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Despite the apparent complexity of turbulent flow, identifying a simpler description of the underly-
ing dynamical system remains a fundamental challenge. Capturing how the turbulent flow meanders
amongst unstable states (simple invariant solutions) in phase space, as envisaged by Hopf in 1948,
using some efficient representation offers the best hope of doing this, despite the inherent difficulty
in identifying these states. Here, we make a significant step towards this goal by demonstrating that
deep convolutional autoencoders can identify low-dimensional representations of two-dimensional
turbulence which are closely associated with the simple invariant solutions characterizing the tur-
bulent attractor. To establish this, we develop latent Fourier analysis that decomposes the flow
embedding into a set of orthogonal latent Fourier modes which decode into physically meaning-
ful patterns resembling simple invariant solutions. The utility of this approach is highlighted by
analysing turbulent Kolmogorov flow (monochromatically-forced flow on a 2D torus) at Re = 40
where, in between intermittent bursts, the flow resides in the neighbourhood of an unstable state
and is very low dimensional. Projections onto individual latent Fourier wavenumbers reveal the
simple invariant solutions organising both the quiescent and bursting dynamics in a systematic way
inaccessible to previous approaches.

I. INTRODUCTION

Building effective low-order representations of turbulent flows is a long-standing challenge that could dramatically
improve our capabilities for prediction and control. Current state-of-the-art techniques for low-order modelling typi-
cally involve constructing a set of orthogonal ‘modes’ from a dataset. Perhaps most well known is principal component
analysis (PCA), which produces an orthogonal basis to optimally represent the training snapshots. However, while
highly interpretable, modes in the basis may have little dynamical significance individually [1], and other methods
that attempt to also infer dynamics – for example dynamic mode decomposition [2] – are ill-suited to chaotic systems
like turbulence [3]. In contrast, in a dynamical systems approach, the building blocks are the simple invariant solu-
tions which populate the chaotic attractor in a high-dimensional state space. A turbulent flow is then viewed as a
long nonclosing orbit in this state space transiting between these unstable simple invariant solutions guided by their
stable and unstable manifolds – a viewpoint advocated by Hopf seven decades ago [4]. Such a viewpoint suggests that
there is an efficient low-order representation of the flow rooted in the underlying simple invariant solutions. Moreover,
these simple invariant solutions offer valuable insight into the self-sustaining processes underpinning the turbulent
dynamics due to their simple dependence on time [5–9]. With a large enough collection of simple invariant solutions,
statistical predictions can then be attempted using, for example, periodic orbit theory [10, 11], while continuation
of the solutions along their solution curves (upwards in Re) offers a plausible method to make predictions at high
Reynolds numbers without simulating the fully turbulent flow.

However, attempts to implement and test these ideas are constrained by our limited ability to identify simple
invariant solutions from a turbulent dataset. The current state-of-the-art relies on the detection of ‘near recurrences’
in a time series, which are quantified by a Euclidean distance in the state space of discretised solutions [5, 11]. These
guesses are then fed into a Newton-Raphson solver to determine whether the recurrent episode did indeed correspond
to the shadowing of a simple invariant solution. The approach has identified large numbers of periodic orbits in
canonical flows [e.g. 9, 11] but crucially the overwhelming majority of solutions have been restricted to regions of the
state space associated with low turbulence kinetic energy. The inability of current tools to identify simple invariant sets
associated with strongly dissipative events weakens our physical understanding of the underlying physical processes
and suggests that the approach will be challenging to upscale to high Re.

Many of the current limitations in the application of dynamical systems theory to turbulence can be connected
to our inability to accurately parameterise the inertial manifold of solutions to the Navier-Stokes equations. The
recent emergence of deep convolutional neural networks (CNNs) represents an opportunity to make progress here
due to their ability to identify and extract patterns [12, 13]. This capability can be used to generate highly efficient
representations of complex data, encoded in latent (“hidden”) variables within the neural network. The utility of
CNNs in the study of nonlinear partial differential equations (PDEs) has been demonstrated recently in a number of
canonical examples, where their accurate paramterisation of the solution manifold has been exploited to successfully
predict chaotic dynamics for multiple Lyapunov times [14], to estimate the dimension of chaotic attractors [15] and
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to design new spatial discretisation schemes [16].
Using a CNN to decompose a turbulent flow into a series of recurrent spatial patterns should be contrasted to a

projection onto a hand-crafted orthogonal basis such as Fourier modes, where the coupling of all wavenumbers through
the nonlinearity of the Navier-Stokes equation renders individual modes dynamically insignificant. A learnt basis has
the potential to encode and parameterize the alphabet of dynamical processes present, though at a loss of physical
interpretability. Here we show how the presence of a continuous symmetry in the physical system can be exploited to
perform a decomposition of embeddings of a turbulent flow in latent space. This latent Fourier analysis – analogous
to a Fourier decomposition in physical space – yields a (latently) orthogonal basis of recurrent patterns that exhibit
striking resemblance to simple invariant solutions of the underlying dynamical system.

