a generic perturbation is a superposition of all the eigenmodes multiplied by eiσt = eiσRte−σIt, we
classify the stability of generic perturbations in the (R1, T0) parameter space based on the value of σR + iσI for
the smallest σI at a given (R1, T0):

1. σI > 0: stable,

2. σI = 0: stability boundary location,

3. σI < 0 and σR = 0: divergence (“static” instability),

4. σI < 0 and σR 6= 0: flutter and divergence.

IV. FIXED-FIXED MEMBRANES

We start with membranes that have both edges fixed at zero deflection (satisfying (11)). We plot the stability
boundary as the red dots connected by red lines in figure 4A and B. Below and to the right is the unstable
region. The red dots are computed by linear interpolation of σI between neighboring T0 values (shown by the
horizontal black bars) that bracket the boundary: all σI are positive at the larger of the T0 values and above,
but one σI is negative at the smaller of the T0 values.

The stability boundary (red line) agrees well with that of our nonlinear time-stepping simulations (orange
line, from [36]) and with the results of [65]. For each R1, an eigenmode first becomes unstable when the
pretension T0 drops below a critical value T0C(R1). For R1 < 102, T0C(R1) ∈ [1.7, 2], almost independent of R1.
In our nonlinear, unsteady simulations [36], we found a similar range of T0C(R1), [1.7, 1.92], for R1 < 101.5. The
small discrepancy could arise from the δ-smoothing on the free vortex sheet (that is not used in the eigenvalue
solution but is used in the time-stepping simulation). Another possible explanation (as stated in [1]) is that
in the time-stepping simulation [36] the wake grows from zero length but in the current eigenvalue problem
the wake has fixed length `w. In our simulations we use `w = 39, and the modes are essentially unchanged
at larger `w. In [36] we were not able to compute the upward sloping portion of the stability boundary for
R1 > 101.5 using the unsteady simulations, due to the slow growth/decay of small perturbations with large R1.

In figure 4 the colored dots give the imaginary (panel A) and real parts (panel B) of the most unstable
eigenvalues (with corresponding eigenmodes shown later, in figure 5). The gray dots in panel B indicate
negative σI and nearly zero σR (σR ≤ 10−9) for the most unstable eigenmode, which corresponds to divergence.
The colored dots in panel B indicate a nonzero real part (value in colorbar at right) for the most unstable
eigenmode, corresponding to flutter and divergence. Within the instability region (region below the red line) we
find that for a fixed T0, the fastest growing mode has a growth rate (σI) that generally decreases in magnitude
as R1 increases. We also find that membranes with R1 . 101.5, in general, lose stability by divergence for
T0 ∈ (10−0.5, T0C(R1)] but then for a smaller T0 (. 10−0.5), by flutter and divergence. Heavier membranes
generally lose stability by flutter and divergence for T0 ∈ (100.25, T0C(R1)].
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FIG. 4. The region in R1–T0 space in which the fixed-fixed membrane is unstable. The red line and red dots indicate
the position of the stability boundary computed by linear interpolation between σI of the smallest T0 that gives a stable
membrane and the σI of the largest T0 that gives an unstable membrane (shown in the error bars). The colors of the dots
below the stability boundary label: A) The imaginary parts of the eigenvalues (σI) corresponding to the most unstable
modes. They represent the temporal growth rate. B) The real parts of the eigenvalues (σR) for the most unstable
modes, representing the angular frequencies. The gray dots correspond to modes that lose stability by divergence and
have σR ≤ 10−9. The orange line that spans log10R1 ∈ [−2, 2] represents the stability boundary computed numerically
in [36].

In the limit R1, T0 � 1, the fluid pressure is negligible and the linearized membrane equation (10) reduces to
the homogeneous wave equation

R1∂tty − T0∂xxy = 0, (27)

which after substituting (18) becomes

− σ2R1Y − T0∂xxY = 0. (28)

The eigenmodes are linear combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0, satisfying the boundary

conditions (11). Nontrivial linear combinations exist for k values for which the determinant of the matrix(
sin(−k) cos(−k)
sin(k) cos(k)

)
(29)

vanishes, which occurs at k = nπ/2 for n ∈ Z>0. Each k gives a pair of eigenvalues:

σ = ±k
√
T0
R1

, (30)

and eigenmodes of the form

Y (x) = sin
(nπ

2
(x+ 1)

)
, (31)

for n ∈ Z>0 and −1 ≤ x ≤ 1, where the amplitude is arbitrary.
Similar to [1], in the limit of R1, T0 � 1 equation (30) shows that the frequency scales as

√
T0/R1. We have

observed this in our simulations: σR is approximately constant along lines of constant T0/R1 in the upper right
portion of figure 4B (toward the vacuum limit). At smaller R1, the angular frequency is less sensitive to the
membrane pretension.

The numerical results for the eigenvalues (red dots) shown in figure 3C show excellent agreement with the
analytical form (30) of σ (black plusses), with very small imaginary parts (vertical axis). In panel D there are
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two unstable modes (n = 2 and 4 in equation (31)), which are also the unstable modes that were found in [65]
for large values of R1 and T0.

In figure 5 we plot again the instability region in the R1–T0 parameter space for fixed-fixed membranes, but
with the eigenmode shapes corresponding to the most unstable eigenvalues in figure 4. The real and imaginary
parts of the eigenmode Y (x) are shown in green and blue, respectively. We place gray rectangles around the
modes that lose stability by divergence. For R1 < 102 and T0 just below T0C , the unstable eigenmode is a single-
hump shape that is nearly fore-aft symmetric. As the pretension is decreased further below T0C the divergent
eigenmode becomes asymmetric, its maximum deflection point shifting towards the trailing edge. This agrees
with [65, Fig. 10]. In the divergence region of figure 5 when T0 = 100 and R1 decreases from 102 to 10−1,
the maximum deflection point also shifts from the midchord towards the trailing edge, in agreement with [65,
Fig. 5]. For heavier membranes (R1 ≥ 102), the membrane loses stability with an even-numbered mode shape
through flutter and divergence. In particular the second mode (n = 2) is the most unstable mode for R1 ≥ 102

and T0 ∈ [100.5, T0C(R1)], as well as (R1, T0) = (102, 100.25) and (103, 100.25). Decreasing the pretension value
below 100.25, the fourth mode (n = 4) becomes the most unstable for R1 > 102, followed by the sixth mode
at (R1, T0) = (102, 10−0.25), (102.5, 10−0.5). For heavy membranes with decreasing T0, the most unstable mode
apparently moves to progressively higher even-numbered modes.
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FIG. 5. The shapes Y (x) of the most unstable eigenmodes as a function of R1 and T0 in the fixed-fixed case. The
real and imaginary parts of Y (x) are shown in green and blue, respectively. Each shape is scaled both vertically and
horizontally to fit within the plot. The shapes are superposed on the same stability boundary (red line) as in figure 4.
Modes exhibiting a divergence instability have a gray rectangle outline.

