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Abstract

The impact of buoyancy on the mean velocity, temperature, and scalar concentration profiles in

the lower atmosphere is typically investigated within the framework of Monin-Obukhov similarity

theory (MOST). MOST is the theoretical foundation for parameterizing surface-atmosphere ex-

changes in nearly all weather, climate, and hydrological models. According to MOST, the classic

logarithmic profiles of mean velocity and temperature break down as the buoyancy effects be-

come important. However, recent studies on turbulent Rayleigh-Bénard convection and natural

convection along vertical walls suggest that the mean temperature in the near-surface region still

follows a logarithmic profile. Motivated by these new results, we study the mean potential temper-

ature profile in sheared and unstably stratified atmospheric boundary layers using direct numerical

simulations and field observations. We find that the mean potential temperature profile remains

logarithmic across a wide range of stability parameter, which characterizes the relative importance

of buoyancy versus shear effects. Compared to MOST, our results suggest that the buoyancy force

does not modify the logarithmic nature of the mean potential temperature profile, but instead

modulates its slope, which is no longer universal and differs from 1/κ, where κ is the von Kármán

constant. This study provides a new perspective on scalar turbulence in the atmospheric boundary

layer.

I. INTRODUCTION

The existence of a universal logarithmic mean velocity profile in the near-wall region of

turbulent shear flows has been supported by laboratory measurements [1–3], atmospheric

observations [4] and direct numerical simulations (DNS) [5, 6] following early dimensional

analysis [7, 8]. Similarly, the logarithmic profile for mean temperature in the near-wall

region was first reported in the boundary layer over a heated flat plate in 1929 [9], and

later proposed theoretically [10–12] and supported by DNS of channel flow [13–17] and

pipe flow [18], where the flow field is free from buoyancy effects and temperature is treated

as a passive scalar. However, the mean velocity [19, 20] and temperature [21–24] profiles

cannot be adequately described by the universal log law when buoyancy influences the flow
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field. To account for these buoyancy effects on the mean velocity and temperature fields,

Monin-Obukhov similarity theory (MOST) [25] is often invoked.

MOST is widely used for describing the mean velocity and temperature profiles and their

connections to turbulent fluxes in the atmospheric surface layer, which is located within

approximately the lowest 10% of the atmospheric boundary layer (ABL) [26]. In the at-

mospheric surface layer, the flow is influenced by both shear and buoyancy. MOST is the

theoretical foundation for formulating surface boundary conditions for numerical weather

prediction [27] and climate models [28–30]. In essence, MOST [25] corrects the logarith-

mic profiles of mean wind, potential temperature, and scalar concentrations using stability

correction functions. According to MOST, the log law for mean velocity and potential tem-

perature gradually breaks down as the stability-dependent correction functions become more

important.

However, recent work has reported logarithmic temperature profiles with varying slopes

(as compared to the universal log law that has a slope of 1/κ, where κ is the von Kármán

constant) under different buoyant conditions in the near-wall regions of turbulent Rayleigh-

Bénard convection [31–33] and natural convection along vertical walls [34]. This is at odds

with the traditional paradigm in the atmospheric literature stating that the mean temper-

ature profile in the atmospheric surface layer follows a power law under highly convective

conditions [35], which can be viewed as an asymptotic state of MOST (i.e., the so-called

local free convection [36]). Interestingly, the temperature log law reported by these recent

studies seems to be more prevalent than the velocity log law since the former is observed

in extremely buoyant flows [33] in addition to the neutral shear flows near the wall. This

motivates us to examine the potential existence of a temperature log law in turbulent flows

driven by both shear and buoyancy, e.g., the unstably stratified ABL.

We start by pointing out that it is well recognized that MOST does not explain all

important surface-layer statistics. Notable examples include the horizontal velocity variances

and spectra [37–41]. In particular, the boundary layer height zi, not considered by MOST,

has been shown to be important in describing the horizontal velocity spectra and, more

importantly for our work, the temperature spectra in the atmospheric surface layer [42–

44]. For instance, Tong and Ding (2019) [45] added a wavenumber-dependent horizontal

length scale to explain surface-layer similarity in addition to the MOST stability parameter.