II. DIMENSIONALITY REDUCTION OF KOLMOGOROV FLOW

We use deep CNNs to build efficient low-dimensional representations of snapshots from a computation of monochro-
matically forced, two-dimensional turbulence on a doubly-periodic square [0, 2π] × [0, 2π]. In two dimensions the
Navier-Stokes equations can be combined and written concisely in terms of the out-of-plane vorticity ω := (∇×u) · ẑ,

∂tω + u ·∇ω =
1

Re
∇2ω + (∇× f) · ẑ, (1)

where f = sin 4y x̂ (‘Kolmogorov’ flow [17] with the specific choice of four forcing wavelengths in the square [11, 18, 19]).
There are a number of symmetries, the most important in the context of this work being the continuous translational
symmetry Ts : ω(x, y)→ ω(x+ s, y). There is also a discrete shift-reflect symmetry S : ω(x, y)→ −ω(−x, y + π/4)
and a rotational symmetry R : ω(x, y) → ω(−x,−y). Throughout we hold the Reynolds number fixed at Re = 40,
where a large number of simple invariant solutions have been found [11, 19].

We seek efficient low-dimensional embeddings {EEE } of vorticity snapshots {ω}, which are essentially greyscale images
of dimension Nx×Ny = 128×128. To do this we construct deep CNNs in the form of autoencoders, which are trained
to reconstruct the input snapshots with dimension reduction applied as part of the network structure. The specific
architectures we use are described in detail in appendix B, but all consist of an encoder module, EEE : R128×128 → Rm –
consisting of a series of five convolutional layers with pooling to reduce the dimension from 1282 to 128 – followed by
fully connected layers to further reduce the dimension to m ≤ 128 (the “embedding”). A similar structure is used to
decode the embeddings, D : Rm → R128×128, and the weights that define these functions are obtained by performing
stochastic gradient descent on the loss functional 1

|data|
∑

data ‖[D ◦ EEE ](ω)− ω‖22.

The impact of autoencoder dimension on the fidelity of the reconstruction [D◦EEE ](ω) is examined in figure 1. The loss
drops monotonically with increasing m, with even very low dimensional networks (e.g. m = 3) displaying relatively
small losses (two unrelated vorticity fields typically yield an O(1) loss), which suggests that much of the underlying
dynamical system may be low dimensional. Furthermore, networks with modest m (e.g. see the PDF for m = 32 in
figure 1) retain much of the high-dissipation tail in PDFs of D := 〈(∇u)2〉V = 〈ω2〉V . This indicates a retention of
smaller scales and sharp variations in ω under dimensionality reduction, in contrast to standard techniques like PCA.
Even at m = 3, the accurate reproductions of low dissipation events (see the snapshots in figure 1) contain the full
spectrum of Fourier modes.

To examine how these networks can reduce the dimensionality of the data while retaining a broad spectrum of
lengthscales, we describe a method for decomposing the latent representations of vortical snapshots into a finite set
of recurrent patterns which can be visualised individually.

III. LATENT FOURIER ANALYSIS

The continuous translational symmetry in the governing equation (1) and boundary conditions provides a mech-
anism to decompose the latent embeddings of the vorticity fields into recurrent ‘patterns’ that reveal the struc-
ture of the latent space. This decomposition is analogous to a Fourier transform in physical space, ω(x, y, t) =∑
k∈Z ω̂k(y, t)exp(ikx). However, the autoencoder representations encode the horizontal position x in an unknown

way. To perform a similar decomposition for embeddings, we first must construct an operator that can map between
an embedding of a snapshot and an embedding of a shifted version of the same field: TαEEE (ω) = EEE (Tαω), where
the fixed shift α ∈ (0, 2π) is a design choice. To generate Tα, a matrix of embeddings, E :=

[
EEE (ω1) · · · EEE (ωN )

]
is assembled along with another data matrix built from embeddings of the same vorticity fields shifted by α in x,
E′ :=

[
EEE (Tαω1) · · · EEE (TαωN )