We now study in more detail how the eigenvalues change in R1–T0 space by examining what happens when T0
passes through the stability boundary. We track the stable and unstable modes using a grid of initial eigenvalue
guesses in the complex plane covering σR ∈ (0, 8] and σI ∈ [−3, 3], with 160 values in the real direction
and 13 values in the imaginary direction. As can be observed in figure 5, in general, as we move to smaller T0
values higher wavenumber modes become the most unstable ones. We now consider the instability of higher
wavenumber modes as we cross the stability boundary, by fixing two values of R1 and decreasing T0, while
tracking the real and imaginary parts of the computed eigenvalues.



11

1.2 1.3 1.4 1.5 1.6 1.7 1.8
-10 -3

-10 -4

-10 -5

 10-6

10-5

10-4

10-3

10-2

0

/2

3 /2

2

5 /2

3

7 /2

 4

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

1

2

3

4

5

6

7

8

0

/2

3 /2

2

5 /2

3

7 /2

 4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-100

-10 -1

-10 -2

-10 -3
 3  10-4

10-3

10-2

10-1

100

0

/2

3 /2

2

5 /2

3

7 /2

 4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

7

8

0

/2

3 /2

2

5 /2

3

7 /2

 4

FIG. 6. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary (A, C) and
real parts (B, D) of the eigenvalues versus pretension (T0) for fixed-fixed membranes. The coloring represents the RMS
of the membrane’s slope, Y ′RMS (32) for each (R1, T0) pair. The horizontal black lines in the top panels located at A)
σI = ±10−6 and B) σI = ±3 × 10−4 distinguish stable modes (above) and unstable modes (below). To the left of and
within panels A and C, we show typical modes for branches with Y ′RMS < 4π.

In figure 6 we show the real (bottom row) and imaginary parts (top row) of the eigenvalues for R1 = 103

(left column) and 101 (right column), while decreasing T0. The colors show the normalized root mean square
(RMS) slope of each membrane eigenmode on the Chebyshev mesh, defined by

Y ′RMS :=

√∫ 1

−1

∣∣∣∣dYdx
∣∣∣∣2 dx

/ ∫ 1

−1
|Y |2 dx, (32)

which is a measure of the “waviness” of each mode. Each branch that possesses approximately the same color
(lying in a particular, small range of Y ′RMS) indicates a distinct mode. At the highest mass (R1 = 1000),
panels A and B, we connect the eigenvalues by polygonal lines for the modes that are sufficiently distinct from
the others—the seven lowest wavenumber modes. The branches in panel A are somewhat jagged when |σI| drops
below 10−5. The corresponding σR (panel B) vary much more smoothly, probably because their magnitudes
are larger relative to numerical errors. The blue branch with the most negative σI values first becomes unstable
(σI changes from positive to negative) at T0 ≈ 101.87, which coincides with the loss of stability in figure 5. The
mode associated with this blue branch is the second mode (n = 2 in equation (31)). The next branch to become
unstable corresponds to the fourth mode (n = 4) at T0 ≈ 101.56 and then the sixth mode (n = 6) at T0 ≈ 101.41.
Representative mode shapes at the smallest T0 = 101.2 are shown to the left of panel A, for the three unstable
branches (n = 2, 4, and 6) and four stable branches (n = 1, 3, 5, and 7). The Y ′RMS values that correspond to
these seven lowest wavenumber modes are approximately those of the analytical eigenmodes in (31), nπ/2 for
n = 1, 2, . . . , 7. We also illustrate examples at larger T0 values for the n = 2 and 4 branches, and find that the
mode shapes are almost unchanged. In particular, we note that the seven modes shown to the left of T0 = 101.2

all remain approximately the same across the corresponding colored branch for T0 ∈ [101.2, 101.875]. In figure 6
we focus on the lowest wavenumber shapes, as the higher wavenumber shapes (yellow dots) are not numerically
resolved. The odd-numbered modes remain stable for all values of T0 shown. As we decrease the pretension T0
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the number of distinct modes found—with the range of initial guesses that we are using—increases. This is
indicated by the higher density of dots at smaller T0 in figure 6B. Panels C and D show the corresponding data
for a smaller membrane mass, R1 = 10. The modes deviate more from the analytical expression of equation (31),
and change more significantly across T0, compared to panel A. Representative modes at the smallest T0 = 10−0.3

are shown at the left side of panel C. The shape of the curves that connect the real part of the eigenvalues
associated with a particular mode shape (lower panels) seems to be similar for the two mass densities. However
for the smaller mass (R1 = 10) there is a “disordered” band of dark blue dots (with Y ′RMS < π/4) that are
stable (σI ≈ 10−1 is panel C) and have low frequency (σR . 1 in panel D).

To summarize, in agreement with [65], we have found that the stability boundary has an upward slope
for R1 ≥ 102, whereas for R1 < 102 the critical T0 for instability lies in [1.7, 2], almost independent of R1.
When R1 and T0 are dominant over fluid pressure forces, the membrane eigenmodes tend to neutrally-stable
sinusoidal functions. When the fluid forces are small but nonnegligible the mode shapes are similar, with the
even-numbered modes becoming unstable with very small growth rates, starting with the second modes. We
find roughly two regions: (a) at small R1 divergence occurs with the most unstable mode becoming more fore-aft
asymmetric as we decrease T0; and (b) at large R1 flutter and divergence occur with approximately sinusoidal
eigenmodes. In both of these regions, the most unstable modes become more wavy at smaller T0. We have
extended previous studies of the fixed-fixed membrane to a wider range of R1–T0 space. Next, we study cases
in which the membrane ends can move freely, which are less well-known.

V. FIXED-FREE MEMBRANES

We now investigate the stability of membranes with the leading edge fixed and the trailing edge free to move
vertically, i.e. satisfying the boundary conditions (12). In [36] we found that with one end free, the membrane
has a wider range of unsteady dynamics. In particular, in the steady-state large-amplitude regime we showed
in [36] that this set of boundary conditions has a mixture of periodic and chaotic dynamics as opposed to the
steady single-hump solutions observed in fixed-fixed membranes. In the small-amplitude (growth) regime we
will now show that the eigenmodes can also be somewhat more complicated.
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FIG. 7. The region in R1–T0 space in which the fixed-free membrane is unstable. The red line and red dots indicate
the position of the stability boundary computed using linear interpolation between σI of the smallest T0 that gives only
stable eigenmodes and the σI of the largest T0 that gives an unstable eigenmode (shown in the error bars). The color of
the dots below the stability boundary labels: A) The imaginary part of the eigenvalue (σI) corresponding to the most
unstable modes. It represents the temporal growth rate. B) The real part of the eigenvalues (σR) for the most unstable
mode, representing the angular frequency. The orange line that spans R1 ∈ [10−3, 102] represents the stability boundary
computed numerically in [36].

