
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Turbulence in a hypersonic compression ramp flow
Stephan Priebe and M. Pino Martín

Phys. Rev. Fluids 6, 034601 — Published  2 March 2021
DOI: 10.1103/PhysRevFluids.6.034601

https://dx.doi.org/10.1103/PhysRevFluids.6.034601


Turbulence in a hypersonic compression ramp flow

Stephan Priebe∗ and M. Pino Mart́ın

Department of Aerospace Engineering,

University of Maryland, College Park MD 20742

(Dated: January 14, 2021)

Abstract

A hypersonic shock wave/turbulent boundary layer interaction (STBLI) is investigated using

direct numerical simulation (DNS). The geometry is an 8◦ compression ramp, and the flow con-

ditions upstream of the interaction are Mach 7.2 and Reθ = 3500. Consistent with experiments

at similar conditions, the flow is found to be attached in the mean, although the DNS shows that

the probability of observing reversed flow on an instantaneous basis is significant. Due to the high

Mach number of the flow combined with a low deflection angle, the shock angle is shallow and

the shock is immersed in the boundary layer for a streamwise distance equal to several incoming

boundary layer thicknesses downstream of the compression corner. The instantaneous flow struc-

ture observed in the DNS is in good qualitative agreement with filtered Rayleigh scattering images

obtained experimentally that are available in the literature. The behavior of the turbulence is

described based on the evolution of the Reynolds stresses, the anisotropy tensor, the wall pressure

spectra, and the TKE budget through the interaction. The various Reynolds stress components

are found to be amplified by factors of 1.8 to 2.5. The heat transfer through the interaction is also

investigated, as well as the relationship between the velocity and temperature fields. At the corner

and for a significant distance downstream of the corner, the Reynolds Analogy factor lies above

values typically observed in zero pressure gradient hypersonic boundary layers. A common heat

transfer-pressure scaling describes the behavior observed in the DNS more accurately but with

some departures near the corner. In the present attached STBLI, the strong Reynolds analogy

(SRA), including the assumption of a constant turbulent Prandtl number around unity, is satisfied

reasonably well in the interaction, although there are significant departures in the near-wall region.
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INTRODUCTION

While the turbulence in trans- and supersonic shock wave/turbulent boundary layer inter-

actions (STBLIs) has been studied extensively, there are only a few studies of the turbulence

in hypersonic interactions, at Mach numbers greater than 5.

Mikulla & Horstman [1] performed two-component hot-wire measurements in Mach 7

axisymmetric, reflected STBLIs. The boundary layer developed on a centerbody that con-

sisted of a conical forebody followed by a circular cylinder, and the shock was generated by

an outer, concentric cowl. Two shock generator angles (7.5◦ and 15◦) were considered, which

resulted in attached and separated flow, respectively. The streamwise and wall-normal fluc-

tuating velocities were measured, and the Reynolds shear stress was calculated based on the

measurements. It was found that the turbulence was significantly amplified in the attached

case and that the fluctuation peak moved away from the wall as is typically observed in

adverse pressure gradient flows, whereas the separated case showed significant amplification

only in the vicinity of the shock, downstream of which the turbulence fluctuations rapidly

returned to equilibrium levels. Bookey et al. [2] studied an 8◦ compression ramp STBLI at

Mach 7.2. In addition to investigating the time-averaged flow, they also investigated the

instantaneous turbulent flow structure using filtered Rayleigh scattering (FRS). The case

is attached in the mean, and the shock was found to be shallow, so that the shock foot

was immersed in the boundary layer for a streamwise distance equal to several incoming

boundary layer thicknesses downstream of the corner. The FRS images showed that on an

instantaneous basis the shock was strongly distorted by the turbulent eddies. Schreyer et

al. [3, 4] performed particle image velocimetry (PIV) measurements for the same Mach 7.2,

8◦ compression ramp case that was investigated by Bookey. The PIV results showed that the

wall-normal velocity fluctuations are significantly amplified through the interaction, whereas

the streamwise fluctuations are only weakly amplified. As expected in adverse pressure gra-

dient flows, the fluctuation peak moved away from the wall as had also been observed by

Mikulla & Horstman [1]. Further examples of the application of PIV to hypersonic STBLI

are Schrijer, Scarano & van Oudheusden [5], who investigated a Mach 7 double ramp flow,

and Brooks et al. [6], who investigated a hollow cylinder with flare at Mach 10.

Most experiments of hypersonic STBLIs do not include turbulence measurements. Surface

quantities such as the wall pressure and heat transfer are typically measured (skin friction
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measurements are rarer), together with mean-flow visualizations such as Schlieren images,

and mean flow surveys (see Elfstrom [7], Coleman & Stollery [8], Kussoy & Horstman [9–11],

Holden [12, 13], Holden et al. [14, 15], Schülein [16], Murray, Hillier & Williams [17], among

others). These works show that the surface heat transfer is significantly amplified through

the interaction, which is an important consideration in high-speed flight applications. The

relationships between the temperature and velocity field that are valid in attached, zero pres-

sure gradient boundary layers break down in hypersonic STBLIs. According to the Reynolds

analogy (RA), the surface heat transfer coefficient, Ch, scales with the skin-friction coeffi-

cient, Cf : RAF = 2Ch
Cf

= const. ≈ 1. This relationship is satisfied relatively closely in

undisturbed hypersonic boundary layers. In hypersonic STBLIs, however, significant depar-

tures from the RA are observed (e.g. Schülein [16]). The surface heat flux appears to scale

with pressure, rather than skin friction, and several such scalings have been proposed (Back

& Cuffel [18], Coleman & Stollery [8]) and shown to match experiments (e.g. Holden [12],

Murray et al. [17]). A review of heat transfer in STBLI may be found in Gaitonde [19].

Hypersonic STBLIs are difficult to predict accurately using common Reynolds-averaged

Navier–Stokes (RANS) methods. Predictions obtained with standard turbulence models

give significant errors compared to experimental data, not only for separated cases but also

for attached ones. Roy & Blottner [20] reviewed hypersonic experiments and computations.

They concluded that the heat transfer is particularly difficult to predict and is ‘often in

error by a factor of four or more’ [20]. Gnoffo et al. [21] assessed the prediction accuracy of

standard turbulence models for hypersonic compression ramp interactions. They introduced

an uncertainty metric that captures the total error of the CFD prediction compared to

reference experimental data based on the error in the three surface quantities that are

typically available from experiment: the wall pressure distribution, the surface heat transfer

and the length of the separated flow. Their uncertainty metric is 55% for cases with mean-

flow separation and 25% for cases without mean-flow separation [21]. High levels of error

are similarly found in predictions of reflected shock interactions, see Brown [22]. Note

that prediction errors are present not only for turbulent hypersonic shock/boundary layer

interactions but also for laminar ones (e.g. Knight & Mortazavi [23]).