]
. An approximate shift operator is then determined from a least-squares fit over the

test set, Tα = E′E+, where E+ is the Moore-Penrose pseudo inverse of E. This algorithm is well-known in the fluid
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FIG. 1. Autoencoders for dimensionality reduction in Kolmogorov flow. (a) Loss 1
|data|

∑
data ‖[D ◦ EEE ](ω)− ω‖22 as a

function of embedding dimension m. (b) Dissipation PDFs of autoencoded vorticity fields. The background orange is obtained
from the original test dataset, the overlayed blue PDFs are for m ∈ {96, 48, 32, 3} (also labelled in the figure). (c) Decodes
of a set of snapshots of increasing dissipation for various embedding dimensions m. Snapshots are ordered left-to-right by
dissipation, running from D/Dl ≈ 0.08 to D/Dl ≈ 0.26 indicating, for example, that m = 3 captures low-dissipation episodes
well but struggles to represent high-dissipation events.

FIG. 2. An overview of the approach to performing latent Fourier decompositions on (latent) representations of
physical systems with a continous symmetry. A latent Fourier decomposition is performed by constructing an operator
to map between embeddings of shifted versions of the same snapshot. Note that only four latent wavenumbers, {0, 1, 2, 3}, are
required for the monochromatically forced turbulence considered here. In the “project and decode” step (bottom right) the
projection within the l = 0 subspace is also included (see the discussion in the text). For comparison, the projection onto k = 0
is also included in the projection onto the physical Fourier modes.
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FIG. 3. Eigenvalue spectra of the latent symmetry operators for various embedding sizes m and shifts α. Panels
(a–c) have fixed α = 2π/9 and varying m: (a) m = 16, (b) m = 32, (c) m = 64. Panels (d) and (e) have fixed m = 96 and
varying α: (d) α = 2π/9, (e) α = 2π/12. Finally, panel (f) displays the eigenvalues of a numerical approximation to the vertical
shift-reflect operator, S at m = 96. In all cases, the outer black circle is |Λ| = 1, the grey interior circle is |Λ| = 0.9. The rays
from the origin identify the relevant roots of unity.

dynamics community, where it is typically applied to temporally-spaced flow snapshots to extract ‘dynamic modes’
with an exponential dependence on time [2, 3, 20].

This procedure applied to the vorticity field itself would result in a numerical approximation to a Fourier transform
through the eigenvalues and eigenvectors of Tα, with a maximum resolved wavenumber set by the Nyquist condition,
kmax = π/α. For the embeddings, EEE , the value of α sets a maximum latent wavenumber that can be resolved, lmax.
As we will show below, the required latent resolution is considerably coarser than the smallest scales generated by
the governing PDE (1).

To see the connection to a standard Fourier transform, consider a discrete shift α = 2π/n, with n ∈ N. By design,
Tn
αEEE (ω) = EEE (ω), so the eigenvalues of Tα are Λj = exp(2πilj/n), with lj ∈ Z. We assume that the value of α has

been chosen small enough so that no lj are found beyond a maximum (lmax). With this, approximations to continuous
shifts s of an embedding EEE (ω) are

EEE (Tsω) =
∑
l

d(l)−1∑
j=0

PPP lj(EEE (ω))

 eils

:=
∑
l

d(l)−1∑
j=0

[(ξ
†(l)
j )HEEE (ω)]ξ

(l)
j

 eils. (2)

Here l is the latent wavenumber and the operator PPP lj is a projector in direction j within the eigenspace of wavenumber

l, which has geometric multiplicity d(l). Unlike physical Fourier modes, the latent wavenumbers are degenerate: ξ
(l)
j

being the (j + 1)th eigenvector with wavenumber l. Equation (2) assumes that some bi-orthogonal basis ξ
†(l)
j has

been constructed; a specific choice is discussed further below.

The number of required latent wavenumbers and their degeneracy provides insight into the nonlinear interactions
in physical space. Each latent Fourier mode of wavenumber l can be decoded into a 2π/l-periodic pattern which has
a physical Fourier decomposition projecting onto wavenumbers kq = ql, q ∈ N (see the example in the schematic of
figure 2). Significantly, these recurrent patterns represent pathways through physical Fourier wavenumbers which are
selected by the dynamics.