In figure 7 we plot the imaginary (panel A) and real parts (panel B) of the most unstable eigenvalues in the
region of instability for the fixed-free membranes in R1–T0 space. The red line marks the boundary where the
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eigenvalues change from all σI > 0 (stable membranes) to at least one σI < 0 (unstable membranes), analogous
to figure 5. As in the fixed-fixed case, the stability boundary moves to larger pretension (T0) values with
increasing membrane mass (R1), but starting at much smaller R1 now (≥ 10−1). As R1 decreases below 10−1,
the critical pretension reaches a lower plateau.

The stability boundary of the current study is compared against the boundary from the nonlinear study in [36]
(orange line). Their shapes are very similar and there is good agreement especially for R1 ∈ [10−0.75, 100.5]. As
in figure 5, the discrepancy may be due to δ-smoothing used on the free vortex sheet of [36], the choice of the
vortex wake `w, or the number of Chebyshev nodes (m + 1) on the membrane. In the unsteady simulations
(orange line) we used m = 40 because the simulations require more computing time, but in the current work
(red line) we used m = 120. The eigenvalue solver shows that the boundary slopes upward over R1 ∈ [102, 103],
where it was difficult to obtain accurate results with the unsteady simulations.

The trends of the most unstable eigenvalues (colored dots) are similar to the fixed-fixed case (figure 4) in some
ways: the growth rates σI generally become larger in magnitude at smaller T0 and smaller R1 (panel A), and
the growth rates vary nonmonotonically with T0 at intermediate R1 ([100.5, 101.5] for fixed-free, and smaller R1

for fixed-fixed). A difference is the slight decrease in growth rates as R1 decreases below 10−1 for the fixed-
free case, which does not occur in the fixed-fixed case. For R1 ∈ [102, 103], the fixed-free growth rates are
qualitatively similar to those in the fixed-fixed case above T0 = 100.1. Below this value, however, the fixed-free
growth rates jump by more than an order of magnitude. In both cases, the real parts of the eigenvalues (the
angular frequencies σR, panel B) generally decrease with decreasing T0 and with increasing R1, particularly at
the largest R1. Below R1 = 101.5, the frequencies are very different: divergence (σR ≈ 0) does not occur in the
fixed-free case, but is common in the fixed-fixed case.

To consider the eigenmodes in the fixed-free case we again start with R1 and T0 � 1, so the fluid forcing
is negligible and the eigenmodes are again solutions of (27), i.e. nontrivial linear combinations of cos(kx) and

sin(kx), with k = ±σ
√
R1/T0, but satisfying the boundary conditions (12) now. The k are now those for which

the determinant of

(
sin(−k) cos(−k)
cos(k) − sin(k)

)
(33)

is zero, which leads to k = (n−1/2)π/2 for n ∈ Z>0, corresponding eigenvalues σ = ±k
√
T0/R1, and eigenmodes

now of the form

Y (x) = sin

((
n− 1

2

)
π

2
(x+ 1)

)
, (34)

for n ∈ Z>0 and −1 ≤ x ≤ 1. Each mode has one quarter wavelength less than that of the corresponding
fixed-fixed mode, so that the trailing edge has zero slope.



14

-2

-1.5

-1

-0.5

2

4

6

8

0 1 2 3 4 5 6 7 8

-2

-1.5

-1

-0.5

0

5

10

10
-4

0 2 4 6 8

-4

-2

0

2

4

6

8

10

12

14
10

-4

0 0.5 1

-5

0

5

10

15
10

-4

FIG. 8. Fixed-free eigenvalues and eigenmodes with R1 = 103 and T0 = 100.8. Computed σR (panel A, values in
colorbars at right) and computed σI (panel B, values in colorbars at right), both in the initial guess complex plane. C)
The computed eigenvalues replotted as red dots in the (σR, σI) plane. The inset in panel C shows the ten computed
eigenvalues (red ◦) that correspond to the eigenmodes shown in panel D. The analytical form of the eigenvalues is

σ = ((n− 1/2)π/2)
√
T0/R1 = ((n− 1/2)π/2)

√
100.8/103 for n = 1, . . . , 10 (black plusses).

Figure 8 shows an example of how the computed eigenvalues (real parts in panel A and imaginary parts in
panel B) vary over a grid of initial guesses in the complex plane, for a fixed-free membrane with (R1, T0) =
(103, 100.8), in the large R1 region near the stability boundary. The quantities plotted are analogous to those
in figure 3. The grid of initial eigenvalue guesses in the complex plane covers σR ∈ (0, 8] and σI ∈ [−2,−0.5],
spanning 640 values in the real direction and 4 values in the imaginary direction. As in figure 3, we see that
for large R1 (103) and moderately large T0 (100.8) the eigenvalues obtained by the numerical method depend
mainly on the real part of the initial eigenvalue guess. However, here we see that there is more variation in the
computed eigenvalues with respect to the choice of initial σR compared to figure 3, where the vertical bands of
constant real (panel A) and imaginary parts (panel B) of σ are wider. This may be due to the smaller value
of T0 considered in figure 8 (100.8 as opposed to 101.5 in figure 3). As we decrease the membrane pretension (T0)
the number of distinct modes found (with our range of initial guesses) typically increases (e.g. figure 6A and B).
The numerically computed eigenvalues from figure 8A and B are replotted as red dots in the (σR, σI) plane
in panel C, and those at the smallest σR, shown in the inset, agree closely with the analytical form (30) with
k = (n − 1/2)π/2 for n ∈ Z>0 (black plusses in inset; note there is close agreement in the imaginary part due
to the small axis scale). Many eigenmodes are found with wavelengths decreasing down to the mesh scale, but
in figure 8D we show the ten modes with largest wavelengths (i.e. n = 1, . . . , 10 in (34)), those that are best
resolved numerically. Starting from the left, the most unstable modes have n = 3, 5, 7, and 9, while n = 10,
8, 6, 4, 1 and 2 are stable. Except for n = 1, the modes with even and odd n have the opposite stability
behavior. Here we omit the computed modes with highest wavenumbers because they (and the corresponding
eigenvalues) are not numerically converged. For the large-R1, large-T0 limit solved analytically in equation (34),
we have a quadratic eigenvalue problem. When discretized by the numerical method in § III A, we have 2m+ 2
eigenmodes Y (x) varying from low wavenumber modes to very high wavenumber modes that oscillate on the
mesh scale (due to the discretized second x-derivative). For more general R1 and T0, we have a nonlinear
eigenvalue problem, but still have eigenmodes that oscillate on the mesh scale, and are thus not resolved (i.e.
not close to a continuum solution). Therefore, we focus on the lower wavenumber eigenmodes—those with Y ′RMS
(defined in (32)) below a threshold near 4π, or about four wavelengths for a sinusoidal Y (x)—which we can
resolve well with m = 120 grid points.
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FIG. 9. The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the fixed-free case. The real
part of Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. Each shape is scaled, both vertically and
horizontally, to fit within the plot. The shapes are superposed on the same stability boundary (red line) as in figure 7.