One of the contributing reasons for the turbulence model deficiencies is the limited number

of available experiments and numerical simulations that are suitable for model development

and detailed validation. Settles & Dodson [24–26] reviewed super- and hypersonic STBLI
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experiments and identified 19 experiments suitable for model development and validation,

of which 7 are in the hypersonic regime. The more recent review by Roy & Blottner [20]

identified nine experiments. These experiments include measurements of mean surface quan-

tities, such as the wall pressure and heat transfer, and as discussed in Roy & Blottner [20]

and Gnoffo et al. [21], off-wall and turbulence quantities, which would be useful for model

development, are usually not available.

In the present work, we describe the direct numerical simulation (DNS) of an attached

hypersonic compression ramp STBLI. The behavior of the turbulence through the interaction

is analyzed. The heat transfer as well as the mean and fluctuating temperature field are

also investigated, and standard relationships between the temperature and velocity field are

assessed. We expect that the present DNS data set, which provides off-wall and turbulence

quantities, may be used for developing and validating RANS and LES models, with the aim

of improving predictions of hypersonic STBLI.

The paper is organized as follows: the numerical method and computational setup are

presented in § . The results for the undisturbed upstream boundary layer are discussed in

§ and the results for the compression ramp interaction in § . A summary with conclusions

is given in § .

NUMERICAL METHODS AND COMPUTATIONAL SETUP

The DNS code solves the compressible Navier–Stokes equations using the following nu-

merical scheme: an optimized WENO scheme [27, 28] is used for the discretization of the

convective fluxes, standard fourth-order central differences for the discretization of the vis-

cous fluxes, and a third-order low-storage Runge–Kutta scheme [29] for time integration.

The present flow conditions are low-enthalpy conditions typical of ground-based test

facilities. At these low-enthalpy conditions, air behaves as a perfect gas, and we thus use

the perfect gas law p = ρRT with constant specific heats. The dynamic viscosity µ is

calculated using Keyes’ law µ = 1.488 × 10−6
√
T

1+(122.1/T )10−5/T , where T is the temperature

(in Kelvin) and µ is in Pa s [30]. Keyes’ law and the commonly-used Sutherland’s law are

compared in figure 1 for the range of temperatures encountered in the present flow. There are

significant differences between the two viscosity models for T < 100K. Since T∞ = 62.9K

in the present flow, we use Keyes’ law, which is more accurate at these low temperatures
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FIG. 1. Comparison between Sutherland’s and Keyes’ viscosity model: (a) model-predicted viscos-

ity vs. temperature, and (b) relative difference between the two models, ∆µ =
µKeyes−µSutherland

µSutherland
,

vs. temperature.

(see Roy & Blottner [20]). We note, however, that the temperature increases as the wall is

approached where Tw = 340K. The viscous stresses are largest in the near-wall region, which

is at sufficiently high temperatures that the difference between the two viscosity models is

small. The choice of viscosity model is thus expected to only affect the outer region of the

boundary layer and the freestream, where viscous stresses tend to be small. Nevertheless,

Keyes’ law is more appropriate at the present conditions and is thus used in the DNS.

Regarding the computational setup, two simulations are run: (1) an undisturbed, zero-

pressure-gradient, spatially-developing boundary layer (auxiliary DNS), and (2) an 8◦ com-

pression ramp (principal DNS). The inflow boundary condition for the principal DNS is

extracted from a spanwise-wall normal plane of the auxiliary DNS.

The domain size for the auxiliary DNS is Lx = 27δref in the streamwise direction, Ly =

10δref in the spanwise direction, and Lz = 14.2δref in the wall-normal direction, where

δref = 5mm is (approximately) equal to the boundary layer thickness at the inlet of the

principal DNS. The domain is discretized with Nx = 840, Ny = 768, and Nz = 150 grid

points for a total of 97 million. The grid resolutions based on the flow quantities at the inlet

are ∆x+ = 7.5, ∆y+ = 3.0 and the first grid point from the wall is at z+ = 0.26.

The domain size for the principal DNS is Lx ≈ 22.5δref (the corner is at 12δref from the
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inlet), Ly = 10δref , and Lz ≈ 9δref , discretized with Nx = 1060, Ny = 768, and Nz = 170

grid points for a total of 138 million. The grid resolutions in the streamwise and spanwise

directions are ∆x+ = 7.0 (inlet) to 3.2 (corner), and ∆y+ = 2.8; the first grid point from

the wall is at z+ = 0.19, and the resolution at the boundary layer edge is ∆z/δref = 0.036.

Both the principal and auxiliary DNS use an isothermal, no-slip boundary condition at

the wall (Tw = 340K, which matches the reference experiments [4]), a periodic boundary

condition in the span, and an extrapolation boundary condition at the top and outlet bound-

aries. The inlet boundary condition for the auxiliary DNS is specified using the rescaling

method of Xu & Mart́ın [31]; the recycling station is located at x/δref = 26.0 from the

domain inlet. A time series of the flow at the recycling station is saved and used as the

inflow boundary condition for the principal DNS.

Except for the change in the viscosity model described above, the present code is identi-

cal to the one that has been used in previous supersonic STBLI studies [32–34]. The same

numerical approach has also been used in super- and hypersonic boundary layer studies [35–

37]. In these previous works, the code has been validated against experiments and known

analytical correlations. In addition, the present DNS is at similar conditions as the experi-

ments by Bookey et al. [2] and Schreyer et al. [4]. Comparison to these experiments is made

in the results section and good overall agreement is observed. The data used for comparison

includes instantaneous flow visualizations, mean flow visualizations (Schlieren), and oil-flow

visualizations. A comparison between PIV data and the DNS may be found in Schreyer et

al. [4].

The boundary layer DNS uses similar grid resolutions as in previous hypersonic boundary

layer calculations [35], and the STBLI DNS uses similar grid resolutions as in previous

supersonic calculations [32]. In addition, a grid convergence study for the present STBLI

DNS has been performed (Priebe [38]), which shows that the results are converged except

for a small sensitivity near the exit of the domain. In the last 3 − 4δref in the streamwise

direction, Cf is higher on some of the refined grids compared to the baseline by up to

4%. In this region, the grid is somewhat coarser for two reasons: the first is that the grid

is stretched in the streamwise direction towards the exit, and the second is that the wall

unit νw/uτ = µw/
√
ρwτw decreases across the interaction (since both ρw and τw increase).

Based on local wall units, the resolutions at a few representative locations on the ramp are:

∆x+ = 8, ∆y+ = 6, and z+ = 0.41 at x/δref = 2; ∆x+ = 11, ∆y+ = 7, and z+ = 0.47 at
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FIG. 2. Numerical Schlieren visualization of the Mach 7.2, zero-pressure-gradient boundary layer

(auxiliary DNS).

x/δref = 5; ∆x+ = 18, ∆y+ = 8, and z+ = 0.53 at x/δref = 10 (just upstream of the exit).

Detailed results, such as profiles of fluctuating quantities, strong Reynolds analogy terms,

and TKE budgets, are only shown up to x/δref = 6 in the present paper, thus excluding the

region near the exit where a grid sensitivity, although small, has been observed.

RESULTS

Upstream boundary layer

Figure 2 shows a typical instantaneous visualization of the auxiliary DNS. The variable

plotted here and also in figure 7 is a nonlinear function of the density gradient magnitude,

e−10|∇ρ|/|∇ρ|ref , which gives Schlieren-like visualizations and has been used previously (e.g.