Therefore, it is not unreasonable to ask whether the temperature field is affected by the
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boundary layer height in a way that may not be captured by MOST. In particular, is there

still a log law for the mean temperature profile and if so, does the slope of the logarithmic

temperature profile depend on the boundary layer height?

II. METHODS

A. Direct numerical simulations

The ABL has been studied using large eddy simulations (LES) [46–48]. However, uncer-

tainties exist when subgrid-scale turbulence closures are applied near the wall [49, 50] and

wall-modeled LES for atmospheric studies is often based on MOST [46, 51–53]. Recently,

DNS has been used to study the convective ABL [23, 49, 54–56], which can resolve the

full range of turbulence scales although the Reynolds number is smaller than that in the

real atmosphere. In this study, we use five DNS experiments to study ABLs under weakly

unstable, highly unstable, and free convective conditions. Key information of the five DNS

experiments is summarized in Table I and more details can be found elsewhere [49, 57, 58].

The four simulations (named Sh40, Sh20, Sh5 and Sh2) are forced with varying mean

geostrophic wind and hence have different stability conditions. For these simulations, the

incompressible Navier-Stokes equations with Boussinesq approximation are solved using the

code described in Li et al. [49] (for Sh2, Sh5 and Sh20) and Heerwaarden et al. [59] (for

Sh40). A sponge layer is prescribed at the top 25% of the computational domain to prevent

the reflection of gravity waves [48]. The potential temperature is initially set to increase with

height in the top 50% of the computational domain to prescribe a stably stratified condition.

The boundary condition for the temperature field is a constant flux at the surface and zero

flux at the top of the computational domain. Periodic boundary conditions are employed

in the horizontal x and y directions since the statistical properties of turbulence in the

ABL are nearly homogeneous when the external forcing is uniform [46]. The grid points are

nx×ny×nz = 1200×800×602 for the dataset Sh2, 1200×800×626 for both Sh5 and Sh20,

and 640 × 640 × 3328 for Sh40 in streamwise (x), spanwise (y) and vertical (z) directions,

respectively. The stability parameter zi/L is −1.7, −7.1, −105.1 and −678.2 (from weakly

to highly convective) for Sh40, Sh20, Sh5 and Sh2, respectively. Here zi is the convective

boundary layer height, L = u3
∗

κg

Θr
u∗θ∗

is the Obukhov length [60], u∗ is the friction velocity,
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κ is again the von Kármán constant and is assumed to be equal to 0.4, g = 9.81m2 s−1 is

the gravitational acceleration, Θr is a reference potential temperature, θ∗ ≡
νθ
u∗

∂Θ
∂z |z=0

is a

temperature scale, νθ is the thermal diffusivity, and Θ is the horizontally averaged potential

temperature at height z. The friction Reynolds number Reτ ≡ u∗zi/ν = zi/δv is 1900, 1243,

554 and 309 for Sh40, Sh20, Sh5 and Sh2, respectively. Here ν is the kinematic viscosity

and δv ≡ ν/u∗ is the viscous length scale.

To assess the asymptotic behavior in extremely convective conditions, we also employ

another simulation of free convection (named Microhh ReL and similar to the one in Heer-

waarden et al. [58]), which uses a constant temperature boundary condition at the surface

with a stability parameter of zi/L = −100171.6. The grid points are nx × ny × nz =

1536 × 1536 × 768. Heerwaarden et al. [58] observed Reynolds number similarity in their

simulations and concluded that the DNS results may be extrapolated to higher Reynolds

numbers. The selected time step for analysis in each DNS experiment is the time when the

system is almost in steady state [58].

B. Field observations

The Cabauw Experimental Site for Atmospheric Research (CESAR) [61, 62] (4.926◦ E,

51.97◦ N) in the Netherlands has a tower of 213 m with observations at 2 m, 10 m, 20 m, 40

m, 80 m, 140 m and 200 m above a grass field, thus providing unique muiti-level temperature

observations in the ABL. In this study we only use the data at the lowest six levels (up to

140 m). A number of 30-minute data segments between 11:00 and 15:00 UTC in July 2019

are used as the raw data. These include temperature data and surface fluxes measured at 3

m, which have been quality controlled [62] and downloaded from the CESAR data archive.