In figure 9 we examine the variations in the most unstable eigenmodes in the same (R1, T0) space as figure 7,
corresponding to the eigenvalues shown there. There is a narrow band with R1 = 100 and 10−0.65 < T0 < 10−0.55

where our initial guesses all produced σI > 0 and so the modes are stable, and therefore none are shown in this
range. Similar small bands of stability between unstable regions were also observed in [41, 45] for fixed-fixed
membranes. The shapes do not change noticeably for the more irregular motions at R1 ∈ [10−3, 10−1.25] (the
eigenvalues in figure 7 were also nearly constant in this region). At these smallest R1 values the deflection at
the free end is nearly zero. As we decrease T0 for R1 ≤ 10−2.5, the ripples move toward the trailing edge of the
membrane while maintaining nearly zero deflection at that end. Close to the stability boundary, all the shapes
for R1 ∈ [100.75, 102] are also nearly alike. At moderate values of R1 ([10−1, 102]) the maximum deflection
occurs in most cases at the trailing edge of the membrane. At these and larger values of R1, the mean slope of
the membrane is nonzero. In a similar region of R1 (i.e. [10−1, 101.75]) fixed-fixed membranes become unstable
with a single hump, losing stability via divergence. Fixed-free membranes, however, become unstable by flutter
and divergence. When T0 is below 10−0.2 the most unstable mode changes to a “wavier” profile—the mode
wavenumber increases with decreasing T0. Similar to the fixed-fixed case where even-numbered modes become
unstable for large R1, we see in figure 9 that heavy fixed-free membranes (R1 > 102) with T0 ∈ [100.2, T0C(R1)],
become unstable with an odd-numbered mode—the third mode (the first mode is stable). At T0 < 100.2 we are
no longer in the vacuum limit (R1 � 1 but T0 is not). Thus, the mode shape is not a simple sinusoidal function
of the form (34), but the waviness still increases with decreasing T0 for heavy membranes.
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FIG. 10. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary (A, C) and
real parts (B, D) of the eigenvalues versus pretension (T0) for fixed-free membranes. The coloring represents the RMS of
the membrane’s slope, Y ′RMS, for each (R1, T0) pair given by (32). The horizontal black line in the top panels located at
A) σI = ±10−6, B) σI = ±10−4 distinguishes stable modes (above) and unstable modes (below). We also show typical
modes that correspond to each branch with Y ′RMS < 9π/2.

We now consider the changes in the eigenvalues and associated eigenmode shapes as we pass through the
stability boundary for a fixed mass density, the fixed-free analog of figure 6. In figure 10 the colors label Y ′RMS,
given by (32). For the larger R1, 1000 (panel A) the unstable modes are odd-numbered and they become
unstable in order of increasing n. The third mode becomes unstable first, at T0 ≈ 101.36—consistent with
figure 9. Then the fifth mode (n = 5) becomes unstable at T0 ≈ 101.33, the seventh mode at T0 ≈ 101.24,
and the ninth mode at T0 ≈ 101.18. The even-numbered modes and the first mode remain stable for all values
of T0. Contrary to the fixed-fixed case with R1 = 1000 (figure 6A) where the four branches with the largest
positive σI correspond to modes n = 1, 3, 5, 7, the branches with largest σI in the fixed-free case correspond to
modes n = 1, 2, 4, 6, 8. This additional branch with opposite parity (n = 1) in panel A has a slightly smaller σI
than the second mode at the smallest T0 = 101 shown. Above a certain T0 value the n = 1 branch acquires the
largest σI > 0.

We show the membrane shapes of the nine lowest wavenumber modes to the left of panel A at the lowest
T0 = 101, but also examples of membrane shapes at a couple of larger T0 values for the first two unstable
branches and observe that the mode shapes are almost unchanged. The Y ′RMS values that correspond to these
nine lowest wavenumber modes are approximately those of the analytical eigenmodes in (34), (n− 1/2)π/2 for
n = 1, 2, . . . , 9. Even though higher wavenumber shapes (yellow dots) appear to become unstable at a larger T0
value, such cases are not numerically resolved and are thus not used in determining T0C here. At R1 = 1000, the
branches with the largest σI > 0 are all continuous but at R1 = 10, the same branches (blue dots at the top of
panel C and bottom of panel D) are more scattered. There, the numerical method gives individual eigenvalues
that do not seem to follow a particular branch, as was also found for fixed-fixed membranes at R1 = 10. This
could potentially be due to our choice for the range and density of the mesh of initial eigenvalue guesses. The
loss of stability in figure 10C occurs at T0 ≈ 100.26. The imaginary parts of the eigenvalues (panel C) are about
two orders of magnitude higher than in panel A. At R1 = 10 we see four branches that fall below σI = 0, each
having approximately its own distinct value of Y ′RMS. If we consider smaller values of T0 we would expect to
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observe more branches becoming unstable. As opposed to panel A, we see in panel C that the yellow dots
(higher wavenumber modes) are mostly stable. Similar to the fixed-fixed case in figure 6 we see that the curves
connecting the σR associated with a particular mode shape appear to be steeper in panel D than in panel B.

In summary, the fixed-free stability boundary is lower than the fixed-fixed boundary at small and moderate
values of R1—so more membranes are stable—but resembles the upward-sloping portion of the fixed-fixed
boundary at large R1 (≥ 102). Similarly to fixed-fixed membranes (§ IV), when R1 and T0 dominate fluid
pressure forces the eigenmodes tend to neutrally stable sinusoidal functions with odd-numbered modes becoming
unstable, starting with the third mode. We find that in the small R1 region (i.e. R1 < 10−1) the most unstable
eigenmodes have small deflection at the trailing edge, despite its freedom to move in the vertical direction. The
small-R1 modes are very wavy shapes. For all R1, the modes become wavier with decreasing T0. At moderate
and large R1, the waves are superposed on a background shape with nonzero slope.

VI. FREE-FREE MEMBRANES
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FIG. 11. The region in R1–T0 space in which the free-free membrane is unstable. The red line and red dots indicate
the position of the stability boundary computed using linear interpolation between σI of the smallest T0 that gives a
stable membrane and the σI of the largest T0 that gives an unstable membrane (shown in the error bars). The color of
the dots below the stability boundary labels: A) The imaginary part of the eigenvalue (σI) corresponding to the most
unstable modes. It represents the temporal growth rate. B) The real part of the eigenvalues (σR) for the most unstable
mode, representing the angular frequency. The orange line that spans R1 ∈ [10−3, 102] represents the stability boundary
computed numerically in [36].