[32, 34, 37]). The value of |∇ρ|ref is adjusted here to be representative of large instanta-

neous values of |∇ρ| encountered in the domain which then appear as dark regions in the

visualizations. As is apparent from figure 2, the boundary layer grows significantly over the

streamwise length of the domain. The boundary layer thickness increases from δ/δref = 0.45

at the inlet to 0.925 at the outlet. The momentum thickness increases from θ/δref = 0.0175

at the inlet to 0.0355 at the outlet, and consequently the momentum-thickness Reynolds

number increases from Reθ = 1650 to 3350. The displacement thickness increases from

δ∗/δref = 0.245 to 0.5.

The flow conditions are listed in table I, where the boundary layer quantities have been
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TABLE I. Flow conditions.

M∞ Reθ δ+ δ [mm] δ∗ [mm] θ [mm] U∞ [m/s] uτ [m/s] p∞ [Pa] T∞ [K]

7.21 3.3× 103 2.1× 102 4.58 2.48 0.175 1146.1 62.5 1341.0 62.9
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FIG. 3. Upstream boundary layer profiles. (a) ρ (green), ũ (black), and T̃ (red); (b)

√
ũ′′u′′

uτ
(black),

√
ṽ′′v′′

uτ
(red), and

√
w̃′′w′′
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(green).

extracted at the recycling station, which is identical to the inlet of the principal DNS,

located 12δref upstream of the corner. The boundary layer profiles at this location are given

in figure 3. These may be used to specify or verify the boundary conditions in lower-fidelity

simulations, such as LES or RANS, when developing new turbulence models and validating

predictions against the present DNS.

As is apparent from figure 4, the skin friction in the DNS follows the trend of the van

Driest II prediction in the second half of the domain from x/δref = 13 to the outlet, although

the values of Cf in the DNS are consistently higher with an offset of ≈ 5% compared to

VDII (see figure 4b). The wall in the DNS is isothermal at a temperature of 340K. Since

the recovery (or adiabatic wall) temperature is Tr = T∞
(
1 + r γ−1

2
M2
∞

)
= 645K (where r is

taken to be 0.89), the present DNS is run with a cold wall (Tw/Tr ≈ 0.5). The offset in the

Cf compared to VDII is likely due to the low value of Tw/Tr in the DNS. Duan at al. [36]

performed temporal DNSs of Mach 5 boundary layers with varying wall temperature. For a

cold wall with Tw/Tr = 0.5, they showed an offset of Cf in their DNS compared to VDII of
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Driest II prediction and the DNS, ∆Cf =
Cf,V DII−Cf,DNS
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.

approximately 5%, consistent with the present DNS. It is apparent from figure 4 that in the

first half of the domain, from the inlet to x/δref = 13, the skin friction does not follow the

VDII prediction. This mismatch is due to the transient that the rescaled boundary layer

undergoes until it becomes physical at around x/δref = 13.

Downstream of x/δref = 13, the van Driest transformed velocity profiles, which are shown

in figure 5, follow the log law. The presence of the log law indicates that the boundary layer

is fully turbulent, although the low Reynolds number causes a small wall-normal extent – at

x/δref = 26.0, for example, the log law extends from y+ = 35 to 70. Figure 5 shows that the

profiles in the present DNS are offset compared to the standard log law u+
V D = 1

κ
ln(y+) +B

with κ = 0.41 and B = 5.2. In the present DNS, a value of B = 5.9 matches the data. This

offset is also likely a wall temperature effect and also consistent with the findings of Duan

et al. [36].

Figure 6 shows several spectra at the recycling station. The spectra show a broadband

peak around frequencies O(U∞/δ), which are associated with the large-scale, energy-carrying

turbulent eddies. Crucially, no spurious energy is present at the frequency characteristic of

the rescaling, which is fresc ≈ U∞
26δref

. This shows that the rescaling length is chosen large

enough to eliminate any artificial correlation due to the rescaling boundary condition.
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FIG. 5. Van-Driest-transformed velocity profiles in the upstream boundary layer.

The present section has provided an overview of the auxiliary DNS and presented the

main results; further details may be found in Priebe & Mart́ın [39].

Compression ramp

Instantaneous and time-averaged flow structure

Figure 7 shows two typical instantaneous visualizations from the DNS. Due to the high

Mach number of the flow, combined with a low deflection angle, the shock angle is shallow

(inviscid value: 14.3◦). As a result, the shock is immersed in the boundary layer in the

vicinity of the corner. A distinct shock sheet typically only appears in the freestream, above

the turbulent eddies, at a streamwise distance equal to several incoming boundary layer

thicknesses downstream of the corner. As is apparent from figure 7, the shock is distorted

by the passage of the δ-scale turbulent bulges from the incoming boundary layer. Since these

bulges carry lower momentum fluid than the irrotational freestream fluid, the shock relaxes

upstream as a bulge travels through it, causing δ-sized ‘ripples’ in the shock sheet. These

ripples result in a shock sheet that appears to conform to the boundary layer bulges for up

to 10δ downstream of the corner. In figure 7(a), for example, the shock shows the imprint

of four δ-sized eddies that have convected through it and that are visible in the boundary

layer on the ramp: the first bulge and corresponding imprint on the shock are visible from
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FIG. 6. Spectra in the upstream boundary layer at x/δref = 26.0: (a) wall pressure, (b-d) stream-

wise velocity, momentum, and Morkovin-type scaled velocity at z+ = 15 (b), z+ = 50 (c), and

z/δref = 0.5 (d). The nominal frequency of the rescaling boundary condition, fresc = U∞
26δ , is shown

on the spectra.

approximately x/δref = 13.75 to 14.5, the second from x/δref = 14.75 to 15.75, the third

from x/δref = 16.25 to 17.25, and the fourth from x/δref = 18.0 to 19.0.

Figure 8 shows an instantaneous three-dimensional visualization from the DNS. The

three-dimensional nature of the ‘ripples’ in the shock sheet is visible. Since these ripples

are caused by the convection of the turbulent bulges from the incoming boundary layer

through the shock, the spanwise length scale of the ripples is comparable to that of the
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(a)

(b)

FIG. 7. Numerical Schlieren visualizations of the 8◦ compression-ramp STBLI (principal DNS).

bulges and thus of O(δ). It is also apparent that further downstream towards the exit of

the computational domain, the imprint of the turbulent bulges on the shock weakens. The

intersection of the shock sheet with the exit boundary of the domain is fairly uniform across

the span.

The present instantaneous flow structure is in qualitative agreement with the filtered

Rayleigh scattering (FRS) visualizations obtained by Bookey et al. [2], see figure 9. The

boundary layer bulges appear as dark regions in the FRS images, and the shock is visible

as a sharp change from grey in the freestream upstream of the shock to light grey or white

downstream. As in the DNS, the shock in the experiment is shallow, immersed in the

boundary layer, and once it emerges from the boundary layer it shows the ‘imprint’ of the

δ-sized turbulent bulges that have convected through it.