The boundary layer height zi is retrieved from the Lufft CHM 15k ceilometer [63], which

is used to detect the top of an elevated aerosol layer. The ceilometer backscatter profiles

can be used to retrieve the ABL height as the ABL is presumably well mixed and there are

significant differences between the aerosol content of the ABL and the free troposphere [64].

The average ABL height of each 30-minute segment is used as the raw data.

The raw data are filtered based on two criteria: the mean scaling temperature θ∗ in the

30-minute sampling period has to be negative and the boundary layer height zi is larger than

700 m. The first criterion is used to ensure that the ABL is under unstable conditions. Since
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TABLE I. Key parameters of the simulated ABLs ranging from weakly unstable conditions to free

convective conditions. Reτ is the friction Reynolds number, zi is the boundary layer height, u∗ is

the friction velocity and ν is the kinematic viscosity, L is the Obukhov length, Lx, Ly and Lz are

the domain sizes in the x, y and z directions, respectively. ∆+
x = (∆xu∗)/ν, ∆

+
y and ∆+

z are the

spatial grid resolutions denoted by inner units in the x, y and z directions, respectively. κθ is the

inverse of the temperature log law slope. The range of temperature log law is also indicated using

z+, z
L and z

zi
.

DNS

data
Reτ

zi
L

Lx

Ly

Lx

Lz

∆+
x

(∆+
y )

∆+
z κθ

Log-law

range in z+

Log-law

range in z
L

Log-law

range in z
zi

Sh40 1900 −1.7 1 1.52 8.92 1.13 0.68 140.3 ∼ 260.3 −0.23 ∼ −0.12 0.071 ∼ 0.14

Sh20 1243 −7.1 1.5 6 11.02 2.65 2.36 84.8 ∼ 151.0 −0.74 ∼ −0.44 0.062 ∼ 0.10

Sh5 554 −105.1 1.5 6 4.95 1.19 12.35 36.8 ∼ 67.8 −11.50 ∼ −6.25 0.060 ∼ 0.11

Sh2 309 −678.2 1.5 6 2.87 0.71 28.59 22.1 ∼ 30.0 −56.57 ∼ −41.75 0.062 ∼ 0.083

Microhh

ReL
80 −100171.6 1 1.87 0.19 0.21 68.68 10.0 ∼ 12.0

−15153.14 ∼

−12540.53
0.13 ∼ 0.15

we would like to include as many measurements as possible (especially those at 140 m) to

cover a wide range of z, we further require that the boundary layer height zi is large enough

so that the measurements are within the atmospheric surface layer. These two criteria yield

36 different 30-minute periods in July 2019.

III. RESULTS

A. Existence of a temperature log law

Similarly to Kader and Yaglom [11], the difference between the mean (horizontal average

in the x-y plane) potential temperature Θ at each height z and the mean potential tempera-

ture Θh at the lowest DNS grid is normalized by the temperature scaling parameter θ∗. The
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normalized temperature (Θ−Θh)/θ∗, when plotted against z+ ≡ z/δv, shows a logarithmic

profile in certain ranges in all five DNS experiments (Fig. 1; Microhh ReL shown in Fig.

S1 of Supplementary Material [65]). Similarly to the neutral channel flow study of Lee and

Moser (2015) [5], a plateau of κz
θ∗

∂Θ
∂z

is more indicative of the existence of a temperature log

law (Fig. 2; Microhh ReL shown in Fig. S2 of Supplementary Material). In our study,

the black dashed lines (plateau) in Fig. 2 are used to denote the vertical ranges where the

temperature log law exists.

Over these vertical ranges, the coefficient of determination R2 for the relation between

(Θ−Θh)/θ∗ and log(z+) is 1.00, emphasizing their linear relation. In contrast, the normal-

ized velocity U/u∗, where U is the mean streamwise velocity, does not follow a log law in

the temperature log law ranges (details in Supplementary Material) under more convective

conditions (R2 ≤ 0.22 at zi/L ≤ −105.1). The deviation of the mean velocity profile from a

log law due to buoyancy effects [20] is expected, and is also suggested by MOST. The failure

to observe a velocity log law and constant momentum flux in highly convective conditions

in the DNS experiments might also be related to the low Reynolds number [5]. Our finding

of distinct behaviors of mean temperature and velocity is consistent with a previous study

on turbulent natural convection [34].