We have found that allowing the trailing edge to deflect freely in the vertical direction dramatically changes
the instability region and the membrane dynamics. As a natural next step, we now study the effect of making
both ends free, satisfying the boundary conditions (13). The stability boundary (red line) and most unstable
eigenvalues are shown in figure 11. The stability boundary is similar to the fixed-free case (figure 7): the
critical pretension increases with mass when R1 > 102, it decreases as we decrease R1, and it plateaus when
R1 � 1. In figure 11 we show that there is close agreement for R1 ∈ [10−0.75, 100.5] between the stability
boundary computed here and in [36] using unsteady simulations (orange line). For smaller R1 ([10−3, 10−1])
and larger R1 ([100.75, 102]), the red line has slightly higher T0. As noted in § V the difference in m (40 in [36]
versus 120 here) may be the main cause. As for the fixed-free case, we will show that the most unstable
eigenmodes have higher wavenumbers at the smallest R1, so numerical resolution is an issue there: in [36] we
found that the small- and large-amplitude motions were not converged with m = 40 for R1 < 10−1.

We can again use the imaginary (panel A) and real parts (panel B) of the eigenvalues to characterize the
instability in (R1, T0) space. Within the region of instability (below the red line) a comparison with fixed-fixed
(figure 4) and fixed-free membranes (figure 7) reveals that the colored dots (most unstable eigenvalues) have the
same general behavior: the temporal growth rates (panel A) increase in magnitude with decreasing R1 and T0,
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but vary nonmonotonically with T0 at moderate values of R1 ([100, 102]). The growth rates of free-free heavy
membranes (R1 ∈ [102, 103]) are qualitatively similar to those in the fixed-free case in the same region. The
angular frequencies (σR, panel B) are also larger for smaller R1, but vary nonmonotonically with T0. Similar
to the fixed-free case, we observe that membranes exhibit the flutter and divergence instability but do not lose
stability solely by divergence (i.e. with σR ≈ 0) for any (R1, T0) pair. In the region R1 ≤ 10−1.25 the eigenvalues
just below the stability boundary are nearly constant; observed also in the fixed-free case (figure 7).

For R1, T0 � 1 the eigenvalues are the same as for the fixed-fixed case (30), with the addition of zero. The
free-free eigenmodes are given by

Y (x) = cos

(
(n− 1)π

2
(x+ 1)

)
, (35)

for n ∈ Z>0 and −1 ≤ x ≤ 1, where the amplitude is arbitrary.

Figure 12 shows an example of how the computed eigenvalues (real parts in panel A and imaginary parts in
panel B) vary over a grid of initial guesses in the complex plane for a free-free membrane with R1 = 103 and
T0 = 101.1, with the same mesh as in the fixed-free case of figure 8. We take R1 and T0 � 1 (vacuum limit) to
compare with the analytical values (30) with k = (n − 1)π/2 for n ∈ Z>0 (panel C). In panel D we show the
eleven lowest wavenumber modes. Starting from the left, the most unstable modes are n = 3, 5, 7, 9, and 11
whereas n = 1, 10, 8, 6, 4, and 2 are stable. The sixth shape from the left that is displayed is flat (n = 1), with
corresponding σR and σI ≈ 10−8.
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FIG. 12. Free-free eigenvalues and eigenmodes with R1 = 103 and T0 = 101.1. Computed σR (panel A, values in colorbars
at right) and computed σI (panel B, values in colorbars at right), both plotted in the initial guess complex plane. C)
The distinct eigenvalues generated by the numerical method plotted as red dots in the (σR, σI) plane. The analytical

form of the eigenvalues is σ = ((n− 1)π/2)
√
T0/R1 for n = 1, . . . , 46 (black plusses). D) The eleven lowest wavenumber

eigenmodes (Re(Y (x)) in green, Im(Y (x)) in blue), from the most unstable (most negative σI) on the left to the most
stable (largest positive σI) on the right. The vertical black line separates unstable modes (on its left) and stable modes
(on its right).

In figure 13 we show the most unstable eigenmodes across (R1, T0) space. The mode shapes of light membranes
(R1 ≤ 10−1.75) just below the stability boundary seem very similar to fixed-free membranes with the same mass
but have one less peak and one less trough. Decreasing the pretension values for membranes with R1 ≤ 10−1.5,
not only makes the membrane profile more wavy but also causes the ripples in the membrane shape to move
rearward to the trailing edge. Mode shapes with nearly zero deflection at the free ends exist up to R1 = 10−0.75,
slightly higher than in the fixed-free case (figure 9). When the mass density is between 100.75 and 102 and the
pretension is between 100 and T0C(R1), the membranes are somewhat straighter than in the fixed-free case.
Finally, heavy membranes (R1 > 102) with T0 between 100.3 and T0C(R1) (the stability boundary) all lose
stability with the third mode, n = 3 in equation (35) (the highlighted mode in figure 12D).
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FIG. 13. The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the free-free case. The real part
of Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. Each shape is scaled, both vertically and
horizontally, to fit within the plot. The shapes are superposed on the same stability boundary (red line) as in figure 11.

In figure 11 we studied how the most unstable eigenvalues change in the R1–T0 parameter space, and in
figure 13 we investigated the trends in the corresponding most unstable eigenmodes. Now in figure 14 we show
the changes in the eigenvalues and associated eigenmode shapes as we pass through the stability boundary
for two fixed values of mass density, as for the fixed-fixed and fixed-free cases (figures 6 and 10, respectively).
Each dot’s color is used to label Y ′RMS (equation (32)). For the largest R1 = 1000 (panel A) the unstable
modes are odd-numbered. The first branch to become unstable is the third mode (n = 3 in equation (35))
at T0 ≈ 101.68—consistent with figure 13 (for the same R1). Then the fifth mode (n = 5) becomes unstable
at T0 ≈ 101.45, and the seventh mode at T0 ≈ 101.33. The even-numbered modes are all stable for the entire
range of T0 values considered here. We show the membrane mode shapes that correspond to the nine lowest
wavenumber modes to the left of panel A at the lowest T0 = 101.275. The Y ′RMS values that correspond to these
nine lowest wavenumber modes are approximately those of the analytical eigenmodes in (35), (n − 1)π/2 for
n = 1, 2, . . . , 9. We also show instances of membrane shapes at a couple of larger T0 values for the first two
unstable branches and the flat mode. We see that in all cases, these mode shapes have the same features as at
the smallest T0. The branch corresponding to the flat mode (n = 1) in figure 14A oscillates about σI = ±10−6