The mean shock structure from DNS is shown in figure 10. It is apparent that in the

time-averaged sense the shock is essentially attached at the corner. The shock angle at the

exit of the computational domain is approximately 13.5◦, which is approaching the inviscid
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FIG. 8. Instantaneous, three-dimensional flow structure. Isosurface of the magnitude of the density

gradient, colored by the wall-normal coordinate.

value of 14.3◦. The mean shock structure observed in the DNS is in agreement with the

corresponding experimental Schlieren visualizations in Schreyer et al. [4], which also show

the time-averaged shock to be attached at the corner.

Surface quantities

The time- and spanwise-averaged wall pressure distribution is shown in figure 11(a). The

ratio of the downstream-to-upstream wall pressure is pd/pu ≈ 3.45, which is close to the
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(a)

(b)

FIG. 9. Filtered Rayleigh scattering images of the 8◦ compression-ramp interaction. Reproduced

from Bookey et al. [2], see also Schreyer et al. [4].

FIG. 10. Time- and spanwise-averaged pressure gradient magnitude.

inviscid value of 3.51. The slightly lower pressure ratio in the DNS compared to the inviscid

value is consistent with the observation made from figure 10 that the shock angle is lower

than the inviscid value. The present domain extends 10.5δref downstream of the corner,

and while this is sufficient to give a shock strength close to the inviscid one, an even longer
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FIG. 11. Time- and spanwise-averaged surface quantities through the interaction: (a) wall pressure,

(b) first derivative (solid) and second derivative (dashed) of the wall pressure with respect to the

streamwise coordinate x, (c) skin-friction coefficient, and (d) Stanton number.

computational domain would be required to reach the full inviscid strength of the shock,

as is often also the case in supersonic interactions (e.g. Wu & Mart́ın [32] and Priebe et

al. [34]).

The time- and spanwise-averaged skin friction coefficient Cf is shown in figure 11(c).

While the value of Cf decreases significantly upstream of the corner, it does not fall below

Cf = 0, which indicates that the flow is attached in the mean. Attached flow was also

observed in the experiments, as may be seen from the oil flow visualizations in Bookey et
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al. [2].

The third surface quantity of interest is the heat transfer coefficient, or Stanton number,

which is defined as Ch = qw
ρ∞U∞Cp(Tw−Tr) , where qw is the wall heat transfer, Tw is the wall

temperature, Tr is the recovery temperature, and ρ∞ and U∞ are the density and velocity

in the freestream. Figure 11(d) shows the time- and spanwise-averaged Ch distribution.

The value of Ch has a minimum at the corner before increasing to a higher level in the

downstream flow compared to the upstream flow; the ratio of downstream-to-upstream heat

transfer is Ch,d/Ch,u = 2.5.

An interesting feature of the Cf and Ch distributions is the presence of inflection points

and local maxima and minima in the downstream flow. Ch, for example, shows local maxima

at x/δref ≈ 2 and 6.5. The resulting ‘scalloped’ shape of the distributions has also been

observed by Murray et al. [17] in experiments of an attached axisymmetric reflected STBLI

at Mach 9, where it was attributed to the non-equilibrium evolution of the boundary layer

as it is subjected to a pressure gradient that changes with streamwise distance. Such a link

between the scalloped shape of Cf and Ch and changes in the pressure gradient also appears

to exist in the present DNS. As is apparent from figure 11(b), the pressure distribution has

an approximately constant slope (and hence zero curvature) between x/δref ≈ 2 and 6.5,

and these locations correspond closely to the peaks of the scalloping in Cf and Ch.

State of separation

As discussed in § , the time- and spanwise-averaged skin-friction coefficient Cf is greater

than zero everyhwere in the interaction, and the flow is thus attached in the mean. The

probability of observing reversed flow on an instantaneous basis is, however, significant. It

is apparent from figure 12, which shows a typical contour plot of the instantaneous value of

Cf , that the flow is mostly attached in the upstream boundary layer, although small patches

of local flow reversal are visible. Near the corner, between approximately x/δref = 11.5 and

x/δref = 12.5, relatively large regions of reversed flow are visible. These regions can extend

up to approximately 0.5δref in the streamwise and spanwise directions, and they appear to

be uniformly distributed across the span of the computational domain. Further downstream,

in the out-of-equilibrium boundary layer on the ramp, the size and number of the reversed

flow regions appear to gradually decrease with increasing distance from the corner.
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FIG. 12. Instantaneous contours of the skin-friction coefficient Cf . The red line is the Cf = 0

contour.

The spanwise-averaged probability γu of flow reversal (u < 0) is shown in figure 13

(note that the overbar indicates spanwise-averaging). Following Simpson [40], the state of

separation may be classified based on the observed values of γu: The flow is said to be

in the incipient detachment (ID) state when γu = 0.01, i.e. when the flow is reversed 1%

of the time; it is said to be in the intermittent transitory detachment (ITD) state when

γu = 0.2; and in the transitory detachment (TD) state when γu = 0.5. It is apparent from

figure 13(a) that the flow in the vicinity of the corner is in the ITD state. The values of

γu lie above the ITD threshold of 0.2 in a streamwise window of approximately 0.25δref

surrounding the corner (between approximately x/δref = 11.85 and 12.1). The maximum

value of γu is observed at the corner and is 0.31. Figure 13(a) also shows that γu crosses the

ID threshold from below at approximately x/δref = 11.5 (or 0.5δref upstream of the corner),

and from above at approximately x/δref = 13.75 (or 1.75δref downstream of the corner).

Figure 13(b) shows that the region, in which significant non-zero values of γu are observed, is

thin; at its highest point above the wall, the γu = 0.02 contour line extends to approximately

(z − zwall)/δref = 0.04. The present analysis of the reversed flow structure and probability

in a hypersonic STBLI may be compared to similar analyses in the literature for lower Mach

number cases, see Na & Moin [41], who investigated an incompressible separation bubble

using DNS, and Pirozzoli et al. [42], who investigated an incipiently separated transonic
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FIG. 13. Spanwise-averaged probability γu of flow reversal: (a) at the first grid point above the

wall, and (b) in the streamwise–wall normal plane.

STBLI using DNS.

While figure 13 shows the spanwise-averaged probability of flow reversal, figure 14 shows

the three-dimensional probability. The isosurface corresponding to the ID threshold γu,∆T =

0.01 is shown in figure 14(a), and the isosurface corresponding to the ITD threshold γu,∆T =

0.2 is shown in figure 14(b). Despite the significant time duration of the present DNS of

∆T = 94.4δ/U∞, the isosurfaces shown in figure 14 are not fully converged. Following the

nomenclature used in Na & Moin [41], the dependence of the flow reversal probability on

the particular averaging time chosen is emphasized by the subscript ∆T . It is apparent

from figure 14 that both the ID and ITD isosurfaces show some variation in the spanwise

direction. The structure of the ID isosurface may be described as streaky, and the ITD

isosurface is made up of distinct patches that are distributed across the span of the domain.
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(a)

(b)

FIG. 14. Probability of flow reversal: (a) isosurface γu,∆T = 0.01, and (b) isosurface γu,∆T = 0.2.