The variations of turbulent heat flux w′θ′ (computed as max (w′θ′)−min (w′θ′)

max (w′θ′)
) in the vertical

ranges where the temperature log law exists (denoted by the blue color in Fig. 1) are

12% (Sh40), 1% (Sh20), 1% (Sh5), 0.2% (Sh2), and 0.7% (Microhh ReL), respectively. The

magnitude of these variations, which is on the order of ∼ 1% to ∼ 10%, is broadly consistent

with the constant-flux layer concept in the atmosphere [26]. According to Wyngaard (2010)

[66], the variation of turbulent fluxes in the atmospheric surface layer should scale with the

ratio of the atmospheric surface layer height to the ABL height, which is about ∼ 10%. Here

it is noted that a constant surface heat flux is prescribed for Sh40, Sh20, Sh5 and Sh2 while

a constant surface temperature is prescribed for Microhh ReL.

As detailed in Table I, the logarithmic temperature profiles are found in the range 0.06 ≤

z/zi ≤ 0.14 for Sh40 (zi/L = −1.7), Sh20 (zi/L = −7.1), Sh5 (zi/L = −105.1), and Sh2

(zi/L = −678.2). This is again consistent with the typical ratio of the atmospheric surface

layer height to the ABL height (∼ 10%) [26]. We note that the temperature log law range

in terms of z+ is very different for different DNS experiments, which implies some Reynolds-

number dependence. The temperature log law range for the least buoyant DNS experiment
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FIG. 1. Vertical profiles of normalized potential temperature and heat flux averaged in the x-y

plane in different convective DNS data. w′ is fluctuation of vertical velocity, θ′ is fluctuation of

potential temperature, and · · · denotes averaging in the x-y plane. The black dashed line denotes

the fitted log profile and the slope is shown. The blue line denotes the normalized heat flux in the

log law region.

Sh40 (Reτ = 1900, zi/L = −1.7) is 140.3 ≤ z+ ≤ 260.3, which compares well with the

velocity log law range 3Reτ
1/2 < z+ < 0.15Reτ (corresponding to 131 < z+ < 285 when

Reτ = 1900) in turbulent shear flows according to Marusic et al. (2013) [3]. Importantly,

using the MOST stability parameter, the temperature log law is found to exist even when

z/L < −10 (e.g., in Sh2 which has z/L ≈ −50). This is surprising as MOST would have

predicted that the mean temperature profile deviates strongly from the log law under such

conditions (see Fig. 2d). This highlights the fundamental difference between our results and

MOST.

The slope of the temperature log law is not constant but instead decreases from 1/(1.69κ)

to 1/(71.48κ) when zi/L decreases from −1.7 to −678.2 (Fig. 1). This is in contrast with

the universal log law for mean velocity in turbulent shear flows which has a constant slope

of 1/κ [3]. Such variations of the temperature log law slope have been also observed in

studies of turbulent Rayleigh-Bénard convection [31]. We will examine the variation of the
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temperature log law slope later.
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FIG. 2. The dimensionless temperature gradient κz
θ∗

∂Θ
∂z in different DNS experiments. The black

dashed line denotes the average κz
θ∗

∂Θ
∂z in the log law region. The widely used Monin-Obukhov

similarity function proposed by Businger et al. [67] is also shown and denoted as “MOST”.