at T0 ≥ 101.6 (while σR lies on ±10−4)—it is essentially zero. As in the fixed-fixed and fixed-free cases at
R1 = 1000, the branches with the largest σI > 0 are all continuous but at the smaller R1 (i.e. 10), the same
branches (blue dots at the top of panel C and bottom of panel D) appear more disordered. The loss of stability
in figure 10C occurs at T0 ≈ 100.275. The values of σI in panel C are about two orders of magnitude higher than
those in panel A (as for fixed-free membranes at the same membrane masses). The downward tendency of the
darker orange branch when σI drops below 10−2 (panel C) suggests that the mode may be the next to become
unstable as T0 decreases. Contrary to panel A, we see in panel C that the yellow dots (higher wavenumber
modes) are mostly stable. The free-free angular frequency (σR) behaves similarly to fixed-fixed and fixed-free
membranes: the curves connecting σR associated with particular modes are steeper for R1 = 10 (panel D)
compared to R1 = 1000 (panel B). The dotted part of the most unstable branch shown in figures 14C and D is
used to bridge a gap in T0 in which we did not find eigenvalues and eigenmodes for the lowest branch.
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FIG. 14. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary (A, C) and
real parts (B, D) of the eigenvalues versus pretension (T0) for free-free membranes. Numerical results are shown as points
with color coded according to the value of the RMS of the membrane’s slope for each (R1, T0) pair given by (32), as
given in the colorbar. The horizontal black line in the top panels located at A) σI = ±10−6, B) σI = ±10−4 distinguishes
stable modes (above) and unstable modes (below). We also show typical modes that correspond to each branch with
Y ′RMS < 9π/2.

VII. COMPARISON WITH UNSTEADY AND LARGE-AMPLITUDE SIMULATIONS

We now compare the most unstable eigenmodes, in a few cases, with the corresponding small-amplitude
motions as well as the eventual large-amplitude steady-state motions in the unsteady time-stepping simulations
of [36]. The main differences are that in the eigenvalue problem the free vortex wake has a finite length `w
whereas in the unsteady simulations it grows from zero length, and has δ-smoothing to avoid chaotic dynamics.
For fixed-fixed membranes, figure 15 compares eigenmodes (dashed green lines) with snapshots of time-stepping
simulations in the small-amplitude growth regime (sequence of gray lines ending with black lines) and the time-
stepping simulations’ eventual large-amplitude steady states (blue lines). The comparison is made at R1 = 10−1

with T0 increasing: (A) 10−0.1, (B) 100, (C) 100.1, and (D) 100.2, the last value close to the stability boundary.
Here we have a divergence instability, so the imaginary parts of the eigenmodes are zero; the green lines show
the real parts. As T0 increases, the small-amplitude membrane shapes change gradually, from ones with both
downward and upward curvature (A) to a nearly fore-aft symmetric hump with upward curvature only (D). The
close agreement between the green and black lines shows that the linearized model captures the small-amplitude
unsteady dynamics well. Here the initial deflection is y(x, 0) = 10−12 sin(πx), but we find essentially the same
agreement with a different form of the initial perturbation, in which the leading edge is moved slightly upward
and then back to y = 0. In this case the membrane initially forms a small bump near the trailing edge as it
evolves under the nonlinear membrane equation (5). Both types of initial deflections are much smaller than the
gray shapes in figure 15, and eventually converge to them as the fastest growing mode outgrows the other modal
components of the initial deflections. At large times, all the unsteady shapes converge to steady humps (blue
lines), nearly fore-aft symmetric, despite the early-time differences. The magnitudes of the humps’ deflections
are set by the nonlinear stretching resistance in (5), the term proportional to the stretching modulus R3.
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Here R3 is set to 10 but only the magnitudes of the humps, and not their shapes, change much over the range
R3 ≥ 10 [36].

-1 0 1 -1 0 1 -1 0 1 -1 0 1

FIG. 15. Fixed-fixed membranes at R1 = 10−1 and A) T0 = 10−0.1, B) T0 = 100, C) T0 = 100.1, and D) T0 = 100.2.
These membranes lose stability by divergence. We compare the most unstable modes obtained from the eigenvalue
analysis (dashed green lines) to the membrane shapes of the time-stepping simulations in the small-amplitude (growth)
regime—in each panel, 15 equally spaced snapshots are shown in the growth regime, gray and then black at the last
time. The arbitrary amplitudes of the green lines are set to match those of the black lines. The light blue curves indicate
shapes in the large-amplitude steady state regime.

We now investigate membranes with the leading edges fixed and the trailing edges free. Now the membranes
lose stability through divergence and flutter, so the eigenmodes are complex. They are determined only up to
a complex constant, with both a magnitude and a phase that need to be matched to a given time-stepping
simulation of [36]. In appendix B we give details about how the matching is done.

In figure 16, we compare two cases slightly below the stability boundary at R1 = 10−0.5: T0 = 10−0.8 (panels
A, C, and E) and T0 = 10−0.7 (panels B, D, and F). In panels A and B, the gray lines again show sequences of
snapshots from the time-stepping simulations. We fit the values y(α, t) for such a sequence to a function of the
form Re

(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
. First σI and σR are estimated. Then for each α, the real and

imaginary parts of y(α, t)e−iσt are estimated (in amplitude-phase form; see appendix B), giving Re(ynonlin(α))
(red solid lines in panels A and B) and Im(ynonlin(α)) (green solid lines). The most unstable eigenmode Y (x) is
arbitrary up to a complex constant. The function ynonlin(α) contains a complex factor (magnitude and phase)
that depends on the initial conditions of the time-stepping simulation. To account for this, we scale Y (x) by
the complex factor that gives the best L1-fit with ynonlin(α) ≈ ynonlin(x) (see appendix B) and plot the resulting
Re(Y ) and Im(Y ) as dotted black and blue lines respectively, in panels A and B. The fit between Y (x) and
ynonlin(x) is nearly as good as in the steady fixed-fixed cases (figure 15). The slight increase of error in the fit
may be due to the extra steps involved in fitting the fixed-free eigenmodes because they are complex.