Note that while the three-dimensional probability in figure 14 is not fully converged, the

other statistics shown in this paper, including the flow reversal probability in figure 13, are

spanwise-averaged and have been verified to be converged by comparing statistics for the

full DNS to those for half the time duration.
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Mean flow field

Figure 15 shows the mean profiles of u-velocity, w-velocity, density, and temperature

at six streamwise locations. The profiles have been extracted along the wall normal, and

the streamwise coordinate given for the profiles on the ramp is the coordinate at the ramp

wall. While not separated in the mean, the near-wall flow is significantly decelerated as the

corner is approached. The ũ profiles at three streamwise locations (upstream of, at, and

downstream of the corner) are shown in figure 16 to highlight the changes in the profiles

through the interaction. There is a significant near-wall deficit of ũ at the corner and the

profile has an inflection point as typically seen in adverse pressure gradient flows. Note that

in the present flow the inflection point is located close to the wall, at (z − zw)/δref = 0.045,

consistent with the fact that the region where a significant probability of reversed flow is

observed is also low. Downstream of the corner, the profiles quickly recover as shown by

the profile at x/δref = 1 in figure 16, which does not have an inflection point. The mean

wall-normal velocity w̃ is essentially zero in the upstream boundary layer (figure 15a) and

jumps to a positive value downstream of the shock (figures 15c-f) due to the deflection of the

flow. The jump in ρ and T̃ across the shock is also visible, occurring at an increasing wall-

normal distance as x is increased, corresponding to the average shock position: for example,

the jump is visible at z/δref ≈ 0.8 at x/δref = 2.0, and z/δref ≈ 1.8 at x/δref = 6.0. The

increase in ρ is more pronounced than the one in T̃ consistent with inviscid theory, according

to which ρ2
ρ1

= 2.32 and T2
T1

= 1.51.

The velocity components shown in figures 15 and 16 are in the (x, y, z) coordinate system,

which is aligned with the upstream wall. Downstream of the corner, the ramp-aligned

(xr, y, zr) coordinate system (rotated by 8◦) may be used. Figure 17 shows a comparison of

the mean velocity components in both coordinate systems at several streamwise locations

downstream of the corner. Since the ramp angle is shallow at 8◦, ũ and ũr are essentially

identical. As expected, the w̃ and w̃r profiles are shifted (in the freestream, the shift is

−U∞ sin(8◦)) but the shape of the profiles is similar. There are, however, some differences:

for example, w̃ shows a near-wall maximum at (z − zw)/δref ≈ 0.05, while w̃r does not.

In what follows, the mean and fluctuating velocity components are usually taken in the

ramp-aligned coordinate system when plotting quantities downstream of the corner. One

exception are the Reynolds stress contours for the entire domain, which will be shown in
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figure 18. These are based on the upstream coordinate system to avoid the discontinuity

at the corner that would result from a change in the coordinate system there. It has been

verified that the differences between quantities in the two coordinate systems are generally

small, consistent with the low ramp angle of 8◦.

Turbulence behavior through the interaction

Figure 18 shows contours of the Favre-averaged Reynolds stresses; the normal stresses

ũ′′u′′, ṽ′′v′′, w̃′′w′′, and the shear stress ũ′′w′′ are shown. It is apparent that the Reynolds

stresses are amplified in the interaction region, which may be quantified by considering the

amplification tensor Ai,j =
maxd(ũ′′i u

′′
j )

maxu(ũ′′i u
′′
j )

(i, j = 1, 2, 3), i.e. the ratio of the maximum value of a

particular component of the Reynolds stress in the downstream flow to the maximum value

in the upstream flow. The observed values of A are A11 = 1.82, A22 = 2.53, A33 = 2.28,

and A13 = 2.12, i.e. the strongest amplification is in the spanwise component, followed by

the wall-normal component, and the weakest amplification is in the streamwise component.

The PIV measurements of Schreyer et al. [4] also show that the streamwise fluctuations are

amplified less than the wall-normal fluctuations.

The shock causes a decrease in u and an increase in w. Consequently, it is associated

with a negative shear stress (see figure 18d). As typically observed in supersonic STBLIs

(e.g. Piponniau et al. [43]), the shock is associated with a strong peak in w̃′′w′′. The reason

for this is that the average w, which is close to zero in the upstream boundary layer (there

is only a small positive component due to the displacement effect of the boundary layer),

jumps to a large positive value across the shock due to the deflection of the flow. As a

result, any difference between the instantaneous and the average shock position leads to a

relatively strong fluctuation w′′, which explains the peak in w̃′′w′′.

Figure 19 shows contours of the TKE
ũ′′i u

′′
i

2
through the interaction. It is apparent that the

locus of points where the maximum values of TKE occur in the boundary layer coincides with

a mean streamline (streamline 2 in figure 19, which coincides with the wall-normal location

of the inner fluctuation peak in the upstream boundary layer). This may be compared

with the behavior typically seen in separated supersonic interactions, where a detached

shear layer is formed. In the flow downstream of the shock, the peak Reynolds stresses and

TKE values are then found farther away from the wall. Note that in the present attached
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FIG. 15. Profiles of ρ (green), ũ (black), w̃ (blue), and T̃ (red) through the interaction: (a)

x/δ = −4.0, (b) x/δ = 0.0, (c) x/δ = 1.0, (d) x/δ = 2.0, (e) x/δ = 4.0, and (f) x/δ = 6.0.
22



u/U
∞

(z
z

w
)/

δ
re

f

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

FIG. 16. Near-wall detail of profiles of streamwise velocity ũ at x/δref = −4 (red), x/δref = 0

(green), and x/δref = 1 (blue).

flow, the structure of the Reynolds stresses and TKE does change somewhat as we move

downstream. The contour lines of e.g. ũ′′u′′ and TKE bulge towards higher wall-normal

locations z between x/δ ≈ 0 − 5, which indicates a broadening of the fluctuation peak

and is consistent with increased activity away from the wall as is typically seen in adverse

pressure gradient flows. This is also apparent from the Reynolds stress profiles in figure 20.

The profiles of the streamwise component, for example, show a slight broadening of the

fluctuation peak including increased fluctuations away from the wall. However, the wall-

normal location of the fluctuation peak remains close to the wall. At the corner, the peak is

located only very slightly farther away from the wall than in the incoming boundary layer.

Note that the fluctuation peak is probably expected to remain close to the wall since the

low-speed region at the corner is thin and the inflection point in the velocity profiles is

located close to the wall.

The Reynolds stress anisotropy tensor bij is defined as: bij =
ũ′′i u

′′
j

2k
− δij

3
where k =

ũ′′i u
′′
i

2

is the turbulent kinetic energy and δij is the Kronecker function. The second and third

invariants of the anisotropy tensor are: II = − bijbji
2

, and III =
bijbjkbki

3
(the first invariant,

which is the trace, is zero). As shown by Lumley & Newman [44], and Choi & Lumley [45],

realizability imposes constraints on the possible values of II and III. In the (−II, III)-plane,

the realizability region is enclosed in a ‘triangular’ boundary, referred to as the Lumley
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FIG. 17. Comparison of the mean velocity profiles in the (x, y, z) coordinate system aligned with

the upstream wall and the (xr, y, zr) coordinate system aligned with the ramp: (a) ũ (solid) vs.