The field observations at the Cabauw Experimental Site for Atmospheric Research are

at much higher Reynolds numbers (9.8× 106 ≤ Reτ ≤ 3.7× 107). The normalized potential

temperature (Θ−Θh1)/θ∗ is plotted against log(z+) in all 36 periods (Fig. 3 and Figs. S3–S6

in Supplementary Material), where Θ is the time-averaged potential temperature at heights

of 10 m, 20 m, 40 m, 80 m, and 140 m above the land surface in a 30-minute period, and

Θh1 is the time-averaged potential temperature at 2 m in the same period. θ∗ is computed

using turbulent fluxes measured at 3 m assuming that the measurements are taken in the

constant-flux layer. One can see that (Θ−Θh1)/θ∗ seems to show a linear relation with

log(z+) over a wide range of stability conditions as compared to the non-linear relation due

to MOST, suggesting that the mean temperature profile follows a log law. When we fit a

linear relation between (Θ−Θh1)/θ∗ and log(z+), the coefficient of determination is higher

than 0.7 in 29 of the 36 periods. We also compare the predicted temperature profile based

on MOST [68, 69] with field observations and find deviations across the stability conditions

examined here (−5.22 ≤ z/L ≤ −0.19, where z = 10 m) (Fig. 3). We note that the
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coefficient of determination is lower than 0.7 in 7 of the 36 periods, where there are also

significant deviations from MOST (Fig. S6 in Supplementary Material). This might be due

to measurement uncertainties, thus these 7 periods are not further used to compute the

slope of the temperature log law (Fig. 4).

We point out that there have been few studies investigating the logarithmic nature of the

mean potential temperature profile in the atmospheric surface layer. This is partly because

field observations typically have very sparse vertical measurements (fewer than those used

in our study) that do not permit to validate the logarithmic behavior in the surface layer.

As a result of the sparse measurements in the vertical direction and the large measurement

uncertainties, a plateau of κz
θ∗

∂Θ
∂z

cannot be accurately identified in order to support a log

law in field observations. In addition, MOST has been regarded as a cornerstone of ABL

turbulence theory and thus most field studies analyzed data within the framework of MOST

assuming its validity. Nonetheless, we highlight that previous field observations showed that

the peak wavenumbers of temperature spectra are related to zi [42, 43], suggesting that the

temperature profiles might be also influenced by zi, as shown in our results.

B. Slope of the temperature log law

1. Dimensional analysis

In this section, the slope of the temperature log law is analyzed using dimensional anal-

ysis. The mean temperature profile in fully developed unstable boundary layer flows can be

described by ν, zi, uτ , z and θ∗, which can form 3 non-dimensional groups: z
zi
, zi
δv

≡ Reτ , and

zi
L
= κgθ∗

Θr

zi
u2
∗

. The mean temperature distribution can be written as Θ0−Θ = θ∗F0

(

z
zi
, zi
δv
, zi
L

)

,

where Θ0 is mean potential temperature at the wall, and F0 is a function of z
zi
, zi

δv
, and zi

L
.

In the log law region, κz
θ∗

∂Θ
∂z

is independent of z as suggested by the DNS datasets, which is

fundamentally different from the z-dependence profile according to MOST (Fig. 2). Simi-

larly to the argument for velocity gradient in Pope (2000) [70], the temperature gradient ∂Θ
∂z

can be written as

∂Θ

∂z
=

θ∗
z
Φ

(

zi
δv
,
zi
L

)

, (1)

10



10
5

10
6

2

2.5

3

3.5

4

(a) R
2
=0.97, z

i
/L=-58.74, z

10m
/L=-0.51

10
5

10
6

1

1.5

2

2.5

(b) R
2
=0.96, z

i
/L=-171.22, z

10m
/L=-2.11

10
5

10
6

0.6

0.8

1

1.2

(c) R
2
=0.96, z

i
/L=-638.68, z

10m
/L=-4.94

10
5

10
6

2

3

4

5

(d) R
2
=0.90, z

i
/L=-19.97, z

10m
/L=-0.19

FIG. 3. Vertical profiles of normalized potential temperature in 4 different unstable conditions at

the Cabauw Experimental Site for Atmospheric Research in Netherlands. R2 denotes the coefficient

of determination for the relation betwen Θ−Θh1

θ∗
and log(z+), and z10m/L denotes the stability

parameter z/L at z = 10 m. “MOST” denotes the computed temperature profiles based on

Monin-Obukhov similarity theory.

where Φ is a function of zi
δv

and zi
L
. Integrating from a reference height zr to z and denoting

1
κθ

≡ Φ
(

zi
δv
, zi
L

)

yield

Θ−Θr

θ∗
=

1

κθ

log
( z

zr

)