The maximum required latent wavenumber, lmax, is determined empirically via the computation of a set of several
shift operators in latent space, Tα, for various network dimensions m and shifts α. The eigenvalue spectra of some of
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FIG. 4. Eigenvalue spectra of a latent symmetry operator and decodes of the projection onto individual
eigenspaces for example snapshots. (a) Seven example snapshots of vorticity, ω. (b) Eigenvalue spectrum of Tα on the
m = 96 autoencoder with α = 2π/9. Note that only half the spectrum is shown. (c–f) Decodes of the snapshots in (a) after their
embeddings are projected onto individual latent Fourier eigenspaces (latent wavenumber l is identified in each row and by the
red line from the eigenvale spectrum (b)). Note that the l = 0 subspace is always included for decodes of latent wavenumbers
l > 0.

these operators are reported in figure 3 in ‘timestepper’ form. Latent wavenumbers can be extracted via l = log Λ/(iα).
At fixed α, the number of required latent wavenumbers saturates at l = 3 beyond m = 32. At fixed m, no further
latent wavenumbers are recovered for shifts α < 2π/6. Therefore, any shift α < 2π/6 is sufficient to perform a latent
Fourier transform without any aliasing issues. Moreover, the truncation suggests that the learnt representations can
be decomposed into a set of recurrent patterns which are at most 2π/3-periodic. The energy in all higher physical
wavenumbers, k > 3, is assigned during the decode of this coarse set of features in the latent space (e.g. k = 5 can
only be encoded into l = 1 and k = 8 into l = 2).

An example eigenvalue spectrum for the m = 96 network is reported in figure 4 in exponential form; the (degenerate)
eigenvalues lying approximately on l ∈ {0, 1, 2, 3}. Some example 2π/l-periodic physical patterns associated with a
particular value of l are displayed alongside the spectrum. These images were generated by projecting the embedding of
a snapshot onto the relevant eigenspace and decoding the result. Note that, in contrast to a standard Fourier transform,
the l = 0 contribution must always be included for the decode operation to yield a physical field. Projections onto
the l = 0 subspace decode to horizontal stripes of vorticity which align with the (curl of) the forcing in equation (1);
the vorticity amplitude of each stripe is distorted by the l > 0 modes into vortical features. In this way, much of the
y-dependence in the final decoded snapshot is controlled by the l = 0 subspace.

The decodes in figure 4 for l > 0 have the expected periodicity, T2π/l[D(
∑
j PPP lj(EEE ))] = D(

∑
j PPP lj(EEE )). In contrast

to a projection onto individual Fourier modes in physical space, the projection onto individual latent wavenumbers
produces patterns with vortical features that can be clearly identified in the original snapshots. The wide range of
features observed in decodes of individual latent wavenumbers is possible due to the degeneracy of the eigenspaces
and is discussed further in the next section.

Finally, it is worth remarking that a similar approach to that outlined above can be applied to discrete symmetries.
For example, a linear operator can be sought which performs the shift-reflect operation in latent space,

SEEE (ω) = EEE (S ω). (3)

Eight shift-reflect operations return the vorticity field to its original configuration, S 8ω = ω, so the eigenvalues of S
are the eighth roots of unity. Numerical results reported in figure 3 indicate that this structure is preserved in the
latent space of our autoencoders. While the resulting decomposition of embeddings can be used to extract or identify
vortical patterns which are invariant under certain numbers of shift-reflects, the minimum vertical lengthscale of the
associated recurrent patterns are restricted to Lmin < π/4 by the Nyquist criterion. As a result, smaller scales are
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FIG. 5. Visualisation of the degenerate eigenspace l = 1 via decodes of projections onto its PCA modes for an
example snapshot. (a) Singular values from the l = 1 subspace. (b) An example vortical snapshot (to the left of the dashed

black line) and the decode of the projection of its embedding onto individual PCA modes {u(1)
n } within the l = 1 subspace,

note the l = 0 projection is also included (see equation 6). (c) As (b) but only the first PCA mode from the l = 0 subspace is
used (see equation 7).

hidden within the degenerate eigenspaces and cannot be revealed by reducing the vertical shift, which is fixed by the
discrete symmetry.

IV. CONNECTIONS TO SIMPLE INVARIANT SOLUTIONS

The degenerate set of recurrent patterns encoded within each latent eigenspace of the x-shift operator Tα can be
revealed by an appropriate choice of basis to define the projectors PPP lj in equation (2). We have found PCA within
each eigenspace to be robust for this purpose. To perform the PCA, we first construct an arbitrary bi-orthogonal
basis from the numerically computed left- and right-eigenvectors of Tα,

Ξl = VlR
−1, (4)

Ξ†l = (Q−1WH
l )H , (5)

where the columns of Vl are the numerically computed right eigenvectors of Tα corresponding to wavenumber l;
the columns of Wl are the left eigenvectors. The matrices Q and R are the QR decomposition of WH

l Vl. The

columns of Ξ and Ξ† form a biorthogonal basis, (ξ
†(l)
i )Hξ

(l)
j = δij .We then compute the projections of our test set

of embeddings within each eigenspace, and perform PCA on the resulting data matrix to form an orthogonal basis
ordered by ‘energy’.