ũr (dashed), and (b) w̃ (solid) vs. w̃r (dashed). The streamwise locations shown are: x/δref = 1

(red), x/δref = 2 (blue), and x/δref = 4 (green).

triangle.

Figure 21(a) shows the Lumley triangle and the trace of the invariant pair (−II, III)

as a function of the wall-normal coordinate z in the undisturbed boundary layer of the

present DNS. Near the wall (z+ < 8), the invariants follow the top boundary of the Lumley

triangle, which corresponds to two-component turbulence. In this near-wall region, the

normal fluctuations w′′ are damped by the presence of the wall. Since the streamwise

component becomes more dominant as z is increased, the invariant pair moves towards the

top right corner of the Lumley triangle, which corresponds to one-component turbulence.

As z is increased further, the invariant pair moves along the bottom right boundary of the

Lumley triangle, which corresponds to axisymmetric turbulence with one of the components

(in this case, u′′) being larger than the other two. At the edge of the boundary layer

(z/δ = 1), the invariant pair is close to the bottom corner of the Lumley triangle, which

corresponds to an isotropic Reynolds stress tensor. The trace of the invariant pair is typical

for attached shear layers. A qualitatively identical behavior is shown in Pope [46], figure

11.1, for incompressible channel flow, and in Pirozzoli et al. [42] and Grilli et al. [47] for

supersonic boundary layers.
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(a)

(b)

(c)

(d)

FIG. 18. Time- and spanwise-averaged contours of the (a) streamwise velocity fluctuation intensity√
ũ′′u′′/uτ,ref , (b) spanwise velocity fluctuation intensity

√
ṽ′′v′′/uτ,ref , (c) wall-normal velocity

fluctuation intensity
√
w̃′′w′′/uτ,ref , and (d) Reynolds shear stress ũ′′w′′/u2

τ,ref . The normalization

is by the upstream friction velocity obtained at the recycling station of the auxiliary DNS, which

is equivalent to the inlet of the principal DNS.
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FIG. 19. Time- and spanwise-averaged field of the Favre-averaged turbulent kinetic energy. The

three streamlines used in figure 23 are also shown.

As is apparent from figures 21 and 22, the anisotropy of the Reynolds stress tensor changes

through the interaction. The evolution of the invariant pair along three streamlines is shown

in figure 23: the first streamline is located close to the wall (it passes through z+ = 1 at

x/δ = −4.0), the second is located at the inner-peak location in the upstream boundary layer

(it passes through z+ = 12 at x/δ = −4.0), and the third is located in the log layer in the

upstream boundary layer (it passes through z/δ = 0.2 at x/δ = −4.0). It is apparent from

figure 23 that the invariant pair (−II, III) traces a ‘U’-shape as the streamwise coordinate

is increased through the interaction. The anisotropy first moves towards the origin of the

Lumley triangle, before then relaxing away from it again. The movement towards the origin

occurs because both −II and III decrease as the turbulence is subjected to the adverse

pressure gradient and becomes more isotropic. This behavior is also visible by looking at

the Lumley triangles at several locations through the interaction (figures 21 and 22): it is

apparent, especially in figures 22(b-d), that the invariant trace is pulled towards the origin

of the Lumley triangle. The main physics shown in these plots is thus the effect of the shock

and adverse pressure gradient on the anisotropy of the velocity fluctuations, which become

more isotropic in the interaction. Lumley triangles for an incipiently separated transonic

STBLI (Pirozzoli et al. [42]) and a separated supersonic STBLI (Grilli et al. [47]) have also

previously shown that the fluctuations become more isotropic in the near-wall region in the
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FIG. 20. Reynolds stress profiles at several locations through the interaction: (a) ũ′′ru
′′
r/u

2
τ,ref , (b)

ṽ′′r v
′′
r /u

2
τ,ref , (c) w̃′′rw

′′
r/u

2
τ,ref , and (d) ũ′′rw

′′
r/u

2
τ,ref .

interaction.

Figure 24 shows the wall pressure spectra in the upstream boundary layer and at several

locations around the corner and on the ramp. The signals were sampled at a frequency

of approximately fsδ/U∞ = 126. A single broadband peak is maintained at all locations,

but with the following changes: (1) The rms of the wall pressure fluctuations increases,

which is shown by the increase in the area under the (premultiplied and non-normalized)

spectra. At x/δ = 5.0, for example, pw,rms/p∞ = 0.51 compared to 0.13 in the upstream

boundary layer. (2) The central frequency of the broadband peak shifts to lower values

27



(a)
III

I
I

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

z
+
=8

z
+
=15

z/δ=0.2

z/δ=1

(b)
III

I
I

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

z
+
=9

z
+
=15

z/δ=0.2

z/δ=1

(c)
III

I
I

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

z
+
=15

z/δ=0.2

z/δ=1

(d)
III

I
I

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

z
+
=15

z/δ=0.2

z/δ=1

FIG. 21. Lumley triangles. Each subfigure shows the trace of the invariant pair (−II, III) of

the Reynolds stress anisotropy tensor as a function of the wall-normal coordinate, z, for a fixed

streamwise location, x: (a) x/δ = −4.0, (b) x/δ = −0.25, (c) x/δ = 0.0, and (d) x/δ = 0.5.

downstream of the shock compared to the upstream boundary layer. At x/δ = 5.0, it is

fδ/U∞ ≈ 0.9 compared to fδ/U∞ ≈ 2.0 in the upstream boundary layer. The spectra are

resolved down to a low frequency of fδref/U∞ ≈ 0.02, and while they show an increase

in low-frequency energy (at, say, fδref/U∞ < 0.1) downstream of the shock compared to

the upstream boundary layer, there is no distinct spectral peak at low frequencies in this

attached interaction. The absence of significant low-frequency unsteadiness is consistent

with observations in supersonic STBLIs. Strong supersonic interactions with mean flow sep-
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FIG. 22. Lumley triangles as in figure 21 but at the streamwise locations: (a) x/δ = 1.0, (b)

x/δ = 2.0, (c) x/δ = 3.0, and (d) x/δ = 5.0.

aration show an energetic, broadband, low-frequency unsteadiness with a central frequency

typically in the range StL = fLsep/U∞ = 0.02−0.05, where Lsep is the separation length (e.g.

Dussauge et al. [48], Clemens & Narayanaswamy [49]). However, weaker cases, including

incipiently separated ones, do not show such a distinct and energetic low-frequency spectral

peak (Piponniau et al. [43]).