In panels C and D, we show 20 snapshots from the time-stepping simulations, but multiplied by our estimate
of eσIt, which should remove the exponential growth. This shows the mode shapes much more clearly than in
panels A and B. The rescaled shapes are equally spaced over our estimate of one time period. They appear to
follow an up-down symmetric, periodic (as expected) oscillation with (A) seven and (B) five “necks” in their
envelopes, respectively. Panels E and F show snapshots in the eventual large-amplitude periodic steady-state.
The shapes are qualitatively similar to those in C and D, but the numbers of necks are reduced to four in both E
and F. The shapes are nearly the same in both panels; as in the fixed-fixed case (figure 15) the differences in the
small-amplitude shapes disappear at large amplitude. This may be because the T0 term in (5) is subdominant
to the R3 term at large amplitudes, even at T0C(R1), the largest T0 where the membranes are unstable.
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FIG. 16. Fixed-free membranes at R1 = 10−0.5 and R3 = 101.5, with T0 = 10−0.8 for A, C, E and T0 = 10−0.7 for B,
D, and F. In panels A and B the solid red lines are Re(ynonlin(α)) estimated from the time-stepping simulation, which
are close to Re(Y (x)) from the eigenvalue problem (dotted black lines). The solid green lines are Im(ynonlin(α)), close to
Im(Y (x)) from the eigenvalue problem (dotted blue lines). The gray lines are a subset of snapshots in the linear growth
regime. In panels C and D we show snapshots during the small-amplitude (growth) regime, but with the exponential
growth removed. Panels E and F show snapshots during the steady-state large-amplitude motions. We show 20 equally
spaced snapshots of membranes over a period, ranging from light blue at earlier times to dark blue at the last time.

We show the same comparisons at larger R1 (10) in figure 17, at two T0 values near the stability boundary.
The wave numbers of the shapes are much reduced—only one neck appears in each envelope now—but otherwise
many of the same features carry over from the previous figure. There is again good agreement between the
eigenmodes and the versions estimated from the time-stepping simulations (panels A and B). The periodic
parts of the small-amplitude motions have small but noticeable differences in panels C and D—in particular,
the widths of the necks relative to the maximum widths of the envelopes. The large-amplitude motions (E
and F) are again nearly indistinguishable, however.
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FIG. 17. Same quantities as described in figure 16 but with R1 = 101 and R3 = 101.5, and T0 = 10−0.1 (for A, C, and E);
T0 = 100 (for B, D, and F).

We obtain similar levels of agreement in the free-free case; two examples are shown in appendix C.

VIII. CONCLUSIONS

To summarize, we have used a linearized model and a nonlinear eigenvalue solver to study small amplitude
membrane motions, including the onset of membrane instability, in inviscid fluid flows. We characterized the
different types of possible motions with respect to the two key dimensionless parameters—membrane mass
and pretension—and for three sets of boundary conditions: “fixed-fixed,” “fixed-free,” and “free-free” leading
and trailing edges. Previous work by other groups was limited to the fixed-fixed case, and a smaller range
of membrane mass densities, and our own previous time-stepping simulations [36] were unable to resolve the
small-amplitude motions at small mass densities due to limited spatial resolution, and at large mass densities
due to the very slow growth of instabilities.

For each of the three sets of boundary conditions, when membrane inertia and pretension dominate fluid
pressure forces, the eigenmodes tend towards neutrally stable sinusoidal functions with half-integer or quarter-
integer numbers of wavelengths. When the fluid forces are small but nonnegligible, the mode shapes are similar,
but the even- (for fixed-fixed) or odd-numbered modes (for fixed-free and free-free) become unstable, starting
with the second and third modes, respectively. For the fixed-fixed case, there are roughly two regimes: small
membrane density, where divergence occurs and the most unstable mode becomes more fore-aft asymmetric as
one moves further into the instability region; and large membrane density, where flutter and divergence occur
with approximately sinusoidal modes. In both regimes, the most unstable modes become wavier at smaller T0,
akin to the most unstable beam modes at smaller bending rigidity in [1]. These results agree with those of [65]
in the same parameter regimes.

The stability boundaries for the fixed-free and free-free cases resemble the fixed-fixed case at large membrane
densities, showing an upward slope for R1 ≥ 102 (which we were not able to compute using time-stepping sim-
ulations). The fixed-free and free-free stability boundaries differ strongly from the fixed-fixed case at moderate
and small membrane densities. There the membranes remain stable down to smaller pretension values, and
eventually become unstable by flutter and divergence. For 10−3 ≤ R1 ≤ 10−1, the most unstable mode is
very wavy, and we were unable to resolve it with the time-stepping simulations in [36]. Here we find that the
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most unstable eigenmodes have small deflection at the leading and trailing edges, despite the free boundary
conditions. For 10−1 ≤ R1 ≤ 102, the modes are wavy shapes (wavier at smaller T0) superposed on background
shapes with nonzero slopes (fixed-free) and/or deflections (free-free). By tracking the eigenmodes across the
stability boundaries, we found that at moderate membrane densities, the modes resemble the sinusoidal shapes
at large densities, but with more disorder, and the appearance of irregular bands of stable low-wavenumber
modes that are difficult to associate with a particular branch.

Finally, we compared the eigenmodes with the membrane motions in the time-stepping simulations, and found
very good agreement with the small-amplitude portion of the time-stepping simulations in examples with the
three different boundary conditions. In all the examples, the large-amplitude motions qualitatively resembled
those in the small amplitude regime in terms of the number of necks in the deflection envelopes, but had clear
differences in the envelopes’ shapes and the relative sizes of maxima and minima.
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Appendix A: Convergence with respect to number of Chebyshev nodes

In this work we have computed the membrane eigenmodes and eigenvalues using m = 120 (121 Chebyshev
points on the membrane) and a free vortex wake of length `w = 39. We consider here the effect of varying the
former. The effect of varying the vortex wake length was explored in [1, Sec. V], and here we find that the
results in the unstable regime are basically unchanged when `w is as large as 39, given the exponential decay of
circulation in the wake (except right on the stability boundary, but there is still algebraic decay of the induced
velocity by an alternating-sign wake).

To compare the eigenmodes obtained when using m = 80 versus 120, we remove the arbitrary phase shift
from the eigenmode solver by finding φ ∈ [0, 2π] that solves

min
φ

∫ 1

−1
|Y80(x)− Y120(x)eiφ|dx. (A1)

To perform the subtraction in (A1) we interpolate Y80 using shape-preserving piecewise cubic interpolation onto
the 120-point grid. In figure 18 we compare the real (panel A) and imaginary parts (panel B) of the fixed-free
eigenmodes when using m = 80 and 120 across an array of (R1, T0) pairs. The eigenmodes agree well except in
some cases at the smallest values of T0 for each R1, where the modes are also more wavy and difficult to resolve
numerically.
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FIG. 18. Comparison between the A) real and B) imaginary parts of the eigenmodes with fixed-free boundary conditions,
using grids with m = 80 and m = 120. Each shape is scaled in both vertical and horizontal directions to fit within the
plot. The red dots indicate the position of the stability boundary (same as in figure 9).

In figure 19 we present the relative error in the eigenvalues when m = 80 and 120. This quantity is computed
as

relative error =

∣∣∣∣σ80 − σ120σ120

∣∣∣∣ . (A2)

The errors are typically 10−2–10−5 near the stability boundary, and gradually increase to 10−1–100 as we
decrease T0, eventually reaching a point where the solutions are underresolved (as in figure 18).
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FIG. 19. At each (R1, T0) in the instability region (below red line), the relative error (A2) in the eigenvalues when using
m = 80 and m = 120 Chebyshev points on the fixed-free membrane is plotted as a colored dot.