The decomposition within l = 0, while not particularly informative on its own, is most useful for visualising other

eigenspaces, because a projection onto the leading PCA mode in l = 0, u
(l=0)
0 , decodes a vorticity field resembling

the laminar parallel flow solution. This field is invariant under all symmetry operations, allowing symmetries within
the l > 0 eigenspaces to be identified.

A singular value decomposition within the l = 1 subspace is reported in figure 5, and reveals the presence of a
large-amplitude leading mode with higher order modes appearing in pairs at lower energies. To visualise individual
modes from within the l = 1 subspace, we must also choose some contribution from the l = 0 subspace. In figure 5
we show decodes of l = 1 modes using both the full l = 0 subspace,

ω(1)
n = D

d(0)−1∑
j=0

PPP0
j + [PPP1

n + c.c.]

 , (6)

and also the leading l = 0 mode only

ω(1)
n = D

(
PPP0

0 + [PPP1
n + c.c.]

)
. (7)

where, e.g. PPP0
j = PPP0

j (EEE (ω)). As described above, the use of PPP0
0 alone removes much of the y-dependence when

visualising l = 1 modes from projections of arbitrary snapshots due to the high degree of symmetry associated with

u
(0)
0 .
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FIG. 6. The primary bifurcation of Kolmogorov flow and its connection to the primary latent Fourier mode
within the l = 1 subspace. (a) Equilibrium states at Re ≈ {14, 20, 40, 60} from the solution branch which bifurcates from
the basic laminar state at Re ≈ 9.97. (b) Decode of the projection of the embeddings of the equilibria in (a) onto the first
PCA modes within the l = 0 and l = 1 subspaces. (c) Amplitude (measured by disspation) of this equilibrium as a function
of Reynolds number (blue line, the laminar solution sits on 1 − D/Dl = 0) with the example states shown above identified
with symbols (see corresponding symbols in in the panels of (a)). It should be emphasised that training has been conducted
at fixed Re = 40, and that all of the training snapshots are from within the turbulent attractor and do not feature this simple
equilibrium.

Decoding projections ω
(1)
0 with equation (7) reveal a structure that is symmetric under rotation and shift-reflects,

ω
(1)
0 = R ω

(1)
0 , ω

(1)
0 = Sm ω

(1)
0 (see figure 5). Higher order PCA modes within l = 1 are also reported in figure 5 and

also have a large degree of discrete symmetry. For example, the slanted vortical structures associated with mode u
(1)
1

are symmetric under rotation and whole-wavelength shifts, ω
(1)
0 = R ω

(1)
0 , ω

(1)
0 = S 2m ω

(1)
0 . The projection onto u

(1)
2

(not shown) is simply the shift-reflect of u
(1)
1 , u

(1)
2 = S 2m+1u

(1)
1 . The same set of symmetries hold for the vortex

blobs obtained when decoding projections onto u
(1)
3 and u

(1)
4 .

Strikingly, the highly-symmetric, large-amplitude primary PCA mode in the l = 1 subspace, u
(1)
0 , closely resembles

the equilibrium born in the continuous-symmetry-breaking bifurcation off the laminar base state at low Re ≈ 10

[11, 21]. We explore this connection in figure 6, where we show that decodes of projections onto u
(0)
0 and u

(1)
0 can

be used to reconstruct this structure over a range of Re, despite the fact that the training was conducted at fixed

Re = 40. As the solution branch is traversed, the amplitude of the projection of the embedding onto u
(1)
0 is increased.

In the vorticity field, this corresponds to both a strengthening and tilting of the vorticity bands.

While it is surprising that this non-trivial, 2π-periodic equilibrium should form the backbone of the latent repre-
sentations – neither it nor the laminar solution are seen explicitly during training – it is intuitive as further simple
invariant solutions and the emergence of chaotic dynamics appear in bifurcations from this state. It’s worth empha-
sizing that this structure is associated with a single latent wavenumber, l = 1, in contrast to its physical Fourier
transform which projects onto all physical wavenumbers.