The TKE budget in the undisturbed upstream boundary layer (x/δ = −4) is given in

figure 25(a). Note that the TKE budget terms are defined here as in Wilcox [50], p. 247. As

typically seen in attached boundary layers (see e.g. Duan et al. [36, 37]), viscous diffusion
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(a) (b)

(c)

FIG. 23. Traces of the invariant pair (−II, III) of the Reynolds stress anisotropy tensor along

three mean-flow streamlines: (a) along the streamline passing through z+ = 1 at x/δ = −4, (b)

along the streamline passing through z+ = 12 at x/δ = −4, and (c) along the streamline passing

through z/δ = 0.2 at x/δ = −4. See also figure 19 for the location of the streamlines.

and dissipation are the dominant terms in the viscous sublayer, where they balance (with

smaller contributions coming from pressure diffusion and dilatation). The production peak is

at z+ ≈ 15 and is balanced by viscous dissipation, turbulent transport and viscous diffusion.

In the log layer and outer part of the boundary layer, production and dissipation balance.

As the corner is approached, the magnitude of the peak production increases significantly

(see figure 25b,c at x/δ = −0.25, 0). The additional production is balanced primarily by an
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FIG. 24. Premultiplied spectra of wall pressure fluctuations

at several streamwise locations.

additional convection term contribution that is present near the corner. Further downstream

at x/δ = 0.5 and 1 (figure 25(d) and 26(a)), significant contributions of the pressure diffusion

term, the convection term, and the turbulent transport are seen in the region z+ = 20−100.

At the farthest locations downstream (x/δ = 3 and 5, see figure 26(c,d)), the inner part

of the boundary layer recovers to an equilibrium state with the balances mentioned in the

description of figure 25(a) at work.

While figure 26(b-d) focuses on the near-wall region, figure 27 shows one of the profiles,

at x/δ = 5.0, on a larger wall-normal scale. The region between z+ = 130 and 220, where

significant variations in the TKE budget terms occur, is associated with the shock. The

behavior in this region is due to the unsteadiness of the shock, which smooths the shock

jump in the mean, generates a local fluctuation peak (e.g. figure 18), and leads to the budget

terms shown in figure 27.
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FIG. 25. TKE budget at various streamwise locations: (a) x/δ = −4.0, (b) x/δ = −0.25, (c)

x/δ = 0.0, and (d) x/δ = 0.5.

Surface heat flux and the turbulent temperature field

Standard RANS models typically do not predict hypersonic STBLIs accurately. The

prediction of the surface heat flux is particularly difficult as discussed in the introduction.

For example, Roy & Blottner [20] conclude that ‘while some of the turbulence models do

provide reasonable predictions for the surface pressure, the predictions for surface heat flux

are generally poor, and often in error by a factor of four or more’.

We have verified several scalings linking the velocity field to the temperature field. The
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FIG. 26. TKE budget at various streamwise locations: (a) x/δ = 1.0, (b) x/δ = 2.0, (c) x/δ = 3.0,

and (d) x/δ = 5.0.

simplest is probably the Reynolds Analogy (RA), which links the mean skin friction coef-

ficient, Cf , to the mean Stanton number, Ch: RAF = 2Ch
Cf

= const. ≈ 1. Figure 28(a)

shows the Reynolds Analogy factor, RAF , as a function of the streamwise coordinate, x,

through the interaction. The Reynolds Analogy is satisfied in the undisturbed upstream

boundary layer, where RAF ≈ 1.2, which is within the range 0.9 < RAF < 1.3 typically

observed in hypersonic zero-pressure-gradient boundary layers (Roy & Blottner [20]). The

most significant departures from this range occur around the corner, between x/δ = −0.5

and x/δ = 2, where RAF >> 1. The Reynolds Analogy factor peaks at the corner, where

33



z
+

ref

(T
K

E
 b

u
d

g
e

t 
te

rm
)/

(ρ
w
u

τ4
/ν

w
) re

f

0 50 100 150 200 250
1.2

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

production

convection

viscous dissipation

viscous diffusion

turbulent transport

pressure diffusion

pressure work

pressure dilatation

FIG. 27. TKE budget at x/δ = 5.0 and on a larger wall-normal scale than in figure 26(d) to show

the shock region.

RAF = 5.2. As is apparent from figure 11, this is due to the fact that the skin friction

coefficient approaches zero at the corner since the flow is close to separation, whereas the

heat transfer coefficient does not. The value of RAF remains above the typical range for

zero-pressure-gradient boundary layers for a significant distance downstream of the corner

– it is RAF = 1.53 at x/δ = 1.0, 1.41 at x/δ = 2.0, 1.34 at x/δ = 4.0 – before dropping to

RAF < 1.3 downstream of x/δ = 5.75.

Disagreement with the Reynolds Analogy in hypersonic STBLI has previously been ob-

served in the literature, especially for separated cases. The heat transfer tends to scale

better with the wall pressure, rather than the skin friction, in these cases (Back & Cuf-

fel [18], Coleman & Stollery [8], Holden [12], Schülein [16], Murray et al. [17]). As shown

in figure 28b, the present DNS results show reasonable agreement with the QP85 scaling

(Back & Cuffel [18]): QP85 = q(x)
qu

(
pu
p(x)

)0.85
≈ const. ≈ 1, where the subscript ‘u’ denotes

upstream values. This scaling has previously been shown to match experiments of hyper-

sonic STBLI (e.g. Holden [12], Murray et al. [17]). As is apparent from figure 28b, there

are some departures from the scaling in the regions of strongest adverse pressure gradient

in the vicinity of the corner, where the minimum value of QP85 is 0.65 and the maximum

value is 1.35, but the general agreement is good and the singularity at the corner is reduced

compared to the Reynolds Analogy.
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FIG. 28. Surface heat transfer scalings through the interaction: (a) Reynolds analogy, and (b)

QP85 scaling.

The strong Reynolds analogy (SRA) links the temperature fluctuations T ′′ to the velocity

fluctuations u′′ (Morkovin [51]). According to the SRA, RuT = − ũ′′T ′′

u′′rmsT
′′
rms
≈ 1 (phase rela-

tionship) and 1
(γ−1)M2

ũ
u′′rms

T ′′rms
T̃
≈ 1 (magnitude relationship). It is apparent from figure 29(a)

that in the upstream boundary layer RuT ≈ 0.6 across most of the boundary layer as is typ-

ically seen in attached zero-pressure-gradient compressible boundary layers. The magnitude

relation however is low at 0.5−0.8 across the boundary layer. This is consistent with the ob-

servations of Duan et al. [36] and may be attributed to the cold wall temperature in the DNS.