, (2)

where Θr is a reference potential temperature at some reference height zr near the wall. We

can normalize both z and zr by δv to recast the equation in terms of z+ = z/δv but this will

not affect the slope 1/κθ, which is a function of zi/L and zi/δv. zi/L represents the buoyancy

effects and zi/δv represents the Reynolds number effects. This dimensional analysis points

out the relevant parameters that affect the slope of the temperature log law, but the exact

relations remain to be determined from numerical experiments or field observations.
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FIG. 4. The ratio κθ/κ plotted against −zi/L (a), and zi/δv (b) in various convective DNS datasets

and field observations.

2. DNS and field observations

The DNS datasets (Sh40, Sh20, Sh5, Sh2 and Microhh ReL) suggest that κθ/κ increases

nonlinearly with increasing −zi/L (Fig. 4a). That is to say, as buoyancy effects increase, the

slope of the temperature log law deviates more from that of the neutral turbulent shear flow.

In the Sh40 experiment (−zi/L = −1.7) with the weakest buoyancy effects, κθ/κ = 1.69, thus

we expect that κθ/κ approaches 1 in the “neutral limit” without buoyancy effects assuming

that the turbulent Prandtl number in the neutral limit is equal to 1 [71, 72]. It is worth

noting that κθ/κ may still depend on the Reynolds number in the “neutral limit”, which is

consistent with the dependence of temperature profiles on the Reynolds number in previous

DNS experiments neglecting buoyancy effects [13–18]. In the “free convection limit”, κθ/κ

might further increase with increasing −zi/L but the increasing rate is not as large as that

in less buoyant conditions (Fig. 4a). Consistent with the DNS datasets, κθ/κ increases

with increasing −zi/L in field observations (Fig. 4a). In terms of the dependence on the

Reynolds number, the DNS datasets suggest that κθ/κ seems to decrease with increasing

zi/δv (Fig. 4b). However, when zi/δv increases from ∼ 103 (DNS datasets) to ∼ 107 (field

observations), κθ/κ does not seem to show a monotonic trend (Fig. 4b), and one may argue

that κθ/κ becomes nearly independent of zi/δv in field observations.

Therefore, it can be summarized that κθ/κ is mainly determined by −zi/L, but also

influenced by zi/δv when the Reynolds number is not sufficiently large. In Fig. 4a, κθ/κ
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obtained from field observations seems to be smaller than those from DNS experiments at

similar −zi/L, which might be due to the Reynolds number effects as discussed above and/or

uncertainties in field observations of turbulent fluxes [73] and the ABL height [74, 75]. More

accurate measurements of mean temperature gradients in the ABL, turbulent fluxes, and the

ABL height are critical to better constrain κθ in atmospheric conditions with large Reynolds

numbers. We leave this for further study.

3. Asymptotic analysis

As κθ seems to become independent of the Reynolds number when the Reynolds number

is sufficiently high in field observations (Fig. 4b) similarly to the von Kármán constant κ [3],

we conduct asymptotic analysis for the slope κθ in the “neutral limit” and “free convection

limit” at sufficiently high Reynolds numbers (i.e., neglecting the Reynolds number effects).

In the neutral limit (θ∗ → 0 and zi/L → 0), we obtain the following asymptotic state:

Φ

(

zi
δv
,
zi
L

)

= Φ

(

zi
L

)

= Φ(0) = c1, for
zi
L

→ 0, (3)

where c1 is a constant. Given that κθ = 1/Φ, we thus expect

κθ =
1

c1
, for

zi
L

→ 0. (4)

Note that c1 = 1/κ if we further assume that the turbulent Prandtl number in the neutral

limit is equal to 1 [71, 72].