The full structure of the state space of vorticity fields can be concisely visualised by first projecting embeddings of
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FIG. 7. Two-dimensional t-SNE of embeddings of 5000 vorticity snapshots in the m = 96 network. The figure
was created by computing projections of the embeddings onto the five leading PCA modes within each degenerate eigenspace
l ∈ {0, 1, 2, 3}. Translational dependence of the features was then removed by taking the absolute value of these projections
for l > 0 before the t-SNE algorithm[22] was applied. The data points are coloured by their dissipation values which run
between D/Dl = 0.06 (dark blue) and D/Dl = 0.33 (yellow). Decodes of example snapshots are shown on the right. The
eight coloured squares represent the embeddings of the same vorticity snapshot (see the decode of the yellow square at bottom
right) with the shift-reflect operation repeatedly applied. The orange arrows indicate how this field is moved between sectors
of the low-dissipation octagon under applications of a shift-reflect operation; the dashed arrow labelled S 2 corresponds to a
full wavelength shift in y.

the test dataset onto the latent Fourier modes:

ψ(ω) :=



u0H
0 EEE (ω)
u0H
1 EEE (ω)

...
|u1H

0 EEE (ω)|
...

|u2H
0 EEE (ω)|

...


, (8)

where the first five PCA modes of each eigenspace are included, and taking the absolute value of projections onto PCA
modes from eigenspaces l ≥ 1 removes any dependence on the relative streamwise location of the recurrent patterns.
A two-dimensional visualisation is then generated by supplying this observable as input to the t-SNE algorithm [22].
The output of this procedure is reported in figure 7, and shows a large octagon consisting of mainly low-dissipation
embeddings and a detached high-dissipation cluster. Typically, the low-dissipation events require only the l = 1
subspace, while the rarer, high-dissipation or ‘bursting’ snapshots have significant projections onto the l = 2 and
l = 3 eigenspaces. This makes it clear that there is only a single class of ‘bursting’ event here. More complicated
dynamics at higher Re would be reflected here by multiple, distinct projections and the necessity for higher latent
wavenumber spaces.

Decoding example points from within the low-dissipation cluster reveals that its centre contains snapshots that are
visually similar to the first equilibrium – compare the middle flow field in figure 5 to figure 6 – while embeddings of
fields with pairs of opposite-sign vortices are situated towards the edges. The appearance of vortices which break the
shift-reflect symmetry are indicative of secondary instabilities of the first equilibrium [21]. The eight sectors of the
octagon-like cluster correspond to latent representations of the same recurrent patterns shift-reflected in the vertical
direction. This effect is visualised in figure 7 by the square symbols in the cluster, which are eight copies of the
embedding of the same vorticity field. This simple representation of the low-dissipation dynamics is retained in all
autoencoders (even m = 3, not shown). Low-m networks do not build representations of the more complex bursting
behaviour (see figure 1).

The extraction of a known equilibrium from the embeddings, and the demonstration that the flow spends much
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FIG. 8. Bursting episodes: their recurrent patterns and associated exact coherent structures. (a,b) Dissipation
and (c,d) projections onto latent wavenumbers l = 1 and l = 2 for a long turbulent signal (panels (b) and (d) show zoomed in
regions identified with gray shading). In (c,d), the solid blue line is the projection onto the l = 1 mode corresponding to the
primary bifurcation in the flow, γ1 := ‖PPP1

0(EEE (ω))‖2 (see text), the dashed blue line is the projection onto the rest of the modes

in the l = 1 eigenspace , γ1+ := ‖
∑d(1)−1
j=1 PPP1

j (EEE (ω))‖2; the solid red line is the projection onto the full l = 2 eigenspace giving

γ2. In panel (d), the dashed red line overlaying the l = 2 curve identifies regions where D/Dl > 0.15. Square markers indicate
where equilibria and travelling waves corresponding to the l = 2 recurrent patterns were found; the labels [i]–[iv] next to the
green markers coincide with the equilibria reported in panel (e). In panel (e) we show snapshots (left) extracted at the green
markers [i]–[iv] in (d), the decode of the projection onto the l = 2 eigenspace (middle, note this includes the l = 0 contribution)
and the converged equilibria or travelling wave (right).

of its time nearby in phase space, highlights the advantages of autoencoders as tools for generating low-dimensional
representations which can be connected to the underlying dynamics. More significantly, the latent Fourier decompo-
sitions also allow us to efficiently find many new simple invariant solutions of the governing equations (1) in parts of
phase space – the bursting events – where current methods struggle, which we now describe.

A long time series from a turbulent computation is examined in figure 8, visualised both in terms of dissipation
and also the magnitude of the projection of the flow embeddings onto certain latent Fourier modes. The ‘bursting’
events could be classified as sections of the time series where the dissipation rate exceeds some threshold; for example
D/Dl > 0.15 might be sensible here. The latent Fourier projections offer an alternative view on the bursting in terms
of a distance from the simple equilibrium described above, which is central to the low-dissipation dynamics (see figure
7). The solid blue line in figure 8 shows the projection onto the latent Fourier mode which encodes this structure,
PPP1

0. As expected, this equilibrium is dominant in the embedding for the low-D dynamics but becomes insignificant
in the (high-D) bursting events. Bursting also exhibits a dramatic increase in importance of the l = 2 eigenspace, as
well as the other modes from within l = 1. There is also a significant projection onto l = 3 (not shown).