Figure 20 shows three examples of the computed eigenvalues using grids of initial guesses with m = 80
(green diamonds), 120 (red circles), and 240 (blue crosses). Panel A corresponds to a fixed-free membrane at
a moderate value of R1 (100.5) and T0 = 10−0.25. The eigenvalues agree well except for an additional stable
eigenmode found when m = 240 (small blue cross located at (σR, σI) ≈ (0.29, 0.13)). Panel B corresponds to a
fixed-free membrane with a larger value of R1 (103), and T0 = 100.8. The eigenvalues agree well at the three
values of m when σR . 2.5, approximately the 15 lowest modes. As σR increases, the modes are eventually
underresolved and the eigenvalues deviate significantly, beginning with m = 80 (green diamonds). Panel C
corresponds to a free-free membrane at R1 = 100.5 as in panel A, but with T0 slightly smaller, 10−0.5. As
in panel A, there are extra stable eigenvalues (with σR < 2 and σI > 0.1) most with m = 240 (blue crosses)
and one with m = 80 (green diamond). These eigenvalues are similar to those in the irregular bands of stable
eigenvalues in figures 6, 10, and 14 when R1 = 10. We have good agreement among the eigenvalues that are
unstable or close to neutrally stable. In each case, the most unstable modes (i.e. the modes associated with
smallest—or most negative—σI) change little when m increases from 120 to 240, and they are the focus of this
paper.
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FIG. 20. Spectrum of eigenvalues for m = 80 (green diamonds), 120 (red circles), and 240 (blue crosses) for a fixed-free
membrane at A) (R1, T0) = (100.5, 10−0.25), B) (R1, T0) = (103, 100.8), and a free-free membrane at C) (R1, T0) =
(100.5, 10−0.5).
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Appendix B: Method for comparing the eigenvalue analysis results to time-stepping simulations

Here we outline the method for comparing mode shapes obtained using the eigenvalue analysis developed in
the current paper and mode shapes obtained from the time-stepping simulations in [36].

We first determine the regime of exponential growth in the nonlinear simulations by plotting the trailing edge
deflection as a function of time, i.e. y(1, t). The time it takes to reach the large-amplitude steady state regime
depends on the magnitude of the initial perturbation. To extend the time spent in the small-amplitude regime,
we start with a very small perturbation, O(10−12). This is important particularly when the growth rate is large,
i.e. for unstable membranes that are far from the stability boundary in parameter space.

During this exponential growth (with flutter) regime, we approximate the computed y(α, t) as

y(α, t) ≈ Re
(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
. (B1)

To obtain σ and ynonlin(α), we first obtain σI as the negative of the slope of ln(|y|) versus time (figure 21A)
and subsequently compute y(α, t)eσIt. For each grid point 1, . . . ,m + 1 in α ∈ [−1, 1], this is a function that
oscillates sinusoidally in time but does not grow (figure 21B). We estimate the frequency f of these functions
as the reciprocal of the time between the peaks of the sinusoidal function. The frequency should be the same
for all α ∈ [−1, 1] according to our Ansatz, and the computed values vary only slightly due to numerical errors.
We use the average over α as our estimate of the single, global frequency. We then define σR := 2πf and denote
the amplitudes of these sinusoidal functions R(α). We denote by tpeak(α) the times at which they reach their
peaks and define the phase as φ(α) := −σR · tpeak(α). Thus, we have:

Re(ynonlin(α)) = R(α) cos(φ(α)), (B2)

Im(ynonlin(α)) = R(α) sin(φ(α)). (B3)

We show in figure 21C the reconstructed data Re
(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
(black dashed line)

compared to y(α, t) (cyan solid lines) at three times.
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FIG. 21. Example of the comparison method using data from fixed-free membranes with (R1, T0) = (10−0.5, 10−0.7). A)
ln(|y|) versus time for the 10th (blue), 30th (red), and 100th (yellow) grid points on the membrane. B) A portion of the
time series of yeσIt at the 10th (blue), 30th (red), and 100th (yellow) grid points. This corresponds to part of the small-
amplitude regime but with the growth removed. The black dashed lines represent the constructed R(α) cos(σRt+ φ(α))
at the same grid points. C) The reconstructed data Re

(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
(black dashed lines)

compared against the data y(α, t) (cyan solid lines) at the times t = 20, 100, 160. The initial perturbation here is
ζ(α, 0) = η sin(πα) where η is chosen as 0.0001. Note that the axes are not to scale.

Finally, we choose a phase φ that gives the best match between Y (x) from the eigenvalue analysis described
in § III and ynonlin(α) from the nonlinear simulations. We do this by solving the following optimization problem:

min
φ

∫ 1

−1

∣∣∣∣ [Re(ynonlin(x)) + iIm(ynonlin(x))]

max(|[Re(ynonlin(x)) + iIm(ynonlin(x))]|)
− Y (x)eiφ

max(|Y (x)eiφ|)

∣∣∣∣dx (B4)

for φ ∈ [0, 2π].
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Appendix C: Comparison of eigenmodes and time-stepping simulations with free-free boundary
conditions

In figure 22, we compare the eigenmodes to the time-stepping simulations for two cases of free-free membranes:
(R1, T0) = (101, 100.1) (panels A, C, and E) and (101.5, 100.2) (panels B, D, and F) at R3 = 101.5 in both cases.
The comparison methods for fixed-free membranes (see appendix B) are used again here. In A and B we see
close agreement between the real and imaginary parts of the eigenmodes obtained from the two methods. In
panels C and D a point of inflection occurs close to the midpoint of the membrane, and migrates closer to the
leading edge at large amplitude (panels E and F). The small- and large-amplitude shapes are similar in terms
of the number of local maxima and minima of deflection (typically one of each).

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

FIG. 22. Free-free membranes at (R1, T0) = (101, 100.1) for A, C, E and at (R1, T0) = (101.5, 100.2) for B, D, and F, with
R3 = 101.5 in both cases. These membranes lose stability by flutter and divergence. In panels A and B the solid red
lines are Re(yynonlin(α)) estimated from the time-stepping simulation, which are close to Re(Y (x)) from the eigenvalue
problem (dotted black lines). The solid green lines are Im(yynonlin(α)), close to Im(Y (x)) from the eigenvalue problem
(dotted blue lines). The gray lines are a subset of snapshots in the linear growth regime. In panels C and D we show
the snapshots during the small-amplitude (growth) regime, but with the exponential growth removed. Panels E and F
show snapshots during the steady-state large-amplitude motions. Shades of gray (and blue) increase from light to dark
as 20 membrane positions cycle through a period.
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