If the proposed temperature log law (Eq. (1) or (2)) holds in the free convection limit

(θ∗ → −∞ and zi/L → −∞), the following asymptotic relation is required to cancel out θ∗:

Φ

(

zi
δv
,
zi
L

)

= Φ

(

zi
L

)

= Φ

(

κgzi
Θr

θ∗
u2
∗

)

= c2

(

−
κgzi
Θr

θ∗
u2
∗

)−1

, for
zi
L

→ −∞, (5)

where c2 is a constant. Under such conditions, the temperature gradient ∂Θ/∂z can then

be rewritten as
∂Θ

∂z
= −c2

Θr

z

u2
∗

κgzi
, for

zi
L

→ −∞. (6)

The above equation can accommodate the situation of u∗ → 0 as it corresponds to a well-

mixed state (i.e., ∂Θ/∂z = 0). Furthermore, because κθ = 1/Φ, we can obtain

κθ =
1

c2

(

−
zi
L

)

, for
zi
L

→ −∞. (7)
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This asymptotic behavior of κθ is in qualitative but not quantitative agreement with the

relation between κθ and −zi/L obtained from the DNS experiments and field observations,

where the slope between κθ and −zi/L in the log-log plot is smaller than unity (Fig. 4a).

The limited Reynolds number as well as the limited buoyancy may influence the relationship

between κθ and −zi/L. On the one hand, the DNS experiments have low Reynolds numbers.

On the other hand, the free convection limit (zi/L → −∞) may not be reached in field

observations (zi/L > −1000), which also suffer from measurement uncertainties.

C. Comparison to MOST

The proposed temperature log law in unstable boundary layers can be written as

κz

θ∗

∂Θ

∂z
= κΦ

(zi
L
,
zi
δv

)

=
κ

κθ
, (8)

where Φ
(

zi
L
, zi
δv

)

is independent of z. This is fundamentally different from MOST where the

normalized temperature gradient is assumed to depend on z/L [25],

κz

θ∗

∂Θ

∂z
= φh

( z

L

)

. (9)

The fact that φh is dependent on the distance to the wall z leads to a non-logarithmic

profile for the mean temperature. The widely used Businger-Dyer function for φh [67] is

shown in Fig. 2, which clearly denotes a slope rather than a plateau for κz
θ∗

∂Θ
∂z
. In our DNS

datasets, κz
θ∗

∂Θ
∂z

approaches a constant that is equal to κ
κθ

in the surface layer (Fig. 2; Fig.

S2), thus supporting a log law rather than MOST. Moreover, the proposed log layer depends

on an outer layer scaling, the boundary height zi. This outer layer correction, Φ
(

zi
L
, zi
δv

)

, is

consistent with recent studies emphasizing the importance of zi in the temperature spectra

[42, 43], heat-flux cospectra [43], and temperature profiles [41, 49] in convective conditions.

Yet, the role of zi is not considered in MOST.

IV. CONCLUSION

We investigate the existence of a logarithmic potential temperature profile in the near-

wall region of unstable boundary layer flows using DNS experiments and field observations.

The new temperature log law can be expressed as κθz
θ∗

∂Θ
∂z

= 1, where κθ is a function of zi/L
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and zi/δv, which represent the buoyancy and Reynolds number effects, respectively. The

proposed temperature log law is fundamentally different from the traditional MOST and

thus would alter our representation of flux boundary conditions in hydrological and atmo-

spheric models. We also conduct asymptotic analysis for the slope κθ in the “neutral limit”

and “free convection limit” at sufficiently high Reynolds numbers. Further investigations

using more data collected over a wide range of stability and Reynolds number conditions

are recommended. With more validations, the proposed temperature log law may replace

Monin-Obukhov similarity function in weather and climate models and wall models for LES,

potentially leading to better predictions of weather, climate and hydrology.
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turbulence, Q. J. R. Meteorol. Soc. 98, 563 (1972).

[38] J. Kaimal, Horizontal velocity spectra in an unstable surface layer, J. Atmos. Sci. 35, 18

(1978).

[39] S. Caughey and S. Palmer, Some aspects of turbulence structure through the depth of the

convective boundary layer, Q. J. R. Meteorol. Soc. 105, 811 (1979).

[40] H. A. Panofsky, H. Tennekes, D. H. Lenschow, and J. Wyngaard, The characteristics of tur-

bulent velocity components in the surface layer under convective conditions, Bound.-Layer

Meteorol. 11, 355 (1977).
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