Motivated by the prominent role of the l = 2 eigenspace in the bursting, we explored how well the embedding is
capturing the simple invariant solutions present in this part of phase space by supplying the decode of embeddings
projected onto this space,

ω(2) = D

d(0)−1∑
j=0

PPP0
j +

d(2)−1∑
j=0

PPP2
j + c.c.

 (9)

as initial guesses in a Newton-GMRES solver searching for equilibria and travelling waves (see appendix C). Some
examples of the recurrent patterns associated with this decode were included earlier in figure 4, these decodes have
symmetry under half domain shifts Tπω

(2) = ω(2). This translational symmetry matches that found in the equilibrium
‘E13’ which was the only solution found to be important in the bursting dynamics in [19].

By constructing guesses via (9) we have been able to converge a large number of new equilibria and travelling waves
directly from the bursting snapshots themselves, as well as re-discovering E13. From an analysis of ∼ 20 “bursts”
within a time series of length t ∼ 4000 we have found over 25 unique solutions, usually finding at least one simple
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invariant solution per burst. All of our solutions have high dissipations, with the majority having values D/Dl > 0.2.
We include some of these new solutions in figure 8 alongside the original snapshots and the initial guess generated
via equation (9). The signature of the converged solution can often be seen in the l = 2 recurrent pattern, which
exhibits vortical features also found in the original snapshot. The fact that the solutions found seem positioned at
extremes of the dissipation signal - see the middle lower plot in figure 8 - is fully consistent with the picture of the
turbulent trajectory bouncing between the neighbourhoods of these unstable solutions in phase space. The utility of
the method is that it can identify simple invariant solutions which are actually transiently visited by the dynamics
in the high-dimensional bursts, which has not been possible using previous approaches. Moreover, some of our new
solutions are qualitatively different from any that have been converged before[11, 19], for example note the vorticity
snapshots dominated by dipole structures in figure 10 in appendix C.

V. CONCLUSION

In this paper we have used deep convolutional autoencoders to construct efficient low-dimensional representations
of monochromatically forced, two-dimensional turbulence at Re = 40. The networks are highly effective at identifying
recurrent spatial patterns in the vorticity field – common wavenumber pathways in a Fourier representation – in
striking contrast with standard dimensionality reduction techniques. By exploiting a continuous symmetry we have
developed an interpretable latent Fourier decomposition of the embeddings: the latent Fourier modes can be decoded
into physically meaningful fields. This has allowed us to reveal the structure of state space underlying the dynamics.
One equilibrium (the primary bifurcation) dominates the quiescent low-dissipation dynamics while one grouping of
simple invariant solutions organise a single type of high dissipation bursting event which occurs intermittently. The
success of latent Fourier analysis in identifying dynamically important solutions of high dissipation for the bursting
episodes is particularly noteworthy as previous methods [11, 19] have struggled to do this. Going forward, these new
solutions present a way of charting the bursting dynamics, as latent Fourier decompositions provide us with a natural
metric for measuring which solution a turbulent orbit is nearest to. Moreover, latent Fourier analysis also allows us
to efficiently find large numbers of periodic orbits, including those in previously unreachable parts of the state space
(see the example in appendix C), than has been previously possible [23].

The results presented here clearly show that harnessing machine learning techniques to allow the building blocks
of a flow representation to design themselves based on the flow dynamics is a significant step forward. The blocks
which emerge are the principal spatial patterns or coherent structures observed in the flow and, intriguingly, can
accurately capture simple invariant solutions embedded in the turbulent attractor without the solutions ever being
realised precisely. This opens up the possibility of an easily automated, direct approach for both identifying when
the flow is in the neighbourhood of a state in phase space and evaluating the probability of being there. Turbulent
statistics could then be predicted through a weighted sum over relevant states, for example, in the spirit of periodic
orbit theory [24, 25]. However, in the immediate future, the natural next step is to apply these techniques at much
higher Reynolds numbers and in three dimensions. In these extensions, assessing how much data is needed to power
this approach will also be an important consideration.
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Appendix A: Data

Training data are generated by solving equation (1) at fixed Re = 40. For spatial discretisation we apply a two-
dimensional Fourier transform at a resolution Nx ×Ny = 128× 128; de-aliasing is applied according to the 2/3-rule.
For timestepping, an implicit Crank-Nicholson scheme is employed for the diffusion term and Heun’s method is used
for the nonlinear advection terms. For further details see [11, 21].