The modified SRA magnitude relation of Huang et al. [52], 1
(γ−1)M2

ũ
u′′rms

T ′′rms
T̃
Prt

(
1− ∂T̃t

∂T̃

)
,

accounts for the temperature effect and is close to unity across most of the upstream bound-

ary layer (figure 29a). The most significant departures from the SRA occur in the near-wall

region, between the wall and the location where the mean temperature T̃ has a maximum

(which is at z/δ ≈ 0.02 in the upstream boundary layer, see figure 15). The phase RuT , for

example, is negative near the wall, since ∂ũ
∂z
> 0 and ∂T̃

∂z
> 0 and hence u′′ and T ′′ tend to be

correlated rather than anti-correlated. The sign of ∂T̃
∂z

changes at the wall-normal location

where T̃ has a maximum, so that above this location ∂T̃
∂z
< 0 and hence u′′ and T ′′ are anti-

correlated and RuT is positive as typically observed. In the present attached STBLI, the

departures from the SRA that are already present in the upstream boundary layer do not

become significantly worse as the boundary layer interacts with the shock. As is apparent
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FIG. 29. Profiles of the SRA relations at various streamwise locations. SRA phase RuT =

− ũ′′T ′′

u′′rmsT
′′
rms

(solid), SRA magnitude 1
(γ−1)M2

ũ
u′′rms

T ′′rms
T̃

(dashed), and modified SRA magnitude

1
(γ−1)M2

ũ
u′′rms

T ′′rms
T̃
Prt

(
1− ∂T̃t

∂T̃

)
(dash-dot). (a) x/δ = −4.0, (b) x/δ = 0.0, (c) x/δ = 2.0, and

(d) x/δ = 4.0.

from figures 29(b-d), over most of the boundary layer the phase relation remains around

0.6 through the interaction and the modified magnitude relation around unity. The profile

shapes also remain generally similar downstream of the corner compared to the upstream

boundary layer.

In turbulence models, the closure of the momentum equation is usually extended to the

energy equation by assuming a constant turbulent Prandtl number: Prt = µtCp
κt

= const.
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In other words, the turbulent heat diffusivity κt is calculated from the eddy viscosity µt as

κt = (µtCp)/Prt, where the turbulence model gives µt and Prt is usually taken to be close to

1. Figure 30 shows profiles of Prt = ρu′′w′′

ρT ′′w′′
∂T̃ /∂z
∂ũ/∂z

at several streamwise locations through the

interaction. Note that both in the calculation of the SRA relations shown in figure 29 and

the turbulent Prandtl number shown in figure 30, for locations downstream of the corner,

all velocity components and gradients have been taken in a ramp-aligned coordinate system

(rotated by 8◦). It is apparent that the assumption of a constant Prt close to 1 is satisfied

reasonably well in most of the outer part of the boundary layer downstream of the corner.

At x/δ = 4, for example, Prt lies in the range 0.65 to 1.2 over most of the boundary layer.

However, as shown in figure 31, there are more significant differences near the wall. There

is a ‘singularity’ with large departures from Prt ≈ 1 at z/δref = 0.025 in the upstream

boundary layer and at (z − zw)/δref = 0.013 in the downstream boundary layer at x/δref =

4.0. This is due to the fact that T̃ has a maximum, and as a result two of the terms that

appear in the Prt definition, ∂T̃
∂z

and ρT ′′w′′, are zero. The maximum of T̃ is the result of two

competing effects: the wall heat flux (cold wall) on the one hand and the viscous heating in

the flow on the other. Above the wall-normal location of maximum T̃ , Prt is approximately

1, whereas below that location, Prt is less than 1.

CONCLUSIONS

The hypersonic shock wave/turbulent boundary layer interaction generated by an 8◦

compression ramp in Mach 7.2 flow is investigated using DNS. The observed flow structure

is different from that typically seen in supersonic interactions: at the present conditions,

the shock angle is shallow (inviscid value 14.3◦). This is typical for hypersonic flows, where

the shock angle can be shallow and the layer extending from the wall to the shock can be

thin, which is known as a thin shock layer (Anderson [53], pp. 13-14). As a result, the DNS

shows that the shock foot is immersed in the boundary layer downstream of the corner for a

streamwise distance equal to several incoming boundary layer thicknesses before it emerges

from the boundary layer, distorted by the passage of the boundary layer structures.

While the flow is found to be attached in the mean, patches of separated flow are observed

on an instantaneous basis surrounding the corner. Between 0.15δref upstream of the corner

and 0.1δref downstream, the probability of reversed flow is greater than 20%, which means
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FIG. 30. Profiles of the turbulent Prandtl number Prt = ρu′′w′′

ρT ′′w′′
∂T̃ /∂z
∂ũ/∂z at various streamwise

locations: (a) x/δ = −4.0, (b) x/δ = 0.0, (c) x/δ = 2.0, and (d) x/δ = 4.0.

that the flow is in the ITD (intermittent transitory detachment) state. The maximum

probability is 31% at the corner.

The behavior of the turbulence through the interaction is described. The Reynolds

stresses are amplified with the streamwise component being less amplified than the other

two: Ruu is amplified by a factor of 1.82, Rvv by a factor of 2.53, Rww by a factor of 2.28,

and the shear stress Ruw by a factor of 2.12. The fluctuation peak remains close to the wall

in the interaction, rather than moving away from the wall. This behavior is consistent with

the fact that the low-speed region in the present flow is thin in the wall-normal direction:
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FIG. 31. Prt profiles on a semilog scale to highlight the near-wall behavior: (a) x/δ = −4.0, and

(b) x/δ = 4.0.

the region of significant reversed flow probability does not extend above z/δref ≈ 0.05, and

the inflection point in the mean velocity profiles is found at similar wall-normal locations.

The anisotropy of the Reynolds stresses changes through the interaction. In the upstream

boundary layer, the Lumley triangles show the behavior typically seen in attached zero pres-

sure gradient boundary layers. In the interaction region, however, a different structure is

seen: both the second and third invariant of the Reynolds stress anisotropy tensor decrease

(in other words, the invariant pair is pulled towards the origin), which is consistent with the

turbulence becoming more isotropic.

Regarding the heat transfer, it is found that the Reynolds Analogy, which relates the skin

friction coefficient Cf to the heat transfer coefficient Ch, is not satisfied in the interaction.

Large values of the RA factor are observed at the corner, since the flow is close to separation

and Cf approaches zero whereas Ch does not. The RA factor then remains above the

range of values typically observed in zero-pressure-gradient hypersonic boundary layers for

a significant distance downstream of the corner (up to x/δref = 5.75). As has previously been

reported in the literature in the context of separated hypersonic STBLIs (e.g. Holden [12],

Schülein [16], Murray et al. [17]), the heat transfer scales better with pressure, rather than

skin friction, and the QP85 scaling of Back & Cuffel [18] describes the behavior in the

DNS reasonably accurately, although there are departures from it near the corner. In the
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present attached interaction, the departures from the SRA are relatively weak through

the interaction, at least when compared to the behavior of the SRA terms in the upstream

boundary layer and provided that the wall heat flux is taken into account by using a modified

form of the SRA (Huang et al. [52]).The assumption of a constant turbulent Prandtl number

around unity is also satisfied reasonably well, although significant departures from it are

observed in the near-wall region.

The present DNS data are compared to available experiments, and a good qualitative

match is found in terms of the instantaneous and mean flow structure, as well as for the

state of separation.

We expect the DNS to be useful for turbulence modeling, given the known deficiencies

of turbulence models in hypersonic STBLIs even for attached cases (see Gnoffo et al. [21],

Roy & Blottner [20], Brown [22]). In the present work, we provide quantities relevant for

turbulence modeling, such as mean and fluctuating fields, Reynolds stresses, the anisotropy

tensor, TKE budgets, and the turbulent Prandtl number.
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