The training dataset is constructed from 1000 independent trajectories each consisting of 100 snapshots separated
by ∆t = 0.5. Each trajectory was generated by simulating (1) from a randomly perturbed initial condition and
discarding an initial transient. The vorticity fields are all normalized, ωtrain = ω/ωM , where ωM = 15, which ensures
|ωtrain| < 1. Each vorticity field then has a random symmetry transform applied ω → TsS kRjω to ensure the
network sees the full state space.
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FIG. 9. Some new bursting equilibria and travelling waves. (a–d) Vorticity field for four new equilibria converged from
projections and decodes onto l = 2. The dissipation rate of these new solutions is (a) D/Dl = 0.1974, (b) D/Dl = 0.2042, (c)
D/Dl = 0.2233, (d) D/Dl = 0.6058. (e–h) New travelling waves. The phase speed and dissipation of these structures is (a)
c = 0.0006, D/Dl = 0.2184; (b) c = 0.0053, D/Dl = 0.2257; (c) c = 0.3178, D/Dl = 0.4357; (d) c = 0.1059, D/Dl = 0.4536.

FIG. 10. Bursting periodic orbit. Snapshots separated by δt = 0.5, labelled on each panel, from a newly-discovered (relative)
periodic orbit with period T = 3.41276 and shift s = −0.56022.

The test dataset used to generate the figures in this paper is constructed from a further 1000 trajectories in the
same way.

Appendix B: Autoencoder architecture

The autoencoders discussed in this paper were all implemented using the Keras library [26]. All share a common
structure consisting of a series of five convolutional layers with periodic padding. The number of filters (and kernel
size) decreases sequentially, 128(8, 8) → 64(8, 8) → 32(4, 4) → 16(4, 4) → 8(2, 2). Nonlinear ReLU activation is
applied to the output of each layer. Each convolution is followed by a max pooling operation over regions of size 2×2.

The convolutions are followed by three fully connected layers, all with ReLU activation, which run 128→ m→ 128.
The fully connected layers are followed by a series of five convolutional layers which mimics the encoder described
above, with up sampling applied after each convolution on patches 2 × 2. A final convolutional layer with a tanh
activation produces the output.

We trained networks with embedding dimension m ∈ {3, 8, 16, 32, 48, 64, 96, 128}. Training was performed for 800
epochs for batch sizes of 64 and 128 using an Adam optimizer with a learning rate of 0.001 or 0.0003. The results
presented in this paper were generated using the best performing model at a given m. In order of increasing m these
hyper parameters are (m, learning rate, batch size): (3, 0.001, 64); (8, 0.001, 128); (16, 0.001, 128); (32, 0.001, 128);
(48, 0.0003, 64); (64, 0.0003, 128); (96, 0.0003, 64); (128, 0.0003, 128).

Appendix C: Simple invariant solutions

Equilibria and travelling waves correspond to solutions of (1) satisfying

Ts=cTω(x, t+ T ) = ω(x, t) ∀T (C1)
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where the shift s = cT is set by the fixed wavespeed, and c = 0 for a pure equilibrium. The guesses take the form
(ωg, sg), where we set the shift sg = cgTint = 0 and the integration time is held fixed at Tint = 3. The vorticity guess
is the decode of a projection onto the l = 2 eigenspace (see equation (5) in the main text) from the embedding of a
snapshot from within a ‘bursting’ episode.

The guesses are input into a Newton-Raphson algorithm which has been described extensively in previous research
[8, 11, 27]. The size of the Jacobian matrix makes direct computation prohibitively expensive, and updates to the
solution (δω, δs) are instead computed within a Krylov subspace (Newton-GMRES) which requires computation only
of the action of the Jacobian on a vector. A hookstep is used to constrain updates of the guess to within a specified
trust region [27].

Some example solutions converged from l = 2 projections within bursting events are displayed in figure 9. Note
the dipole structures seen in the simple invariant solutions with the highest dissipation values have not been seen in
previously discovered exact coherent structures [11, 19]. We have also converged a relative periodic orbit from within
a bursting episode and have included snapshots from the evolution of this solution in figure 10. The flow field is
dominated by four dipole structures; the lower pair propagate through the domain while the upper pair remain fixed
in place. This bursting periodic orbit is qualitatively different from any documented previously [11, 21].
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